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Agenda:

• Introductory remarks on mathematics of asset management (AM).

• Risk-sensitive control in AM, with benchmark

• Mutual-fund theorems

• Lévy-driven models

• Conclusions and extensions

Note: The mathematical development in the first part of this paper follows very
closely Kuroda and Nagai (Stochastics and Stochastics Reports 2002).
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Mathematics of asset management

See J. Campbell and L. Viceira Long-term asset allocation Oxford UP 2003

Markowitz

• 1-period model

• Quantifies basic risk-return trade-off

• Huge impact on practical AM

Stochastic control (Merton)

• Dynamic theory

• Maximizes expected utility (wealth and/or consumption)

• No impact on practical AM, because

** Questionable utility specification

** Too dependent on stylized math model
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Basic problem with both approaches (or indeed any approach):

Estimation of growth rates is impossible. Example

dZt = μ dt+ σ dWt.

Assume σ is known. Maximum likelihood estimate of μ is

μ̂T =
ZT

T
with error μ̂T − μ =

σWT

T
.

Time for reasonably accurate estimate of μ ≈ 1500 years.

“Solution”: must use some sort of factor approach or quantify investor ‘views’
(Black-Litterman)

In this paper we suppose μ = μ(Xt) where Xt is an observed vector process of
factors. (If not directly observed then Kalman filtering ...)
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Risk-Sensitive Control

Control theory: Jacobson, Whittle, Bensoussan, Fleming,..
Asset Management: Bielecki-Pliska, Kuroda-Nagai, Peng-Nagai

Conventional control: maxE[F ] for some performance function F .

Risk-sensitive control: maximize

−
2

θ
logE

[
e−

θ
2F
]
= E[F ]−

θ

2
var[F ] + o(θ).

Conventional control recovered as θ → 0.

In risk-sensitive asset management, F is the log-return, i.e. F = log V where
V is portfolio value. Objective is then to maximize

−
2

θ
logE

[
e−

θ
2 log V

]
= −
2

θ
logE

[
V −θ/2

]
.

The optimization problem is then equivalent to maximizing power utility, but
has an aspect of ‘risk-return trade-off’ à la Markowitz. As θ → 0 we revert to
the growth-optimal portfolio.
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Analytical Setting

Let (Ω, {Ft} ,F ,P) be the underlying probability space. On this space is
defined an RN -valued (Ft)-Brownian motion W (t) with components Wk(t), k =
1, . . . , N . All processes are defined on (Ω,F ,P) and are Ft-adapted. Here
N = m+ n.

Growth rates of both assets and benchmark depend on an n-vector factor pro-
cess X(t). We assume that the factors are observable.

Money market account process pays continuously compounding interest

r(t) = η + ζ ′X(t).

Assets market comprises m risky securities Si, i = 1, . . .m.
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Asset dynamics
The dynamics of the money market account is given by:

dS0(t)

S0(t)
= (η + ζ ′X(t)) dt, S0(0) = s0

Dynamics of the m risky securities and n factors can be expressed as:

dSi(t)

Si(t)
= (a+ AX(t))idt+

N∑

k=1

σikdWk(t), Si(0) = si, i = 1, . . . ,m

dX(t) = (b+BX(t))dt+ ΛdW (t), X(0) = x

where X(t) is the Rn-valued factor process with components Xj(t) and the
market parameters a, A, b, B, Σ := [σij] , i = 1, . . . ,m, j = 1, . . . , N , Λ :=
[Λij] , i = 1, . . . , n, j = 1, . . . , N are matrices of appropriate dimensions.

Assumption 1. The matrix ΣΣ′ is positive definite.

Let Gt := σ((S(s), L(s), X(s)), 0 ≤ s ≤ t) be the sigma-field generated by
the security, liability and factor processes up to time t.
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The allocation of wealth among the assets is defined by an Rm-valued stochas-
tic process h, where the ith component hi(t) denotes the proportion of current
wealth invested in the ith risky security at time t, i = 1, . . . ,m. The proportion
invested in the money market account is h0(t) = 1−

∑m
i=1 hi(t).

Definition 1. An investment process h(t) is in class H if the following condi-
tions are satisfied:

1. h(t) is progressively measurable with respect to {B([0, t])⊗ Gt}t≥0;

2. P
(∫ T
0 |h(s)|

2 ds < +∞
)
= 1, ∀T > 0.

The wealth, V (t), of the asset only portfolio, in response to an investment
strategy h ∈ H, follows the dynamics

dVt

Vt
= (η + ζ ′X(t)) dt+ h′(t)

(
â+ ÂX(t)

)
dt+ h′(t)ΣdWt

where â := a− η1 and Â := A− 1ζ ′.
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Benchmark Modelling

We assume that the benchmark evolves according to a similar SDE as the
asset prices. Specifically,

dL(t)

L(t)
= (α + β′X(t))dt+ γ′dW (t), L(0) = l

where α is a scalar constant, β is a n-element column vector, and γ is a N -
element column vector.
Exposure to the short-term interest rate is included: this can easily be seen

by expressing this equation as

dL(t)

L(t)
=
(
α̂ + β̂′X(t) + κ̂ (η + ζ ′X(t))

)
dt+ γ′dWk(t), L(0) = l

where α̂ := α− κ̂η and β̂ := β− κ̂ζ for some scalar κ̂ reflecting the exposure of
the benchmark to the short-term interest rate, r(t) = η + ζ ′X(t).
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Optimization Criterion

The objective of benchmarked investors is to maximize the risk adjusted growth
of their assets relative to the benchmark. We will express this objective through
an optimization criterion, representing the log excess return of the asset port-
folio over its benchmark, F (t), defined as:

F (t) = ln
V (t)

L(t)
= lnV (t)− lnL(t)

By Itô, the log of excess return in response to a strategy h is

F (t) = ln
v

l
+

∫ t

0

d lnV (s)−
∫ t

0

d lnL(s)

= ln
v

l
+

∫ t

0

(η + ζ ′X(s)) + h(s)′
(
â+ ÂX(s)

)
ds−

1

2

∫ t

0

h(s)′ΣΣ′h(s)ds

+

∫ t

0

h(s)′ΣdW (s)−
∫ t

0

(α + β′X(s))ds+
1

2

∫ t

0

γ′γds−
∫ t

0

γ′dW (s)
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Optimization criterion

The optimization criterion is risk-sensitive control on a finite horizon:

Pθ,T : for θ ∈]0,+∞[, maximize the risk sensitive expected log excess return
over a time horizon T

Jθ,T (v, x;h) :=

(
−2
θ

)

lnEe−
θ
2F (T ;h)

The class of admissible strategies for problem Pθ,T is A(T ) ⊂ H defined below.
A strategy h ∈ H is in A(T ) if a technical condition related to the Girsanov
theorem is satisfied.
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Derivation of the Bellman Equation

Criterion Under the Expectation

Multiplying by −θ2 and taking the exponential in the expression for F (t) we get

e−
θ
2F (t) = f

− θ2
0 exp

{
θ

2

∫ t

0

g(Xs, h(s); θ)ds−
θ

2

∫ t

0

(h(s)′Σ− γ′) dWs

−
1

2

(
θ

2

)2 ∫ t

0

(h(s)′Σ− γ′)(h(s)′Σ− γ′)′ds

}

where f0 =
v
l
and

g(x, h; θ) =
1

2

(
θ

2
+ 1

)

h′ΣΣ′h− η − ζ ′x− h′(â+ Âx)−
1

2

θ

2
(h′Σγ + γ′Σ′h)

+(α + β′x) +
1

2

(
θ

2
− 1

)

γ′γ
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Change of Measure

Let Pθh be the measure on (Ω,F) defined by dPh/dP|Ft = χt where

χt = exp

{

−
θ

2

∫ t

0

(h(s)′Σ− γ′) dWs −
1

2

(
θ

2

)2 ∫ t

0

(h(s)′Σ− γ′)(h(s)′Σ− γ′)′ds

}

.

We denote by A(T ) the set of investment strategies h ∈ H on [0, T ] such
that Pθh is a probability measure. For h ∈ A(T ),

W θt = Wt +
θ

2

∫ t

0

(Σ′h(s)− γ)ds

is a standard Brownian motion under Pθh.
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Under Pθh, Xt satisfies the SDE:

(1) dXs =

(

b+BXs −
θ

2
Λ (Σ′h(s)− γ)

)

ds+ ΛdW θs

and we introduce the auxiliary criterion function under the measure Pθh:

I(f0, x;h; t, T ) = ln f0 −
2

θ
lnEθ

[

exp

{
θ

2

∫ T−t

0

g(Xs, h(s); θ)ds

}]

where Eθ [∙] denotes the expectation taken with respect to measure Pθh.

Key points

• We have replaced the original portfolio optimization problem by a stochas-
tic control problem in the factor process Xt.

• If ΛΣ′ = 0, i.e. the factor and asset price ‘noises’ are uncorrelated, then
(1) is an uncontrolled SDE and we can write down the solution of the
optimization problem just by Feynman-Kac.
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The HJB Equation

Let Φ be the value function for the auxiliary criterion function I(f0, x;h; t, T ).
Then Φ is defined as

Φ(t, x) = sup
A(T−t)

I(f0, x;h; t, T )

and it satisfies the HJB PDE
∂Φ

∂t
+ sup
h∈Rm

LhtΦ = 0

where

LhtΦ =

(

b+Bx−
θ

2
Λ(Σ′h− γ)

)′
DΦ+

1

2
tr
(
ΛΛ′D2Φ

)
−
θ

4
(DΦ)′ΛΛ′DΦ−g(x, h; θ)

The HJB equation has a solution in the form

Φ(x, t) =
1

2
x′Q(t)x+ q′(t)x+ k(t)

with corresponding optimal investment optimal investment strategy

h∗ =
2

θ + 2
(ΣΣ′)−1

(

â+ Âx−
θ

2
ΣΛ′DΦ +

θ

2
Σγ

)
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Q(t), q(t), k(t) are calculated as follows.

• Q(t) satisfies the Riccati equation

Q̇(t)−Q(t)K0Q(t) +K
′
1Q(t) +Q(t)K1 +

2

θ + 2
Â′(ΣΣ′)−1Â = 0

for t ∈ [0, T ], with terminal condition Q(T ) = 0 and with

K0 =
θ

2

[

Λ

(

I −
θ

θ + 2
Σ′(ΣΣ′)−1Σ

)

Λ′
]

K1 = B −
θ

θ + 2
ΛΣ′(ΣΣ′)−1Â

• q(t) satisfies a linear ordinary differential equation

q̇(t) + (K ′1 −Q(t)K0) q(t) +Q(t)b+
θ

2
Q′(t)Λγ + ζ − β

+
1

θ + 2

(
2Â′ − θQ′(t)ΛΣ′

)
(ΣΣ′)−1

(

â+
θ

2
Σγ

)

= 0

with terminal condition q(T ) = 0.

• k(t) = explicit expression involving Q(∙), q(∙).
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Remarks:

1. The Riccati equation used to determine the coefficient matrix of the quadratic
term in the RSBAM and the asset only case are identical. (The equations
for q(t), k(t) contain terms involving the benchmark.)

2. The matrix I − θ
θ+2Σ

′(ΣΣ′)−1Σ appearing in the definition of K0 (the
quadratic coefficient in the Riccati equation) can be rewritten as:

(
I − Σ′(ΣΣ′)−1Σ

)
+
2

θ + 2
Σ′(ΣΣ′)−1Σ

Both these matrices are projection operators and hence non-negative defi-
nite. This is enough to guarantee the Riccati equation has a unique solution
for all t < T .
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Theorem 1. The investment strategy h∗(t) defined by

(2) h∗(t) =
2

θ + 2
(ΣΣ′)−1

(

â+
θ

2
Σγ −

θ

2
ΣΛ′q(t) +

(

Â−
θ

2
ΣΛ′Q(t)

)

Xt

)

where Q is the solution of the Riccati equation and q is a solution of the lin-
ear ODE, belongs to A(T ) and is optimal in A(T ) for the finite time horizon
problem

Jθ,T (v, x;h) :=

(
−2
θ

)

lnEe−
θ
2F (t;h) =

1

2
x′Q(0)x+ q′(0)x+ k(0)

where k is given as above.

Proof. The proof is articulated around two main ideas. First, we need to verify
that indeed h∗(t) ∈ A(T ). This follows from an argument proposed by Ben-
soussan. Then, we must prove the optimality of h∗. The argument needed here
can be found in Kuroda and Nagai.
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Mutual Fund Theorem

For a given time t and state vector X(t), the efficient frontier can be entirely
parameterized using the risk-sensitivity, θ.

Theorem 2. (Benchmark and Assets Mutual Fund Theorem). Given a time t
and a state vector X(t), any portfolio can be expressed as a linear combination
of investments into two “mutual funds” with respective risky asset allocations:

hK(t) = (ΣΣ′)−1
(
â+ ÂX(t)

)
(3)

hC(t) = (ΣΣ′)−1 [Σγ − ΣΛ′ (q(t) +Q(t)X(t))](4)

and respective allocation to the money market account given by:

hK0 (t) = 1− 1
′(ΣΣ′)−1

(
â+ ÂX(t)

)
(5)

hC0 (t) = 1− 1
′(ΣΣ′)−1 [Σγ − ΣΛ′ (q(t) +Q(t)X(t))](6)

Moreover, if an investor has a risk sensitivity θ, then the respective weights of
each mutual fund in the investor’s portfolio are equal to 2

θ+2 and
θ
θ+2.
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Proof. In the asset only case, the optimal risk-sensitive asset allocation is given
by:

h∗(t) =
2

θ + 2
(ΣΣ′)−1

(

â+
θ

2
Σγ −

θ

2
ΣΛ′q(t) +

(

Â−
θ

2
ΣΛ′Q(t)

)

X(t)

)

Denote

hK(t) = (ΣΣ′)−1
(
â+ ÂX(t)

)

hC(t) = (ΣΣ′)−1Σγ − (ΣΣ′)−1ΣΛ′ (q(t) +Q(t)X(t))

the risky asset allocation of funds K and C. Now

h(t) =
2

θ + 2
hK(t) +

θ

θ + 2
hC(t)

so by the budget equation

h0(t) = 1− 1
′h(t)

=
2

θ + 2

(
1− 1′hK(t)

)
+
θ

θ + 2

(
1− 1′hC(t)

)

=
2

θ + 2
hK0 (t) +

θ

θ + 2
hC0 (t)

where hK0 (t) is given by (5) and h
C
0 (t) is given by (6).
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Corollary 1. (Geometric Brownian Motion.) When the risky assets follow a
Geometric Brownian Motion with drift vector μ and the money market account
is risk-free (i.e. η = r and ζ = 0), then any optimal portfolio can be expressed
as a linear combination of investments into two “mutual funds” with respective
asset allocations

hK(t) = (ΣΣ′)−1 (μ− r1)

hC(t) = (ΣΣ′)−1Σγ(7)

and respective allocation to the money market account given by:

hK0 (t) = 1− 1
′(ΣΣ′)−1 (μ− r1)

hC0 (t) = 1− 1
′(ΣΣ′)−1Σγ

Moreover, if an investor has a risk sensitivity θ, then the respective weights of
each mutual fund in the investor’s portfolio are equal to 2

θ+2 and
θ
θ+2.
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The next result is related to the asset only setting considered by Kuroda and
Nagai.

Corollary 2. (Asset Only Mutual Fund Theorem). Given a time t and a state
vector X(t), any portfolio can be expressed as a linear combination of invest-
ments into two “mutual funds” with respective risky asset allocations:

hK(t) = (ΣΣ′)−1
(
â+ ÂX(t)

)

hC(t) = −(ΣΣ′)−1ΣΛ′ (q(t) +Q(t)X(t))(8)

and respective allocation to the money market account given by:

hK0 (t) = 1− 1
′(ΣΣ′)−1

(
â+ ÂX(t)

)

hC0 (t) = 1 + 1
′(ΣΣ′)−1ΣΛ′ (q(t) +Q(t)X(t))

Moreover, if an investor has a risk sensitivity θ, then the respective weights of
each mutual fund in the investor’s portfolio are equal to 2

θ+2 and
θ
θ+2.
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Remark 1: as was expected, the asset allocation within funds K and C
is independent from the investor’s risk aversion. As we saw in Subsection 6.4,
when θ → 0 the optimal portfolio becomes fund K. Also, as θ → +∞ the
optimal portfolio becomes fund C. Fund C can be interpreted as a trading
strategy trading on the comovement of assets and valuation factors.

Remark 2: when we assume that there are no underlying valuation factors,
the risky securities follow geometric Brownian motions with drift vector μ and
the money market account becomes the risk-free asset (i.e. η = r and ζ = 0).
In this case ΣΛ′ = 0 and we can then easily see that fund C is fully invested in
the risk-free asset. As a result, we recover Merton’s Mutual Fund Theorem for
m risky assets and a risk-free asset.
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Special Case: Traded Benchmark
Benchmark as a Portfolio of Risky Assets We will first consider the case when
the benchmark is a constant proportion strategy invested in a combination of
traded assets. The benchmark dynamics can be expressed as:

dLt

Lt
= ν ′(a+ AX(t))dt+ ν ′ΣdWt

where ν is a m-element allocation vector satisfying the budget equation:

1′ν = 1

The corresponding optimal asset allocation for the finite-time horizon problem
is

h∗(t) =
2

θ + 2
(ΣΣ′)−1

(

â+
θ

2
ΣΣ′ν −

θ

2
ΣΛ′q(t) +

(

Â−
θ

2
ΣΛ′Q(t)

)

Xt

)

=
2

θ + 2
(ΣΣ′)−1

(
â+ ÂXt

)
+
θ

θ + 2
ν

−
θ

θ + 2
(ΣΣ′)−1ΣΛ′ (q(t) +Q(t)Xt)
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As θ → 0,

h∗(t) → (ΣΣ′)−1
(
â+ ÂXt

)

and we recover the log utility optimal portfolio.
As θ → +∞,

h∗(t) → ν − (ΣΣ′)−1ΣΛ′ (q(t) +Q(t)Xt)

The resulting investment strategy can be decomposed into two elements.
The first one, ν, replicates the index. The second element is a risk adjustment
trade, which, when combined with the allocation to the money market account
can be interpreted as a “long-short macro hedge fund” with zero net weight, so
that

h∗0(t)− 1
′(ΣΣ′)−1ΣΛ′ (q(t) +Q(t)Xt) = 0

The n-element vector q(t) satisfies the linear ordinary differential equation

q̇(t) + (K ′1 −Q(t)K0) q(t) +Q(t)b+
θ

θ + 2
Q′(t)ΛΣ′ν −

2

θ + 2
Â′ν

+
1

θ + 2

(
2Â′ − θQ′(t)ΛΣ′

)
(ΣΣ′)−1â = 0(9)

with terminal condition q(T ) = 0
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In summary:

Corollary 3. (Fund Separation Theorem with a Constant Proportion Bench-
mark (I)). Any optimal portfolio can be expressed as a linear combination of in-
vestments into a “mutual funds”, an index fund and a “long-short hedge fund”
with respective risky asset allocations:

hK(t) = (ΣΣ′)−1
(
â+ ÂX(t)

)

hI(t) = ν

hH(t) = −(ΣΣ′)−1ΣΛ′ (q(t) +Q(t)X(t))(10)

and respective allocation to the money market account given by:

hK0 (t) = 1− 1
′(ΣΣ′)−1

(
â+ ÂX(t)

)

hI0(t) = 0

hH0 (t) = 1
′(ΣΣ′)−1ΣΛ′ (q(t) +Q(t)X(t))(11)

Moreover, if an investor has a risk sensitivity θ, then the respective weights of
each mutual fund in the investor’s portfolio are equal to 2

θ+2,
θ
θ+2 and

θ
θ+2.
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‘Fractional Kelly’
Log-optimal or ‘Kelly’ strategies are known to be ‘risky’. Various authors

have proposed ‘fractional Kelly’ strategies of the form

h(t) = (1− λ)hK(t) + λhMM(t)

where hMM invests only in the money market account. Our results show that
such strategies are sub-optimal because they fail to exploit the opportunities
for hedging.

27



A Lévy-driven model with diffusion factors

Extend the previous model to discontinuous asset prices, but maintain factor
process Xt as a linear diffusion.
Let (Z,BZ) be a Borel space. Let p be a (Ft)-adapted σ-finite Poisson point

process on Z whose underlying point functions are map from a countable set
Dp ⊂ (0,∞) into Z. Define

(12) Zp := {U ∈ B(Z),E [Np(t, U)] <∞ ∀t}

Assume p is of class (QL) and consider Np(dt, dz), the Poisson random measure

on (0,∞)× Z induced by p. Then there exists N̂p =
(
N̂p(t, U)

)
such that

(i.) for U ∈ Zp, t 7→ N̂p(t, U) is a continuous (Ft)-adapted increasing process;

(ii.) for each t and a.a. ω ∈ Ω, U 7→ N̂p(t, U) is a σ-finite measure on (Z,B(Z));

(iii.) for U ∈ Zp, t 7→ Ñp(t, U) = Np(t, U)− N̂p(t, U) is an (Ft)-martingale;

The random measure
{
N̂p(t, U)

}
is called the compensator of the point process

p. Here N̂p(t, U) = ν(U)t where ν is the σ-finite characteristic measure of the
Poisson point process p
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Finally, fix a set Z0 ⊂ BZ such that ν(Z\Z0) < ∞ and define the Poisson
random measure N̄p(dt, dz) as

N̄p(dt, dz)

=

{
Np(dt, dz)− N̂p(dt, dz) = Np(dt, dz)− ν(dz)dt =: Ñp(dt, dz) if z ∈ Z0
Np(dt, dz) if z ∈ Z\Z0

Factor Dynamics
As before, these are given by

(13) dX(t) = (b+BX(t))dt+ ΛdW (t), X(0) = x

where X(t) is the Rn-valued factor process with components Xj(t) and b ∈ Rn,
B ∈ Rn×n, Λ := [Λij] , i = 1, . . . , n, j = 1, . . . , N .
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Asset Market Dynamics
Money market account:

(14)
dS0(t)

S0(t)
= (η + ζ ′X(t)) dt, S0(0) = s0

Asset prices: The price Si(t) of the ith security satisfies

dSi(t)

Si(t−)
= (a+ AX(t))idt+

N∑

k=1

σikdWk(t) +

∫

Z

γi(z)N̄p(dt, dz),

Si(0) = si, i = 1, . . . ,m(15)

where a ∈ Rm, A ∈ Rm×n, Σ := [σij] , i = 1, . . . ,m, j = 1, . . . ,M and
γ(z) ∈ Rm with −1 ≤ γmini ≤ γi(z) ≤ γmaxi <∞ for i = 1, . . . ,m.
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Portfolio dynamics:

dV (t)

V (t−)
= (η + ζ ′X(t)) dt+ h′(t)

(
â+ ÂX(t)

)
dt+ h′(t)ΣdWt

+

∫

Z

h′(t)γ(z)N̄p(dt, dz)(16)

Note for admissibility we must have h′(s)γ(s) ≥ −1. More precisely, define

S = supp(ν) ∈ BZ, S̃ = supp(ν ◦ γ−1) ∈ B(Rm).

Let
J :=

{
h ∈ Rm : −1− h′s̃ < 0 ∀s̃ ∈ S̃

}

and
K := {h(t) ∈ H : h(t) ∈ J ∀t a.s.}

The set J is a convex cone in Rm. Note that the set S̃ is a key feature of the
model and determines admissibility of strategies.
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Wealth equation:

e−θ lnV (t) = v−θ exp

{

θ

∫ t

0

g(Xs, h(s); θ)ds− θ
∫ t

0

h(s)′ΣdWs

−
1

2
θ2
∫ t

0

h(s)′ΣΣ′h(s)ds

+

∫ t

0

∫

Z

ln (1−H(h(s); θ)) Ñp(ds, dz)

+

∫ t

0

∫

Z

{ln (1−H(h(s); θ)) +H(h(s); θ)} ν(dz)ds

}

where

g(x, h; θ) =
1

2
(θ + 1)h′ΣΣ′h− η − ζ ′x− h′(â+ Âx)

+

∫

Z

{
1

θ

[
(1 + h′γ(z))−θ − 1

]
+ h′γ(z)1Z0(z)

}

ν(dz)(17)

H(h; θ) = 1− (1 + h′γ(z))−θ
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Change of Measure: Let Pθh be the measure on (Ω,F) defined as

χt :=
dPθh
dP

∣
∣
∣
∣
Ft

= exp

{

−θ
∫ t

0

h(s)′ΣdWs −
1

2
θ2
∫ t

0

h(s)′ΣΣ′h(s)ds

+

∫ t

0

∫

Z

ln (1−H(h(s); θ)) Ñp(ds, dz)

+

∫ t

0

∫

Z

{ln (1−H(h(s); θ)) +H(h(s); θ)} ν(dz)ds

}

, ∀t ≥ 0

We denote by A the set of investment strategies h ∈ K on [0, T ] such that
Pθh is a probability measure. For h(t) ∈ A, Xt satisfies the SDE:

dXs = (b+BXs − θΛΣ
′h(s)) ds+ ΛdW θs

We can now introduce the auxiliary criterion function under the measure Pθh:

(18) I(v, x;h; t, T ) = ln v −
1

θ
lnEθ

[

exp

{

θ

∫ T−t

0

g(Xs, h(s); θ)ds

}]

where Eθ [∙] denotes the expectation taken with respect to measure Pθh.
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The HJB Equation
Let Φ be the value function for the auxiliary criterion function I(v, x;h; t, T ).

Then Φ is defined as
Φ(t, x) = sup

A
I(v, x;h; t, T )

and it satisfies the HJB PDE

(19)
∂Φ

∂t
+ sup
h∈J̄
LhtΦ = 0

where

LhtΦ = (b+Bx− θΛΣ
′h)
′
DΦ +

1

2
tr
(
ΛΛ′D2Φ

)
−
θ

2
(DΦ)′ΛΛ′DΦ− g(x, h; θ)

and subject to terminal condition

(20) Φ(T, x) = ln v

.

Next step: show that the value function is the unique viscosity solution of
(19),(20).
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Concluding remarks

• Risk-sensitive control seems to combine the virtues of Markowitz and Mer-
ton by providing a fully dynamic theory with a clear risk-return trade-off
interpretation.

• Conventional performance objectives of outperforming a benchmark are
readily handled within this framework.

• Current work is aimed at completing the Lévy assets/diffusion factor theory
and extending to Lévy factor.

• Main application: expand asset universe to include credit risk
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