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ABSTRACT

In this paper we derive risk-sensitive filters which can
be used for both on-line and off-line identification of
hidden Markov models (HMMs), The identification
is achieved by taking risk-sensitive conditional mean
estimates of the number of state transitions (jumps)
smd occupation times and then using these values to
estimate the parameters of the system.

Furthermore we demonstrate that the risk-sensitive
filters approach the existing rrsymptotically optimal
(risk-neutral) filters in the limit of the risk-sensitive
parameter.

1. INTRODUCTION

The basic theory of hidden Markov models (HMhis)
was introduced by Baum and colleagues in a series of
classic papers stretching from 1966 to 1972 [3, 4, 5,
6, 7]. The states of an HMM are assumed to belong
to a discrete set and state transition probabilities are
organised to form the so-called transition matrix. The
measurements of the state are noisy and or possibly
quantized.

Although HMMs were soon recognised to have
aPPbtiOrJs to speech recognition se introduced by
Baker in 1975 [8], it hss taken time for HMM tech-
niques to be applied to other signal processing prob-
lems. Now HMMs have become an integrsd part of the
signal processing fields armoury, with a growing num-
ber of applications including speech processing and
recognition [8, 9, 10, 11], biological signal processing
[12] and digital communication systems [13, 14].

When making use of HMMs in the applications
cited previously it is essential (for optimum perfor-
manm) to have an accurate estimate of the model pa-
rameters. As a result there have beerr a number of off-
line and on-line identification schemes proposed. On-
line identification schemes are an essential require-
ment to some signal processing applications due to
the fluctuation of state transition probabilities with
time as considered by Krishnamurthy and Moore in
[15]. On-1ine identification schemes can also be ap

plied to off-line identification problems with minor
changes to the algorithms.

There have been a number of parameter estima-
tion schemes proposed for HMMs. These include the
off-line Baum- Welch algorithm [3], recursive predic-
tion error methods [16, 17, 18], and a conditional
mean estimate approach [19].

In [19] certain summations of non-linear functions
of the state are proposed which when the system is
fully observed can be used as a step to achieve sub-
optimal estimates of the HM M parameters. The sum-
mations represent such quantities ss the number of
jumps between certain states, or the state occupation
times. For partially observed HMMs recursive filters
give conditional mean estimates of the summations
and then use these estimates as a step to achieve es-
timates of the parameters of the HMM. It is shown in
[19] that the estimates of the summations are ssymp
toticrdly optimal and that they provide on-line con-
sistent parameter estimation which is asymptotically
optimal.

The existing on-line atimation schemes have a
number of limitations associated with them, these in-
clude:

1.

2.

3.

They are only asymptotically optimal when the
true model is contained in the model set, e.g.
if the observation noise has some unmodelled
coloration.

Despite being asymptotically optimal when the
true model is in the model set, estimates from
limited data based on poor model parameter
estimates can he high in error and it may take
many samples for the estimates to converge suf-
ficiently enough to be useful. We refer to this
ss poor transient performance. We can think
of the error between the true model parame-
ters and the estimated model parameters at ini-
tialisation of the estimation schemes, as a high
noise situation where the additional ‘noise’ is
coloured.

When only finite date sets are available there
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may not be sufiicent information to provide use-
ful estimates.

It has been shown for state estimation of HMMs
[20] in cases where the parameters of the model used
for state estimation are not the true parameters of
the system that there is a significant improvement
in performance when some attempt at risk-sensitive
state estimation is used. The robustn- property of
the risk-sensitive state estimation scheme is desirable
in parameter estimation schemes, since the identifi-
cation will be robust to model uncertainty.This is the
motivation behind the estimation scheme proposed in
this paper and in an earlier risk-sensitve parameter
estimation scheme proposed in [21].

In [21] the authors proposed pseudo risk-sensitive
filters which were a modified version of the filters prrr-
posed in [19]. The modifications were ad hoc but
in the spirit of those rigorously established for risk-
sensitive state estimation [20]. It is important to note
that [21] did not rigorously justify the proposed fil-
ters. It was shown in [21] through simulation that
the risk-sensitive filters proposed did significantly im-
prove the transient performance of both on-line and
off-line parameter estimation of HMhfs, but there wss

no attempt made to investigate the robustness of the
filters to coloration of noise etc.

The risk-sensitive identification scheme proposed
in this paper is derived rigorously in that we develop
risk-sensitive conditional mean estimates of the non-
linear functions of the state proposal in [19].

This paper is organised as follows: In Section 2
we introduce the HMM signal model and the change
of measure. In Section 3 we define the summations
of the non-linear functions of the state (such as the
number of transitions between certain states) used for
the estimation of the HMM parameters and derive the
filters used for the risk-sensitive conditional mean es-
timateaof the non-linear functions. In Section 4 we in-
vestigate the limiting results of the risk-sensitive iden-
tification scheme, in the limit of the risk-sensitive pa-
rameter. Our conclusions are presented in Section 5.

2. HIDDEN MARKOV MODEL

2.1. State Space Model

Let X~ be a discrete-time homogeneous, first-order
Markov proces belonging to a finite-discrete set. De
fine S = {el ,...,e~}vfhere ei=(o,l, .,l,...,o)’c
fRN with 1 in the :-th position. Without loss of gen-
erality, we can assume Xk c S. We consider this pro-
cess to be defined on the probability space (Q, X, P)
with ~ = U{XO, . . ., xk ) and the complete filtration
{Xk). The state space model is then defined by

x,+ = Axk. ] + W,k (1)

~~ = CX&_l +?J~ (2)

where wk, k ~ 2+ is a sequence of ~k-mart.ingale
increments and hence E[Wk l~k_l] = O. Also yk is
continuous valued belonging to RF and Vk G U?p, /i E

2+ is i.i.d with a strictly positive density function ok.
Due to the Markov nature of Xk, we can write

~[xklyk-1] = E[xklxk.1] = Axk-.l (3)

where the entries {aij } are defined ss P(Xk = ei
lXk_~ = ej). Obviously aij > O,Vi, j and Zy=laij =
1, Vi. We also assume that Xo or its distribution is
known.

2.2. Change of Measure

We define a new measure P where {yk}, k E 2+ is a
sequence of i.i .d. random variables having a density
fUnCtiOn$$k. Define

jk = #k(Yk – Cxk)

dk(yk)

(4)

If we set the Radon-Nikodym derivative ~ Igk =
& then under P, the random variables Vk,k E Z+
are i.i.d. with density functions ~,k. Here {Gk} is the
complete tiltration generated by X; = (Xo, . . . . Xk)
and ~k_l = (LID, . . .. I/k-l) (See [1]).

3. PARAMETER ESTIMATION

In this section of the paper we introduce the risk-
aensitive cost function and risk-sensitive conditional
mean estimates of the summations of non-linear func-
tions of tbe states used to estimate the HMM param-
eters.

3.1. Parameters Estimation for Fully Ob-
served Case

Here we first recall the approach of [19].
Multiplying (1) by X~_l and summing over k we

find

or
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S’.2.1. Risk Sensitive Cost Function and State Es-

where

k k

& = ~XIXL ~d ok = ~xI-IxJ’_I (8)
1=0 1=0

tzmates
(7\,.,

The risk-sensitive s~ate estimation problem is to de-
termine the state & so that the risk-sensitive cost
function is minimised. As shown in (15)

Hence, under a nonsinguiar condition on OL. we ob
tain a reasonable estimate of A from

(9)

Clearly ok. is diagonal and Ok = ~~=o(XJ-i )diag.

Furthermore [19] shows that

(~~~)di.g= Ok (lo)

The martingale movement properly for WI ensures
thatif O~x+Oask+eo, then Ak +Assk-+cm
almost surely.

Post-multiplication of (2) by Xi and summing
over k we obtain

or

(12)

where

k

Tk = ~YIx;-1 (13)
1=0

Hence, we may obtain a reasonable estimate of C
from

Again, a martingale moveme~t property of the mea-
sured noise VI ensures that ck ~ C as k + eo (as-
suming 0~1 ~ O.
Remark 3.1 It must be noted that (9) and (14) only
hold for the case of persistent excitation. That is all
states of the system are consistently visited.

3.2. Risk-sensitive Conditional Mean Esti-
mat es

In this section we find risk-wisitive conditional mean
estimates of the summations defined in (8) and (13).
The technique for taking risk-sensitive conditional
mean estimates is demonstrated in [20], an overview
of this method is contained in Section 3.2.1.

where

Jk(() = ~[exp(e~o,k(())lyk] Vk = 0,1,. .(16)

is the risk sensitive cost function. Here,

~O,k(~) = $o,k-1 + jxk – <) ’Qk(xk – <~17)

where

Qk~OVk =,0,1,2,...

@m,.= ~,~(Xi - xi)’Qk(xi - xi) (18)
,=?n

and O~ Ois the risk-sensitive parameter.
Th;risk-sensitive state estimation problem has al-

ready been solved in [20]. The teehnique used was to
take the conditional mean estimate of the state as
shown in (19) and then to use the recursion found
(20) in the minimisation of the conditional mean es-
timate (15) and (16).

Dk = diag{exp ~(e~ - xk)’Qk(el ‘Xk),...

. . . . P/Xf&~ - xk)’Qk(@ – Xk)}

(21)

N @k(f/k - ~k-llk-lej)
m* = arg mmh~

f#k(llk)
j=l

ew ~[(ej - f3n)’Qk(ej – %)]Q’fs(ej)

where mG{l,2,. ,., N} (22)
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9.2.2. Recursive Filters for Risk-sensitive Condi-
tional Mean Estimates oj ~k

It was shown in [19] that to find the conditional mean
estimate of ~k, that we must first find the conditional
mean estimate of the augmented matrix Xk row vec$k
or ~kx where row vec ~k = ~lJkx. To find the risk-
seneitive conditional mean estimate of $kx directly
is a difficult problem, so the approach we take is to
find the risk-sensitive estimates of flkx’s coloumns i.e.
(J’kx)r r= 1, . . .. N20r XkJkmnm. n=l, . ..N.

Let us define (23) as the risk-sensitive conditional
mean estimates of (J’kx)’.

(ltq’ = -mxP(o*o,k-l)JJTn

< Xk , ej > l~k] (23)

mn are the ~lemenk of $k with m, n = 1! . . .where flk
.,. , N and the inner product operation < Xk, ej >
is the equivalent of the augmentation performed in
[19).
Using a version of Baye’s Theorem and the measure
change we find

E[exP(8Vo,/c - 1)$~ ]~k]

~[~k eXf)(6~0,k - 1)$:” l~k]
=

E[& < xk, ej l~k]

Definition 3.1 Define the measures K:” (e;)
the rmnormal:sed information states such that

(24)

to be

Wqk-1(%) = ~[~k-1 CXp(@~(I,k-2)t~_~

< xk, ej > Iyk-1] (’M)

Lemma 3.1 The information states ~klk = [~~~k,. .

. . . . xfl~ )]’ obeys the following recursion

Kklk = GkKk_llk–1 + [(el)diagck(~f~l )ding, . . .

.,., (e~)d,agck(~f~l)diag] (26)

[~~(el),..., ~fi~ (e.1)1’
zik_l\k-1EhcDk-1

~iag{dk(yk– ‘k-llk-lel)

~k(yk) ‘“’”

@k(Vk – &llk-leN)
. . . .

#k(V/c) }

-.
Proof

——

exp[~(xk_l–i,k_l)’@_l(x’k.-l– Xk-1)]

lyk]~k-l eXp(~~O,k-2)lyk-1]

(Exploited Vkbeing i.i .d., thus expectation within ex-
pectation. Substitutions made using (5), (8), (17)
and (3), noting that in (3) we use the best available
estimate of A, which is at time k – 1.)

N

= E[~{bjjdjjQ1j}Ak_ *exp(~~o,k-l)fk~t l~k-l]

j=]
N

+E[~{bjj~jj(eiej )mn~ij}
j=l

(Applied the formulator a discrete expectation, where
bij, djj and Gij are the elements of Bk, Dk _ 1 and
Ak-~lk- ~ respectively.)

N

+Gijbjjdjj(eie~ )mn&l(ej)]Vi (27)

Writing in matrix notation completes the proof. ❑

Definition 3.2 The normalised estimate of row vec
~k]k is given by

where cr~ = &-llk-lBkcYk- I iS the MAP state esti-
mate

Now that we have the filter for the risk-sensitive
conditional mean estimate of ~k it is trivial to use
(10) to find a risk-sensitive conditional mean estimate
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of Uk given by (29) and then substitute these results
into (9) to find the risk-sensitive estimate of A as
given by (30)

9.2.3. Recurs:ue Filters for Risk-sensitive Condi-
honal Mean Estimates of rk

In this section we present the filter for the estima-
tion of the non-linear function Tk. As is expected the
technique for finding the risk-sensitive filter for esti-
mation of Tk is the same as used when finding the
filter for fk. Because of this we omit the proof for
the results presented here in Lemma 3.2

Lemma 3.2 The mformat:on state 7klk = [’Y,//k, ~.

. . . . -rfirl’Obw~~eWowiw~cur$ion

Yklk = GkYk-]lk-l + YL @ [Gk(~El)diag](31)

where A @ B denotes the Kronecker product, with
(A@ B),j = ~ij~

Definition 3.3 The normalised esttmate of row vec
~~lk is giuen by

(32)

Now that we have the filter for the risk-sensitive
conditional mean estimate of Tk and have ok given
by (29) it is trivial to substitute these results into
(14) to find the risk-sensitive estimate of C as given
by (33)

4. LIMITING RESULTS

In this section of the paper we discuss the limiting
results of our risk-sensitive filter in the limit of the
risk-sensitive variable O. Let us now consider (34).

lim Gk = /ik-l\k-@kDk-l
8-+0

+ /ik-,lk_lBk (34)

since

hli&l + IN

where IN is an N x N identity matrix.
This result means that the recursive filters for the

risk-sensitive conditional mean estimates of J’kx and
‘Tkx,approach t he recursive filters for the risk-neutral
conditional mean estimates (presented in [19]) as the
risk-sensitive parameter # approaches zero.

Furthermore when 6 = Otherisk-sensitive filters
areidentical to the risk-neutral filters given in [19].

5. CONCLUSIONS

In this paper we have introduced the state space rep-
resentation of hidden Markov models, which allowed
the application of the measure change technique to
give us a sequence of i.i.d. observations {y~}. From
this model bssis we were able to rigorously derive
a risk-sensitive identification scheme for HMMs, by
drawing upon the parameter estimation techniques
used in [1, 19] and by applying the idea of risk-
sensitive conditional mean estimates which had pre-
viously been used only for state estimation in HMMs
[20].
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