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Abstract

Many aspects of human motor behavior can be understood using optimality principles such as optimal feedback control.
However, these proposed optimal control models are risk-neutral; that is, they are indifferent to the variability of the
movement cost. Here, we propose the use of a risk-sensitive optimal controller that incorporates movement cost variance
either as an added cost (risk-averse controller) or as an added value (risk-seeking controller) to model human motor
behavior in the face of uncertainty. We use a sensorimotor task to test the hypothesis that subjects are risk-sensitive.
Subjects controlled a virtual ball undergoing Brownian motion towards a target. Subjects were required to minimize an
explicit cost, in points, that was a combination of the final positional error of the ball and the integrated control cost. By
testing subjects on different levels of Brownian motion noise and relative weighting of the position and control cost, we
could distinguish between risk-sensitive and risk-neutral control. We show that subjects change their movement strategy
pessimistically in the face of increased uncertainty in accord with the predictions of a risk-averse optimal controller. Our
results suggest that risk-sensitivity is a fundamental attribute that needs to be incorporated into optimal feedback control
models.
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Introduction

Risk-attitudes are an important determinant of human decision-

making that expresses itself, for example, with individuals who are

risk-seeking investing in highly volatile stocks and those who are

risk-averse choosing governments bonds. Economic theory

suggests that when making a decision that can lead to a

probabilistic set of outcomes, each of which is associated with a

different reward, decisions are not selected simply to maximize the

average reward (expected value maximization). Instead both the

average reward and the variability of the reward influence the

decision. For example, when subjects are given a choice of either a

risky but high-average reward (a 50-50 chance of winning £100 or

nothing) and a sure-bet with lower average reward (£45 for sure),

the majority of people choose the sure option – for example see

[1,2]. This effect is called risk-aversion because people are willing

to accept a lower average payoff in order to reduce the variability

of the payoff.

However, the motor system, unlike an economic decision-

maker, has to act continuously in time and needs to incorporate

incoming sensory information into the ongoing control process,

e.g. in obstacle avoidance tasks [3]. Recently, optimal feedback

control has been proposed as a model for continuous optimal

decision-making and has successfully explained a wide range of

movement phenomena such as variability patterns [4], the

response of bimanual movements to perturbations [5,6], adapta-

tion to novel tasks [7–9] and complex object manipulation [10].

This model computes the optimal strategy given a cost function

that penalizes a combination of error and effort. Although these

motor control models take the stochastic nature of the task (arising

from motor and sensory noise) into account, the potential effects of

risk-sensitivity have been neglected. Specifically, optimal control

models are risk-neutral in that they minimize the average cost.

Here, we consider an optimal control framework that incorporates

a risk-sensitive controller and use it to model subjects’ behavior in

a continuous decision-making task. We show that subjects’

behavior is consistent with risk-sensitive optimal control models

with most subjects being risk-averse.

Results

To examine risk-senstivity in sensorimotor control, we simulated

the motion of a ball that moved with constant speed towards a

target line (Figure 1). When the ball crossed the line, its deviation

from the center of the line led to a quadratic penalty (error cost in

points). The motion of the ball in the orthogonal direction was

determined by two processes. First, random forces acted on the

ball (drawn from a zero-mean Gaussian distribution) which caused

the ball to drift under Brownian motion. Second, subjects could

exert control on the ball by moving their hand left and right, with

this deviation mapped linearly to a simulated force acting on the

ball. Subjects were penalised quadratically for applying control to

the ball and this control cost was cumulative over the movement.

Subjects were instructed to minimize the total cost which was the

sum of the error and control costs. Therefore, to minimize the

total cost subjects wanted to come close to the center of the target
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line while exerting minimal control. We varied both the variance

of the noise added to the force acting on the ball as well as the

relative weighting of the error and control cost, leading to four

conditions (1. low noise/low control cost, 2. high noise/low control

cost, 3. low noise/high control cost, 4. high noise/high control

cost).

Figure 2A & B depicts the ball’s path for the two noise levels in

the high control cost conditions for a typical subject. These show

that the ball deviates initially due to the noise acting on it and clear

corrections can be seen towards the end of the movement.

Increasing the noise level (Figure 2B) led to the ball showing a

wider distribution. Figure 2C & D depicts the mean control

magnitude averaged across all subjects. This shows that subjects

tended to apply increasing levels of control towards the end of the

movement. Compared to the low noise condition, in the high noise

condition subjects applied more control (repeated-measures

ANOVA of the absolute control command at the end of the trial:

F1,5~32:83, pv0:01). Similarly, when the cost of applying control

was reduced (low cost condition), subjects applied more control to

the ball in order to reduce the positional error (repeated-measures

ANOVA: F1,5~26:49, pv0:01). Figure 2E & F shows the mean

absolute error over time averaged across all subjects. Simulations

demonstrate that without any intervention (dashed lines) the final

positional error for the high noise levels is, as expected, 5 times

higher than for the low noise condition. Subjects applied control

thereby reducing the positional error. The positional error at the

end of the trial was smaller in the low control cost condition

compared to the high control cost condition (repeated-measures

ANOVA: F1,5~29:30, pv0:01). Taken together, the results

suggest that subjects were flexibly adapting their strategy in the

four different conditions and that they were sensitive to the relative

weighting of the error and control cost settings.

To examine whether subjects were risk-sensitive, we investigat-

ed the predictions of both a risk-neutral and a risk-sensitive

optimal control model. Due to its altered cost function, which

considers the mean and the variance of the cost (Figure 3), the risk-

sensitive optimal control framework makes distinct predictions for

the two levels of noise. In our case, a risk-neutral optimal feedback

control law does not depend on the variance of additive noise (see

Methods). Therefore, if subjects were risk-neutral, their control

signal for a particular state of the ball should be independent of the

noise level (Figure 3A). In contrast, a risk-sensitive optimal

feedback control law depends explicitly on the variance of additive

noise. In a risk-averse controller, for a given state, larger control

signals should be applied with larger noise variance (Figure 3B). In

contrast, in risk-seeking control the opposite pattern should be

observed (Figure 3C).

We used multiple linear regression to estimate how the control

signal at one point in time (0.9 s into the 1 s ball motion) depended

on the state of the ball (150 ms earlier – see Methods for details).

For each subject and condition we fit the control signal as a

function of the x-position and velocity of the ball. Figure 4A & B

shows slices through the two-dimensional fit to the data for a

typical subject. These linear fits had an R2 ranging from 0.62 to

0.88 (mean 6 SD=0.8160.058; see Table 1 for values of each

subject and condition). This allowed us to estimate the position

and velocity control gains and test whether the control rule

changed between conditions. A repeated-measures ANOVA on

the positional gain of the control signal (factors of noise level and

control cost) showed that there was a significant main effect of

both noise level (F1,5~8:51, pv0:05) and of the cost (F1,5~58:14,
pv0:001) but no interaction. A similar analysis of the control

signal’s dependence on the ball’s velocity showed no significant

effects. These result are inconsistent with a risk-neutral controller

in which the gains should be independent of the noise level. An

analysis of the gain showed that it increased with the increased

noise level as predicted by the simulation of the risk-averse

controller (Figure 3B), and decreased with increased control cost

showing that subjects’ control laws were sensitive to the relative

costs of control and final error.

In economic decision-making subjects tend to have their own

individual risk-attitude. We therefore examined each subject’s

behavior to assess their risk-sensitivity. Figure 4C & D shows the

position gain for each subject for the low and high noise condition

and shows that five subjects had gains that were significantly

increased in the high noise condition (F-test: all pv0:05)
suggesting that they are risk-averse. For the high control cost

conditions (Figure 4D) four of the subjects were still significantly

risk-averse. A similar analysis of the velocity gain did not reach

significance for any of the subjects (Figure 4E & F). However, the

changes in velocity gain that we expect for a risk-sensitive

controller are relatively modest compared to the change in

position gain. Figure 5A & B shows the changes in velocity against

position gain for simulations of an optimal controller with a range

of risk-sensitivities. The data for the subjects fall approximately on

the line predicted by the simulations of the risk-sensitive controller.

All subjects except one fall in the range of a risk-averse controller.

Thus failure to detect a significant change in the velocity gain from

the low to the high noise level is not inconsistent with a risk-

sensitive optimal controller. From the analysis depicted in Figure 5

we could also infer subjects’ individual risk-parameters. Since we

had a low cost and a high cost condition in both of which we

manipulated the variability of the trajectories, we could use the

two different cost conditions to infer subjects’ individual risk-

parameters from both conditions independently. This allows a

consistency check as to whether subjects’ inferred risk-parameters

are similar in the two conditions. When we performed this analysis

we found that the inferred risk-parameters were consistent for 5

out of 6 subjects (Figure 5c).

The observed change in control gains raises the question as to

whether there are other possible explanations that do not depend

on risk-sensitivity. We considered three possible alternatives. First,

we investigated whether the different gains in the high- and low-

noise condition could explain our results. In our experiments,

Author Summary

In economic decision-making it is well-known that when
decision-makers have several options, each associated
with uncertain outcomes, their decision is not purely
determined by the average payoff, but also takes into
account the risk (that is, variability of the payoff)
associated with each option. Some actions have a highly
variable payoff, such as betting money on a horse,
whereas others are much less variable, such as the return
from a savings account. Whether an individual favors one
action over the other depends on their risk-attitude. In
contrast to economic decision-making, models of human
motor control have exclusively focussed on models that
maximize average rewards (minimize average cost). Here,
we consider a computational model (an optimal feedback
controller) that takes the variance of the cost into account
when calculating the best movement strategy. We
compare the model with the performance of human
subjects in a sensorimotor task and find that the subjects’
behavior is consistent with the predictions of a risk-
sensitive optimal feedback controller with most subjects
being risk-averse.

Risk-Sensitive Optimal Control
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hand positions were translated linearly into a virtual force acting

on the ball. The gain of this linear relationship was decreased in

the high-noise condition, so that the range of hand movements was

similar in both noise conditions in order to avoid effects of different

physical effort and signal-dependent noise (see Methods). Howev-

er, incomplete adaptation to the different gains might have also led

to over- or under-compensated movements. Importantly, it should

be noted that the gains are not visuomotor gains between hand-

and cursor-positions, that is a gain of 1 does not have any special

meaning in our case. Even if subjects adapted incompletely this

would not affect our analysis, as we are only interested in the

change of slope between two different noise conditions. For an

incomplete adaptation the slope would be different compared to

complete adaptation, but as long as there is similar levels of

adaptation to all gains this does not affect the conclusions. Yet, if

we assume that there are different degrees of incomplete

adaptation to the different gains, then this could lead to over- or

under-compensated movements. Although it is not clear why such

a strongly non-linear relationship should hold between different

gains and the respective adaptations (since we deal with arbitrary

position-to-force mappings), we tested for this possible confound-

ing effect in our data during the initial training phase. This was

possible because the order of the high- and low-noise (and

therefore low- and high-gain) was randomized across subjects.

Figure 1. Schematic of the task. Subjects attempted to move a virtual ball (represented by the green circle) to the center of a target line
(represented by the black horizontal line). The ball moved with constant y-velocity and hit the target after 1 s, whereas it moved with Brownian
motion in the x-direction. Final positional errors were penalized by a quadratic cost function that was displayed as a parabola and the error cost was
displayed at the end of the trial (blue bar). Subjects could exert control on the x position of the ball by moving their hand to the left or right (gray
solid and dashed arrow lines). This incurred a control cost which was the quadratic in the control signal and the cumulative across a trial (yellow bar)
was constantly displayed. At the end of the trial subjects received feedback of the total cost, the sum of control and error cost (yellow-blue bar).
Subjects were required to minimize the total cost on average and were tested on four conditions (2 noise levels62 control cost levels). The path
taken by the ball is shown for a typical trial.
doi:10.1371/journal.pcbi.1000857.g001
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Specifically, for the high cost level the randomization resulted in 3

subjects first experiencing the low gain condition and 3 subjects

first experiencing the high gain condition. For the low cost

condition the randomization resulted in 6 subjects first experienc-

ing the low gain condition and 0 subjects first experiencing the

high gain condition. Due to its even distribution we therefore only

analyzed the high cost condition in the following. If our results

were to be attributed to incomplete adaptation to different gains,

we would expect to see that subjects that underwent a transition

from high to low gains should show adaptation effects different to

subjects that underwent a transition from low to high gains. In

particular, we would expect that somebody who transits from high

gains to low gains should have a tendency to under-compensate

(reduction in slope in our experiment), whereas somebody who

transits from low gain to high gains should have a tendency to

over-compensate (increase in slope). However, when we compared

the first 15 trials of the high-gain condition for subjects that started

with this block to the first 15 trials of the high-gain condition for

subjects that had already experienced the low-gain block, we

found no statistical difference or bias. Similarly, we found no

Figure 3. Predictions of optimal feedback control models. A risk-neutral optimal control model [4,17] attempts to minimize the mean of the
cost function. As a result, its policy (that is the motor command applied for a given state of the world) is independent of the noise variance N. In
contrast, a risk-sensitive optimal control model [22,34] minimizes a weighted combination of the mean and variance of the cost. Additional variance is
an added cost for a risk-averse controller (hv0), whereas it makes a movement strategy more desirable for a risk-seeking controller (hw0). As a
consequence, the policy of the controller changes with the noise level N depending on its risk-attitude h. A.–C. Changes in motor command with the
state of the ball (its positional deviation xt from the center) for a low noise level (green) and for a high noise level (red) for the risk-neutral (A), risk-
averse (B) and risk-seeking (C) controllers. The slope of the lines is equivalent to the control gain of the controller. D.–F. Contribution of control cost to
total cost (control cost+error cost) for the risk-neutral (D), risk-averse (E) and risk-seeking (F) controllers.
doi:10.1371/journal.pcbi.1000857.g003

Figure 2. Task performance. A. All 250 ball paths for a typical subject for the low noise level (high control cost condition). Individual trials are
colored randomly. B. as A. but for the high noise level. C. Mean control magnitude across all trials and subjects for the low noise level (blue - low cost
condition, green - high cost condition). D. as C. but for the high noise level (yellow - low cost condition, red - high cost condition). E. Mean absolute
positional error (absolute deviation from the center of the target line) across all trials and subjects for the low noise level (colors as in C.) The dashed
line shows the mean absolute error if subjects did not intervene. F. as E. but for the high noise level. Note that the y-scale in D. and F. is five times
greater than in C. and E. due to the higher noise level. Shaded area shows one s.e.m. across all trials.
doi:10.1371/journal.pcbi.1000857.g002
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Figure 4. Risk-sensitivity. A. Results of the multilinear regression analysis of the low control cost conditions for subject number 5. The line shows
the average motor command that the subject produces for a given position (blue - low noise level, yellow - high noise level). The slope of the line is a
measure for the position gain of the subject. B. same as in A. but for the high control cost conditions (green - low noise level, red - high noise level).
C.–F. Compares various measures between the high and low noise conditions. A risk-neutral controller predicts values to be the same for both
condition (dashed line), a risk-averse controller predicts values to fall above the dashed line and a risk-seeking controller below it. C. Negative position
gain for the high noise condition plotted against the low noise condition for all six subjects in the low control cost conditions (subject 5 in black,
ellipses show the standard deviation). The dashed line represent equality between the gains. D. as C. but for the high control cost conditions. E.
Negative velocity gain for the high noise condition plotted against the low noise condition for all six subjects for the low control cost conditions
(ellipses show the standard deviation). F. as E. but for the high control cost conditions.
doi:10.1371/journal.pcbi.1000857.g004
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difference for the low gain condition for the two groups that

experienced it in a different order (Figure 6a). Thus, we conclude

that the differences in control gains that we observed for the

different noise conditions in Figure 4 do not arise form the

different gains.

Second, we examined whether our results could be explained by

a different performance criterion. It is known in grasping, for

example, that subjects prefer to have orthogonal angles of

approach of each finger to an object [11,12]. The biomechanical

reason is that the object is most stably grasped when the finger

approach orthogonally (as for example noise has minimum effect

then and the force acts orthogonally and therefore does not

promote slip). In our experiment it is not clear why an orthogonal

approach would be beneficial. However, we might speculate that

subjects might have tried similarly to achieve orthogonal impact

with the ball at the wall. Since in the high-noise condition the

number of orthogonal impacts is reduced due to the higher

variance in velocity, subjects might have incurred more control

costs to achieve the same level of orthogonal impacts. In this

alternative explanation the assumption is that subjects control the

ball in a way that makes it more likely to hit the wall orthogonally.

To test this hypothesis we examined how often the ball hit the wall

orthogonally (900+200) in the experiment and compared it to how

often the ball would have hit the wall orthogonally if subjects had

not intervened. This latter quantity could be computed from the

experimental data as well, since the noise that drove the ball in the

experiment was added independently at each time point, thus

giving us access to the state, the control signal and the noise at

each time point. Contrary to the orthogonality explanation, we

found that subjects decreased the probability of an orthogonal

impact on the wall by their interventions in all four conditions

(repeated measures Anova with/without control and noise level as

factors: significant main effect for with/without control

(F1,5~58:0299, pv0:001) and of the noise level

(F1,5~966:2585, pv0:001), see Figure 6b). This suggests that an

orthogonal impact angle was not an important determinant of

subjects’ behavior, since based on this criterion they could have

performed better by not doing anything at all. When we

conducted a similar analysis but only considered trials in which

the ball hits close to the center of the wall (62.5 cm), the

conclusions remained the same.

As a third explanation we considered the influence of

observation noise. So far we have only considered the predictions

of a risk-neutral and a risk-sensitive controller with no sensorimo-

tor delay and complete state observation, that is assuming perfect

knowledge of the position and the velocity of the ball. However,

when investigating which sensorimotor delay can explain the

relationship between state and control the best, we found that a

delay between 150 ms and 200 ms lead to the highest R2 values

(Figure 6c). To control for the possibility that a risk-neutral

controller with observation noise and sensorimotor delay could

explain the experimental data, we ran optimal control simulations

with the parameters used in the experiment. Figure 7 shows the

predictions of an optimal controller with incomplete state

Table 1. R2-values of the multiple linear regression analysis.

Subject low control cost low control cost high control cost high control cost

low noise high noise low noise high noise

1 0.79 0.82 0.88 0.87

2 0.88 0.83 0.85 0.82

3 0.79 0.82 0.74 0.82

4 0.82 0.87 0.85 0.87

5 0.89 0.85 0.83 0.82

6 0.64 0.85 0.73 0.84

R2-values of the multiple linear regression analysis on how the control signal at one point in time depended on the state of the ball (150 ms earlier) for each subject and
condition.
doi:10.1371/journal.pcbi.1000857.t001
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Figure 5. Difference in position and velocity gains. A. The difference in velocity gains plotted against the difference in position gains of all
subjects for the low control cost conditions (ellipses show the 95% confidence region). The color gradient indicates the values predicted by the
simulations of a risk-sensitive optimal controller for different h-values. B. as A. but for the high control cost conditions. C. Subjects’ individual risk-
parameters h inferred from the experimental data of the high cost level versus h inferred from the data of the low cost level (ellipses show 1 s.d.).
doi:10.1371/journal.pcbi.1000857.g005
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observation with a physiological valid sensory noise level [4] and

sensorimotor delay [13–15]. Although optimal estimation is not

independent of the process noise level (see Methods) even in the

risk-neutral case, the predictions of this extended model do not

differ appreciably from the case of complete observation. We also

included observation noise on the target position (either with the

same magnitude as the observation noise on the position of the ball

or ten times larger), which did not lead to any significant

differences in the control gains of a risk-neutral controller (pw0:1,
F1,496~1:6068).
A final feature of risk-sensitive control that we examined is

the noise-dependence of the trade-off between the control and

error cost. Simulations show that a risk-neutral controller will

have a total cost that is on average made up of a fixed

proportion of control and error cost and this proportion is

independent of the noise level (Figure 3D). In contrast, the

relative contribution of control cost to the total cost increases

with the level of noise for a risk-averse controller (Figure 3E).

Conversely for a risk-seeking controller the relative contribution

of control cost to the total cost decreases with the level of noise

(Figure 3F). A repeated measures ANOVA on the control cost

contribution (factors of noise level and control cost) showed that

there was a significant main effect of both noise level

(F1,5~16:63, pv0:01) and of the cost (F1,5~24:580, pv0:01)
but no interaction. The control cost contributed relatively more

to the total cost when the variance was increased or the control

cost was reduced. Again this is consistent with a risk-averse

control policy. Figure 8A & B shows the proportion of total cost

that arises from the control cost for a low and high variance

condition for the two cost levels. This shows that five subjects

increased their control cost contribution (two-sample t-test: all

pv0:05) when the variance increased in the low cost condition

and four increased the control cost contribution in the high

control cost condition. This effect is a direct consequence of a

risk-averse cost function which considers movement strategies

with higher cost variance as less favorable. Movement cost is a

combination of error cost (which is highly variable due to noise)

and control cost (which is certain as the subject can set it to any

level it likes). Hence, participants expended relatively more cost

on control than on error in the high noise condition reducing

the variable error cost at the expense of a certain control cost.

Since all risk-sensitive subjects showed risk-averse behavior, our

Figure 7. Simulations of an optimal controller with incomplete state observation and sensorimotor delay. A.–C. Changes in motor
command with position for a fixed velocity (v~0) for the low noise level (green) and for the high noise level (red). D.–F. Contribution of control cost
to total cost (control cost+error cost). A. & D. - Predictions of a risk-neutral controller. B. & E. - Predictions of a risk-averse controller. C. & F. -
Predictions of a risk-preferring controller.
doi:10.1371/journal.pcbi.1000857.g007

Figure 6. Analysis of possible confounds and sensorimotor delay. A. Results of the multilinear regression analysis of the first 15 trials for the
low and the high noise condition. The subjects’ data was pooled according to whether they began the experiment with a low gain or with a high gain
(green and blue - low gain first; red and yellow - high gain first). B. Number of trials for different angles of the velocity vector of the ball with the wall
upon impact (dark red - hypothetical impact angle of the ball had the subjects not intervened, dark blue - actual impact angle during the
experiment). C. R2-values of the multilinear regression analysis averaged across all subjects and conditions for different sensorimotor delays.
doi:10.1371/journal.pcbi.1000857.g006
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results suggest that even though the ball was in the same state,

the risk-averse subjects tried to move it more strongly towards

the center of the target line when the noise level was higher.

Subjects were even prepared to accept lower payoffs in order to

avoid highly uncertain trajectories. To quantify this extra-cost

accepted by subjects we simulated a risk-sensitive optimal

feedback controller with incomplete state-observation and a

sensorimotor delay of 150 ms whose risk-sensitivity was tuned to

the subjects’ inferred individual risk-parameter. We then

compared the total costs that were incurred by the risk-sensitive

control scheme to a risk-neutral optimal controller. The

percentage extra-cost accepted by subjects with the experimen-

tally inferred risk-sensitivity can be seen in Figure 8C–F. As the

ball’s motion was perturbed by Gaussian noise it is as likely to

drift towards the center as it is to drift away and this is

independent of the noise variance. Hence, the subjects acted as

if the noise would turn out to their disadvantage and their

behavior reveals a pessimistic attitude towards uncertainty.

Discussion

In our study we found that subjects’ movement policy is

sensitive to the variance of the cost and that the observed changes

in behavior can be explained by the predictions of a risk-sensitive

optimal controller. We tested subjects in a sensorimotor experi-

ment in which they had to control a virtual ball undergoing

Brownian motion. Subjects were required to minimize an overall

cost that was the sum of a final positional error cost and an

integrated control cost. We tested subjects in two conditions that

differed in the variance of the noise acting on the ball. In a first

analysis, we examined whether subjects changed their movement

strategy between these two conditions and found that most

subjects applied larger control commands for the same state of the

ball in the higher variance condition. An analysis on a subject-by-

subject basis showed that subjects’ behavior was in accordance

with the predictions of a risk-averse controller. In a second

analysis, we examined how subjects trade off error cost against

control cost in the two variance conditions. We found that subjects

accrued relatively more control cost in the higher variance

condition, that is they reduced error cost at the expense of control

cost. Again, these findings are in line with the predictions of a risk-

averse controller. Together with our previous results [16] this

suggests that in sensorimotor control subjects take the variability of

cost into account. Additionally, our current study shows the

importance of risk-sensitivity in time-continuous tasks that are

typical for motor control, and it provides evidence that risk-

sensitive optimal feedback control is necessary to understand

behavioral changes in response to changes in uncertainty. These

findings are inconsistent with a risk-neutral account of motor

control.

Previous studies have used risk-neutral optimal control models

to explain a wide-range of movement phenomena [17,18].

According to these optimal control models, an optimal movement

plan optimizes a performance criterion given a set of task goals,

and the noise properties and dynamics of the system under control.

The performance criterion is typically chosen as the expectation of

a quadratic cost function. Crucially, the optimal movement

strategy (such as a feedback rule) suggested by such models is

independent of the variance of the cost and exclusively considers

its expectation. The omission of cost variance should, however, not

be confused with the variance of the movement outcome (i.e.

variability of trajectories [4]) that a risk-neutral optimal controller

does take into account – for example, see [19,20]. To formalise the

difference between the variability in outcome and the variance of

the cost we can consider the basic mathematical structure of

optimal feedback control models. Consider a sensorimotor system

with state xt acted upon by a control command ut. An effort-

accuracy trade-off given by the final movement error (weighted by

Q) and the magnitude of the effort (weighted by R), can be written

as a quadratic cost function:

Ctotal~

X

T

t~1

Ru2tzQx2T : ð1Þ

However, as the system is stochastic due to noise in the control

loop, the cost will also be variable for any given control law and

therefore an optimal controller can only sensibly optimize some

statistical property of the cost (such as the mean):

E½Ctotal �~E

X

T

t~1

Ru2tzQx2T

" #

~R
X

T

t~1

E u2t
� �

zQE x2T
� �

: ð2Þ

This expectation value of the quadratic cost takes into account the

variance of the movement trajectories and the control signal

[20,21], since E(z2)~E(z)2zVar(z). In our case Eq. 2 even

reduces to a minimum-variance model [19] of positional error and

of control, as the expectation of both final position and control

command is zero:

E½Ctotal �~R
X

T

t~1

Var½ut�zQVar½xT �: ð3Þ

In contrast, a risk-sensitive optimal controller minimizes the

following cost function

c(h)~{2h{1 lnE½e{1
2
hCtotal � ð4Þ

which considers the variance of the cost and other higher-order

moments of the cost [22,23], which can be seen if we take its

Taylor Series expansion

c(h)~E½Ctotal �{
1

4
hVar½Ctotal �z . . . ð5Þ

Thus, this risk-sensitive model considers the expectation value of

the cost and the entailed variance of movement trajectories just

like the risk-neutral controller. Additionally it considers higher-

order moments of the cost which are not taken into account by a

risk-neutral controller. The risk-sensitive model (Eq. 4) provided a

Figure 8. Contribution of control cost to total cost, and extra cost from risk sensitivity. A. Contribution of control cost to total cost for the
high noise condition plotted against the low noise condition for the low control cost conditions (ellipses show 1 s.e.m. across all 250 trials). B. as A.
but for the high cost level. C. Estimated extra cost in percent of a risk-sensitive controller with incomplete observation and sensorimotor delay based
on the experimentally inferred h-parameters for the low cost level. D. as C. but for the high cost level. E. Relationship between extra cost of a risk-
sensitive controller relative to a risk-neutral controller for a range of h-values overlaid with the subjects’ experimentally inferred h-parameters +

standard deviation for the low cost level. F. as E. but for the high cost level.
doi:10.1371/journal.pcbi.1000857.g008
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good explanation for subjects’ behavior in our experiments,

whereas a risk-neutral account (Eq. 2) failed to do so in most cases.

Although the risk-sensitive controller minimizes a different cost

function, it still assumes quadratic payoffs measured by Ctotal . This

raises the question in how far risk-sensitivity reported in our study

depends on this particular form of the experimentally imposed

quadratic cost function. It should be noted that risk-sensitivity

always depends on the coordinate system chosen. People are risk-

sensitive with respect to money (Bernouilli’s famous log-utility

curve [24]), for example, but of course they are not risk-sensitive

then with respect to the logarithm of money. In our model we

assume a particular cost function that subjects have to internalize.

While this does not give a quantification of risk-sensitivity without

any assumptions, our experiment clearly shows that a risk-neutral

optimal feedback controller with quadratic costs (the standard

model in the literature) cannot explain our data. However, we can

explain our data with a risk-sensitive optimal feedback controller

that assumes quadratic costs. This raises the question whether

there are other cost functions that could account for our data, for

example the robust cost function seen in pointing behavior that is

quadratic locally but then levels off [25]. Such a robust cost

function cannot explain the risk-averse behavior observed in our

subjects as, rather than being sensitive to large errors, it discounts

them thereby encouraging risk-seeking behavior. Another impor-

tant assumption is that the subjective cost function stays the same

over the various conditions. This assumption does not seem to be

unreasonable, as the task stayed the same and only the statistics

changed. We also found in previous experiments [10] that we

could describe motor behavior with a wide range of different

dynamics with the same cost function, as long as the task stayed

the same.

Previous studies have shown that risk-sensitivity in an

individual is highly context-dependent and can change across

situations (see, for example, [26–29]). Thus, if we were to assess

our subjects’ risk-sensitivity in another task, the outcome could

differ. However, we conducted a consistency check within our

experiment, as we had two cost conditions (high and low) in

which we manipulated the variance. This showed that the two

deduced risk-sensitivities were largely consistent, at least within

our task. There are a few differences to previous optimal control

studies that are worth noting. First, one key difference of

previous optimal control studies compared to our study is that

the noise level was not altered systematically, making it difficult

to establish the influence of variance on subjects’ behavior.

Second, by changing the gain between the hand position and

control command between the high and low noise conditions,

our experiment minimized the effects of multiplicative noise. In

free movements signal-dependent noise is an important

determinant of people’s movement strategy and a risk-neutral

optimal control model predicts policy changes if the variance of

this signal-dependent noise is altered [4]. Currently, there exists

no closed-from solution for an optimal controller with signal-

dependent noise for the risk-sensitive case and it will be a future

challenge to devise risk-sensitive control models that can deal

with multiplicative noise. Third, previous studies assume an

implicit cost function which is quadratic in accuracy and effort

terms, and the relative contribution of the two terms is either fit

to the data or set a priori to some reasonable level. As we wished

to avoid fitting the cost parameters, we imposed an explicit cost

function on the task that allowed us to manipulate the relative

weighting between control cost and state cost, and see how

much cost subjects accrued in different noise conditions.

Although some studies have attempted to estimate subjects’

cost functions [20,25], a promising approach will be to refine

algorithms (inverse optimal control models) that could directly

infer people’s cost functions from human movement data.

Fourth, a type of uncertainty that we have not studied is the

noise in the sensors that ultimately limits the accuracy of our

vision and proprioception. Our study was designed so that the

magnitude of the observation noise was negligible in comparison

to the process noise level reference. In the future, it might be

interesting to study risk-sensitivity under observation noise and

to investigate how estimation and control processes interact in a

risk-sensitive manner [22,30].

One of the cornerstones of optimal control theory is its flexibility

to consider several objectives in the movement strategy which

correspond to a trade-off between the different terms in the cost

function. As we used explicit (points) rather than implicit cost

(error and effort), we were able to directly test whether subjects

were sensitive to manipulations of the importance of one of the

cost terms. We found that subjects exerted more control and

reduced their positional error in the conditions where the control

cost was reduced. Furthermore, we also estimated the subjects’

policy for a given position of the ball and could show that subjects

increased their positional gain in the low control cost conditions.

Hence, subjects adapted their strategy flexibly to the lower

movement cost and increased their position gain to decrease their

positional error which had become relatively more important in

the cost function. Previous studies have demonstrated other

aspects of task flexibility in human motor control using optimal

control models. Recently, the goal dependence of bimanual

movements was shown experimentally to be in line with the

predictions of two controllers acting either towards the same or

two distinct goals [5]. Similarly, a single controller can incorporate

additional task goals such as a stability requirement [3] or object

manipulation [10], and subjects adapted their movement strategy

flexibly to the new task requirements as predicted by extended

optimal control models.

Here, we demonstrate that the economic concept of risk can be

applied to computational models of motor control and that it is

necessary to understand human movement behavior in response to

changes in uncertainty. Our results could also be interpreted as

evidence for robust control, since there is a close theoretical

relationship between risk-sensitive control and robust control. A

robust controller is able to keep a control process stable within

certain error bounds even if the assumed forward model is

uncertain or wrong. Such a controller acts like a risk-averse

controller [31,32] by putting a lower bound on ‘how bad things

could get’. Thus, the risk-parameter could also be interpreted as a

robustness parameter. In the future, it will be interesting to

investigate whether other robust control principles can be applied

to human movement control.

Methods

Ethics Statement
All experimental procedures were approved by the local ethics

committee and subjects provided written informed consent.

Experimental Procedures
Six healthy right-handed participants (two female, four male,

average age 25 yrs) took part in the study. Subjects held the

handle of a vBOT robotic manipulandum that could be moved

with minimal inertia in the horizontal plane [33]. The position of

the vBOT handle (i.e. the hand) was calculated online at

1000 Hz. The arm was hidden from view and a mirror rear-

projection system was used to display visual images in the plane of

the arm.
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The task required the subjects to steer a small circular ball

(displayed as a 0.1 cm radius cursor) to a horizontal target line

situated 15 cm from the initial ball location (Figure 1). On each

trial the ball moved with constant y-velocity towards the target at

15 cm:s{1 and the trial ended when the ball reached the target

line after 1 s. The motion of the ball in the x-direction was

simulated as a frictionless mass (m=1 kg) and the force acting on

the ball was determined by two additive processes. First, the ball

acted under Brownian motion in which a random component of

the force was drawn from a Gaussian zero-mean noise distribution

et*N (0,s2). Second, subjects could exert control on the ball by

moving their hand left and right. The position of the hand relative

to its starting location was mapped linearly to a force acting on the

ball. Therefore the equations of motion which were updated with

a time step of Dt~0:001s are given by

m:at~utzet ð6Þ

vtz1~vtzatDt ð7Þ

xtz1~xtzvtDt ð8Þ

where xt, vt and at are the position, velocity and acceleration of

the ball in the x-direction at time t, respectively. The visual display

of the ball was updated at the screen refresh rate of 60 Hz.

Subjects were required to perform the task so as to minimize an

explicit cost that had two components. First, the control exerted by

the subject incurred an instantaneous (cumulative) control cost

that was quadratic in the control force (C
control
t ~Ru2t ). Second,

there was an accuracy cost determined by where the ball crossed

the target line relative to the midpoint of the target line. Subjects

were penalised quadratically in this error Cerror~Qx2T . The total

cost on a trial was therefore given by

Ctotal~

X

T

t~1

(Ru2t )zQx2T ð9Þ

Both components of this cost were displayed graphically during

each trial. The positional error function was displayed as a

parabola whose height above the target line displayed the error

that would accrue if the ball ended at that location on the line.

Accordingly, the midpoint of the target line was marked by the

minimum of the parabola. During the trial the cumulative control

cost was also displayed and shown both numerically and

graphically as a yellow bar in the same dimension as the positional

error function (Figure 1). At the end of each trial the actual error

cost incurred on that trial was shown numerically and graphically

as a blue bar. Finally, control cost and error cost were added up

graphically and numerically yielding the total cost. The numerical

representation was referred to as points when subjects were

instructed. Subjects were told to minimize their average number of

(total) points and the average across all trials was displayed in the

upper right corner.

Each subject performed the task with two different cost schemes

(relative values of R and Q) and under two different noise levels

(s2) giving four conditions in total. In the high control cost

condition Rhigh~10{4 and in the low control cost condition

Rlow~10{5 (for both conditions Q~10). In the low noise

condition slow~200cm=s2 and in the high noise condition

shigh~1000cm=s2. To normalize the distance that the hand was

required to move to achieve the task, the gain of the linear

mapping of hand position to control force was set to

k=10 N?cm21 in the low noise condition and k~50 N:cm{1 in

the high noise condition. This controlled for the effects of signal-

dependent noise and the intrinsic effort of moving the hand which

were not included in the optimal control model (see below).

Half the subjects began with Rlow, the other with Rhigh. The

order of slow and shigh for a given control cost condition was

randomized. First, subjects completed a training session of 50 trials

at every noise level. Subsequently, the test session consisted of a

block of 300 trials at every noise level. Hence, subjects completed a

total of 1400 trials (4 conditions with 350 trials each).

Data Analysis
The last 250 trials of each combination of settings was analyzed

so as to exclude adaptation effects arising from the transition to

different noise and cost environments. Our first analysis was

designed to establish whether the control policy used by the

subjects changed between conditions. Subjects tended to apply

increasing control signals throughout a trial (Figure 2 C & D) and,

therefore, we chose to analyse how the balls position and velocity

late in the movement (t = 0.75 s) affected subsequent control. Due

to intrinsic delays in the visuomotor system, which are of the order

of 100–200 ms [13–15], we examined how the ball’s state at 0.75 s

into the movement affected the control signal generated 150 ms

later. To quantify a subject’s policy in a condition we regressed the

control generated at t = 0.9 s as a function of the ball’s x-position

and velocity at t = 0.75 s. This multiple linear regression yields a

plane in state-control space (the intercept is assumed to be zero

and was not fit).

To establish whether the policy planes of two particular

conditions differ, we compared nested models. The full model

involved jointly fitting two conditions each with separate

coefficients for position and velocity (4 predictor variables). Two

reduced models were considered, one in which the two conditions

shared the same dependence on position and one in which they

shared the same dependence on velocity (both reduced models

have 3 predictor variables). Model comparison was performed

using an F-test on the sum of square errors of the two regression

models.

Optimal Control Models
We focus our analysis on using an optimal control model with

complete state observation and no sensorimotor delays.

Introduction of a sensorimotor delay and of physiological

sensory noise into the simulations does not change the

predictions of the models appreciably. The magnitude of the

observation noise was negligible compared to the magnitude of

the process noise level.

Risk-neutral optimal controller. A risk-neutral optimal

feedback controller minimizes the expectation of the quadratic

cost function Ctotal given a movement duration T , the constraints

of the system dynamics and a movement goal. The state space of

our system x includes the x-position x and the x-velocity v of the

ball (the target position is at 0). The system dynamics in our case

can be written in the form xtz1~AxtzB(utzet) and in our case:

xtz1

vtz1

� �

~
1 Dt

0 1

� �

xt

vt

� �

z
0

Dt

� �

utz tDt

where is normally distributed with a zero mean and covariance

matrix

Risk-Sensitive Optimal Control

PLoS Computational Biology | www.ploscompbiol.org 13 July 2010 | Volume 6 | Issue 7 | e1000857



N~
0 0

0 s2

� �

:

Consequently, the matrix form of the cost function is given by:

Ctotal~

X

T

t~1

(Ru2t )zx’TQxT ð10Þ

where

Q~
Q 0

0 0

� �

:

The feedback control law that minimizes the cost is:

ut~{Ktxt ð11Þ

where

Kt~{R{1B’(BR{1B’zP
{1
tz1)

{1A ð12Þ

and

Pt~A’(BR{1B’zP
{1
tz1)

{1A ð13Þ

where PT~Q. Note that the process noise variance N does not

enter any of the equations that compute the optimal feedback law,

which is why the policy of a risk-neutral controller is independent

of the process noise level.

Risk-sensitive optimal controller. A risk-sensitive optimal

feedback controller [22,34] minimizes the following criterion

function:

c(h)~{2h{1 ln E(e
{

1
2
hCtotal ) ð14Þ

where h is a scalar that indicates the risk-sensitivity of the

controller (risk-neutral as before for h~0, risk-averse for hv0,

risk-seeking for hw0). The first two terms of the Taylor Series

expansion of c(h) are E(Ctotal){
1
4
hVar(Ctotal) which corresponds

to a simple risk-sensitive mean-variance decision-maker. The

change in the cost function results in a modified form of the Ricatti

recursion

Kt~{R{1B’(BR{1B’zhNzP
{1
tz1)

{1A: ð15Þ

and

Pt~A’(BR{1B’zhNzP
{1
tz1)

{1A ð16Þ

The equations differ from the risk-neutral version by the addition

of the risk-sensitivity parameter h multiplied by the process noise

level N. In general, the magnitude of BR{1B’ can be thought of as

a measure of ‘control power’ that reflects a ratio between the

control effectiveness as measured by B and the control cost as

measured by R that is the control power is high for large B and

small R because it implies an increased and inexpensive influence

of the control signal on the system. A risk-averse controller (hv0)

effectively reduces the overall ‘control power’ such that the

controller acts as if the process noise directed the state in an

undesired direction (pessimism). In contrast, a risk-seeking

controller (hw0) reflects an increase in ‘control power’ and the

noise is perceived to bias the state in a desired direction (optimism).

In the risk-neutral case (h~0) the equations reduces to the ones

described in the previous section.

LQR with incomplete state observation and sensorimotor

delay. So far we have only considered an optimal controller

with perfect state estimation and without a sensorimotor delay. In

the following, we describe the changes to the controllers that are

necessary to include the two.

Risk-neutral case: We adapted the optimal control model

described above in accordance with [4,22,34]. This was done by,

first, changing the model from one of complete state observation to

one of incomplete state observation:

ytz1~Cxtzgt

where C is the observation matrix and gt is a sensory noise term

with mean 0 and covariance matrix M. Second, a sensorimotor

delay of a total of 15 time steps (i.e. 150 ms, which is roughly the

time to respond to a visual perturbation [13–15]) was implemented

using an augmented state [4,10]. To obtain an optimal estimate of

x from only observing y, a Kalman filter combines a forward

model prediction of x with the feedback information y. The state

estimate is computed as

x̂xtz1~Ax̂xtzButzA(V{1
zC’M{1C){1(C’M{1(ytz1{C(x̂x)t)):

Note that, even in the risk-neutral case, the estimate covariance V

does depend on the level of process noise N:

Vtz1~NzA(V{1
t zC’M{1C){1A’:

Since the control command u is a function of the estimate x̂x

changing the process noise could potentially influence the

controller. However if, as in our case, the magnitude of the

observation noise is negligible compared to the process noise, this

does not lead to an appreciable effect (see Simulations).

Risk-sensitive case: Due to the occurrence of the hN term in the

equations for computing the risk-sensitive policy the separation

between state estimation and optimal control is not complete.

Nevertheless, a risk-sensitive certainty equivalence principles exists

[30] and state estimation and optimal control can be coupled

through

�xxt~(IzhVtPt)
{1x̂xt

where the optimal control rule is now

ut~Kt�xxt:

Simulations
The same parameter settings were used in the simulations as in the

actual experiment except where values had to be rescaled due to the

different discretization which was used for computational reasons

(Dt = 1 ms in the actual experiment, Dt = 10 ms in the simulations).

Simulations were run 250 times with Dt = 10 ms and T=1000 ms

(i.e. 100 time steps). The rescaled process noise for Nlow was
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N~0:2
ffiffiffiffiffi

10
p

and forNhigh N~1
ffiffiffiffiffi

10
p

. The error cost parameter was

set to Q~10 as in the experiment, and we only simulated the high

control cost condition and rescaled the control cost parameter to

R~10{4:10. For the risk-neutral controller we set h~0, for the risk-

averse we set h~{0:1 and for the risk-preferring we set h~0:15. To
obtain the control policy we used the same approach as for the

experimental data. For the LQR with incomplete state observation

and sensorimotor delay, the sensory noise terms were all set to 0

except for the ball’s x-position and x-velocity which were set to

0.5 cm and 5 cm:s{1 respectively [4].
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