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Abstract

We propose a new particle filter that incorporates a model of costs when
generating particles. The approach is motivated by the observation that
the costs of accidentally not tracking hypotheses might be significant in
some areas of state space, and irrelevant in others. By incorporating a cost
model into particle filtering, states that are more critical to the system per-
formance are more likely to be tracked. Automatic calculation of the cost
model is implemented using an MDP value function calculation that esti-
mates the value of tracking a particular state. Experiments in two mobile
robot domains illustrate the appropriateness of the approach.

1 Introduction

In recent years, particle filters [3, 8, 9] have found widespread application in domains with
noisy sensors, such as computer vision and robotics [2, 5]. Particle filters are powerful tools
for Bayesian state estimation in non-linear systems. The key idea of particle filters is to
approximate a posterior distribution over unknown state variables by a set of particles, drawn
from this distribution.

This paper addresses a primary deficiency of particle filters:Particle filters are insensitive
to costs that might arise from the approximate nature of the particle representation.Their
only criterion for generating a particle is the posterior likelihood of a state.

To illustrate this point, consider the example of a Space Shuttle. Failures of the engine
system are extremely unlikely, even in the presence of evidence to the contrary. Should we
therefore not track the possibility of such failures, just because they are unlikely? If failure
to track such low-likelihood events may incur high costs—such as a mission failure—these
variables should be tracked even when their posterior probability is low. This observation
suggests that costs should be taken into consideration when generating particles in the filter-
ing process.

This paper proposes a particle filter that generates particles according to a distribution
that combines the posterior probability with a risk function. The risk function measures the
importance of a state location on future cumulative costs. We obtain this risk function via
an MDP that calculates the approximate future risk of decisions made in a particular state.
Experimental results in two robotic domains illustrate that our approach yields significantly
better results than a particle filter insensitive to costs.

2 The “Classical” Particle Filter

Particle filters are a popular means of estimating the state of partially observable controllable
Markov chains [3], sometimes referred to as dynamical systems [1]. To do so, particle filters



require two types of information:data, anda probabilistic generative model of the system.
The data generally comes in two flavors: measurements (e.g., camera images)and controls
(e.g., robot motion commands). The measurement at timet will denotedzt, andut denotes
the control asserted in the time interval(t� 1; t]. Thus, the data is given by

zt = z1; z2; : : : ; zt and ut = u1; u2; : : : ; ut

Following common notation in the controls literature, we use the subscriptt to refer to an
event at timet, and the superscriptt to denote all events leading up to timet.

Particle filters, like any member of the family of Bayes filters such as Kalman filters and
HMMs, estimate the posterior distribution of the state of the dynamical system conditioned
on the data,p(xtjzt; ut). They do so via the following recursive formula

p(xtjz
t; ut) = �t p(ztjxt)

Z
p(xtjut; xt�1) p(xt�1jz

t�1; ut�1) dxt�1 (1)

where�t is a normalization constant. To calculate this posterior, three probability distribu-
tions are required, which together are commonly referred as the probabilistic model of the
dynamical system: (1) Ameasurement modelp(ztjxt), which describes the probability of
measuringzt when the system is in statext. (2) A control modelp(xtjut; xt�1), which char-
acterizes the effect of controlsut on the system state by specifying the probability that the
system is in statext after executing controlut in statext�1. (3) An initial state distribution
p(x0), which specifies the user’s knowledge about the initial system state. See [2, 5] for
examples of such models in practical applications.

Eqn. 1 is easily derived under the common assumption that the system is Markov:

p(xtjz
t; ut)

Bayes

= �t p(ztjxt; z
t�1; ut) p(xtjz

t�1; ut)

Markov
= �t p(ztjxt) p(xtjz

t�1; ut)

= �t p(ztjxt)

Z
p(xtjz

t�1; ut; xt�1) p(xt�1jz
t�1; ut) dxt�1

Markov
= �t p(ztjxt)

Z
p(xtjut; xt�1) p(xt�1jz

t�1; ut�1
) dxt�1 (2)

Notice that this filter, in the general form stated here, is commonly known as a Bayes filter.
Special versions of this filter includes the Kalman filter, the hidden Markov model, binary
filters, and of course particle filters. In many applications, the key concern in implementing
this probabilistic filter is the continuous nature of the statesx, controlsu, and measurements
z. Even in discrete versions, these spaces might be prohibitively large to compute the entire
posterior.

The particle filter addresses these concerns by approximating the posterior using sets of
state samples (particles):

Xt = fx
[i]

t
gi=1;:::;m (3)

The setXt consists ofm particlesx[i]
t

, for some large number ofm (e.g,m = 1; 000).
Together, these particles approximates the posteriorp(xtjz

t; ut). Xt is calculated recursively.
Initially, at timet = 0, the particlesx[i]

0
are generated from the initial state distributionp(x0).

Thet-th particle setXt is then calculated recursively fromXt�1 as follows:

1 setXt = Xaux

t
= ;

2 for j = 1 tom do
3 pick thej-th samplex[j]

t�1
2 Xt�1

4 drawx[j]
t

� p(xtjut; x
[j]

t�1
)

5 setw[j]

t
= p(ztjx

[j]

t
)

6 addhx[j]
t
; w

[j]

t
i toXaux

t

7 endfor
8 for i = 1 to m do
9 drawx[i]

t
fromXaux

t
with probability proportional tow[i]

t



10 addx[i]
t

toXt

11 endfor

Lines 2 through 7 generates a new set of particles that incorporates the controlut. Lines 8
through 11 apply a technique known asimportance-weighted resampling[10] to account for
the measurementzt. It is a well-known fact that (for largem) the resulting weighted particles
are asymptotically distributed according to the desired posterior [11]p(xtjz

t; ut)
In recent years, researchers have actively developed various extensions of the basic

particle filter, capable of coping with degenerate situations that are often relevant in prac-
tice [3, 7, 8, 9]. The common aim of this rich body of literature, however, is to generate
samples from the posteriorp(xtjzt; ut). If different controls at different states infer dras-
tically different costs, generating samples according to the posterior runs the risk of not
capturing important events that warrant action. Overcoming this deficiency is the very aim
of this paper.

3 Risk Sensitive Particle Filters

This section describes a modified particle filter that is sensitive to the risk arising from the
approximate nature of the particle representation. To arrive at a notion of risk, our approach
requires a cost function

C(x; u) 2 < (4)

This function assigns real-valued costs to states and control. From a decision theoretic point
of view, the goal of risk sensitive sampling is to generate particles that minimize the cumu-
lative increase in cost due to the particle approximation. To translate this into a practical
algorithm, we extend the basic paradigm in two ways. First, we modify the basic particle
filters so that particles are generated in a risk-sensitive way, where the risk is a function
of C. Second, an appropriate risk function is defined that approximates the cumulative ex-
pected costs relative to tracking individual states. This risk function is calculated using value
iteration.

3.1 Risk-Sensitive Sampling
Risk-sensitive sampling generates particles factoring in arisk function, l(x). Formally, all we
have to ask of a risk functionl is that it be positive and finite almost everywhere. Not all risk
functions will be equally useful, however, so deriving the “right” risk function is important.
Decision theory gives us a framework for deciding what the “right” action is in any given
state. By considering approximation errors due to monte carlo sampling in decision theory
and making a sequence of rough approximations, we can arrive at the choice ofl(x), which
is discussed further below. The full derivation is omitted for lack of space. For now, let us
simply assume are given a suitable risk function.

Risk sensitive particle filters generate samples that are distributed according to


t l(xt) p(xtjz
t; ut) (5)

Here
t = [
R
l(x)p(xjzt; ut)dx]�1 is a normalization constant that ensures that the term in

(5) is indeed a probability distribution. Thus, the probability that a state samplex
[i]

t
is part

of Xt is not only a function of its posterior probability, but also of the riskl(x
[i]

t
) associated

with that sample.
Sampling from (5) is easily achieved by the following two modifications of the basic

particle filter algorithm. First, the initial set of particlesx[i]
0

is generated from the distribution


0 l(x0) p(x0) (6)

Second, Line 5 of the particle filter algorithm is replaced by the following assignment:

set w[j]

t
= l(x

[j]

t
) l(x

[j]

t�1
)�1 p(ztjx

[j]

t
) (7)

We conjecture that this simple modification results in a particle filter with samples dis-
tributed according to
tl(xt)p(xtjzt; ut). Our conjecture is obviously true for the base
case t=0, since the risk functionl was explicitly incorporated in the construction of



X0 (see eqn. 6). By induction, let us assume that the particles inXt�1 are distributed
according to
t�1 l(xt�1) p(xt�1jz

t�1; ut�1). Then Line 3 of the modified algo-
rithm generatesx[j]

t�1
� 
t�1 l(xt�1) p(xt�1jz

t�1; ut�1). Line 4 gives usx[j]
t

�


t�1 l(xt�1) p(xtjut; xt�1) p(xt�1jz
t�1; ut�1). Samples generated in Line 9 are dis-

tributed according to

w
[j]

t

t�1 l(xt�1) p(xtjut; xt�1) p(xt�1jz

t�1; ut�1) (8)

Substituting in the modified weight (eqn. 7) we find the final sample distribution:

l(xt) l(xt�1)
�1 p(ztjxt) 
t�1 l(xt�1) p(xtjut; xt�1) p(xt�1jz

t�1; ut�1
)

= 
t�1 l(xt) p(ztjxt) p(xtjut; xt�1) p(xt�1jz
t�1; ut�1) (9)

This term is, up to the normalization constant
t�t

�1

t�1
, equivalent to the desired distribution

(5) (see also eqn. 1), which proves our conjecture. Thus, the risk sensitive particle filter
successfully generates samples from a distribution that factors in the riskl.

3.2 The Risk Function

The remaining question is: What is an appropriate risk functionl? How important is it to
track a statex? Our approach rests on the assumption that there are two possible situations,
one in which the state is tracked well, and one in which the state is tracked poorly. In the
first situation, we assume that any controller will basically chose the right control, whereas in
the second situation, it is reasonable to assume that controls are selected anywhere between
random and in the worst possible way. To complete this model, we assume that with small
probability, the state estimator might move from “well-tracked” to “lost track” and vice versa.

These assumptions are sufficient to formulate an MDP that models the effect of tracking
accuracy on the expected costs. The MDP is defined over an augmented state spacehx; ci,
wherec 2 f0; 1g is a binary state variable that models the event that the estimator tracks the
state with sufficient (ct=1) or insufficient (ct=0) accuracy. The various probabilities of the
MDP are easily obtained from the known probability distributions via the natural assumption
that the variablec is conditionally independent of the system statex:

p(hxt; ctijut; hxt�1; ct�1i) = p(xtjut; xt�1) p(ctjct�1)

p(ztjhxt; cti) = p(ztjxt)

p(hx0; c0i) = p(x0) p(c0)

C(hxt; cti; ut) = C(xt; ut) (10)

The expressions on the left hand side define all necessary components of the augmented
model. The only unspecified terms on the right hand side are the initial tracking probability
p(c0) and the transition probabilities for the state estimatorp(ctjct�1). The former must be
set in accordance to the initial knowledge state (e.g., 1 if the initial system state is known, 0 if
it is unknown). For the latter, we adopt a model where with high likelihood the tracking state
is retained (p(ct=ct�1) = 0:95) and with low likelihood it changes (p(ct 6=ct�1) = 0:05).

The MDP is solved via value iteration. To model the effect of poor tracking on the control
policy, our approach uses the following value iteration rule (stated here without discounting
for simplicity), in whichV denotes the value function, andQ is an auxiliary variable:

V (hx; ci) =

8<
:

min
u

Q(hx; ci; u) if c=1

� [max
u

Q(hx; ci; u)] + (1��) [

Z
Q(hx; ci; u) du] if c=0

Q(hx; ci; u) = C(x; u) +

1X
c0=0

Z
V (hx0; c0i) p(c0jc) p(x0ju; x) dx0 (11)

This value iteration rule considers two cases: Whenc=1, i.e., the state is estimated suffi-
ciently accurately, it is assumed that the controller acts by minimizing costs. Ifc=0, however,
the controller adopts a mixture of picking theworstpossible controlu, and a random control.
These two options are traded off by the gain factor�, which controls the “pessimism” of the
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Figure 1: (a) Robot Pearl, as it interacts with elderly people at an assisted living facility in Oakmont,
PA. (b) Occupancy grid map. Shown here are also three testing locations labeled A, B, and C, and
regions of high costs (black contours).

(a) (b)

Figure 2: (a) Risk functionl: the darker a location, the higher the risk. This function, which is used in
the proposal distribution, is derived from the immediate risk function shown in Figure 1b. (b) Sample
of a uniform distribution, taking into consideration the risk functionl.

approach.�=1 suggests that poor state estimation leads to the worst possible control.�=0

is more optimistic, in that control is assumed to be random. Our experiments have yielded
somewhat indifferent results relative to the choice of�, and we use�=0:5 for all experiments
reported here.

Finally, the riskl is defined as the difference between the value function that arises from
accurate versus inaccurate state estimation:

l(x) = V (x; c = 0)� V (x; c = 1) (12)

Under mild assumptions,l(x) can be shown to be strictly positive.

4 Experimental Results

We have applied our approach to two complimentary real-world robotic domains: robot lo-
calization, and mobile robot diagnostics. Both yield superior results using our new risk
sensitive approach when compared to the standard particle filter.

4.1 Mobile Robot Localization

Our first evaluation domain involves the problem of localizing a mobile robot from sensor
data [2]. In our experiments, we focused on the most difficult of all localization problems:
The kidnapped robot problem [4]. Here a well-localized robot is “tele-ported” to some un-
known location and has to recover from this event. This problem plays an important role in
evaluating the robustness of a localization algorithm. Figure 1a shows the robot Pearl, which
has recently been deployed in an assisted living facility as an assistant to the elderly and
cognitively frail. Our study is motivated by the fact that some of the robot’s operational area



standard filter risk sensitive filter
steps to re-localize when ported to A 120� 13.7 89.3� 12.3
steps to re-localize when ported to B 301� 35.2 203� 37.6
steps to re-localize when ported to C 63.2� 6.2 53.2� 7.7
number of violations after global kidnapping 96.1� 14.1 57.4� 10.3

Table 1: Localization results for thekidnapped robot problem, which emulates a total localization
failure. Our new approach requires consistently fewer steps for re-localization, and infers less cost.

is a densely cluttered dining room, where the robot is not allowed to cross certain boundaries
due to the danger of physically harming people. These boundaries are illustrated by the black
contours shown in Figure 1b, which also depicts an occupancy grid map of the facility. Be-
yond the boundaries, the robot’s sensor are somewhat insufficient to avoid collisions, since
they can only sense obstacles at one specific height (34 cm).

Figure 2a shows the risk functionl, projected into 2D. The darker a location, the higher
the risk. A sample set drawn from this risk function is shown in Figure 2b. This sample
set represents a uniform posterior. Since risk sensitive particle filters incorporate the risk
function into the sampling process, however, the density of samples is proportional to the
risk functionl.

Numerical results are summarized in Table 1, using data collected in the facility at dinner
time. We ran two types of experiments: First, we kidnapped the robot to any of the locations
marked A, B, and C in Figure 1, and measured the number of sensor readings required to
recover from this global failure. All three locations are within the high-risk area so the
recovery time is significantly shorter than with plain particle filters. Second, we measured
the number of times a simple-minded planner that always looks at the most likely pose would
violate the safety constraint. Here we find that our approach is almost twice as safe as the
conventional particle filter, at virtually the same computational expense. All experiments
were repeated 20 times, and rely on real-world data and operating conditions.

4.2 Mobile Robot Diagnosis

To evaluate our approach in a second and somewhat complimentary problem domain, we
applied it to a challenging robot diagnostics problem, for the rover shown in Figure 3. Our
evaluation involves a data set where the rover is driven with a variety of different control
inputs in the normal operation mode. At the17th time step, wheel #3 becomes stuck and
locked against a rock. The wheel is then driven in the backward direction, fixing the problem.
The rover returns to the normal operation mode and continues to operate normally until the
gear on wheel #4 breaks at the30th time step. This fault is not recoverable and the controller
just alters its input based on this state. Notice that both failures lead to very similar sensor
measurement, despite the fact that they are caused by quite different events.

Tracking results in Figure 4 show that our approach yields superior results to the standard
particle filter. Even though failures are very unlikely, our approach successfully identifies
them due to the high risk associated with such a failure while the plain particle filter essen-
tially fails to do so. The estimation error is shown in the bottom row of Figure 4, which
is practically zero for our approach when 1,000 or more samples are used. Particle filters
exhibit non-zero error even with 100,000 samples.

5 Discussion

We have proposed a new particle filter algorithm that considers a cost model when generating
samples. The key idea is that particles are generated in proportion to their posterior likelihood
(old idea)andto the risk that arises relative to a control goal (new idea). An MDP algorithm
was developed that computes the risk function as a differential cumulative cost. Experimental
results in two robotic domains show the superior performance of our new approach.

An alternative approach for solving the problem addressed in this paper would be to ana-
lyze the estimation process as a partially observable Markov decision process (POMDP) [6].
Unfortunately, existing POMDP algorithms are extremely computationally demanding, mak-
ing it questionable if such an approach could lead to results of practical significance, despite
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Figure 3: (a) The Hyperion rover, a mobile robot being developed at CMU. (b) Kinematic model. (c)
Rover position at time step 1, 10, 22 and 35.
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Figure 4: Tracking curves obtained with (a) plain particle filters, and (b) our new risk sensitive filter.
The bottom curves show the error, which is much smaller for our new approach.

the fact that it appears to be mathematically more accurate. A second reason for not using
POMDPs lies in the fact that the risk functionl is modeled as a function of states, and not of
belief states, which suggests an MDP solution.
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