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Abstract

This paper presents an application of risk sensitive control theory in financial decision mak-
ing. The investor has an infinite horizon objective that can be interpreted as maximizing the
portfolio’s risk adjusted exponential growth rate. There are two assets, a stock and a bank
account, and two underlying Brownian motions, so this model is incomplete. The novel feature
here is that the interest rate for the bank account is governed by Cox-Ingersoll-Ross dynamics.
This is significant for risk sensitive portfolio management because the factor process, unlike in
the Gaussian and all other cases treated in the literature, cannot be negative.
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1 Introduction

Beginning with the pioneering work by Merton [20], [21], [22] and continuing through the recent books
by Karatzas and Shreve [17] and Korn [18], some very sophisticated stochastic control methods have
been developed for portfolio management. Virtually all of these studies make use of an expected
utility criterion. But recently a new criterion has emerged from the control theory literature. Called
the risk sensitive criterion, this was originally used (see, for example, Whittle [25]) for a decision
maker seeking to maximize some (random) cash reward (or minimize some cash payment) while
simultaneously being concerned about the risk or uncertainty in the size of the reward. Essentially,
this criterion equals the expected value of the reward minus a penalty term that is proportional
to the variance of the reward. The constant of proportionality is a parameter whose value can be
chosen in order to achieve for the decision maker an appropriate trade-off between the expectation
of the reward and its variance.

Recognizing its relevance to portfolio management, Bielecki and Pliska [5] applied the risk sensi-
tive idea to a version of Merton’s [21] intertemporal capital asset pricing model. The result was an
infinite horizon criterion that they called the risk adjusted growth rate and viewed as being analogous
to the classical Markowitz single-period approach except that instead of trading off single-period cri-
teria the investor is trading off the portfolio’s long run growth rate versus its average volatility (see
Bielecki and Pliska [9] for a detailed study of various economic and mathematical properties of this
criterion). Bielecki and Pliska also showed in [5] and subsequent work (see [2], [3], [4], [6], [7], [8], and
[10]) that the resulting models usually have the virtue of being more tractable than corresponding
models which use traditional expected utility criteria. Other studies of the risk sensitive criterion
for portfolio management include Bagchi and Kumar [1], Fleming and Sheu [13], [14], [15], Kuroda
and Nagai [19], Nagai [23], and Nagai and Peng [24]. Kaise and Sheu [16] discuss the solution of a
general equation (in Rn) that is related to the HJB equation in this paper.

Throughout all this work on risk sensitive portfolio management the underlying factor process,
if any, was taken to be Gaussian or, at least (see Nagai [23]), a process whose domain is all of some
Euclidean space. The aim of this paper is to provide some initial results on risk sensitive portfolio
management for a case where this kind of condition does not hold. Since interest rate processes
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are commonly taken as factor processes and since the so-called Cox-Ingersoll-Ross [11] interest rate
process (a popular one in finance literature) cannot be negative, this model of the factor process was
chosen for our object of study.

The result is a risk sensitive portfolio optimization model having a factor process whose domain
is the non-negative portion of the real line. Since this is a model of interest rates, it is more realistic
than, say, Gaussian models, but it comes with a price: the resulting analysis is exceptionally lengthy,
complex, and technical. This is true even though our model is rather simple, having just this scalar-
valued factor process, two assets (the usual bank account and a risky stock), and two underlying
Brownian motions. Consequently, this paper will study only the associated Hamilton-Jacobi-Bellman
equation, saving the verification of optimality and related issues for a separate paper.

After formulation of our model in Section 2, the main results are presented in Section 3. Chief
among these is Theorem 3.1, which asserts the HJB equation has a unique solution. Needed for its
proof and of separate interest are some results pertaining to a related, “truncated” problem: for
some fixed number M the investor is required to keep all of his or her money in the bank account
whenever the interest rate exceeds M . Existence of a unique solution to the HJB equation for this
truncated problem is established by Theorem 3.2. Intuitively, one should expect the solution of the
truncated HJB equation to converge to the solution of the original one as M → ∞; this is indeed
the case, as stated in Theorem 3.3. The rest of the paper is devoted to the proofs of these three
theorems. Theorem 3.2 is proved in Section 4, whereas the other two are proved in Section 5.

2 Formulation of the Optimal Risk Sensitive Asset Manage-

ment Problem

In this section we formulate an optimal dynamic asset management problem featuring a risk sensitive
optimality criterion. Let (Ω, {Ft}t≥0,F ,P) be the underlying probability space. The securities
market involves a single factor, namely, an interest rate r that is subject to the so-called Cox-
Ingersoll-Ross [11] dynamics

drt = −c(rt − r̄)dt + λ
√

rtdWt, (1)

where c, r̄, and λ are three specified positive scalar parameters. In order to ensure that the interest
rate process is always strictly positive, we make the following (see Feller [12])

Assumption: 2cr̄ > λ2.

There are two assets. One is the customary bank account:

dS0(t)
S0(t)

= rtdt; (2)

here S0(t) represents the time t amount of money in the bank account assuming none is added or
withdrawn after time 0. The other asset is a stock (or stock index) whose price process satisfies

dS1(t)
S1(t)

= µ(rt)dt + σdWt + ρdW̄t. (3)



T.Bielecki/S.Pliska/S.Sheu 5

Here Wt and W̄t are two independent Brownian motions, σ and ρ are two specified scalar parameters,
and

µ(r) := µ1 + µ2r, (4)

where µ1 and µ2 are two specified scalar parameters. Note that with µ2 6= 0 we can allow the level
of interest rates to affect the return properties of the stock, and with σ 6= 0 the residuals of the
interest rate process will be correlated with the residuals of the stock’s return process. For instance,
with suitable values of σ and ρ this correlation is negative.

Trading strategies will be adapted real-valued stochastic processes that are denoted h. We shall
interpret ht as the proportion of the investor’s time-t wealth that is invested in the stock. In
general, for each time-t we allow ht to be any real number, that is, we do not impose any short
selling restrictions, etc. Additional assumptions about admissible trading strategies will be provided
below.

The investor’s time-t wealth will be denoted Vt. Under the trading strategy h, the corresponding
wealth process V will satisfy

dVt

Vt
= [(1− ht)rt + htµ(rt)]dt + ht(σdWt + ρdW̄t). (5)

By standard results, there exists a unique, strong, and almost surely positive solution to this equa-
tion; it is given by

Vt = V0exp
(∫ t

0

htσdWt +
∫ t

0

htρdW̄t +
∫ t

0

[−1
2
(σ2 + ρ2)h2

t + (1− ht)rt + htµ(rt)]dt
)
. (6)

In this paper we consider the following family of risk sensitized optimal investment problems,
labeled as Pθ :

for θ ∈ (0,∞), maximize the risk sensitized expected growth rate

Jθ(v, r;h) := lim inf
t→∞

(−2/θ)t−1ln Eh [e−(θ/2)lnVt |V0 = v, r0 = r] (7)

over the class of all admissible investment processes h,

where Eh is the expectation with respect to P. The notation Eh emphasizes that the expectation is
evaluated for the wealth process V corresponding to the investment strategy h.

The parameter θ here is interpreted as the measure of the investor’s attitude toward risk; the
bigger the value of θ, the more risk averse the investor. This is because the criterion can be in-
terpreted, at least approximately, as the portfolio’s exponential growth rate minus a penalty term
which equals θ/4 times the portfolio’s asymptotic variance. A comprehensive interpretation of this
risk sensitive objective for portfolio management can be found in Bielecki and Pliska [9].

We note that the techniques used in this paper can also be used to study problems Pθ for negative
values of θ, corresponding to risk seeking investors. The risk null case, for θ = 0, can be studied
independently or as the limit of the risk averse situation when the risk-sensitivity parameter θ goes
to zero. However, we shall not consider the cases where θ ≤ 0 in this paper.

For much of what follows we find it convenient to introduce the scalar parameter

γ := −θ/2. (8)
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Since θ is always strictly positive, the parameter γ should always be regarded as strictly negative.
Moreover, the reader should keep in mind that corresponding to any appearance of the parameter
γ is θ = −2γ.

3 Analysis of the Hamilton-Jacobi-Bellman Equation

In this section we formulate our model and present our main results concerning the Hamilton-Jacobi-
Bellman equation corresponding to the investor’s portfolio optimization problem Pθ. We not only
establish existence and uniqueness of a solution, we also establish some important properties of this
solution. This analysis is rather involved, and so the balance of this paper is devoted to the proof
of the results in this section.

In view of our risk sensitive objective, we are interested in computing the expectation of quantities
like V γ

t for some γ < 0. Since by equation (6)

V γ
t = V γ

0 exp
(
γ

∫ t

0

htσdWt + γ

∫ t

0

htρdW̄t +
∫ t

0

γ[−1
2
(σ2 + ρ2)h2

t + (1− ht)rt + htµ(rt)]dt
)
, (9)

we recognize that it is convenient to make a Girsanov-type change of probability measure. In
particular, it is straightforward to show for each trading strategy h and T > 0 that

E[V γ
T ] = Ẽ

[
V γ

0 exp
(
γ

∫ T

0

L(rt, ht)dt
)]

, (10)

where we have introduced the notation Ẽ for expectation under the new probability measure and
the additional functions

L(r, u) := −1
2
(1− γ)(σ2 + ρ2)u2 + µ̄(r)u + r, (11)

and
µ̄(r) := µ(r)− r. (12)

Moreover, under this new probability measure the dynamics for the interest rate process r are given
by

drt = (−c(rt − r̄) + γσλ
√

rtht)dt + λ
√

rtdW̃t, (13)

where W̃ denotes a (scalar valued) Brownian motion under this new probability measure.
Using standard methods of risk sensitive control theory (see, for example, [8], [14], and [19]), it is

now straightforward to specify the Hamilton-Jacobi-Bellman dynamic programming equation. This
is

Λ =
1
2
λ2r

d2Φ
dr2

− c(r − r̄)
dΦ
dr

+
1
2
λ2r
(dΦ

dr

)2

+ inf
{u∈R}

[
γσλ

√
ru

dΦ
dr

+ γL(r, u)
]
. (14)

We seek a solution in terms of the scalar Λ and the bias function Φ such that Λ is the optimal risk
adjusted growth rate in problem Pθ and such that the minimal selector identifies an optimal (or, at
least, an ε-optimal) trading strategy.

It is convenient to transform this equation into a simpler form. Since the stock proportion ht is
unrestricted, we see that the minimizing value of u in the HJB equation must satisfy the first order
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condition γσλ
√

rΦ′ + γ[−(1 − γ)(σ2 + ρ2)u + µ̄(r)] = 0. In other words, our candidate h∗ for the
optimal trading strategy will satisfy the expression h∗t = u∗(rt), where

u∗(r) :=
1

1− γ

1
σ2 + ρ2

(
µ̄(r) + σλ

√
r
dΦ
dr

)
. (15)

Substituting this value of u in the HJB equation, introducing the function

g :=
dΦ
dr

,

and doing a little algebra enables one to see that the original HJB equation is equivalent to

Λ =
1
2
λ2r

dg

dr
+

1
2
λ2r
(
1 +

γ

1− γ

σ2

σ2 + ρ2

)
g2 + b(r)g + d(r), (16)

where we have introduced for convenience the functions

b(r) := −c(r − r̄) +
γ

1− γ

σλ

σ2 + ρ2

√
rµ̄(r) (17)

and
d(r) :=

1
2

γ

1− γ

1
σ2 + ρ2

[µ̄(r)]2 + γr. (18)

Here is our main result about the HJB equation:

Theorem 3.1 The HJB equation (16) has a unique solution (Λ∗, g∗) satisfying the following two
properties:

lim
r→0

g∗(r) =
1
cr̄

[
Λ∗ − 1

2
γ

1− γ

µ2
1

σ2 + ρ2

]
(19)

and either

lim
r→∞

g∗(r)√
r

= −
(
1 +

γ

1− γ

σ2

σ2 + ρ2

)−1
[
|µ2 − 1|

λ

√
−γ

1− γ

1
σ2 + ρ2

+
γ

1− γ

σ

σ2 + ρ2

µ2 − 1
λ

]
(20)

for µ2 6= 1 or

lim
r→∞

g∗(r) = −
(
1 +

γ

1− γ

σ2

σ2 + ρ2

)−1
(

c

λ2
−
(

c2

λ4
− 2

γ

λ2

(
1 +

γ

1− γ

σ2

σ2 + ρ2

)) 1
2
)

(21)

for µ2 = 1. Moreover, Λ∗ is characterized as the smallest Λ such that the HJB equation has a
solution defined for all r.

In order to study problem Pθ, as well as to investigate a related problem of separate interest,
consider exactly the same problem except that now, for some arbitrary positive number M , we
impose the trading strategy constraint that ht = 0 if rt > M . Analogous to the unconstrained
problem, the dynamic programming equation for this constrained, truncated problem is

ΛM =
1
2
λ2r

dg

dr
+

1
2
λ2r
(
1 +

γ

1− γ

σ2

σ2 + ρ2

)
g2 + b(r)g + d(r), r ≤ M, (22)
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ΛM =
1
2
λ2r

dg

dr
+

1
2
λ2rg2 − c(r − r̄)g + γr, r > M. (23)

In addition, our candidate for the optimal trading strategy is now given by

u∗M (r) :=
1

1− γ

1
σ2 + ρ2

(
µ̄(r) + σλ

√
rg(r)

)
, r ≤ M, (24)

u∗M (r) := 0, r > M.

Moreover, for this constrained problem we have the following important result:

Theorem 3.2 The HJB equation (22), (23) for the constrained problem has a unique solution
(Λ∗M , g∗M ) satisfying the following two properties:

lim
r→0

g∗M (r) =
1
cr̄

[
Λ∗M − 1

2
γ

1− γ

µ2
1

σ2 + ρ2

]
(25)

and

lim
r→∞

g∗M (r) =
c

λ2
−
√

c2

λ4
− 2γ

λ2
. (26)

As our next main result indicates, the solutions of the two kinds of investment problems are
related in an intuitive manner.

Theorem 3.3 The following hold:
lim

M→∞
g∗M (r) = g∗(r) (27)

and
lim

M→∞
Λ∗M = Λ∗. (28)

Remark. For the equation (16), there is a smallest Λ such that (16) has a smooth solution W . This
follows from the argument in [16]. We can show that Λ∗ in Theorem 3.1 is the smallest Λ mentioned
above. See 5.3 . The argument in [16] is applicable to the equations in multidimensional spaces,
and therefore, can be applied to a model with several assets and multiple factor processes. However,
there is difficulty to obtain W ∗ and to understand its behavior.

These three theorems are proved in the following two sections. We now conclude this section by
suggesting a procedure for computing the solution (Λ∗, g∗) of (16). Suppose for any number Λ we
can solve for the function g satisfying (16) and (19). It turns out that Λ∗ is characterized as the
smallest Λ such that this solution g is finite for all r > 0. Therefore, if some value Λ gives a finite
solution then Λ∗ ≤ Λ. On the other hand, if some value Λ does not correspond to a finite g, then
Λ < Λ∗. Hence a suitable iterative procedure should converge to (Λ∗, g∗).

4 Proof of Theorem 3.2

We begin by making a transformation of the constrained HJB equation (22). Denoting

A := 1 +
γ

1− γ

σ2

σ2 + ρ2
,
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Λ̄ := AΛ,

d̄(r) := Ad(r),

and
ḡ := Ag, (29)

we see by simple substitution that (22) is equivalent to

Λ̄ =
1
2
λ2r

dḡ

dr
+

1
2
λ2rḡ2 + b(r)ḡ + d̄(r), r ≤ M. (30)

We would like to know that this equation has a (possibly unique) solution ḡ for an arbitrary Λ̄, but
establishing this is not so easy because the second term on the right hand side is nonlinear and the
coefficient of the first derivative term is degenerate at r = 0. Our approach will be to address these
issues by studying the function

g̃(r) := ḡ(r)e(r)

where
e(r) := r

2cr̄
λ2 exp

(
− 2c

λ2
r +

2γσ

(1− γ)λ(σ2 + ρ2)

∫ r

0

µ̄(s)√
s

ds
)
.

This is because ḡ satisfies equation (30) if and only if g̃ satisfies

dg̃

dr
+

1
e(r)

g̃2 =
2

λ2r
e(r)[Λ̄− d̄(r)], (31)

and this latter differential equation will be easier to analyse.

Lemma 4.1 If the differential equation (31) has a solution g̃ on (0, r0] for some r0 > 0, then
g̃(r) → 0 as r → 0.

Proof. We first prove that for any c1 > 0 there are rn, n = 1, 2, · · ·, which tend to 0 as n tends to
infinity and which satisfy g̃(rn) > −c1. If not, there is r1 > 0 such that g̃(r) ≤ −c1 for all 0 < r ≤ r1.
Since

dg̃
dr

g̃2
+

1
e(r)

=
2

λ2r
e(r)[Λ̄− d̄(r)]

1
g̃2(r)

we have
1

g̃(r)
− 1

g̃(r1)
= −

∫ r1

r

1
e(s)

ds +
∫ r1

r

2
λ2s

e(s)[Λ̄− d̄(s)]
1

g̃2(s)
ds. (32)

For small r > 0, the first term on the right-hand side is bounded above by −c2r
− 2cr̄

λ2 +1 for some
c2 > 0 and the second term is bounded above by c3/c2

1 for some c3 > 0. From this, the right hand
side converges to −∞ as r → 0, in which case g̃(r) → 0 as r → 0, a contradiction.

By this result we can take a sufficiently small r1 > 0 such that g̃(r1) > −c1. Next we show that

g̃(r) > −c1, r ≤ r1. (33)

To see this, suppose this is not true. Then there is some r2 < r1 such that g̃(r2) = −c1 and

g̃(r) > −c1, r2 < r < r1.
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By (31)
dg̃

dr
(r2) = − 1

e(r2)
c2
1 +

2
λ2r2

e(r2)[Λ̄− d̄(r2)] < 0.

This contradicts the specified property of c1.
Finally, it suffices to show that for any c1 > 0 there is some r3 > 0 such that

g̃(r) ≤ c1, r ≤ r3, (34)

because it is easy to see that our lemma follows from (33) and (34). To prove (34), suppose there is
r4 > 0 such that g̃(r4) > c1. Then

dg̃

dr
(r4) ≤ − 1

e(r4)
c2
1 +

2
λ2r4

e(r4)[Λ̄− d̄(r4)] < 0.

Therefore, g̃(r) is decreasing at r4. This argument also shows that g̃ is decreasing on the set
{g̃(r) > c1}. Then we must have g̃ > c1 on (0, r4]. This leads to a contradiction since using (32)
with r1 = r4 and small r we have the right hand side tending to −∞ while the left hand side is
bounded. This completes the proof of the Lemma. 2

Theorem 4.1 If ḡ is a solution of (30) defined on (0, r0] for some r0 > 0, then either

lim
r→0

rḡ(r) = −2cr̄

λ2
+ 1 (35)

or

lim
r→0

ḡ(r) =
1
cr̄

(
Λ̄− 1

2
A

γ

1− γ

µ2
1

σ2 + ρ2

)
. (36)

Remark. Note that (36) is equivalent to (25).

Proof. By (31) we have
dg̃

dr
≤ 2

λ2r
e(r)[Λ̄− d̄(r)],

so by Lemma 4.1 we have

g̃(r) ≤
∫ r

0

2
λ2s

e(s)[Λ̄− d̄(s)]ds.

Substituting for e(s) and so forth, it is apparent this implies for some number c1 > 0 that

g̃(r) ≤ c1r
2cr̄
λ2 , 0 < r < r0. (37)

The next main step is to show for some number c2 > 0 that

g̃(r) > −c2r
2cr̄
λ2 −1, 0 < r < r0. (38)

We consider two cases, depending upon whether or not

Λ̄ ≥ A

2
γ

1− γ

µ2
1

σ2 + ρ2
. (39)

First we suppose inequality (39) is true, in which case Λ̄ − d̄(r) > 0 for all positive r in some
neighborhood of zero. We have one of the following two possibilities: there are infinitely many
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rn > 0, n = 1, 2, · · · , which tend to 0 as n tends to infinity and are such that g̃(rn) < 0; or there is
r1 > 0 such that g̃(r) ≥ 0 for 0 < r ≤ r1.

We consider the first possibility. Then there is sufficiently small r1 such that g̃(r1) < 0. It is
easy to see by (31) that g̃(r) < 0 for all r ≤ r1. The conditions (39) and (31) imply

dg̃
dr

g̃2
≥ − 1

e(r)
,

in which case
1

g̃(r)
− 1

g̃(r1)
≥ −

∫ r1

r

1
e(s)

ds,

that is,

− 1
g̃(r)

≤ − 1
g̃(r1)

+
∫ r1

r

1
e(s)

ds.

It follows that for some constants c1, c̄1, we have

−g̃(r) > c̄1r
2cr̄
λ2 −1, (40)

since ∫ r1

r

1
e(s)

ds ≤ c1r
− 2cr̄

λ2 +1.

By (31) again we have

1
g̃(r)

− 1
g̃(r1)

= −
∫ r1

r

1
e(s)

ds +
∫ r1

r

2
λ2s

e(s)[Λ̄− d̄(s)]
1

g̃2(s)
ds. (41)

We use this to study the limiting behavior of g̃(r). For the first term on the right hand side we have
by L’Hospital’s rule

lim
r→0

r
2cr̄
λ2 −1

∫ r0

r

1
e(s)

ds =
1

2cr̄
λ2 − 1

.

For the second term on the right hand side of (41) we have∫ r0

r

2
λ2s

e(s)[Λ̄− d̄(s)]
1

g̃2(s)
ds ≤ c

∫ r0

r

s−1+ 2cr̄
λ2 −2 2cr̄

λ2 +2ds ≤ cr−
2cr̄
λ2 +2.

Here we use (40). So by (41) we have

lim
r→0

g̃(r)

r
2cr̄
λ2 −1

= −2cr̄

λ2
+ 1. (42)

Hence for the first possibility ( i.e, g̃(r1) < 0 for some small r1 > 0) and when (39) holds, we have
proved (38) and (35).

Now we consider the second possibility: there is r1 > 0 such that g̃(r) ≥ 0 for all r ≤ r1. Since

g̃(r) = −
∫ r

0

1
e(s)

g̃2(s)ds +
∫ r

0

2
λ2s

e(s)[Λ̄− d̄(s)]ds, (43)

then it follows by L’Hospital’s rule and (37) that

lim
r→0

g̃(r)

r
2cr̄
λ2

=
1
cr̄

(
Λ̄− 1

2
A

γ

1− γ

µ2
1

σ2 + ρ2

)
. (44)
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This with the relation g̃(r) = ḡ(r)e(r) and the definition of e(·) imply (36).
We summarize what we have shown. Assuming the condition (39), we have (42) or (44). They

are equivalent to (35) and (36), respectively. They also imply (38).
For the remainder of this proof we consider the opposite case, namely, where inequality (39) does

not hold. We choose r1 > 0 such that Λ̄ − d̄(r) < 0 for 0 < r ≤ r1. Now (41) and the definition of
e(·) imply

1
g̃(r)

− 1
g̃(r1)

≤ −
∫ r1

r

1
e(s)

ds ≤ −c3

(
r−

2cr̄
λ2 +1)

for some number c3 > 0. The second inequality holds for r > 0 small. By (43), g̃(r) < 0 for
0 < r < r1 if r1 is small. In particular, g̃(r1) < 0. So by the above inequality we can prove (38).

We now assert that
−g̃(r1) > r

2cr̄
λ2 −δ− 1

2
1

for some small r1 > 0 and some positive δ with δ < 1
2 implies

−g̃(r) > r
2cr̄
λ2 −δ− 1

2 , r ≤ r1.

If not, we can find 0 < r2 < r1 such that

f(r) < 0, r2 < r ≤ r1

and f(r2) = 0, where
f(r) := g̃(r) + r

2cr̄
λ2 −δ− 1

2 .

Since

df

dr
=

dg̃

dr
+
(2cr̄

λ2
− δ − 1

2

)
r

2cr̄
λ2 −δ− 3

2 = − g̃2(r)
e(r)

+
2

λ2r
[Λ̄− d̄(r)]e(r) +

(2cr̄

λ2
− δ − 1

2

)
r

2cr̄
λ2 −δ− 3

2 ,

it is easy to see this is strictly positive at r = r2 by using f(r2) = 0. This contradicts the property
of r2, and so the assertion is established.

Let 0 < δ < 1/2 and r1 > 0 be small, and consider two situations, depending upon whether

−g̃(r) > r
2cr̄
λ2 +δ−1, 0 < r ≤ r1. (45)

For the first situation, assume (45) does not hold for infinitely many r1 which tend to 0. Then by
the preceding assertion there is r2 > 0 such that

−g̃(r) ≤ r
2cr̄
λ2 +δ−1, r ≤ r2.

Note that we have already established the property g̃(r) < 0 for r small. From these, by (31) we
have

g̃(r) = −
∫ r

0

g̃2(s)
e(s)

ds +
∫ r

0

2e(s)
λ2s

[Λ̄− d̄(s)]ds ≥ −c1r
2cr̄
λ2 −1+2δ − c2r

2cr̄
λ2 ≥ −cr

2cr̄
λ2 −1+2δ,

since δ < 1/2. That is,
−g̃(r) ≤ cr

2cr̄
λ2 −1+2δ.
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Continuing in an iterative fashion one obtains

−g̃(r) ≤ c1r
2cr̄
λ2 −1+2mδ,

if m is such that 2mδ < 1, where c1 may depend on m and δ. Especially, this holds for m = m0,
2m0δ < 1 ≤ 2m0+1δ. Apply this same procedure once more to obtain

g̃(r) ≥ −c1r
2cr̄
λ2 −1+2δ̄ − c2r

2cr̄
λ2 ≥ −cr

2cr̄
λ2 , (46)

where δ̄ = 2m0δ. The last step is due to 2δ̄ > 1. We shall now show (44) by the following calculation.
In view of (37) and (38) we have

lim
r→0

r−
2cr̄
λ2

∫ r

0

2e(s)
λ2s

[Λ̄− d̄(s)]ds =
1
cr̄

(
Λ̄− 1

2
A

γ

1− γ

µ2
1

σ2 + ρ2

)
. (47)

In addtion, by (37) and (46) we have

lim
r→0

r−
2cr̄
λ2

∫ r

0

1
e(s)

g̃(s)2ds = 0.

This with (47) and (43) imply (44), which is equivalent to (36).
Now we consider the opposite situation, namely, there is 0 < δ < 1/2 such that (45) does hold

for some r1. Then

1
g̃(r)

− 1
g̃(r1)

= −
∫ r1

r

1
e(s)

ds +
∫ r1

r

2
λ2s

e(s)[Λ̄− d̄(s)]
1

g̃2(s)
ds.

Corresponding to the two terms on the right hand side we have

lim
r→0

r
2cr̄
λ2 −1

∫ r1

r

1
e(s)

ds =
1

2cr̄
λ2 − 1

and
lim
r→0

r
2cr̄
λ2 −1

∫ r1

r

2
λ2s

e(s)[Λ̄− d̄(s)]
1

g̃2(s)
ds = 0.

Hence
lim
r→0

g̃(r)

r
2cr̄
λ2 −1

= −2cr̄

λs
+ 1, (48)

so by the definition of e(·) and the relationship between ḡ and g̃ we see that (35) holds. This
completes the proof of this theorem. 2

From now on we shall focus on solutions of (30) that satisfy (36) rather than (35). The reason
will become apparent below. In particular, see Corollary 4.1 which gives special properties of the
solution satisfying (36). In the proof of Theorem 3.1 it will be seen that the smallest Λ̄ such that
(30) has a finite solution for all r < M corresponds to a ḡ which satisfies (36). See 5.3.

Suppose a solution ḡ of (30) and (36) exists, and consider the corresponding solution g̃ of (31),
so that g̃ also satisfies (43). Denote

g̃(0)(r) :=
∫ r

0

2
λ2s

e(s)[Λ̄− d̄(s)]ds
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and
g̃0(r) := g̃(r)− g̃(0)(r).

Then
g̃0(r) = −

∫ r

0

g̃2(s)
1

e(s)
ds.

Since (36) implies
|g̃(r)| ≤ cr

2cr̄
λ2

for r small, we have,
|g̃0(r)| ≤ cr

2cr̄
λ2 +1.

Moreover,

g̃(r) = g̃(0)(r)−
∫ r

0

[g̃(0)(s) + g̃0(s)]2
1

e(s)
ds

= g̃(0)(r)−
∫ r

0

g̃(0)(s)2
1

e(s)
ds− 2

∫ r

0

g̃(0)(s)g̃0(s)
1

e(s)
ds−

∫ r

0

g̃0(s)2
1

e(s)
ds.

Continuing this procedure, we may define g̃(n)(r) recursively by

g̃(n+1)(r) = g̃(0)(r)−
∫ t

0

1
e(s)

g̃(n)(s)2ds.

We can show by induction that the following holds :

g̃(r) = g̃(n)(r) + O
(
r

2cr̄
λ2 +n+1). (49)

This gives an asymptotic expansion of g̃(r) for small r > 0.

Lemma 4.2 Fix Λ̄. For small enough r0 > 0 there exists a unique g̃ satisfying for all r ∈ (0, r0]
both (31) and (43). It also satisfies

|g̃(r)| ≤ c1r
2cr̄
λ2 , r ≤ r0, (50)

for a positive number c1, as well as (44)(this is equivalent to (36) if we take ḡ(r) = g̃(r)/e(r)). In
addition, we have (49) and

g̃(r) ≤
∫ r

0

2
λ2s

e(s)[Λ̄− d̄(s)]ds, r ≤ r0. (51)

Remark. Since there is a one to one correspondence between solutions of (22) satisfying (25) and
solutions of (31) satisfying (36) (see the beginning of this section), it follows from Lemma 4.2 that
there exists a solution g of (22) satisfying (25), at least a solution in some neighborhood of r = 0.

Proof. For some suitable positive numbers r0 and c1 (to be decided later), consider the operator T

defined for f ∈ Fc1 , where

Tf(r) := −
∫ r

0

f2(s)
1

e(s)
ds +

∫ r

0

2
λ2s

e(s)[Λ̄− d̄(s)]ds
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and

Fc1 := {f : |f(r)| ≤ c1r
2cr̄
λ2 , 0 ≤ r ≤ r0}.

In order to show that Tf ∈ Fc1 we need to estimate |Tf(r)|. The first term in the definition of T

is bounded by

c2
1c̄2

∫ r

0

sδds = c2
1c2r

δ+1,

where δ := 2cr̄
λ2 and 1/e(s) ≤ c̄2s

−δ, c2 = c̄2/(1 + δ). The second term is bounded by

c1(Λ̄)c̄3

∫ r

0

sδ−1ds = c1(Λ̄)c3r
δ,

where c3 = c̄3/δ and e(r) ≤ c̄3r
δ for r small, and where

c1(Λ̄) := max
0<r≤1

| 2
λ2

[Λ̄− d̄(r)]|.

Therefore

|Tf(r)| ≤ [c2
1c2r + c1(Λ̄)c3]rδ ≤ [c2

1c2r0 + c1(Λ̄)c3]rδ

if r ≤ r0. It now follows by taking c1 = 2c1(Λ̄)c3 and r0 = 1/[4c2c3c1(Λ̄)] that

|Tf(r)| ≤ c1r
2cr̄
λ2 ,

and so T : Fc1 → Fc1 .
On the other hand, for r ≤ r0

|Tf1(r)− Tf2(r)| ≤
∫ r

0

|f1(s) + f2(s)||f1(s)− f2(s)|
1

e(s)
ds

≤ ||f1 − f2||2c1

∫ r0

0

s
2cr̄
λ2

1
e(s)

ds ≤ 2c1c̄2r0||f1 − f2||, r ≤ r0,

where || · || denotes the supnorm on [0, r0] and

c̄2 := max
r≤1

1
e(r)

r
2cr̄
λ2 .

Hence by taking r0 small enough so that 2c1c̄2r0 < 1 we see that T will be a contraction mapping
from Fc1 into Fc1 . Hence T has a unique fixed point, say g̃, which means that g̃ satisfies (43) and
thus (31).

If we define ḡ(r) = g̃(r)/e(r), then ḡ is a solution of (30) defined on (0, r0]. Therefore, in view
of Theorem 4.1, either one of (35) or (36) holds. Since g̃ is in Fc1 , we have (50). Then (35) cannot
be true. Since (36) is equivalent to (44), (44) holds. Finally, (51) is a consequence of (43). This
completes the proof of the Lemma. 2

Lemma 4.3 Let g̃1 and g̃2 be the two solutions of (31) (equivalently, (43)) corresponding to Λ̄1 and
Λ̄2, respectively, as defined in Lemma 4.2. If Λ̄1 < Λ̄2 then g̃1 < g̃2.
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Proof. Since g̃1 and g̃2 both satisfy equation (31) (with their respective values of Λ̄) we can subtract
one equation from the other to obtain

d

dr
(g̃1 − g̃2) +

1
e(r)

[g̃1 + g̃2][g̃1 − g̃2] =
2

λ2r
e(r)[Λ̄1 − Λ̄2].

We thus have

g̃1(r)− g̃2(r) =
∫ r

0

2e(s)
λ2s

[Λ̄1 − Λ̄2] exp
(
−
∫ r

s

g̃1(u) + g̃2(u)
e(u)

du
)
ds.

This is strictly negative if Λ̄1 < Λ̄2, so Lemma 4.3 is established. 2

Corollary 4.1 For each Λ̄, (31) has only one solution satisfying (36). For fixed Λ̄, assume ḡ0

defined on (0, r0] is a solution of (31) satisfying (36). Let y < ḡ0(r0), and suppose ḡ is the solution
of (31) such that ḡ(r0) = y. Then ḡ(r) exists for r ∈ (0, r0] and ḡ satisfies (35).

Remark. While uniqueness of this solution is true for general r0, existence of a solution has only
been established for small enough r0 > 0.

We note that if g̃(r0) is finite, then g̃ is well defined for r > r0, up to a (possibly infinite) point
denoted r(Λ̄) where limr→r(Λ̄) g̃(r) = −∞ (If g̃ explodes, then by (51) it explodes in the negative
direction). For each M > 0 we now define

Λ̄∗(M) := inf{Λ̄ : the corresponding solution g̃ of (31) satisfying (36) is finite for all r ≤ M},

and note solutions of (31) satisfying (36) are given by (43). The preceding results now imply the
following:

Corollary 4.2 Fix arbitrary 0 < M < ∞. Then Λ̄∗(M) < ∞ and, for each Λ̄ > Λ̄∗(M), the
corresponding solution g̃ of (43) is finite for all r ≤ M . Moreover, g̃(M) → ∞ as Λ̄ → ∞ and
g̃(M) → −∞ as Λ̄ → −∞.

Remark. Recall that a solution ḡ of (30) is well defined if and only if a solution g̃ of (43) is well
defined. Since ḡ = Ag, the preceding corollaries tell us when the constrained dynamical programming
equation (22) has a unique solution for r ≤ M . In particular, since g(r) = ḡ(r)/A and Λ̄ = AΛ, we
see that (36) implies (25). Also, note that in Lemma 5.2 below we prove that Λ̄∗(M) > −∞.

Proof. We prove Λ̄∗(M) < ∞. The rest is a consequence of either Lemma 4.3 or a similar argument.
We first take a r0 small enough and a finite Λ̄0, and

g̃0(r) =
∫ r

0

2
λ2s

e(s)(Λ̄0 − d̄(s))ds−
∫ r

0

1
e(s)

g̃2
0(s)ds, r ≤ r0.

We know that g̃0(r) is finite for r ∈ [0, r0]. Now for θ > 0 we consider

g̃θ(r) =
∫ r

0

2
λ2s

e(s)(Λ̄0 + θ − d̄(s))ds−
∫ r

0

1
e(s)

g̃2
θ(s)ds, r ≤ r0.



T.Bielecki/S.Pliska/S.Sheu 17

This has solution g̃θ(·) in a neighborhood of 0 as given in Lemma 4.2 with Λ̄ = Λ̄0 + θ. We know
that g̃θ(r) is finite for r ∈ [0, r0] and that

g̃θ(r) ≥ g̃0(r), r ≤ r0.

Let us fix 0 < r1 < r0, a large K > 0,K > ‖g̃0‖[r1,r0], the maximum of |g̃0(r)|, r ∈ [r1, r0]. There
is a θ0 such that for θ > θ0, g̃θ(·) is increasing for r1 ≤ r ≤ r0, if |g̃θ(r)| ≤ K. This is due to the
following calculation:

d

dr
g̃θ(r) =

2
λ2r

e(r)(Λ̄0 + θ − d̄(r))− 1
e(r)

g̃2
θ(r)

≥ 2
λ2r0

inf
[r1,r0]

{e(r)(Λ̄0 + θ0 − ‖d̄‖[r1,r0])} − ‖
1

e(·)
‖[r1,r0]K

2 > 0,

where the last inequality holds if θ0 is large enough.
From this, for a fixed K, we must have g̃θ(r0) > K if θ is large enough. Suppose not. Then using

the fact that g̃θ(r) > g̃0(r), r1 ≤ r ≤ r0 and the above monotonicity result we can conclude that

|g̃θ(r)| < K, r1 ≤ r ≤ r0.

Thus
d

dr
g̃θ(r) ≥ (

2
λ2r0

inf
[r1,r0]

{e(r)(Λ̄0 + θ − ‖d̄‖[r1,r0])} − ‖
1

e(r)
‖[r1,r0]K

2)

is larger than a given number (say L) for r1 ≤ r ≤ r0 if θ is large enough. For such θ,

g̃θ(r0) = g̃θ(r1) +
∫ r0

r1

d

dr
g̃θ(r)dr ≥ g̃0(r1) + L(r0 − r1),

and this is larger than K if L is large enough. This gives a contradiction.
Next, for a fixed K > 0 if θ is large enough, then g̃θ(r0) > K implies g̃θ(r) > K, r0 ≤ r ≤ M .

This follows by using the properties that

inf
r0≤r≤M

1
r
e(r) > 0, sup

r0≤r≤M

1
e(r)

< ∞

and the estimate

d

dr
g̃θ(r) ≥

2
λ2

inf
r0≤r≤M

{1
r
e(r)(Λ̄0 + θ0 − ‖d̄‖[r0,M ])} − ‖

1
e(r)

‖[r0,M ]K
2 > 0

for a r0 ≤ r ≤ M satisfying g̃θ(r) = K if θ is large enough.
We conclude from the above analysis that for a K > ‖g̃0‖[r1,r0], there is a θ sufficiently large

such that g̃θ(M) > K. This implies Λ̄∗(M) ≤ Λ̄0 + θ < ∞. As a consequence of this argument, we
also have that g̃θ(M) tends to ∞ as θ tends to ∞. This ends the proof. 2

We now turn to the study of the solution of the constrained dynamical programming equation
for r > M , that is, equation (23). But the solution of this differential equation must satisfy the
boundary condition at r = M that has g(M) taking the value that comes from the solution of (22)
and (25) for r ≤ M .
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Lemma 4.4 Given a specified value of g(M), equation (23) has a unique solution g on [M, r1),
where r1 := sup{r > M : g(r) > −∞}. Also, there exists some K < ∞ , which does not depend on
r1, such that g(r) ≤ K on [M, r1) (but may depend on g(M)).

Proof. It is sufficient to prove the existence of K. The existence of r1 follows from the theory of
ordinary differential equations.

First note that (23) can be rewritten as

dg

dr
− 2c

λ2

[
1− r̄

r

]
g + g2 =

2
λ2r

[ΛM − γr], r ≥ M. (52)

It suffices to show that if a solution is such that g(r0) < c2, then g(r) < c2 for all r > r0, where
r0 and c2 here are large. Suppose, on the contrary, there is some r1 > r0 such that g(r) < c2 for
r0 ≤ r < r1 and g(r1) = c2. Then by differential equation (52) we must have dg

dr (r1) < 0. But this
is a contradiction, so Lemma 4.4 is established. 2

For fixed M and any Λ > Λ̄∗(M)/A we know by Corollary 4.2 that (22) with ΛM = Λ has a
solution g on (0,M ] with g(M) finite. So corresponding to each such Λ we can, as in the following
lemma, consider the solution g of (23) on [M, r1) that takes this corresponding value of g(M) at
r = M . In other words, for each Λ > Λ̄∗(M)/A we have a solution of (22) and (23) that is continuous
on [0, r1) for some r1 > M .

Lemma 4.5 Let g1 and g2 be two solutions of (22) and (23) corresponding to Λ1 and Λ2, respec-
tively, where Λ1,Λ2 > Λ̄∗(M)/A. Then Λ1 < Λ2 implies g1(r) < g2(r) if g1 is defined at r.

Proof. First consider two differential equations (52), one satisfied by (g1,ΛM = Λ1) and the other
by (g2,ΛM = Λ2). Subtracting one from the other gives

d

dr
(g2 − g1) +

[
− 2c

λ2
(1− r̄/r) + g2 + g1

]
(g2 − g1) =

2
λ2r

[Λ2 − Λ1],

in which case

g2(r)− g1(r) = exp
(
−
∫ r

M

(
− 2c

λ2
(1− r̄/s) + g1(s) + g2(s)

)
ds
)
[g2(M)− g1(M)]

+
∫ r

M

2
λ2s

(Λ2 − Λ1) exp
(
−
∫ r

s

(
− 2c

λ2
(1− r̄/u) + g1(u) + g2(u)

)
du
)
ds.

Since g2(M)− g1(M) > 0, Lemma 4.5 follows from this. 2

For each M > 0, we now define

Λ∗M := inf{ΛM : the corresponding solution g of (22), (23) satisfying (25) is finite for all r ≥ 0},

and we observe that Λ∗M ≥ Λ̄∗(M)/A. The preceding results imply the following:

Corollary 4.3 For each fixed number M < ∞ we have Λ∗M < ∞.
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Proof. We need to prove the existence of a ΛM such that g(r) is finite for all r > 0, where g is the
solution for (22), (23) and (25). By (52), if g(M) > 0 and ΛM > 0, then g(r) > 0 for all r > M .
We can show by the argument in the proof of Lemma 4.5 that g(M) > 0 if ΛM is sufficiently large.
This completes the proof. 2

By Corollary 4.3 we know for ΛM ≥ Λ∗M that there exists a solution of (22), (23) and (25). We
now investigate the limiting behavior of this solution g as r →∞.

Theorem 4.2 Fix M < ∞ and arbitrary ΛM ≥ Λ∗M , and consider the solution g = gM of (22),
(23) satisfying (25). Then exactly one of the following two conditions will hold, that is, either

lim
r→∞

g(r) =
c

λ2
−
√

c2

λ4
− 2γ

λ2
(53)

or

lim
r→∞

g(r) =
c

λ2
+

√
c2

λ4
− 2γ

λ2
. (54)

Proof. Denote

α :=
c

λ2
−
√

c2

λ4
− 2γ

λ2
,

and note that α is negative and satisfies

α2 − 2c

λ2
α +

2γ

λ2
= 0.

Next, define1

ḡ(r) = g(r)− α,

and note that, in view of (23), we must have

dḡ

dr
+
(
−2

√
c2

λ4
− 2γ

λ2
+

2cr̄

λ2

1
r

)
ḡ + ḡ2 =

(2ΛM

λ2
− 2cr̄

λ2
α
)1

r
, r > M. (55)

We now claim there is c1 large enough such that

ḡ(r) ≥ −c1/r, r ≥ M. (56)

If not, then not only is there some r0 > M such that ḡ(r0) < −c1/r0, but there is some r0 > M

such that
ḡ(r) < −c1/r, r ≥ r0. (57)

To see this, suppose ḡ(r0) < −c1/r0 but (57) is false. Then there is some r1 such that ḡ(r1) = −c1/r1

and ḡ(r) < −c1/r for r0 ≤ r < r1. It then follows from (55) that

dḡ

dr
(r1) ≤

[
−2c1

√
c2

λ4
− 2γ

λ2
+
(2ΛM

λ2
− 2cr̄

λ2
α
)] 1

r1
.

This implies df
dr (r1) < 0, where f(r) := ḡ(r) + c1/r. But this is a contradiction, so we see that if

(56) is false, then there exists some r0 > M such that (57) is true.

1The ḡ used in this proof must not be confused with the ḡ that is the solution of differential equation (30).



20 Risk Sensitive/CIR Portfolio Management

Using (55) and (57) one can show that

dḡ

dr
+

1
2
ḡ2 < 0, r ≥ r0.

This, in turn, implies

− 1
ḡ(r)

+
1

ḡ(r0)
+

1
2
(r − r0) < 0, r ≥ r0.

But this cannot be true for all r ≥ r0, so (56) must be true.
We now consider two cases, depending upon whether or not

2ΛM

λ2
− 2cr̄

λ2
α > 0. (58)

If (58) is true and ḡ(r0) > 0 for some r0 > M , then ḡ(r) > 0 for all r ≥ r0. From this, we conclude
that one of the following two possibilities holds: either there is r0 > M such that

ḡ(r) > 0, r ≥ r0, (59)

or there is r0 > M such that
ḡ(r) < 0, r ≥ r0. (60)

We have the same conclusion if the opposite of (58) holds, so it suffices to consider (59) and (60)
separately. First we assume (60). This together with (56) implies

lim
r→∞

ḡ(r) = 0.

In other words,
lim

r→∞
g(r) = α, (61)

which is equivalent to (53) in this case.
For the rest of this proof we shall assume (59) and show that for small c1 > 0 and some r1 > M

then either

ḡ(r) +
(
−2

√
c2

λ4
− 2γ

λ2
+

2cr̄

λ2

1
r

)
> −c1, r ≥ r1, (62)

or

ḡ(r) +
(
−2

√
c2

λ4
− 2γ

λ2
+

2cr̄

λ2

1
r

)
< −c1, r ≥ r1. (63)

Indeed, it is easy to see that in order to prove this assertion it suffices to show that if

ḡ(r) +
(
−2

√
c2

λ4
− 2γ

λ2
+

2cr̄

λ2

1
r

)
> −c1 (64)

holds for some c1 > 0 and for r = r0 > 0, then (64) in fact holds for all r ≥ r0.
To prove this last statement, assume the contrary: there is some r1 > r0 such that (64) holds for

r0 ≤ r < r1 and equality holds in (64) for r = r1. In this case

df

dr
(r1) = −c1

(
c1 − 2

√
c2

λ4
− 2γ

λ2
+

2cr̄

λ2

1
r1

)
+
(2ΛM

λ2
− 2cr̄

λ2
α
) 1

r1
− 2cr̄

λ2

1
r2
1

> 0,
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where we have defined

f(r) := ḡ(r) +
(
−2

√
c2

λ4
− 2γ

λ2
+

2cr̄

λ2

1
r

)
.

But this is a contradiction, so (64) must be true for all r ≥ r0.
Our next step is to show (63) cannot hold. This is because it and (55) would imply

dḡ

dr
> c1ḡ +

(2ΛM

λ2
− 2cr̄

λ2
α
)1

r
, r ≥ r1,

since ḡ(r) > 0, in which case

ḡ(r) ≥ exp{c1(r − r0)}ḡ(r0) +
∫ r

r0

(2ΛM

λ2
− 2cr̄

λ2
α
)1

s
exp{c1(r − s)}ds.

But this contradicts Lemma 4.4, so we conclude that if ḡ(r) > 0 for all r ≥ r0 (i.e., if (59) holds),
then (62) holds for any c1 > 0 provided r1 is large enough.

Having established (62), we now prove that for a fixed large r1 there is a c2 large enough such
that

ḡ(r) +
(
−2

√
c2

λ4
− 2γ

λ2
+

2cr̄

λ2

1
r

)
<

c2

r
, r ≥ r1. (65)

To prove this, we consider the function

f(r) := ḡ(r) +
(
−2

√
c2

λ4
− 2γ

λ2
+

2cr̄

λ2

1
r

)
.

We choose c2 such that

f(r) < c2/r (66)

for r = r0. Our next objective in this proof is to show that this implies (66) is true for all r ≥ r0.
Otherwise, there is some r1 > r0 such that (66) is true for r0 ≤ r < r1 and equality holds in (66)
for r = r1. By (55) again it is easy to see that

df

dr
(r1) + c2/r2

1 = ḡ(r1)(−c2/r1) +
(2ΛM

λ2
− 2cr̄

λ2
α
) 1

r1
+ c2

1
r2
1

< 0

if c2 is large enough. But this is another contradiction, so (66) must be true for all r ≥ r0.
Now (62) and (65) imply

lim
r→∞

f(r) = 0.

This is equivalent to (54). This together with (61) completes the proof of Theorem 4.2. 2

It turns out that the limit (53) is the one we want; (54) will now be ignored. See Lemma 4.7. Here
again we are interested in the smallest ΛM such that (22), (23), and (25) have a solution for all r.
The following lemma says there is at most one value of ΛM giving a solution of (22), (23), and (25)
that also satisfies (53).

Lemma 4.6 Suppose g1 and g2 are two solutions of (22), (23), and (25) corresponding to ΛM =
Λ1,Λ2, respectively. If both g1 and g2 satisfy (53), then g1 = g2 and Λ1 = Λ2.



22 Risk Sensitive/CIR Portfolio Management

Proof. Subtracting the equation for g2 from the equation for g1 gives

d

dr
(g2 − g1) +

(
− 2c

λ2
+

2cr̄

λ2

1
r

+ g1 + g2

)
(g2 − g1) =

2
λ2r

(Λ2 − Λ1).

By (53) we then have

−(g2 − g1)(r)ē(r) =
∫ ∞

r

2
λ2s

(Λ2 − Λ1)ē(s)ds, (67)

where we have introduced the function

ē(r) := exp
{∫ r

r0

(
− 2c

λ2
+

2cr̄

λ2

1
s

+ g1(s) + g2(s)
)
ds
}

.

Here r0 > M is fixed. The integral on the right hand side of (67) is finite by (53). Moreover, (67)
implies g2 − g1 > 0 if Λ2 −Λ1 < 0. But we also have g2 − g1 < 0 if Λ2 −Λ1 < 0. Therefore Λ1 = Λ2

and g1 = g2, that is, the proof of Lemma 4.6 is completed. 2

It remains to prove the solution g∗ corresponding to ΛM = Λ∗M satisfies (53). In other words,
with Lemma 4.6 establishing uniqueness, it remains to establish existence. This is a consequence of
the following lemma, because if for ΛM = Λ̄ the corresponding limit is (54), then for all ΛM < Λ̄ in
some neighborhood of Λ̄ the corresponding limits also satisfy (54). Hence if there exists a solution
for ΛM = Λ∗M (the infimum of ΛM for which there exists a solution; Λ∗M is finite by Corollary 4.2
above and Lemma 5.2 below, and the infimum is attained by the same kind of argument used below
in the proof of Theorem 5.1), this solution must satisfy the other limit, namely (53).

Lemma 4.7 If ΛM = Λ̂ is such that the corresponding solution of (22), (23) satisfies (25) and (54),
then there exists some δ > 0 such that for any ΛM > Λ̂− δ the solution of (22), (23) exists for all r.

Proof. Let ĝ be the solution corresponding to Λ̂, so

dĝ

dr
− 2c

λ2
(1− r̄

r
)ĝ + ĝ2 =

2
λ2r

(Λ̂− γr), r > M.

With g being the solution of (22) and (23) corresponding to Λ, write

ḡ := g − ĝ

so
dḡ

dr
+

dĝ

dr
− 2c

λ2
(1− r̄

r
)(ḡ + ĝ) + (ḡ + ĝ)2 =

2
λ2r

(Λ− γr).

This implies
dḡ

dr
+
( 2c

λ2
(1− r̄

r
) + 2ĝ

)
ḡ + ḡ2 =

2
λ2r

(Λ− Λ̂). (68)

We now seek the solution of (68) such that ||ḡ|| ≤ δ1, where

||ḡ|| := sup
r≥M

|ḡ(r)|.

Here δ1 will be chosen later in a manner which depends on δ, where |Λ− Λ̂| < δ. Note that (68) can
be rewritten as

ḡ(r) = ḡ(M)
1

ē(r)
−
∫ r

M

ē(s)
ē(r)

ḡ2(s)ds +
2
λ2

(Λ− Λ̂)
∫ r

M

ē(s)
ē(r)

1
s
ds,
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where we introduced the function

ē(r) := exp
{∫ r

M

(
− 2c

λ2
(1− r̄/s) + 2ĝ(s)

)
ds
}

.

We use again the fixed-point argument to get a solution g. Denote

F := {f : [M,∞) → R, ||f || ≤ δ1, f(M) = ḡ(M)},

where ḡ(M) = g(M) − ĝ(M), and where g is the solution of (22) corresponding to ΛM = Λ. We
denote for f ∈ F

Tf(r) := ḡ(M)
1

ē(r)
−
∫ r

M

ē(s)
ē(r)

f2(s)ds +
2
λ2

(Λ− Λ̂)
∫ r

M

ē(s)
ē(r)

1
s
ds.

We know ḡ(M) → 0 if Λ → Λ̂. We consider

|Λ− Λ̂| < δ, δ̄ = |ḡ(M)|max
r≤M

1
ē(r)

,

where δ is small. Then take δ1 > 0 satisfying

δ2
1 sup

r≥M

∫ r

M

ē(s)
ē(r)

ds + δ̄ +
2δ

λ2
sup
r≥M

{
∫ r

M

ē(s)
ē(r)

1
s
ds} < δ1.

Note for δ small enough we can take

δ1 = 2(δ̄ +
2δ

λ2
sup
r≥M

{
∫ r

M

ē(s)
ē(r)

1
s
ds}).

Then it is not difficult to show that the operator T : F → F. Moreover, for arbitrary f1, f2 ∈ F we
have

||Tf1 − Tf2|| ≤ 2δ1 sup
r≥M

1
ē(r)

∫ r

M

ē(s)ds||f1 − f2|| = K||f1 − f2||.

By taking δ1 small enough one has the number K < 1. Then T is a contraction with a unique fixed
point in F, which is the unique solution of (23). This completes the proof of Lemma 4.7. 2

5 Proofs of Theorems 3.1 and 3.3

Our first result shows that the solutions of Theorem 3.2 converge as M → ∞ to a solution of the
HJB equation (16) that also satisfies conditions (19) and (20)(if µ2 6= 1, (21) if µ2 = 1). Later in this
section we will show uniqueness, thereby completing the proofs of both Theorems 3.1 and Theorem
3.3.

Theorem 5.1 Let Λ∗M and g∗M (r) be as in Theorem 3.2. Then Λ∗M → Λ and g∗M (r) → g(r) as
M → ∞, where Λ and g(r) satisfy (16) and g(r) also satisfies (19) and either (20) (in the case
µ2 6= 1) or (21) (in the case µ2 = 1).
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To prove Theorem 5.1 we need the following four lemmas. The first two of these are based upon
the following equation:

Λ =
1
2
λ2r

dg

dr
+

1
2
λ2r(1 +

γ

1− γ

σ2

σ2 + ρ2
)g2 + b(r)g + d(r), r ≤ R0 + 1. (69)

Here R0 > 0, and note this equation is essentially the same as (22), which is part of the dynamical
programming equation in Theorem 3.2.

Lemma 5.1 Let r0 < R0 be arbitrary. Then there is K > 0, depending on r0, R0, and Λ, such that
if (69) has a solution g, then

|g(r)| ≤ K, r0 ≤ r ≤ R0.

Moreover, K can be chosen to be increasing in Λ. Therefore, for r0, R0,Λ fixed, the set {|g(r)| : r0 ≤
r ≤ R0; g satisfies (69)} is bounded.

Remark. If the value of the ODE solution g is specified at r0 < R0 , say, then the values of g for
all r will be determined. The most interesting part of this lemma is the conclusion that regardless
of the initial value we choose for g at r0, if g(r) is finite in (0, R0 + 1], then |g(r)| ≤ K for all
r0 ≤ r ≤ R0, where K is independent of g, although it may depend on R0. Consequently, in order
to have a solution of (68) we cannot arbitrarily assign a value of g at r0. Regarding the dependence
of K on Λ, an expression for K is provided after (71) below. This dependence will be used in the
proof of Theorem 5.1.

Proof. Let g satisfy (69). Take φ : [0,∞) → [0, 1] smooth such that

φ(r) = 1, r0 ≤ r ≤ R0,

= 0, 0 ≤ r ≤ r0
2 , R0 + 1 < r.

(70)

Without loss of generality, we can take φ such that it satisfies the following property:

| 1√
φ(r)

dφ(r)
dr

| ≤ K1.

Here K1 is some number that may depend on r0 and R0. To see this, we denote h(r) by

h(r) :=
1√
φ(r)

dφ(r)
dr

, r ≥ R0,

so √
φ(r) = 1 + 2

∫ r

R0

h(u)du, r > R0.

We then choose h(·) such that h(·) is bounded and

2
∫ R0+1

R0

h(u)du = −1.

Moreover, we choose h(r) = 0, r ≥ R0 +1. The derivatives of h of any order at R0 and R0 +1 are 0.
Thus φ satisfies the required property on [R0,∞). We can apply a similar argument for r ∈ (0, r0].



T.Bielecki/S.Pliska/S.Sheu 25

Consider
f(r) =

1
2
φ(r)g2(r).

Then f(r) takes a maximum at some r1 satisfying r0/2 ≤ r1 ≤ R0 + 1. Denote

X2 = 2f(r1) = 2 max f(r).

Then
df

dr
(r1) = 0,

that is,

φ(r1)g(r1)
dg

dr
(r1) = −1

2
g2(r1)

dφ

dr
(r1). (71)

We multiply (69) at r = r1 by φ(r1)g(r1) and use (71) to get

Λφ(r1)g(r1) = − 1
4λ2r1g

2(r1)dφ
dr (r1) + 1

2λ2r1(1 + γ
1−γ

σ2

σ2+ρ2 )φ(r1)g3(r1)
+b(r1)φ(r1)g2(r1) + d(r1)φ(r1)g(r1).

Assume g(r1) 6= 0. Then divide the above relation by g(r1) to obtain

Λφ(r1) = − 1
4λ2r1g(r1)dφ

dr (r1) + 1
2λ2r1(1 + γ

1−γ
σ2

σ2+ρ2 )φ(r1)g2(r1)
+b(r1)φ(r1)g(r1) + d(r1)φ(r1).

Then
X2 + 2αX = β, (72)

where
α = α(r1) =

2
λ2r1(1 + γ

1−γ
σ2

σ2+ρ2 )
(b(r1)

√
φ(r1)−

1
4
λ2r1

1√
φ(r1)

dφ

dr
(r1)),

β = β(r1) =
2

λ2r1(1 + γ
1−γ

σ2

σ2+ρ2 )
(−d(r1)φ(r1) + Λφ(r1)).

From (72),
X = −α±

√
α2 + β,

in which case
|X| ≤ |α|+

√
α2 + β.

We see |X| ≤ K, where

K = max{|α(r)|+
√

α(r)2 + β(r),
r0

2
≤ r ≤ R0 + 1}

so that K depends on r0, R0, and Λ. Since

max
r0≤r≤R0

|g(r)|2 ≤ X2,

the result follows. 2

The next lemma says that the set of all Λ such that (69) has a solution is bounded below.

Lemma 5.2 For a fixed R0, there is a Λ(R0) such that if (69) has a solution g, then Λ ≥ Λ(R0).
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Proof. We take 0 < r0 < R0 and a smooth function φ as in (70). We can define b̂(r) for all r > 0
such that

b̂(r) = b(r), r ≤ R0

and such that the diffusion process defined by

dr̂(t) = b̂(r̂(t))dt + λ
√

r̂(t)dB(t)

has an invariant density that we denote by p̂(r).
Denote

Φ(r) = exp((1 +
γ

1− γ

σ2

σ2 + ρ2
)W (r)),

where
W (r) =

∫ r

r0

g(u)du.

Then
L̂Φ(r) = Λ̂Φ(r)− d̂(r)Φ(r), r ≤ R0,

where
Λ̂ = (1 + γ

1−γ
σ2

σ2+ρ2 )Λ,

d̂(r) = (1 + γ
1−γ

σ2

σ2+ρ2 )d(r),

L̂f(r) = 1
2λ2r d2f

dr2 (r) + b̂(r) df
dr (r).

We have ∫
L̂Φ(r)φ(r)p̂(r)dr =

∫
Λ̂Φ(r)φ(r)p̂(r)dr −

∫
d̂(r)Φ(r)φ(r)p̂(r)dr.

The equation for the invariant density p̂ is:

1
2

d2

dr2
(λ2rp̂(r))− d

dr
(b̂(r)p̂(r)) = 0.

In one dimension, we have
1
2

d

dr
(λ2rp̂(r))− b̂(r)p̂(r) = 0.

From this and the integration by parts formula we then have∫
L̂Φ(r)φ(r)p̂(r)dr = −1

2

∫
λ2r

dΦ
dr

(r)
dφ

dr
(r)p̂(r)dr.

Consequently,

Λ̂
∫

Φ(r)φ(r)p̂(r)dr =
∫

d̂(r)Φ(r)φ(r)p̂(r)dr − 1
2

∫
λ2r

dΦ
dr

(r)
dφ

dr
(r)p̂(r)dr. (73)

By Lemma 5.1 there is some number K, which depends on Λ, such that

1
K ≤ Φ(r) ≤ K,

|dΦ
dr (r)| ≤ K
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for r0 ≤ r ≤ R0. From this and (73), we have

|Λ̂|
∫

Φ(r)φ(r)p̂(r)dr ≤ K(‖d̂‖+ λ2R0‖
dφ

dr
‖).

The left hand side is larger than

|Λ̂| 1
K

∫
φ(r)p̂(r)dr.

From these, |Λ̂| has an upper bound depending only on R0. This completes the proof. 2

For the following lemma and subsequent use we shall make us of a quantity that was defined in
Section 4, namely,

Λ∗M := inf{ΛM : (22) and (23) has a solution satisfying (25)}.

Lemma 5.3 For each M0 > 0, the set {Λ∗M ;M ≥ M0} is bounded above.

Proof. It is enough to show that there is Λ such that (22)-(23) has a solution g = gM satisfying
(25) such that g(r) > 0 for all r, for ΛM = Λ with M ≥ M0, since this will imply Λ∗M ≤ Λ by the
definition of Λ∗M .

We take Λ large enough such that (22) has a solution g satisfying

lim
r→0

g(r) =
1
cr̄

(Λ− γ

2(1− γ)
µ2

1

σ2 + ρ2
) > 0.

By (22), it is easy to see that g(r) > 0 for 0 < r ≤ M , since in 0 < r ≤ M , g is increasing at the
zeros of g. This argument also applies to M ≤ r. That is, g(r) cannot be −∞ for finite r. Therefore,
we get a unique solution of (22)-(23) satisfying (25). 2

Lemma 5.4 Let g = gM be a solution of (22) and (23) satisfying (25) with Λ = ΛM ≥ Λ∗M . Then
there is some M0 > 0 such that for M ≥ M0,

g(r) < 0, r > M0.

Proof. By (53), g(r) will be negative if r is large enough. From equation (23) and the fact that Λ is
bounded below (see Lemma 5.2), it is easy to see that g(r) < 0 for r > M if M is large enough, since
g(r) for r > M is increasing at zeros of g. This argument also applies to M0 ≤ r ≤ M . Therefore,
g(r) < 0 for r > M0 if M is large enough. This completes the proof. 2

Armed with these lemmas, we can now prove Theorem 5.1.

Proof of Theorem 5.1

By Lemmas 5.2 and 5.3, for a fixed M0 > 0, {Λ∗M ,M ≥ M0} is bounded above and below. We
can take a sequence Mn → ∞ as n → ∞ such that Λ∗Mn

converges to some Λ. Boundedness of
{Λ∗Mn

} also implies the uniform boundedness of {|g∗Mn
(r)|} on compact sets by Lemma 5.1. This

further implies the uniform boundedness of {|dg∗Mn

dr (r)|} on compact sets, by using (22) and (23).
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Therefore, we can take a subsequence of {Mn} (still denoted by {Mn}), such that g∗Mn
(r) converges

to g(r) uniformly on compact sets.
We know Λ, g satisfy (16) and g satisfies (19). In fact, we only need to rule out the possibility

that g satisfies (35). But since the g∗Mn
(r) satisfy (50) for c1 and r0 independent of n (see the proof

of Lemma 4.2), it follows that (35) cannot hold for g.
It remains to prove that (20) or (21) (depending on the case) holds for g, because then (Λ∗, g∗) =

(Λ, g) satisfies the properties in Theorem 3.1 (see also 5.3 below). From this it follows that the limit
of (Λ∗M , g∗M ) as M →∞ is unique, and so Theorem 5.1 will be proved.

We now prove that (20) holds for g when µ2 6= 1. By Lemma 5.4, there is M0 such that

g(r) < 0, r ≥ M0. (74)

We need to know the behaviors of the solutions of (16) as r →∞. This will be given in Theorem 5.2.
Now g given above is a solution of (16). Define ḡ = Ag, A = 1+ γσ2/(1− γ)(σ2 + ρ2). According to
this theorem, either (75) or (76) holds. From (80), we can conclude the following. If (75) holds, then
g(r) < 0 for r large. If (76) holds, then g(r) > 0 for r large. Since (74) holds, we must have (75).
This in turn implies (20) by a simple calculation. The case µ2 = 1 is treated in a similar manner.
This completes the proof. 2

Theorem 5.2 Let (Λ, g) be a solution of (16) for 0 < r < ∞. Then exactly one of the following
relations holds:

either

lim
r→∞

r(ḡ(r)− ḡ0(r)) = −1
8

(
1− λ

|λ|
(
−γ

1− γ
)

1
2

σ√
σ2 + ρ2

)
(75)

or

lim
r→∞

1√
r
(ḡ(r)− ḡ0(r)) = 2

(
− γ

1− γ

1
σ2 + ρ2

) 1
2 |µ2 − 1|

|λ|
, µ2 6= 1, (76)

lim
r→∞

(ḡ(r)− ḡ0(r)) = 2
(

c2

λ4
− 2

γ

λ2

(
1 +

γ

1− γ

σ2

σ2 + ρ2

)) 1
2

, µ2 = 1. (77)

Here

ḡ0(r) := −b(r)
λ2r

−

(
−

2(1 + γ
1−γ

σ2

σ2+ρ2 )d(r)

λ2r
+

b(r)2

λ4r2

) 1
2

,

while b(·), d(·), and ḡ(·) are defined by (17), (18), and (29), respectively.

In order to prove Theorem 5.2 we need three more lemmas. For these we consider a function
g(r) that is finite for all r and satisfies (16) and (19). Using this and ḡ0(r) as specified in Theorem
5.2, we then define

ĝ := ḡ − ḡ0.

Since ḡ0 satisfies
1
2
λ2rḡ0(r)2 + b(r)ḡ0(r) + d̄(r) = 0,
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it follows that
1
2
λ2r

d

dr
ĝ(r) +

1
2
λ2rĝ(r)2 + b̃(r)ĝ(r) = L(r),

where
L(r) := Λ− 1

2
λ2r

d

dr
ḡ0(r)

and

b̃(r) := b(r) + λ2rḡ0(r) = −λ2r
(
− 2d̄(r)

λ2r
+

b(r)2

λ4r2

) 1
2 = −

(
− 2λ2rd̄(r) + b(r)2

) 1
2 .

Notice this equation can be rewritten as

dĝ

dr
+ ĝ2 +

2b̃(r)
λ2r

ĝ =
2L(r)
λ2r

. (78)

In order to investigate the asymptotic properties of (78) we calculate

−2d̄(r)
λ2r

+
b(r)2

λ4r2
= − 2γ

λ2r

(
1 +

γ

1− γ

σ2

σ2 + ρ2

)(1
2

1
1− γ

1
σ2 + ρ2

µ̄(r)2 + r
)

+
1

λ4r2

(
− c(r − r̄) +

γ

1− γ

σλ

σ2 + ρ2

√
rµ̄(r)

)2

= µ̄(r)2
(
− γ

1− γ

1
σ2 + ρ2

(
1 +

γ

1− γ

σ2

σ2 + ρ2

) 1
λ2r

+
( γ

1− γ

)2 σ2

(σ2 + ρ2)2
1

λ2r

)

−2
cσλ

λ4

1
σ2 + ρ2

r − r̄

r

1√
r
µ̄(r) +

c2

λ4

(r − r̄)2

r2
− 2

γ

λ2

(
1 +

γ

1− γ

σ2

σ2 + ρ2

)
= − γ

1− γ

1
σ2 + ρ2

1
λ2r

µ̄(r)2 − 2
cσλ

λ4

1
σ2 + ρ2

r − r̄

r

1√
r
µ̄(r) +

c2

λ4

(r − r̄)2

r2
− 2

γ

λ2

(
1 +

γ

1− γ

σ2

σ2 + ρ2

)
.

Since
2b̃(r)
λ2r

= −2
(
− 2d̄(r)

λ2r
+

b(r)2

λ4r2

) 1
2
,

it follows when µ2 6= 1 that

2b̃(r)
λ2r

∼= −2
(
− γ

1− γ

1
σ2 + ρ2

) 1
2 |µ2 − 1|

|λ|
√

r + O(1) as r →∞. (79)

Moreover,

ḡ0(r) ∼= − 1
λ

γ

1− γ

σ

σ2 + ρ2
(µ2 − 1)

√
r −

( −γ

1− γ

1
σ2 + ρ2

1
λ2

) 1
2 |µ2 − 1|

√
r + O(1) as r →∞. (80)

On the other hand, if µ2 = 1 then

2b̃(r)
λ2r

∼= −2
(

c2

λ4
− 2

γ

λ2

(
1 +

γ

1− γ

σ2

σ2 + ρ2

)) 1
2

+ O
( 1√

r

)
as r →∞ (81)

and

ḡ0(r) ∼=
c

λ2
−
(

c2

λ4
− 2

γ

λ2

(
1 +

γ

1− γ

σ2

σ2 + ρ2

)) 1
2

+ O
( 1√

r

)
as r →∞.
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From this we see that if µ2 6= 1 then

L(r) ∼=
|λ|
4

(( −γ

1− γ

1
σ2 + ρ2

) 1
2

+
λ

|λ|
γ

1− γ

σ

σ2 + ρ2

)
|µ2 − 1|

√
r + O

( 1√
r

)
as r →∞, (82)

whereas if µ2 = 1 then

L(r) ∼= Λ + O
( 1√

r

)
as r →∞.

We are now ready for the first of the three lemmas that will be used in the proof of Theorem 5.2.

Lemma 5.5 There exist positive numbers c1 and r1 such that

ĝ(r) > −c1

r
, all r ≥ r1. (83)

Proof. This proof is by contradiction. Suppose it is false. Then for any c1 > 0 and r2 > 0 there
exists some r0 > r2 such that

ĝ(r0) ≤ −c1/r0.

From this we shall prove that
ĝ(r) ≤ −c1

r
, all r ≥ r0. (84)

But if this is not true, then without loss of generality there is some r1 > r0 such that ĝ(r1) = −c1/r1

and
ĝ(r) < −c1/r, r0 < r < r1.

Denoting f(r) := ĝ(r) + c1/r, we then see that

df(r1)
dr

= −ĝ(r1)2 +
L(r1)
λ2r1

− 2b̃(r1)
λ2r1

ĝ(r1)− c1
1
r2
1

< 0

if we take c1 large enough. This is a contradiction; (84) must be true if this lemma is false.
By (84) and (78), we have

dĝ

dr
+ ĝ2 < 0.

Then
dĝ
dr

ĝ2
+ 1 < 0,

which implies
1

ĝ(r0)
− 1

ĝ(r)
+ (r − r0) < 0

for all r > r0. This cannot be true for all r ≥ r0, so (84) leads to a contradiction. The proof is
complete. 2

Lemma 5.6 Suppose for some large r0 > 0 that with r = r0 we have

c2

r
< ĝ(r) < −2b̃(r)

λ2r
+

c2

r
.

If c2 is large, then this inequality also holds for all r ≥ r0.
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Proof. By (78) and (82), ĝ − c2/r is increasing at r ≥ r0 such that ĝ − c2/r = 0. Therefore,

c2

r
< ĝ(r), r ≥ r0.

Denote

r1 := inf
{

r > r0 : ĝ(r) ≥ −2b̃(r)
λ2r

+
c2

r

}
.

We have shown ĝ(r) > c2/r for r0 < r < r1, so it suffices to show we have r1 = ∞.
Assume not. Then ĝ(r1) = −2b̃(r1)/(λ2r1) + c2/r1 and

ĝ(r) < −2b̃(r)
λ2r

+
c2

r
, r0 ≤ r < r1.

We now consider

f(r) := ĝ(r) +
2b̃(r)
λ2r

− c2

r

and show that d
dr f(r1) < 0, which leads to a contradiction. We have

d
dr f(r1) = d

dr ĝ(r1) + d
dr

(
2b̃(r)
λ2r

)
(r1)− c2

r2
1

= 2L(r1)
λ2r1

− c2
r1

(− 2b̃(r)
λ2r + c2

r1
) + d

dr

(
2b̃(r)
λ2r

)
(r1)− c2

r2
1
.

From this and (79),(82) we can show d
dr f(r1) < 0. This completes the proof. 2

Lemma 5.7 Let c1 > 0 be small. With r0, c2 as in the preceding lemma such that c2 is large enough,
there exists some r1 > r0 such that

ĝ(r) +
2b̃(r)
λ2r

≥ −c1

for all r ≥ r1.

Proof. We first show that there is some r1 > r0 satisfying

ĝ(r1) +
2b̃(r1)
λ2r1

≥ −c1.

Otherwise,

ĝ(r) +
2b̃(r)
λ2r

< −c1, all r > r0. (85)

By (78), we have
dĝ

dr
≥ c1ĝ +

2L(r)
λ2r

≥ c1ĝ − c̄
1
r
≥ c1

2
ĝ

if c2 is large enough. Then
ĝ(r) ≥ exp{c1

2
(r − r0)}ĝ(r0).

But this contradicts (85).
With r1 as above, we now show that

ĝ(r) +
2b̃(r)
λ2r

≥ −c1, all r > r1.
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Otherwise, there is some r2 > r1 such that ĝ(r2) + 2b̃(r2)
λ2r2

= −c1 and

ĝ(r) +
2b̃(r)
λ2r

> −c1, all r1 < r < r2.

In this case we consider

f(r) := ĝ(r) +
2b̃(r)
λ2r

and thus

d

dr
f(r2) =

d

dr
ĝ(r2) +

d

dr

(
2b̃(r)
λ2r

)
(r2) = c1

(
− c1 −

2b̃(r2)
λ2r2

)
+

2L(r2)
λ2r2

+
d

dr

(
2b̃(r)
λ2r

)
(r2).

By (79) and (82), it is easy to see that the right hand side is positive. But this is another contra-
diction, so this proof is complete. 2

We are now ready for the proof of Theorem 5.2. Recall that ĝ := ḡ − ḡ0.

Proof of Theorem 5.2

By Lemmas 5.5-5.7, for positive numbers r0 and c1, c2 ( c1 small, c2 large) either

−c2/r < −ĝ(r) < c2/r, r ≥ r0 (86)

or

−c1 < ĝ(r) +
2b̃(r)
λ2r

< c2/r, r ≥ r0. (87)

We first suppose that (86) holds. Denote

e(r) := exp
(∫ r

r0

2b̃(s)
λ2s

ds

)
,

so that we have for r ≥ r0

ĝ(r) = −
∫ ∞

r

L(s)
λ2s

e(s)
e(r)

ds +
∫ ∞

r

ĝ(s)2
e(s)
e(r)

ds.

By (79) and L’Hospital’s Rule we then have

lim
r→∞

r

e(r)

∫ ∞

r

L(s)
λ2s

e(s)ds =
1
8

(
1− λσ

|λ|

( −γ

1− γ

) 1
2
( 1

σ2 + ρ2

) 1
2
)

and

lim
r→∞

r

e(r)

∫ ∞

r

ĝ(s)2e(s)ds = 0.

This implies (75).
On the other hand, suppose (87) holds. Our next step is to show that

−c2
1
r

< ĝ(r) +
2b̃(r)
λ2r

< c2/r, r ≥ r0. (88)



T.Bielecki/S.Pliska/S.Sheu 33

We do this by first showing that there is some number r1 > r0 satisfying (88) for r = r1. This is
true, for if not then

ĝ(r) +
2b̃(r)
λ2r

≤ −c2
1
r
, r ≥ r0.

Then (78) implies
dĝ

dr
≥ c2

1
r
ĝ +

2L(r)
λ2r

≥ c2

2
1
r
ĝ,

where c1 is given in (87). Integrating this we obtain

ĝ(r) ≥ ĝ(r0) exp(
c2

2
ln r/r0) = ĝ(r0)(

r

r0
)c2/2.

But this contradicts the assertion that ĝ(r)+ 2b̃(r)
λ2r < −c2/r for all r ≥ r0, so we know (88) holds for

some r1 > r0.
For the final step, we use an argument by contradiction, as at the beginning of this proof, to

show that the inequalities in (88) hold for all r ≥ r1. This also implies (88) by choosing a large c2,
if necessary. Finally, (76) follows directly from (88), so this proof is completed. 2

We now have fully established Theorem 5.1. Thus to complete the proofs of Theorems 3.1 and
3.3 it only remains to establish uniqueness of the solution of the HJB equation. This is accomplished
by the following lemma.

Lemma 5.8 Let g1 and g2 be solutions of (16) satisfying (19) corresponding to Λ1 and Λ2, respec-
tively. Let ĝ1 = ḡ1 − ḡ0 and ĝ2 = ḡ2 − ḡ0 with ḡ0 defined as in Theorem 5.2, and suppose ĝ1 and ĝ2

both satisfy limit (75). Then g1 = g2 and Λ1 = Λ2.

Proof. Denote

Λ̄1 = (1 +
γ

1− γ

σ2

σ2 + ρ2
)Λ1, Λ̄2 = (1 +

γ

1− γ

σ2

σ2 + ρ2
)Λ2.

We subtract the equation for ĝ2 from the equation for ĝ1, thereby obtaining

d

dr
(ĝ2 − ĝ1) +

(2b̃(r)
λ2r

+ ĝ1 + ĝ2

)
(ĝ2 − ĝ1) =

Λ̄2 − Λ̄1

λ2r
.

Denote

ẽ(r) := exp
(∫ r

r0

(2b̃(s)
λ2s

+ ĝ1(s) + ĝ2(s)
)
ds

)
.

Then
d

dr

((
ĝ2(r)− ĝ1(r)

)
ẽ(r)

)
=

Λ̄2 − Λ̄1

λ2r
ẽ(r),

and so
(
(
ĝ2(r)− ĝ1(r)

)
ẽ(r) = −

∫ ∞

r

Λ2 − Λ1

λ2s
ẽ(s)ds.

Without loss of generality, suppose Λ2 − Λ1 ≥ 0, in which case ĝ2(r) − ĝ1(r) ≤ 0. But Lemma 4.3
implies ĝ2(r)− ĝ1(r) ≥ 0. Therefore, ĝ2(r) = ĝ1(r), Λ2 = Λ1, and this proof is completed. 2

Ramark. The following result, not crucial for the proofs of Theorems 3.1 or 3.3, says that Λ∗ is
the smallest number such that (16) has a solution defined on [0,∞). For Λ = Λ∗, (16) has a unique
solution. A more general result of this kind is given in the paper by Kaise and Sheu [16].
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Theorem 5.3 Let Λ∗ be given in Theorem 3.1. Then there is only one solution for (16) on [0,∞)
with Λ = Λ∗.

If (16) has a solution on [0,∞), then Λ ≥ Λ∗.

Proof. We consider only µ2 6= 1. The argument for the case µ2 = 1 is similar. Assume Λ = Λ∗

and g is a solution of (16) on [0,∞). Assume g 6= g∗ given in Theorem 3.1. Then (35) holds for
g. Since g∗ satisfies (36), a simple comparison argument for ODE shows that g(r) < g∗(r) for all r.
But g satisfies either one of (75) or (76). Since g∗ satisfies (75), therefore g < g∗ implies that g also
satisfies (75). Now by Lemma 5.8, we conclude g = g∗, a contradiction.

We now consider Λ such that (16) has a solution g0 defined on [0,∞). Then (16) must have a
solution g defined on [0,∞) satisfying (36). If g0 also satisfies (36), then g = g0. See Corollary 4.1.
If g0 satisfies (35), then we have g(r) > g0(r) for small r > 0, and hence for all r. This implies g is
also defined for all r > 0. Now if Λ < Λ∗, then g(r) < g∗(r) for all r by Lemma 4.3. By Theorem
5.2, g either satisfies (75) or (76). We know g∗ satisfies (75). Together with g < g∗, we conclude
that g satisfies (75). By Lemma 5.8, we have g = g∗,Λ = Λ∗, a contradiction. This completes the
proof. 2
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