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Nagengast AJ, Braun DA, Wolpert DM. Risk sensitivity in a motor task

with speed-accuracy trade-off. J Neurophysiol 105: 2668–2674, 2011. First

published March 23, 2011; doi:10.1152/jn.00804.2010.—When a racing

driver steers a car around a sharp bend, there is a trade-off between

speed and accuracy, in that high speed can lead to a skid whereas a

low speed increases lap time, both of which can adversely affect the

driver’s payoff function. While speed-accuracy trade-offs have been

studied extensively, their susceptibility to risk sensitivity is much less

understood, since most theories of motor control are risk neutral with
respect to payoff, i.e., they only consider mean payoffs and ignore
payoff variability. Here we investigate how individual risk attitudes
impact a motor task that involves such a speed-accuracy trade-off. We
designed an experiment where a target had to be hit and the reward
(given in points) increased as a function of both subjects’ endpoint
accuracy and endpoint velocity. As faster movements lead to poorer
endpoint accuracy, the variance of the reward increased for higher
velocities. We tested subjects on two reward conditions that had the
same mean reward but differed in the variance of the reward. A
risk-neutral account predicts that subjects should only maximize the
mean reward and hence perform identically in the two conditions. In
contrast, we found that some (risk-averse) subjects chose to move
with lower velocities and other (risk-seeking) subjects with higher
velocities in the condition with higher reward variance (risk). This
behavior is suboptimal with regard to maximizing the mean number of
points but is in accordance with a risk-sensitive account of movement
selection. Our study suggests that individual risk sensitivity is an
important factor in motor tasks with speed-accuracy trade-offs.

risk aversion; risk seeking; motor control; decision making

THE SPEED-ACCURACY TRADE-OFF is a central theme in movement
neuroscience and implies that higher movement speeds are
generally accompanied by a loss in movement accuracy
(Schmidt and Lee 1999). The relationship between speed
and accuracy was famously investigated by Paul Fitts who
devised a mathematical model (now known as Fitts’s law) to
explain quantitatively how movement time relates to move-
ment amplitude and target size (Fitts 1954). In his original
task, subjects moved a handheld stylus back and forth
between two equally sized targets as rapidly as possible,
such that their required movement time could be measured
as a function of target width and inter-target distance. Fitts
found a logarithmic law relating movement time to the
quotient of target distance and target width, with closer and
larger targets requiring less movement time. One component
that can contribute to this speed accuracy trade-off is the
presence of signal-dependent noise in the motor system
(Harris and Wolpert 1998; Jones et al. 2002; van Beers et al.
2004; Faisal et al. 2008), because movements with larger

amplitudes induce more noise into the nervous system in the
presence of signal-dependent noise. In addition, faster
movements allow less time for feedback control to correct
for errors that arise during the movement.

Recently, a large number of phenomena in human movement
control have been modeled based on optimality principles that can
take the noise properties of the motor system into account (Todo-
rov 2004; Trommershäuser et al. 2003a,b), thus explaining, for
example, speed-accuracy trade-offs (Dean et al. 2007), variability
patterns (Todorov and Jordan 2002), bimanual movement cor-
rections (Diedrichsen 2007), adaptation to force-fields and
visuomotor transforms (Izawa et al. 2008; Braun et al. 2009),
and control of objects (Nagengast et al. 2009). Crucially, the
optimality principles considered by these computational theo-
ries of motor control have exclusively focused on the optimi-
zation of expected movement costs as payoffs and have ig-
nored the variability of movement cost, that is risk. Recently,
violations of risk neutrality have been reported in a number of
motor control tasks. Wu et al. (2009) showed, for example, that
subjects exhibit risk-seeking behavior in a pointing task, be-
cause they systematically underweight small probabilities and
overweight large probabilities. Similarly, Nagengast et al.
(2010) showed that subjects exhibit risk-averse behavior in a
motor task that required them to control a Brownian particle
under different levels of noise, consistent with the notion that
subjects trade off mean and variance of movement costs
(Nagengast et al. 2011).

Here we investigate the hypothesis that individual risk sen-
sitivity affects motor tasks that involve trade-offs between
movement speed and accuracy. To test this hypothesis, we
designed a continuous decision task similar to sporting activ-
ities such as golf or tennis in which more forceful movements
offer potentially greater rewards, such as an ace, but at the
same time are more variable due to signal-dependent noise. We
tested subjects on two conditions that provided the same
maximum possible reward and only differed in their riskiness,
that is the variability of the reward. A risk-neutral account of
motor control predicts that subjects should behave identically
in the two conditions. In contrast, a risk-sensitive account
predicts that risk-seeking individuals should move faster
whereas risk-averse individuals should move more slowly in
the risky condition compared with the less risky condition. The
results of our experiment suggest that movement arises from an
interplay between subjects own speed-accuracy trade-offs and
their risk sensitivity.

METHODS

Experimental Setup

Eleven right-handed subjects (6 male, 5 female, aged 20–28)
participated in the experiment after providing written informed con-
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sent. The experimental protocols were approved by the Cambridge
Psychology Research Ethics Committee. Subjects were naive to the
purpose of the experiment, and none of the subjects reported any
sensory or motor deficits. While seated, subjects used their right hand
to grasp the handle of a vBOT force generating robotic manipulan-
dum, which could be moved in the horizontal plane (for details, see
Howard et al. 2009). The position and velocity of the hand were
computed online at 1,000 Hz. Subjects could not see their hand, but
the position of their hand could be displayed in the horizontal plane
using a reflected CRT monitor. Subjects viewed the reflected image of
the monitor screen through field-sequential shuttered glasses (Crystal
Eyes, Stereo-graphic) by looking down at a mirror. Each eye was
presented with an appropriate planar view of the scene, and the
shuttered glasses alternately blanked the view of each eye in syn-
chrony with the left and right views so that subjects perceived a
three-dimensional scene.

Experimental Protocol

The general structure of the task was similar to a golf putting
action. Subjects attempted to hit the center of a 6-cm target line that
was 20 cm from the start position of their hand (Fig. 1A). Crossing the
target line caused a ball to start translating in the horizontal plane
orthogonal to the line. The initial location of the ball was the point
where the hand crossed the line, and the distance the ball translated
was proportional to the hand’s velocity orthogonal to the line as it was
crossed. A three-dimensional landscape was displayed that extended
from the target line and whose height and color indicated the level of

reward (points) for different final locations of the ball (see Fig. 1). The
display and the dynamic movement of the ball made the task intuitive
for the subjects so that they had a good understanding of the reward
landscape as a function of position and velocity. During the movement
of the vBOT handle, online feedback of the subjects’ hand position
was extinguished to prevent visually driven online corrections. Move-
ments that took longer than 0.75 s to complete had to be repeated.

Training session. Subjects first completed a training session of
500 trials in which four different permissible velocity ranges
(indicated by a visible desired range of the final ball location) were
used. The four conditions were blocked (125 trials each), and their
order was randomized for every subject. In the training session, the
subjects’ reward depended on their lateral accuracy only and a
Gaussian reward function of deviation from the center of the target
was used. The reward was 50 points for a direct hit and decayed
according to the following equation in which x is the lateral error:

R!x" ! # 1

$!2""
e%#

x2

2
& # 0.5' $ 100 (1)

The training session was thus used to establish the relationship
between subject’s hitting velocity v and the lateral accuracy %x

measured as the spread in distance x of the ball from the center line

P!x&v" ( !)'x ! 0, %x
2

! !a ( bv"2* , (2)

where a and b are linear regression parameters for %x ! a " bv (see
Fig. 2A).

Fig. 1. Schematic of the test session of the
experiment. A: subjects held the handle of a
robotic manipulandum and, in a limited time,
attempted to hit the center of a visually pre-
sented target line and were free to decide with
which velocity to execute the movement.
Crossing the target line caused a ball to start
moving in the horizontal plane orthogonal to
the line. The initial location of the ball was the
point where the hand crossed the line, and the
distance the ball rolled was proportional to
the hand’s velocity orthogonal to the line as it
was crossed. The payoff depended both on the
final position and velocity of the subjects’
hand, and this payoff was displayed to the
subjects stereoscopically as a colored sur-
face where the height (and color) determined
the payoff. B-E: 4 reward functions used in the
experiment as a function of final position and
velocity of the subjects’ hand when reaching
the target line. In all 4 conditions, the reward
increases linearly with the hand’s velocity or-
thogonal to the target line but decreases with
positional error (either linearly or quadratically
depending on the condition). B: reward de-
creases linearly with absolute distance from the
center of the target (Rlow

1 ). C: same functional
form as in B, but with the number of points
scaled by a factor of 3 (Rhigh

1 ). D: reward de-
creases quadratically with distance from the
center of the target (Rlow

2 ). E: same functional
form as in D, but with the number of points
scaled by a factor of 3 (Rhigh

2 ).
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The purpose of the training session was threefold. First, it allowed
subjects to become familiar with their variability in our task over a
range of speeds. Second, it allowed us to ensure that the variance of
position increased with velocity as assumed by our study. Third, it
allowed us to estimate the regression coefficients for the linear fit of
SD of lateral accuracy against speed for each subject (these values
were used to adjust values d1 and d2 in Eqs. 5 and 6: see below).

The first four subjects were run with velocities of 75, 125, 175, and
225 cm/s. The range for the remaining subjects was slightly extended
to 25, 90, 160, and 225 cm/s to get a more precise estimate of the
relation between endpoint velocity and positional SD. As the data
from the training session were used only to obtain a linear
regression relation between SD of lateral accuracy and speed, the
change in the speed range does not bias our analysis but potentially
improves the accuracy of the regression fits. The tolerance on all
these speeds was #25 cm/s, and trials outside this range were
repeated.

Test session. The training session was followed by the test
session that consisted of a total of 200 trials and four different
reward functions (see Reward functions for details). Blocks of 5
trials for a given reward landscape were interleaved pseudoran-
domly until subjects had completed 50 trials of each reward
function. In the test session, the subjects’ reward depended on both
their lateral accuracy and endpoint velocity, which was visualized
using the reward surfaces. Subjects were free to move at the
velocity they desired and were only told to maximize the total
number of points obtained during the test session. The number of
points obtained in the current trial and a cumulative total were
displayed in the corners of the screen.

Reward functions. The general setup of the task was such that the
reward or loss on a given trial was a function of the subjects’ lateral
accuracy, which was then scaled by their endpoint velocity. Two
different classes of reward function were used, the first, R1, had a
linear and the second, R2, a quadratic relation between reward and
positional lateral accuracy. Each class of function had a low and a
high variance version for which the variance of the latter was nine
times as high as for the low variance condition. The reward function

depended on the distance (x in cm) of the hand position relative to the
center of the target line (lateral accuracy) and the orthogonal velocity
to the line v (cm/s), giving the four reward functions

Rhigh
1 !x, v" ! 0.45 $ !0.5 # &x&"v (3)

Rhigh
2 !x, v" ! 0.3 $ !0.4 # x2"v (4)

Rlow
1 !x, v" !

Rhigh
1

3
( d1 (5)

Rlow
2 !x, v" !

Rhigh
2

3
( d2 (6)

where d1 and d2 were adjusted for each subject so that the mean
reward level at the optimum velocity (based on the linear regression
fits in the training session) was the same for the low and the high
variance condition. For both classes, the low variance reward was a
simple linear transformation of the high variance reward. Since
utilities are cardinal, that is they are only determined up to an affine
transform, the two utility functions of the high variance and the low
variance condition are equivalent. This means that for a risk-neutral
decision maker who is trying to find the optimal hitting velocity v by

maximizing the expected reward E)Ri!v"* ! +#)
)

P!x&v"Ri!x, v"dx,
where we obtain P(x|v) from the training session, the optimal velocity

v!i ! arg maxv E)Ri!v"* should be the same in the high variance and in
the low variance condition. In contrast, risk-sensitive subjects should
choose different hitting velocities for the high variance and the low
variance condition, since they take the variance of the payoff into
account.

Note that the reward functions themselves are a deterministic
mapping between lateral accuracy and orthogonal velocity of the
subject’s hand on impact with the target line. The difference in reward
variance arises from the subject’s natural movement variability from
trial-to-trial.

Risk sensitivity. Risk sensitivity refers to sensitivity not only to the
mean payoff but also to its variance. For a distribution of payoffs (R),
the subjective value of the payoffs is E(R) $ *Var(R). The parameter

Fig. 2. Speed-accuracy trade-off and reward
variance. A: SD of lateral hand position at the
target line vs. orthogonal velocity of all sub-
jects during the training session. B: distribu-
tion of end-position changes with different
velocities; single trial data and kernel density
estimates for 4 different velocity bands of a
representative subject. C: schematic of typical
mean payoff vs. velocity for the linear reward
function. The velocity that maximizes the
number of points is the same in the high (gray
line) and the low variance (black line) version
for each class of reward function. D: payoff
variance vs. velocity for the linear reward
function. The payoff variance increases with
velocity (due to signal-dependent noise lead-
ing to increased positional inaccuracy) and is
9 times higher in the high variance reward
functions (gray) compared with the low vari-
ance (black) reward functions.
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* expresses the decision maker’s risk attitude: risk-neutral decision
makers are only sensitive to the expected payoff (* ! 0), while
risk-averse individuals discount payoff variability (* % 0) and risk
seekers consider it a bonus (* & 0). Therefore, a risk-averse subject,
by definition, will prefer to accept a lower mean reward if it decreases
the variance of the reward and conversely for a risk seeker.

Figure 2, C and D, shows schematics of the predicted mean and
variance of the payoff for the linear reward (R1) for the high (gray
lines) and low (black lines) variance conditions as a function of
velocity. Given a subject’s own noise properties, there is a velocity
that maximizes the expected reward (peak of the parabola in Fig. 2C).
As explained above, this optimal speed is the same for the low and
high variance conditions. If a subject deviates from this peak, the
mean reward will decrease. However, deviations that increase the
speed will lead to higher variance (Fig. 2D) and be attractive to
risk-seeking individuals. Conversely, risk-averse individuals can re-
duce their speed so as to reduce variance at the cost of a reduced
mean. In general, the larger the absolute value of *, the greater the
deviation of the velocity from the peak.

To assess risk sensitivity from our data, we examined the change in
chosen velocity between the high and low variance conditions.
Whereas determining risk sensitivity from the velocity chosen in a
particular condition relies on an accurate estimate of the speed-
accuracy trade-off, the change in speed between low and high vari-
ance conditions is independent of the parameters of the speed-
accuracy trade-off. Compared with the low variance condition, in the
high variance condition the mean reward shape is scaled by a factor of
3 (with the offset set so that the maximum possible reward is
unchanged), whereas the variance is scaled by a factor of 32

! 9.
Therefore, the new subjective value becomes 3E(R) $ 9*Var(R) "

offset. The optimum velocity therefore can be found by removing the
offset and dividing by three to optimize E(R) $3*Var(R). This is
equivalent to finding the optimum for the low variance task for a
subject with a * value three times larger, that is more risk seeking or
more risk averse. Therefore, for a risk-averse individual they will tend
to move in the direction of reducing their speed in the high variance
condition. The converse is true for the risk-seeking individual. There-
fore, we can classify behavior as risk averse and risk seeking if the
speed decreases or increases, respectively, between the low and high
variance conditions. The use of the linear and quadratic costs allows
us to examine the speed changes in two different payoff regimes. We
only classify subjects as risk seeking or risk averse if they show
appropriate and significant changes in velocity between the low and
high variance conditions of both regimes.

RESULTS

We designed a motor task that involved a speed-accuracy
trade-off in which subjects could influence the variance of their
own movement strategy. The general structure of the task was
similar to a golf putting action. A three-dimensional landscape
was stereoscopically displayed whose height indicated how
good the subjects’ drive was on a given trial (see Fig. 1). That
is their payoff given in points depended both on how accurately
(lateral accuracy) and how vigorously (velocity) a ball was
struck (see Fig. 1A). A spot-on hit and a near-miss would result
in a small positive and a small negative payoff when gently
hitting the ball, whereas it would result in a large positive and
a large negative payoff when striking it vigorously. As move-
ments are contaminated with signal-dependent noise and there-
fore become more inaccurate the more forceful they are,
subjects had to trade-off (to use the golf drive analogy) getting
the ball further towards the hole at the risk of potentially
putting it into a side bunker. This trade-off can be seen in Fig.
2A where we show that the endpoint spread of the ball is
dependent on the hitting velocity.

The relationship was fit with a linear regression (SD !

0.4062 " 0.0018v; r2
! 0.5499; P & 0.001). We tested

subjects on two classes of reward functions, one with a linear
and the other with a quadratic change in reward with positional
lateral accuracy. For a given class of reward function, there
were two conditions that only differed in their riskiness (vari-
ance), that is one offered potentially greater rewards but also
potential ruin while in the other less could be gained but also
less could be lost. For a given relation between a subjects’
endpoint velocity and positional SD, the mean reward is at a
maximum for a particular velocity, while both lower and
higher velocities offer on average less points (Fig. 2C). As the
two reward functions of one class were simple linear transfor-
mations of one another, their maximum mean reward for a
given subject was at the same velocity but with a ninefold
difference in variance (Fig. 2D). A risk-neutral account pre-
dicts that subjects only maximize the mean reward and are
indifferent to the greater reward fluctuation of the high vari-
ance condition, that is they should perform identically in the
two conditions. In contrast, risk-seeking individuals are ex-
pected to move faster and risk-averse individuals more slowly
in the high variance condition compared with the low variance
condition. Therefore, subjects who had significantly higher
speeds for the high variance condition of both linear and
quadratic functions were classified as risk seeking. Conversely,
subjects who had significantly lower speeds for the high
variance condition of both linear and quadratic functions were
classified as risk averse (see METHODS).

In our analysis, we found that the behavior of most subjects
differed between the low and high variance conditions (Fig. 3).
In 17 out of the 22 cases, the velocity of the two conditions was
different (all P & 0.05, two-sample t-test with unequal vari-
ances for velocities of the low and the high variance condition).
However, it could be that the differences in the two conditions
were just due to chance and that they had nothing to do with the
difference in variance. To check for consistency, we plotted
(Fig. 4) the differences in the mean velocity # their SE for the
two conditions of a given class of reward functions against the
difference in the other class. If differences in the two velocities
were just due to noise, we would expect the plot to have no
structure. In fact, behavior in the two classes of reward func-
tions was highly correlated (r2

! 0.79; P & 0.005), suggesting
that the variance of the outcome influenced the subjects’ motor
strategies consistently depending on their risk attitude. The
data suggest that three subjects were significantly risk seeking
and three significantly risk averse.

To investigate potential nonstationarities in the subjects’ per-
formance, we performed two additional analyses. First, to test
whether the variability (and hence shape of the curves in the Fig.
2, C and D) changed between the training and test session, we
tested whether the coefficients of the regression of SD in position
to velocity for each subject in the training session changed in the
test session (for this session we binned the velocities to calculate
the SD in position). We used a Chow test on the test and training
data to test if the coefficients of the two regressions were different,
and this showed that they were not significantly different for 10
out of 11 subjects (P values all % 0.05). One subject had a P value
of 0.0449, but this subject was not classified as either risk seeking
or risk averse. Second, we tested whether subjects differed in their
reaction to a low or high score on the next trial by increasing or
decreasing their velocity. We correlated the payoff on one trial
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with the velocity on the next. For nine subjects, there was no

significant correlation, and for two (one risk averse and one risk
seeking), there was a small but positive correlation of 0.15 and
0.33, respectively.

Only the orthogonal component of the hands velocity rela-

tive to the target line had an impact on the payoff. However,

the same orthogonal component could be achieved with dif-

ferent tangential components. To test if the tangential compo-

nent of the velocity differed between subjects with different

risk sensitivities, we calculated the ratio of the magnitude of

tangential velocity to the magnitude of orthogonal velocity for

each trial for the three most risk-seeking and the three most

risk-averse subjects. A comparison of the ratio between these

two groups showed that the ratio was not significantly different

(ratios for risk seeking: 0.0254, 0.0381, and 0.0726; risk

averse: 0.0265, 0.0383, and 0.0624).

DISCUSSION

We examined whether subjects are sensitive to the variance

of payoffs in a motor task that involved a speed-accuracy

trade-off. Subjects had to hit the center of a target line with

high speeds to accumulate points. In this task, the variability

arose from their own motor noise in line with a speed-accuracy
trade-off. We found that most subjects were sensitive to the
variance of the payoffs, with some risk seeking and others risk
averse. The nature of an individual’s risk sensitivity was well
maintained across two different reward functions (Fig. 4). Our
results suggest that when people make movements that involve
a speed-accuracy trade-off they take the variability of cost (or
reward) into account and adjust their behavior depending on
their risk attitude. The results are inconsistent with a risk-
neutral account of motor control.

Fig. 3. Mean velocity in the 4 different reward
functions for the 11 subjects. The mean velocity
with 1 SE across trials for condition Rlow

1 (linear
reward function - low reward variance), condi-
tion Rhigh

1 (linear reward function - high reward
variance), condition Rlow

2 (quadratic reward func-
tion - low reward variance), and condition Rhigh

2

(quadratic reward function - high reward vari-
ance). Subjects at left column were classified as
risk averse and those at right as risk seeking.
Subjects at middle showed no systematic pattern
of velocity changes and are classed as risk-neu-
tral. *P & 0.05, significant differences between
high and low variance conditions.

Fig. 4. Velocity differences between the 2 classes of reward functions. The
difference in mean velocity between the high and the low variance conditions
of the quadratic reward function vs. the linear reward function with 1 SE across
trials. Data points for individuals whose behavior is consistent with risk
aversion are at bottom left; those who are risk seeking are at top right. Three
subjects were classified as risk seeking and 3 as risk averse. *P & 0.05,
subjects who had significant changes in velocity for both tasks and were in the
risk-seeking or risk-averse quadrants.
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Most current computational accounts of motor control are

risk neutral (Todorov 2004; Trommershäuser et al. 2003a,b)

and only consider minimization of the expectation of a cost

function, usually with terms for positional lateral accuracy

and effort. Thus the variance of the cost does not influence

these models when computing the optimal movement pol-

icy. Recently, this hypothesis of risk neutrality in motor

control has been challenged. In the study of Wu et al.

(2009), subjects made binary choices in a pointing task with

monetary payoffs. Their choice patterns violated the ex-

pected utility hypothesis when confronted with choices of

different mean and variance with respect to the payoffs. Wu

et al. (2009) explained these deviations by a distortion of the

estimated probabilities, as is typically done in prospect

theory in economics (Tversky and Kahneman 1992). In the

study of Nagengast et al. (2011), subjects also made binary

choices in a pointing task but with a payoff that was given

in effort (force). In their experiment, variance levels of

different choices were directly manipulated. In each trial,

subjects had to make a choice between a known effort on the

one hand, and a risky effort on the other hand, that had a

mean effort that could either be higher or lower than the

certain effort. As the variance levels were fixed beforehand,
this setup allowed a direct measurement of how subjects
trade off mean effort against variance in effort. This trade-
off between mean and variance can also be applied to
normative theories of motor control, such as optimal feed-
back control theory (Whittle 1981; Nagengast et al. 2010).

Since the work of Fitts (1954), there has been a substan-
tial body of work showing that many motor tasks can be
understood as a simple speed-accuracy trade-off. However,
the key result of the current study is that motor behaviors are
determined not only by the speed-accuracy trade-off but
also by the interplay of this trade-off and subjects’ risk
sensitivity. That is subjects exploit their own speed-
accuracy profile, selecting a mean and variance of the pay-
offs (from those possible from their speed-accuracy trade-
off) that is consistent given their risk-sensitivity preference.
In contrast to our previous work (Nagengast et al. 2010), the
noise in the current study is not imposed experimentally but
derives from the subjects’ own natural movement variabil-
ity; these two sources of noise may not be treated similarly
(Langer 1975). Previous studies have suggested that sub-
jects maximize expected value in such a situation (Trom-
mershäuser et al. 2003a,b), whereas the current study sug-
gests risk sensitivity is also an important determinant of
behavior. In another study, we showed that movements are
chosen according to a mean variance trade-off in the payoff
(Nagengast et al. 2011). In this previous study, we used a
task in which subjects had a discrete choice between an
option that requires movement with a medium, but certain,
effort and an option that requires either a probabilistically
selected low or high effort movement. As opposed to this
previous study, the current study considers a more natural
scenario in which subjects can choose from a continuum of
velocities. Therefore, the current study is able to show that
the movement arises from an interplay between subjects’
own speed-accuracy trade-off and their risk sensitivity, and
subjects can exploit their own speed-accuracy trade-off ac-
cording to their risk-sensitivity preference.

Risk sensitivity has been previously studied in personality

psychology and economic decision making. A key differ-

ence between personality questionnaire studies in psychol-

ogy and our paradigm is that we take each individual’s

dexterity into account. Risk-assessment questionnaires

sometimes involve questions such as “Do you enjoy rock

climbing?” The problem with such questions is that the

answer depends both on people’s risk attitudes but also on

their motor skills and previous experience. Our study avoids

this possible confounding factor, as we assessed the risk

attitude of individual subjects in a skill-independent way.

Although the subjects’ motor variability did determine their

optimal movement speed, crucially between high and low

variance conditions, the optimal speed stays the same if they

are risk neutral. Thus the method provides behavioral tools

of assessing risk attitude that are independent of the indi-

vidual level of skill. However, previous studies have also

shown that risk sensitivity in an individual is highly context

dependent and can change across situations (see, for exam-

ple, Hanoch et al. 2006; Weber et al. 2002; MacCrimmon

and Wehrung 1986; Yates 1992). An individual’s risk sen-

sitivity in one task can differ from the risk sensitivity of the

same individual in another task. Here, we could show that

the same risk sensitivity was maintained in subjects for

different payoff functions.

The speed-accuracy trade-off is a fundamental property

found in many motor control tasks (Schmidt and Lee 1999). In

our task, we found a linear relationship between movement

speed and endpoint spread when the payoffs were simply

determined by lateral accuracy. This finding is in line with

previous studies (Schmidt et al. 1979; Schmidt and Lee 1999)
that have also found a linear speed-accuracy trade-off between
movement speed and end-point spread. In these studies, sub-
jects were required to make individual point-to-point aiming
movements with predefined movement times from defined
starting positions to final positions that could vary in distance.
The difference to the logarithmic law found by Fitts could be
due to the fact that the movements were ballistic rather than
cyclic as in Fitts task (Schmidt and Lee 1999) or might be an
approximation to the logarithmic relationship for our range of
task parameters. Similar speed-accuracy trade-offs have also
been found for eye movements (Abrams et al. 1989; Patla et al.
1985). It will therefore be interesting in the future to examine
how risk-sensitivity impacts speed-accuracy trade-offs in dif-
ferent motor tasks.
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