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Abstract

We study testable implications for the dynamics of consumption and income of models in

which �rst-best allocations are not achieved because of a moral hazard problem with hidden

saving. We show that in this environment agents typically achieve more insurance than that ob-

tained under self insurance with a single asset. Consumption allocations exhibit `excess smooth-

ness', as found and de�ned by Campbell and Deaton (1989). We argue that excess smoothness,

in this context, is equivalent to a violation of the intertemporal budget constraint considered in

a Bewley economy (with a single asset). We also show parameterizations of our model in which

we can obtain a closed-form solution for the e�cient insurance contract and where the excess

smoothness parameter has a structural interpretation in terms of the severity of the moral haz-

ard problem. We present tests of excess smoothness, applied to UK micro data and constructed

using techniques proposed by Hansen et al. (1991) to test the intertemporal budget constraint.

Our theoretical model leads us to interpret them as tests of the market structure faced by eco-

nomic agents. We also construct a test based on the dynamics of the cross sectional variances of

consumption and income that is, in a precise sense, complementary to that based on Hansen et

al (1991) and that allows us to estimate the same structural parameter. The results we report

are consistent with the implications of the model and internally coherent.
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1 Introduction

In this paper, we study the intertemporal allocation of consumption in a model with moral hazard

and hidden saving. We characterize some of the empirical implications of such a model and show

how it can explain some well-known puzzles in the consumption literature.

The ability to smooth out income shocks and avoid large changes in consumption is an important

determinant of individual households' welfare. Resources can be moved over time and across states

of the world using a variety of instruments, ranging from saving and borrowing to formal and

informal insurance arrangements. The study of the intertemporal allocation of consumption is

equivalent to establishing what instruments are available to individual households (that is, what

are the components of the intertemporal budget constraint) and how they are used.

When thinking of the smoothing of individual shocks, two mechanisms come immediately to

mind. On one hand, households can use a private technology to move resources over time, for in-

stance saving in `good times' and dis-saving in `bad times'. On the other, they can enter implicit or

explicit insurance arrangements against idiosyncratic shocks. There might be links between these

two mechanisms: with endogenously incomplete markets, the availability of speci�c instruments to

move resources over time is likely to a�ect the type of insurance arrangements that can be sus-

tained in equilibrium. We study consumption smoothing within a unifying framework and consider

explicitly the links between private (anonymous) savings and insurance in a moral hazard model.

We therefore contribute to and bring together two strands of the literature: that on consumption

smoothing and that on endogenously incomplete markets. In particular, we show how some empiri-

cal results in the consumption literature can be interpreted, with the help of the model we construct,

as providing evidence on partial insurance and on the relevance of speci�c imperfections.

The permanent income/life-cycle (PILC) model has been, for a long time, the workhorse to

study individual consumption smoothing and the intertemporal allocation of resources. During the

1980s and 1990s, a number of papers, starting with Campbell and Deaton (1989), pointed to the

fact that consumption seems `too smooth' to be consistent with the model's predictions, in that

consumption does not react su�ciently to innovation to the permanent component of income. This

evidence, derived from aggregate data, was interpreted as a failure of the PILC model.

In such a model, allocations are determined by a sequence of Euler equations and an intertem-

poral budget constraint, often characterized by the presence of a single asset with a �xed rate of

return. We will refer to the latter as the `risk-free IBC'. Campbell and Deaton (1989), as other

papers in this literature (including West (1988) and Gali (1991)), take the risk free IBC (and in
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particular the instruments available to an individual to move resources over time) as given and

therefore interpret the evidence of `excess smoothness' as a failure of some of the Euler equations.

Indeed, Campbell and Deaton (1989, p. 372) conclude their paper by saying:`Whatever it is that

causes changes in consumption to be correlated with lagged changes in income whether [...] the

marginal utility of consumption depends on other variables besides consumption, or that consumers

are liquidity constrained or that consumers adjust slowly through inertia or habit formation, the

same failure is responsible for the smoothness of consumption ...'. All these explanations, however,

maintain a risk-free IBC in which individuals move resources over time through a single asset with

a �xed interest rate. We propose a model in which excess smoothness is related to a violation of

the risk free IBC which arises because the standard model neglects trades in state-contingent assets

(or state-contingent transfers) that give individuals `more insurance' than they would be able to get

by self insurance and saving. In our model, the amount of risk sharing enjoyed by individuals is

determined endogenously and depends on the severity of the moral hazard problem.

As we hint above, an IBC de�nes the structure of the market to which individuals have access.

Therefore a violation of a speci�c IBC can be interpreted as a violation of a given market structure.

Given that our approach focuses on violation of a risk-free IBC, we use a test of an IBC proposed by

Hansen, Roberds, and Sargent (1991; henceforth HRS). The HRS test is particularly appropriate in

our context as it can be explicitly interpreted as a test of a market structure. Moreover, because of

the way it is formulated, not only does it encompass other tests (such as the Campbell and Deaton

(1989) or West (1991)) but it is also robust to informational advantages of the agents relative to the

econometrician. The cost of applying the HRS test is that it requires the Euler equation to hold.

However, this is consistent with the model we construct and, more importantly, is an empirically

testable proposition.

When framed within the context of endogenously incomplete markets, it seems intuitive that a

model that predicts some additional insurance relative to the amount of (self) insurance one observes

in a Bewley model would predict that consumption reacts `less' to shocks than is predicted by the

Bewley model. To make such a statement precise, however, is not a trivial exercise. In what follows,

in addition to such a formal statement, we also obtain, for some versions of our model, closed-form

solutions for the optimal intertemporal allocations and map the coe�cient of `excess smoothness' of

the consumption literature and of the HRS test into a structural parameter of our model re�ecting

the severity of the moral hazard problem.

This paper, therefore, makes two main contributions. The �rst is of a theoretical nature: we

show how a model with moral hazard and hidden saving, by providing additional insurance relative
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to a Bewley economy, generates what in the consumption literature has been named the excess

smoothness of consumption. In addition, we construct speci�c examples in which we can derive a

closed-form solution and relate directly the excess-smoothness coe�cients to a structural parameter

of our model. While the examples are surely special, we stress that, in equilibrium, they deliver an

income process that coincides with the process typically used in the Permanent Income Hypothesis

(PIH) literature. Moreover, the examples give an intuition that can be generalized to a larger class

of models. Our theoretical result allows us to interpret in a speci�c fashion the empirical �ndings

we obtain. The second contribution is empirical: we adapt the HRS test to micro data and apply it

on a time-series of cross-sections from the UK. This evidence constitutes one of the �rst examples

of an excess smoothness test performed on micro data. We also complement the HRS test with

a test based on movements in the cross sectional variance of consumption. Because of the nature

of our data, we are forced to use the HRS test on time-series of cross-sections and therefore focus

on risk sharing across cohorts. The variance test complements the HRS one because it focuses on

insurance within cohorts.

Our empirical results, obtained from UK time-series of cross-sections, are remarkably in line

with the predictions of the model we construct.

The rest of the paper is organized as follows. In Section 2, we present the building blocks of

our model, provide the equilibrium de�nition, and discuss alternative market structures. In Section

3, we characterize the equilibrium allocation for our model and present some examples that yield

useful closed form solutions. In Section 4, we discuss the empirical implications of the equilibria we

considered in Section 3 and present our tests and the results we obtain. Section 5 concludes. The

appendices contain the proofs of the results stated in the text.

2 Model

2.1 Tastes and Technology

Consider an economy consisting of a large number of agents that are ex-ante identical. Each agent

lives T ≤ ∞ periods and is endowed with a private stochastic production technology which takes

the following form (neglecting individual indices for notational ease):

yt = f(θt, et).

That is, the individual income yt ∈ Y ⊂ < is determined by the agent's e�ort level et ∈ E ⊂ < and

the shock θt ∈ Θ ⊂ <. The history of income up to period t will be denoted by yt = (y1, ..., yt),
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while the history of shocks is θt = (θ1, ..., θt). Let Φ
(
θt+1 | θt

)
be the conditional probability of θt+1

conditioned on θt ∈ Θt. The component θt can be interpreted as the the agent's skill level at date

t. At this stage, we do not impose any speci�c structure on the time-series properties of θt, but we

assume that θt are iid across individuals. In each period, the e�ort et is chosen after observing θt.

The function f : Θ× E → Y is assumed to be continuous and increasing in both arguments. Both

the e�ort e and the shocks θ are assumed to be private information, giving rise to moral hazard

problems, while yt is publicly observable.

Agents are born with no wealth, have von Neumann-Morgenstern preferences, and rank deter-

ministic sequences according to
T∑
t=1

δt−1 u (ct, et) ,

with ct ∈ C and δ ∈ (0, 1) . We assume u to be real valued, continuous, strictly concave, smooth,

strictly increasing in ct and strictly decreasing in et. Notice that, given a plan for e�ort levels, there

is a deterministic and one-to-one mapping between histories of the private shocks θt and income yt.

Therefore, we can consider θt alone. Let µt be the probability measure on Θt and assume that the

law of large numbers applies, so that µt (A) is also the fraction of agents with histories θt ∈ A at

time t.

Since θt are unobservable, we make use of the revelation principle and de�ne a reporting strategy

σ = {σt}Tt=1 as a sequence of θt-measurable functions such that σt : Θt → Θ and σt(θt) = θ̂t for

some θ̂t ∈ Θ. A truthful reporting strategy σ∗ is such that σ∗t (θ
t) = θt almost surely (a.s.) for all

θt. Let Σ be the set of all possible reporting strategies. A reporting strategy essentially generates

publicly observable histories according to ht = σ
(
θt
)

=
(
σ1 (θ1) , ..., σt

(
θt
))
, with ht = θt when

σ = σ∗.

An allocation (e, c, y) consists of a triplet {et, ct,yt}Tt=1 of θt-measurable functions for e�ort,

consumption, and income growths (production) such that they are `technically' attainable:

Ω =
{

(e, c, y) : ∀ t ≥ 1, θt, et(θt) ∈ E, ct(θt) ∈ C, and yt(θt) = f
(
θt, et(θt)

)}
.

The idea behind this notation is that incentive compatibility will guarantee that the agent an-

nounces truthfully his endowments (i.e. uses σ∗) so that, in equilibrium, private histories are public

information.

For simplicity, we disregard aggregate shocks, and we do not allow for productive assets such

as capital. In the baseline model, we assume the availability of a constant return technology that

allows q ∈ (0, 1) units of consumption at time t to be transformed into one unit of consumption at

time t+ 1, or vice versa. Equivalently, we are assuming a small open economy or a village economy
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where a money lender has access to an external market with an exogenously given interest rate r.

The number q = 1
1+r can be interpreted as the time constant price of a one period bond in the credit

market. In this case, absent aggregate shocks, thanks to the law of large numbers, the feasibility

condition is constituted be a unique inequality:

∫
Θt

[
T∑
t=1

qt−1ct(θt)

]
dµt

(
θt
)
≤
∫

Θt

[
T∑
t=1

qt−1yt(θt)

]
dµt

(
θt
)
. (1)

Although we present our results with the assumption of a small open economy with a constant

interest rate, in the appendices we show that the same results can be derived with a time varying

interest rate and even for the case of a closed economy.1

2.2 Equilibrium and market arrangements

Having described agents' tastes and the technological environment they face, to characterize in-

tertemporal allocations we need to specify the market arrangements in which they operate and

de�ne the relevant equilibrium concepts.

Our economy is characterized by private information, as we assume that e�ort and skill level

are not observable. In addition to the moral hazard problem, consumption is also not observable

(and/or contractable) and agents have hidden access to an anonymous credit market where they

trade risk-free bonds at price q. The agents do not have private access to any other anonymous

asset markets.2

The market structure we adopt is an open economy version of that proposed in Golosov and

Tsyvinski (2007). In addition to the anonymous (secondary) market for assets, there is a (primary)

insurance market where a continuum of identical �rms o�er exclusive contracts to agents. All

insurance �rms are owned equally by all agents. At the beginning of period 1, each �rm signs a

contract (e, c, y) with a continuum of agents in the economy that is binding for both parties. Firms

operate in a competitive market and agents sign a contract with the �rm that promises the highest

ex-ante expected discounted utility. After the contract is signed, each agent chooses a reporting

strategy σ, supplies e�ort levels so as to generate, at each node, the agreed income level yt
(
σ(θt)

)
,

and receives ct
(
σ(θt)

)
units of consumption. Firms can borrow and lend at the ongoing interest

rate, which they take as given.

1For a similar model in a small open economy, see Abraham and Pavoni (2004, 2005, and 2008). For another

similar analysis in a closed economy with capital, see Golosov and Tsyvinski (2007).
2The assumption that in the anonymous asset market only the risk-free asset is traded is done without loss of

generality in our environment as no other Arrow security would be traded (see Golosov and Tsyvinski (2007))
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We de�ne expected utility from reporting strategy σ ∈ Σ, given the allocation (e, c, y) ∈ Ω, as

E

[
T∑
t=1

δt−1u (ct, et) | (e, c, y) , σ

]
:=

T∑
t=1

δt−1
∫

Θt
u
(
ct
(
σ(θt)

)
, g
(
θt,yt

(
σ(θt)

)))
dµt(θt),

where g(y, θ) represents the e�ort level needed to generate y when the shock is θ, i.e., g is the inverse

of f with respect to e keeping θ �xed. Since y is observable, the mis-reporting agent must adjust

his/her e�ort level so that the lie is not detected.

Let b := {bt+1}Tt=1 be a plan of risk-free asset holding, where bt is a θt−1-measurable function

with b1 = 0 and limt→T q
t−1bt+1(θt) ≥ 0. Given the price of the bond q, the typical �rm, in

equilibrium, solves the following problem:

max
b,(e,c,y)∈Ω

E

[
T∑
t=1

δt−1 u (ct, et) | (e, c, y) , σ∗
]
, (2)

s.t. E

[
T∑
t=1

qt−1 (ct − yt) | (e, c, y) , σ∗
]
≤ 0, (3)

with the incentive compatibility constraint:

E

[
T∑
t=1

δt−1 u (ct, et) | (e, c, y) , σ∗
]
≥ E

[
T∑
t=1

δt−1 u (ĉσt , ê
σ
t ) | (e, c, y) , σ

]
for all σ ∈ Σ, (4)

where the deviation for consumption ĉσ must be such that the new path of consumption can be

replicated by the use of a risk free bond. More precisely, given (e, c, y, b) , for each σ, a deviation ĉσ

is admissible if there is a plan of bond holdings b̂σ such that for all t and a.s. for all histories θt,

ĉσt
(
σt
(
θt
))

+ qb̂σt+1(σt
(
θt
)
)− b̂σt (σt−1

(
θt−1

)
) = ct

(
σt
(
θt
))

+ qbt+1(σt
(
θt
)
)− bt(σt−1

(
θt−1

)
),

and limt→T q
t−1b̂σt+1(σt

(
θt
)
) ≥ 0.

De�nition 1 Given q, an equilibrium for the economy is an allocation (e∗, c∗, y∗) and bond trades

b∗ such that

i) �rms choose (e∗, c∗, y∗, b∗) solving problem (2)-(4) (taking q as given);

ii) agents choose their reporting strategy, e�ort levels, consumption, and asset trades optimally as

described above, given the contract (and q);

iii) the intertemporal aggregate feasibility constraint (1) holds.

It is straightforward to see that the incentive constraint (4) (considered at σ∗) implies that the

equilibrium allocation must satisfy the Euler equation:

u′c(c
∗
t , e
∗
t ) =

δ

q
Et
[
u′c
(
c∗t+1, e

∗
t+1

)]
, (5)
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where the marginal utilities are evaluated at the equilibrium values dictated by (e∗, c∗, y∗), and Et [·]

is the conditional expectation operator on future histories given θt.3

2.3 Two useful extreme cases

With an eye to our empirical strategy, it is useful to compare the allocations in our imperfect

information model with those that obtain in two well known alternative and extreme cases: a full

information setting and a situation where intertemporal trades are exogenously restricted to the

risk-free bond. Both situations can be obtained, under certain parameter settings, as special cases

of our model. Moreover, both can be characterized by a di�erent intertemporal budget constraint.

Full information. In the model where there is no private information problem, in equilibrium,

the typical �rm o�ers exclusive contracts solving problem (2) and (3) alone. That is, the �rm will

solve the same problem as before with the crucial exception of condition (4). Since in this case we

are in a complete market setting, we can apply the well-known Welfare Theorems which imply that

the equilibrium allocation solves the problem of a planner aiming to maximize the representative

agent's utility subject to the feasibility constraint, condition (1).

Note that, as in our set-up, with full information the equilibrium allocation satis�es the Euler

equation (5). In fact, the equality between present and future discounted marginal utility is true

state by state: u′c(ct, et) = δ
qu
′
c (ct+1, et+1) ; and hence also in expected terms.

The Bewley economy (self-insurance). We de�ne a Bewley economy (or self-insurance) as an

economy where agents can move resources over time only by participating in a simple credit market

with a constant one-period bond with price q. Recall that an asset holding plan b is made of a set

of θt−1-measurable function bt, t = 1, ..., T with b1 = 0. In this economy, a typical agent solves

max
b,(e,c,y)∈Ω

E

[
T∑
t=1

δt−1 u (ct, et)

]

subject to

ct(θt) + qbt+1(θt) ≤ bt(θt−1) + yt(θt), (6)

where b0 = 0. As usual we rule out Ponzi games by requiring that limt→T q
t−1bt(θt) ≥ 0. Condition

(6) is the budget constraint typically used in Permanent Income models when the agent has access

only to a risk-free bond market. This problem can be seen as an extension of the permanent-income

3This condition is the �rst-order equivalent to the incentive constraint that ensures that the agent is not willing

to deviate in assets decisions alone, while contemplating telling the truth about shock histories θt.
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model studied by Bewley (1977), which allows for endogenous labour supply and non-stationary

income.

The main implication of the self insurance model is the well-known Euler equation:

u′c(ct, et) =
δ

q
Et
[
u′c(ct+1, et+1)

]
. (7)

Another important necessary condition that individual intertemporal allocations have to satisfy

in this model can be derived by repeatedly applying the budget constraint (6). Starting from any

node θ̄t−1, t ≥ 1, with asset holding level bt(θ̄t−1), the following net present value condition (NPVC)

must be satis�ed
T∑
n=t

qn−t (cn(θn)− yn(θn)) ≤ bt(θ̄t−1), (8)

a.s. for all histories θT emanating from node θ̄t−1.

Given the income process and the price for the bond q, conditions (7) and (8) de�ne consumption

(even when a closed form solution does not exist). It is interesting to compare NPVC (8) for t = 1

with the corresponding equation for the full information case, equation (1). In the latter case,

the agent has available a wide array of state-contingent securities that are linked in an individual

budget constraint that sums over time and across histories, as all trades can be made at time 1. In

the Bewley economy, instead, the agent can only trade in a single asset. This restriction on trade

requires that the net present value of consumption minus income equals zero a.s. for all histories θT .

Notice that there is no expectation operator involved in condition (8): the intertemporal transfer

technology implied by a risk-free asset does not allow for cross-subsidizations of consumption across

income histories.

The lesson we should retain from this section is that all allocations considered here satisfy

the Euler equation: clearly such an equation is consistent with many stochastic processes for con-

sumption. The key feature that distinguishes the three di�erent equilibrium allocations we have

considered is the intertemporal budget constraint, which de�nes the relevant market structure. For

instance, the equilibrium allocation in our moral hazard model typically violates the NPVC (8)

based on a single asset which is relevant for the permanent income model because it ignores the

state-contingent payments the agents might receive from the insurance �rm in our economy.

3 Characterizing the equilibrium allocation

In this section, we analyse the properties of the endogenously incomplete markets model we pre-

sented above. It is easy to show that the equilibrium allocation (e∗, c∗, y∗) and b∗ can be replicated
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by an incentive compatible plan of lump sum transfers τ∗ =
{
τ∗t (θt)

}T
t=1 that solves the following

�rm's problem:

max
τ,(e,c,y)∈Ω

E

[
T∑
t=1

δt−1 u (ct, et)

]
s.t.

ct(θt) = yt(θt) + τt(θt), (9)

the incentive constraint (4), and the intertemporal budget constraint

E

[
T∑
t=1

qt−1τt

]
≤ 0.

It is clear, from condition (9), that we study equilibrium allocations where agents do not trade

intertemporally (b∗t ≡ 0). This is done without loss of generality since the �rms and the agents face

the same interest rate.4 Alternatively, τ could be chosen so that the transfer τt = τt(θt) represents

the net trade on state contingent assets the agent implements at each date t and node θt. In this

case, the lump sum transfer would solve E [τt] = 0 and all the intertemporal transfer of resources

will in e�ect be made by the agents.

In Appendix A, we show that, under some conditions, the equilibrium allocation (e∗, c∗, y∗) and

b∗t ≡ 0 can be `implemented' using a transfer scheme τ∗ which is a function of income histories yt

alone.5 This simpli�es the analysis and allows us to describe the consumption allocation in terms

of observables. At history yt, an agent with asset level bt faces the following budget constraint for

all yt

ct + qbt+1 = yt + τ∗t (yt) + bt.

3.1 Excess smoothness and the Bewley economy

Allen (1985) and Cole and Kocherlakota (2001) present asymmetric information models that give

rise to intertemporal allocations that coincide with those that would prevail in the Bewley economy

we described in Section 2.3. In this section, we �rst present a speci�c version of our model where the

`Allen and Cole-Kocherlakota' (ACK) result obtains. As stressed in Abraham and Pavoni (2004),

to obtain the `self-insurance' result a crucial restriction on the way e�ort is converted into output

is needed. We then move on to relax this restriction. Within the more general case, we consider a

speci�c parameterization of the income process that allows us to obtain a closed-form solution for

the equilibrium transfers. While this example is useful because it gives very sharp predictions, some

4E.g., see Fudenberg et al. (1990).
5In particular, we assume that the optimal plan of consumption c is yt-measurable.
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of the properties of the allocations we discuss generalize to the more general case and inform our

empirical speci�cation.

Self-insurance Let us assume agents' preferences and production satisfy

u (c, e) = u(c− e) and f (θ, e) = θ + e, (10)

with Θ = (θmin, θmax) and E = (emin, emax). Obviously, in this environment the optimal plan of

e�ort levels is indeterminate. As long as 0 ∈ E, we can hence set, without any loss of generality,

e∗t ≡ 0. This normalization has two advantages. First, since et does not change with θt while

f(θt, et) is strictly increasing in θt, all variations in θt will induce variations in yt, automatically

guaranteeing the yt-measurability of c (see Appendix A). Second, with constant e�ort we can focus

on the risk sharing dimension of the equilibrium allocation. This last argument also motivates the

modelling choice for our closed-form solution below.

Proposition 1 Assume T < ∞ and that the utility function u and the production function f are

as in (10). Then the equilibrium allocation coincides with self-insurance.

The proof of the proposition is reported in Appendix A, where we show that incentive compat-

ibility fully characterizes the equilibrium allocation. The main intuition of the result can be easily

seen in a two period model, which we solve backwards. Consider the last period of the programme.

Using the budget constraint, given any history yT−1 and θT (and last period wealth bT ) the incentive

constraint (for e∗T = 0) is as follows

u (c∗T − e∗T ) = u
(
θT + τ∗T

(
yT−1, θT

)
+ bT

)
≥ u

(
θT + τ∗T

(
yT−1, θT + êT

)
+ bT

)
for all êT ∈ E.

Clearly, in order to be incentive compatible, the transfer scheme must be constant across yT s. Now

consider the problem in period T − 1. For ease of exposition, let us assume that the transfer scheme

is di�erentiable,6 and write the agent's �rst order conditions with respect to eT−1 (evaluated at the

optimum b∗T = b∗T−1 = e∗T = e∗T−1 = 0). A necessary condition for incentive compatibility is7

∂τ∗T−1

(
yT−1

)
∂yT−1

+ δ
∂τ∗T

(
yT
)

∂yT−1
ET−1

[
u′ (c∗T )
u′
(
c∗T−1

)] = 0.

6The formal proof does not assume di�erentiability. See Appendix A.

7Note that in the expression below
∂τ∗T (yT )
∂yT−1

has been taken out from the expectation operator as we saw that τT

is constant in yT shocks.
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The Euler equation - i.e., the (local) incentive constraint for bond holding - reads as ET−1

[
u′(c∗T )
u′(c∗T−1)

]
=

q
δ , which implies

∂τ∗T−1(yT−1)
∂yT−1

+ q
∂τ∗T (yT )
∂yT−1

= 0. (11)

Equation (11) states that the net present value of transfers must be constant across income

histories. The intuition for the fact that the �rm is unable to provide any consumption insurance on

top of self-insurance is relatively simple in this case. First, at each t with equilibrium income y∗t = θt,

the agent can always deviate, locally, and generate any income level such that y∗t − ε ≤ ŷt ≤ y∗t + ε.

Second, the perfect substitutability between consumption and e�ort in the utility function on one

side and between income and e�ort in production on the other side imply that such deviation has

zero direct cost to the agent. Since this is true for all income levels, in a static setting, these

two observations together imply that the �rm will never be able to provide a transfer scheme that

induces anything di�erent from constant payments over income levels. In our model, this simple

intuition extends to a general dynamic setting. Roughly speaking, the free access to the credit

market implies that the agent only cares about the present value of transfers (i.e., he/she does

not care about the exact timing of deterministic transfer payments). Hence, a simple extension of

the previous argument implies that the present value of transfers must be constant across income

histories, as otherwise the agent would �nd it pro�table to perform some local deviation on e�ort

and engage in an appropriate bond plan.

Now recall that the self insurance allocation has two de�ning properties: �rst, it must satisfy the

Euler equation; second, it must satisfy the intertemporal budget constraint with one bond, i.e., the

period zero net present value must be zero for all yT . Since the Euler equation is always satis�ed

here, the only way of obtaining a di�erent allocation is that the transfers scheme τ∗ permits violation

of the agent's period zero self insurance intertemporal budget constraint for some history yT . The

previous argument demonstrates that it cannot be the case; hence the only incentive compatible

allocation coincides with self-insurance. This implies that the `relaxed-optimal' contract obtained

by using the local (�rst-order-condition) version of the incentive constraint corresponds to the self-

insurance allocation. Since this allocation is obviously globally incentive compatible, it must be the

optimal one.

The proof of Proposition 1, in Appendix A, never uses the time series properties of θt, which can

therefore be very general. Likewise, we do not require a constant q.8 Proposition 1 is therefore, in

8Both Allen (1985) and Cole and Kocherlakota (2001) assume iid shocks and constant q. We generalize Allen's

result, while our model does not nest, strictly speaking, Cole and Kocherlakota's as we do not impose exogenous and

binding liquidity constraints.
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some dimensions, a general result. Indeed, as we prove in the Web Appendix B, Section 7.4, it holds

even in a more general model that allows for two types of income shocks, with di�erent degrees of

persistence.

Proposition 1 and its proof, however, also make it clear that the coincidence between the equilib-

rium allocation and self-insurance is, in other dimensions, very fragile. Below, we present a full class

of models with slightly more general u and f functions, where the equilibrium allocation coincides

with self-insurance only for a zero measure set of parameters.9

Excess smoothness Consider now the following generalization of agent preferences:

u (c, e) = u (c− v (e)) ,

with v increasing and convex. Since consumption and e�ort cost enter the utility function in a

linear fashion, we eliminate the wealth e�ects. This simpli�es the analysis and allows for closed-

form solutions. Moreover, it is crucial for the self-insurance result we derived above. While we only

consider interior solutions for e, we leave the function f unspeci�ed.

Again, the main intuition regarding the model can be gained by studying the last two periods.

Let's start with the �nal period (T ). The �rst order condition of the incentive constraint in this

last period is

1 +
∂τ∗T

(
yT−1, yT

)
∂yT

=
v′ (e∗T )

f ′e (e∗T , θT )
. (12)

Recall that in the ACK model we have v′ (e) = f ′e (e, θ) = 1 for all e, θ. Since risk sharing requires
∂τ∗T (yT−1,yT )

∂yT
< 0, no insurance is possible in that environment. However, in general, v′(eT )

f ′e(eT ,θT ) might

be less than 1. In fact, it is easy to see that - under some regularity conditions on f and v -

for all θT , the optimal contract implements e�ort levels such that v′(eT )
f ′e(eT ,θT ) ≤ 1 (as long as this is

technologically feasible).10 A strict inequality is compatible with some risk sharing.

What is the intuition for this fact? If the �rm's aim is to make agents share risk, the key margin

for an optimal contract is to guarantee that the agent does not shirk or, equivalently, that she does

not reduce e�ort. When the agent shirks so that output is reduced by one unit, the gain she gets

9Abraham and Pavoni (2004) also obtain similar results. They consider a more general class of models but do not

derive su�cient conditions for the self-insurance result and do not obtain closed-form solutions.
10Assume there is at least one ē ∈ E such that v′(ē)

f ′e(ē,θ)
≤ 1. Implementing an e�ort level where v′(eT )

f ′e(eT ,θT )
> 1 is

dominated by a lower e�ort since by reducing marginally eT , for such θT , there is a production gain. In the static

case, it can be shown that if d
de

[
f ′
θ
v′

f ′e
] ≥ 0 (i.e., the Spence-Mirrlees condition holds for the static version of our

problem) the �rm can provide the same ex-post welfare to the agent by saving net transfer costs as it also improves

on insurance. Details on the formal derivation are available upon request.
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from this reduction in e�ort is equivalent to v′

f ′e
units of consumption. This is the right hand side of

(12). The left hand side is the net consumption loss. When the marginal tax/transfer is negative

this loss will be less than one as the direct reduction of one unit of consumption is mitigated by

the increase in net transfers. A small v′

f ′e
reduces shirking returns, making it easier for the �rm to

satisfy the incentive compatibility, and hence to provide insurance. The same intuition carries over

to a multi-period setting, where the generalized version of (11) takes the form

∂τ∗T−1

(
yT−1

)
∂yT−1

+ q
∂τ∗T

(
yT
)

∂yT−1
=

v′(e∗T−1)

f ′e

(
θT−1, e∗T−1

) − 1.

3.2 Closed forms

We now assume that income yt depends on exogenous shocks θt and e�ort et as follows:

yt = f (θt, et) = θt + amin {et, 0}+ bmax {et, 0} , (13)

with a ≥ 1 ≥ b. Notice that when a = b = 1, one obtains the linear speci�cation used to obtain the

self-insurance result. Preferences are as in the previous section:11

u (ct, et) = u (ct − et) .

Moreover, we assume that θt follows an ARIMA(p) process:

θt − θt−1 = β (L) vt, (14)

where β (L) is a polynomial of order p in the lag operator L, invertible, and the innovation vt is

iid. Linearity of the ARIMA process helps in �nding the closed form solution. Since e�ort will

be time constant, in equilibrium, θt = yt, and hence the income process will display the standard

representation often used in the consumption literature.12

In Proposition 3, stated and proved in Web Appendix B, we show that if u is exponential

(CARA): u (c− e) = −1
ρ exp {−ρ (c− e)} , and the shocks vt are normally distributed with zero

mean and variance σ2
v , we get the following expression for consumption growth:

c∗t − c∗t−1 =
ln(δ/q)
ρ

+
ρ

2
σ2
c +

1
a

(1− q)
1− qT−t−1

(Et −Et−1)

[
T−t∑
n=0

qny∗t

]
,

11Equivalently, we could have assumed a fully linear production function, f (e, θ) = e+ θ, and a kinked e�ort cost

function, v (e) = 1
a

min {et, 0}+ 1
b

max {et, 0} .
12See, for example, Abowd and Card (1989), Meghir and Pistaferri (2004), and Blundell et al. (2008).
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where σ2
c indicates the variance of consumption growth. For t ≤ T − p, the previous expression

reduces to (see Web Appendix B for details)

∆c∗t =
ln(δ/q)
ρ

+
ρ

2a2
[β (q)]2 σ2

v +
1
a
β (q) vt. (15)

For a = 1, we are back to the self-insurance case where innovations to permanent income are

fully re�ected in consumption changes. For a > 1, we get some more risk sharing over and above

self-insurance, with full insurance obtainable as a limit case for a → ∞. Proposition 5 in Web

Appendix B, shows that a very similar (simpler) closed form can be obtained assuming quadratic u,

δ = q, and di�erentiability of the transfer scheme.13 With CARA utility (as opposed to the model

where u is quadratic), the presence of a precautionary saving motive implies that the equilibrium

allocation displays increasing consumption. Notice, however, that, in our economy, a > 1 permits

both reduction of the cross-sectional dispersion of consumption and mitigation of the precautionary

saving motive, hence the steepness of consumption (i.e., `intertemporal dispersion'). The model

implies a very tight relationship between these two moments.

3.3 The Case with isoelastic utility

We now discuss the case in which agents have isoelastic preferences. Full details are to be found in

Web Appendix B. We assume the following production function:

yt = θtet.

This model corresponds to a simple dynamic variant of the most standard version of the well-known

model of Mirrlees (1971), where y is labour income, θ represents worker productivity, and e is hours

of work. We assume that preferences take the CRRA (or isoelastic) form:14

u (ct, et) =

(
ct · e

− 1
a

t

)1−γ

1− γ
for et ≤ 1 and u (ct, et) =

(
ct · e

− 1
b

t

)1−γ

1− γ
for et ≥ 1, for γ > 1;

u (ct, et) = ln ct −
1
a

ln et for et ≤ 1 and u (ct, et) = ln ct −
1
b

ln et for et ≥ 1, for γ = 1,

where a ≥ 1 ≥ b. As before, therefore, we are assuming that the marginal cost of e�ort changes

discontinuously above a threshold level, here et = 1. Moreover, we assume that

ln θt − ln θt−1 = β (L) ln vt,
13In this case, no parametric assumptions are needed for the income process and consumption does not grow

because a precautionary saving motive is absent. See Web Appendix B for details.

14Again, we could have assumed, equivalently, u (ct, et) =
(ct·e−1

t )
1−γ

1−γ and a modi�ed Cobb-Douglas production

function of the form yt = θte
a
t for et ≤ 1 and yt = θte

b
t for et ≥ 1, with a ≥ 1 ≥ b.
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where (with a small abuse in notation) we posit that ln vt is normally distributed with zero mean

and variance σ2
v . In this context, we can obtain a closed form for discounted net transfers that leads

- for t ≤ T − p - to the following permanent income formulation:

∆ ln c∗t =
ln(δ/q)
γ

+
γ

2
σ2
c +

1
a
β (qλ) ln vt, (16)

where λ = exp
{

ln δ/q
γ + 1−γ

2 σ2
c

}
, and σ2

c = 1
a2 [β (qλ)]2 σ2

v .
15 Note that whenever u is logarithmic

(γ = 1) then qλ = δ (see Web Appendix B for details). When a = 1 and income shocks are a

random walk, β (qλ) = 1 and one obtains the same expression as in the self-insurance model with

zero wealth (e.g., Constantinides and Du�e, 1996). With non-zero wealth, the comparison with

the Bewley model is more delicate. First, the coe�cient that relates innovations to permanent

income to consumption needs to be corrected for the wealth-income ratio, as pointed out by Banks

et al. (2001) and Blundell et al. (2008). Second, equation (16) does not necessarily hold, and

log-consumption is not necessarily a martingale and this might have implications for our empirical

approach, which we discuss below.

`Pure' moral hazard. Finally, we can use equation (16) to draw attention to an important

di�erence between our model and one with observable assets. It is well known that in that case,

when preferences are additive separable, the inverse of the marginal utility follows a martingale and,

therefore, the Euler equation is violated (see Rogerson (1985) and Ligon (1998)). In that framework,

it is easy to show that with isoelastic utility, consumption growth follows16

Et−1∆ ln c∗t =
ln(δ/q)
γ

− γ

2
σ2
c . (17)

The key di�erence between this expression and (16) is that, according to (17), consumption

growth decreases with an increase in the variance of consumption and therefore, income shocks.

This prediction is inconsistent with the evidence in, for instance, Banks et al. (2001).

15More precisely, given a, γ, σv, and the coe�cients βj , j = 0, 1, 2, ..., p de�ning the persistence of the income

process, the conditional variance of consumption solves the system of equations

λ = exp

{
ln δ/q

γ
+

1− γ
2

σ2
c

}
and σc =

∑p

j=0
βjq

jλjσv

a
.

16With CARA utility, the same expression holds true for consumption in levels.
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4 Empirical implications of the model

The model we developed in the previous section has some important empirical implications. In

it, while the Euler equation holds, the risk-free IBC is violated. This violation gives rise to what

the literature has labelled the `excess smoothness' of consumption: consumption does not react

`enough' to innovations in permanent income. We provide one of the �rst excess smoothness tests

performed on micro data and we give a structural interpretation to the excess smoothness coe�cient

as re�ecting the severity of moral hazard.17

In this section, we pursue these ideas by developing two di�erent and complementary tests of

the implications of our model on micro data. The �rst is an `excess smoothness' test derived from a

time-series model of consumption and income and based on the test of the risk-free IBC proposed

by Hansen, et al. (1991) (HRS henceforth). As mentioned above, testing the validity of an IBC is

equivalent, in our context, to testing a market structure. The second test is based on the dynamics

of consumption and income inequality within groups, as measured by variances of log consumption.

As we discuss below, the two tests complement each other.

As we study the extent to which income shocks are insured or are re�ected in consumption,

we need to use individual-level data. Unfortunately, however, longitudinal surveys that follow

individuals over time and contain complete information on consumption are extremely rare. One

of the most commonly used panels from the US, the Panel Study of Income Dynamics (PSID), for

instance, only contains information on food consumption. Other data sets, which contain complete

information on consumption, have a very short longitudinal dimension (such as the Consumer

Expenditure Survey (CEX) in the US) or lack it completely (such as the Family Expenditure

Survey (FES) in the UK). As a long time period is crucial to identify the time-series properties

of the variables of interest, this lack of longitudinal data is a problem for us. To overcome this

di�culty, we use synthetic cohort data or pseudo-panels, along the lines proposed by Deaton (1985)

and Browning, et al. (1985).

Our main data source is the UK FES from 1974 to 2002. The FES is a time series of repeated

cross-sections which is collected for the main purpose of computing the weights for the Consumer

Price Index. Each survey consists of about 7,000 families contacted over two-week periods through-

out the year. As households are interviewed every week throughout the year, the FES data are used

to construct quarterly time series. This allows us to exploit a relatively long time-series horizon. We

17Nalewaik (2006) adapts the Hansen et al. (1991) test to US micro data but does not stress the relationship with

excess smoothness, nor provids an excess sensitivity test.
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use data on households headed by individuals born in the 1930s, 1940s, 1950s, and 1960s to form

pseudo-panels for four year-of-birth cohorts. As we truncate the samples so as to have individuals

aged between 25 and 60, the four cohorts form an unbalanced sample. The 1930s cohort is observed

over later periods of its life cycle and exits before the end of our sample, while the opposite is true

for the 1960s cohort. Apart from the year of birth, the other selection criterion we used for this

study is marital status. As we want to study relatively homogeneous groups, we excluded from our

sample unmarried individuals. We also excluded the self-employed.

This data set, which has been used in many studies of consumption (see, for instance, Attanasio

and Weber, (1993)), probably constitutes the best quality micro data set with consumption infor-

mation and that covering the longest time period. It contains detailed information on consumption,

income, and various demographic and economic variables. We report results obtained using two

di�erent de�nitions of consumption. The �rst takes as `consumption' expenditure on non-durable

items and services, in real terms and divided by the number of adult equivalents in the household

(where for the latter we use the McClements de�nition of adult equivalents). The second also

includes expenditure on durables.

Within our model, the risk-free IBC is violated because it considers disposable income from

labour and a single asset and ignores state-contingent transfers. The latter can be interpreted as

the returns to other assets with state contingent returns or other income sources, such as government

transfers. This implies that if one were to modify the de�nition of income to include all these state-

contingent transfers, one would go back to a version of the PIH and to its implications. Therefore, one

should not be able to detect `excess smoothness' with this changed de�nition of income. Intuitively,

this suggests changing the de�nition of income in our empirical exercise: if one considers income

de�nitions that include transfers that are conceived to insure individual shocks, one should observe

less `excess smoothness' when applying our tests. This, however, is not a formal statement, as our

results are silent about the decentralization of the constrained e�cient allocations and, empirically,

we do not observe any individual or cohort of individuals for the entire life cycle. However, in

what follows we apply our tests using di�erent de�nitions of income: �rst gross earnings, then gross

earnings plus public transfers, and �nally net earnings and transfers.

4.1 The HRS approach

In constructing our �rst test, we follow HRS. They consider an income process yt which is one

element of the information structure available to the consumer and assume that it admits the
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following representation:

(1− L)yt := ∆yt = β(L)wt, (18)

where wt is an n-dimensional vector of orthogonal covariance stationary random variables that

represent the information available to the consumer. β(L) is a 1 × n vector of polynomials in the

lag operator L. Notice that this speci�cation for the income process encompasses both models

considered in Section 3. Here we adopt only in part the HRS notation and adapt it to ours. In

particular, without loss of generality, we start from a representation for the income process that

has already been rotated so that its �rst component represents the innovation for the process that

generates consumption. It is useful to decompose the right-hand side of equation (18) into its �rst

component and the remaining ones:

∆yt = β1(L)w1t + β2(L)w2t. (19)

The �rst result that HRS prove in their paper is that an intertemporal budget constraint has

empirical content, in that it imposes testable restrictions on the time-series behaviour of income

and consumption, only if one has restrictions on the time-series property of consumption, e.g., that

it follows a martingale. When this is not true, one can always �nd a time series representation for

consumption and disposable income that satis�es an IBC. In our model an Euler equation is always

satis�ed because of the availability of the hidden asset, so that the HRS test has empirical content.

Moreover, whether consumption satis�es an Euler equation can be checked empirically, which we

do.18

The martingale restriction on consumption implies that it can be represented by

∆ct = πw1t, (20)

where deterministic trends have been removed from consumption and π is a scalar di�erent from

zero whenever insurance markets are not complete. The coe�cient π represents the extent to which

18A short digression is in order here. Evidence of the `excess sensitivity' of consumption to income, as reported by

Campbell and Mankiw (1989) and others, is usually interpreted as a violation of the orthogonality conditions implied

by the Euler equation for consumption. Such evidence would constitute a problem for the use of the HRS test we are

proposing. However, there is evidence that many of the violations reported in the literature are based on aggregate

time-series data and are explained by aggregation problems and/or the failure to control for the evolution of needs

over the life cycle. See Attanasio and Weber (1993 and 1995). Attanasio (2000) presents a critical discussion of

these issues. Another reason that can explain income and consumption tracking each other is the non-separability of

consumption and leisure in the utility function, a point made early on by Heckman (1974) and on which Attanasio

and Weber (1993 and 1995) and Blundell et al. (1994) provide some evidence.
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income news is re�ected in consumption. Notice that equation (20) does not include lags. HRS

show that, given this structure, the net present value (NPV) condition implies some restrictions

on the coe�cients of equations (20) and (19). In particular, the intertemporal budget constraint

implies that

π = β1(q̃), (21)

β2(q̃) = 0, (22)

where q̃ = q in the case in levels, while q̃ = λq for the case in logs.19 HRS show that restriction (21)

is testable, while restriction (22) is not, in that there exist other representations for income that are

observationally equivalent to (19) for which the restriction holds by construction. The alternative

hypothesis that π < β1(q̃) is equivalent to what Campbell and Deaton (1989) and West (1988) de�ne

as `excess smoothness' of consumption.

The theoretical structure we have illustrated in the previous section provides a structural in-

terpretation of the `excess smoothness' and HRS tests. Notice the similarity of equations (14) and

(15) to equations (19) and (20).20 The null considered by HRS corresponds to the Bewley model

we considered in Section 2.3, which also corresponds to a special case of our model (see Section

3.1). The moral hazard model we constructed generates a speci�c deviation from the null: it im-

plies β1(q̃)/π = a. In our context, the extent of `excess smoothness' represents the severity of the

incentive problem.

An important feature of the HRS approach is that the test of the NPV restriction does not

require the econometrician to identify all information available to the consumer. Intuitively, the

test uses two facts. First, under the null, the intertemporal budget constraint with a single asset

must hold whatever is the information set available to the agent. Second, under the assumption that

the agent has no coarser information than the econometrician, the validity of the Euler equation

implies that consumption innovations reveal part of the information available to the agent. By

following the HRS strategy, we test the intertemporal budget constraint along the dimensions of

information identi�ed via the Euler equation (which is not zero as long as insurance markets are

not complete).

The representation in equations (20) and (19) is derived under the assumption that preferences

are time separable. A more general formulation of equation (20) is the following:

∆ct = πψ(L)w1t, (23)

19HRS work with quadratic utility and q = δ. As we saw above, similar relations can be obtained for CARA utility

and for CRRA when working in logs. In these last two cases, we allow for q 6= δ.
20Simply set π = 1

a
, w1t = vt, β1 (L) = β (L) , and β2 (L) = 0.
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where c in equation (23) represents total consumption expenditure, which enters the budget con-

straint, while utility is de�ned over the consumption services which, in turn, are a function of

current and, possibly, past expenditure. The polynomial in the lag operator ψ(L) re�ects these

non-separabilities or other complications, such as iid taste shocks to the instantaneous utility func-

tion. The non-separabilities considered in HRS imply that ψ(δ̃) = 1, where δ̃ = δ = q if utility is

quadratic, while δ̃ = 1 with CARA and CRRA utility. The condition ψ(δ̃) = 1 imposes restrictions

on the way lagged shocks enter the equation for consumption growth which imply that the NPV

restriction, in this case, takes the form π = β1(q̃), as in equation (21).21 We will need this extension

to interpret some of our results.

We follow HRS and consider a time-series representation of consumption and income as a func-

tion of two (unobservable) factors. As in HRS, this gives rise to an MA representation of the

following form:

∆cht = αcc(L)vh1t (24)

∆yht = αyc(L)vh1t + αyy(L)vh2t,

where we have added the subscript h to denote households and stress that the application will be on

micro data and assume that the two vectors v are independent of each other and over time (we allow,

however, correlation between vhit and vkit, i = 1, 2;h 6= k, to take into account aggregate shocks).

The system (24), which is identi�ed by a standard triangular assumption that consumption is only

a�ected by the �rst factor, can be estimated by maximum likelihood, making some assumptions

about the distribution of the relevant variables. As in HRS, it is straightforward to show that, in

the case of the intertemporal non-separability implied by equation (23), the intertemporal budget

constraint with a single asset can still be tested as an hypothesis on the coe�cients of the system

(24), provided that the process for consumption satis�es some restrictions we discuss below. In

particular, if the IBC holds (and therefore there is no excess smoothness), the relevant restrictions

to be tested are αcc(δ̃) = αyc(q̃), while excess smoothness will imply αcc(δ̃) ≤ αyc(q̃). And once

again, αcc(δ̃)/αyc(q̃) = 1/a re�ects the severity of the moral hazard problem in our model.

The presence of intertemporal non-separabilities implies an equation like (23) for consumption

changes, and, in particular, the presence of lagged values of w1. Consumption is not a martingale

21Attanasio (2000) (section 3.6) discusses the case with preference shocks which leads to extended equations such

as (23). HRS (in section 4) and Alessie and Lusardi (1997) consider habit formation. HRS only consider the case with

quadratic utility, while Alessie and Lusardi, within a simpler model, allow for both quadratic and CARA utilities. The

condition π = β1(q̃) is immediate from their equations (3) and (9) for the quadratic and CARA utilities respectively.

The CRRA utility case is similar as long as habit is multiplicative. Details are available upon request.
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anymore. However, as we mention above, the relevant Euler equation still provides enough restric-

tions to make the IBC testable. Moreover, some of these restrictions are testable in a system like

(24), as they translate into restrictions on the α coe�cients. While the hypothesis that ψ(δ̃) = 1

cannot be tested because the coe�cients of ψ are not identi�ed (αcc(δ̃) is proportional to ψ(q̃)),

we can identify coe�cients on lagged values of v2 in the �rst equation of the system (24) and test

the hypothesis that they are zero. The alternative that they are di�erent from zero corresponds to

the standard excess sensitivity tests, which have been applied many times in the literature, since

Hall (1978). Intuitively, a coe�cient on lagged values of v2 in the consumption equation would

imply that consumption is excessively sensitive to expected changes in income to be consistent with

the PIH. We implement these tests on our data below. In our context, these tests are important

because, as stressed by HRS, if consumption does not satisfy the restrictions implied by the Euler

equation, we cannot meaningfully test the intertemporal budget constraint.

To implement the estimation of system (24) on our data, some important modi�cations of the

standard procedure used by HRS are necessary. In particular, we need to take into account that we

are using household- level data and that we do not have longitudinal data. To address these two

problems, we use the approach recently developed by Attanasio and Borella (2006).

Because our data do not have a longitudinal dimension, we do not observe the quantities on the

left-hand side of equations (24). As mentioned above, we overcome this problem by using synthetic

cohort techniques (see Deaton (1985)). In particular, given groups of �xed membership, indexed by

g, and an individual variable zhgt, we can state, without loss of generality,

zhgt = zgt + ηhgt,

where the �rst term on the right-hand side de�nes the population group mean. We do not observe

zgt, but we can obtain a consistent estimate z̃ct of it from our sample. This will di�er from the

population mean by an error whose variance can be consistently estimated given the within-cell

variability and cell size (see Deaton (1985)). The presence of this measurement error in the levels

will induce an additional MA(1) component in the time-series behaviour of the changes in the

variables of interest. The variability of this component will have to be taken into account when

estimating the parameters of the model. We do so by assuming that the information on within-cell

variability provides an exact measurement of the variance of this component. Given the sample

sizes involved, this assumption is not a very strong one. Given the known values for the variance-

covariance matrix of the sampling error component, the likelihood function of the MA system in

(24) can be computed using the Kalman �lter (for details see Attanasio and Borella (2006)).
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Given these considerations, aggregating the household-level equations (24) at the group level

and assuming that the degree of the polynomials in the lag operator is 2, the system that we will

be estimating can be written as

∆cgt = v1gt + αcc1 v1gt−1 + αcc2 v1gt−2

∆ygt = αyc0 v1gt + αyc1 v1gt−1 + αyc2 v1gt−2 + v2gt + αyy1 v2gt−1 + αyy2 v2gt−2, (25)

where we have normalized the coe�cient of the contemporaneous �rst factor in the consumption

equation and of the second factor in the income equation to be 1. In addition to estimating the

coe�cients in the above system, we also test the hypothesis that coe�cients on the lagged values

of v2gt do not enter the consumption equation.

4.1.1 Results in levels

In Tables 1 and 2, we report the estimates we obtain estimating the MA system (25) by maximum

likelihood. As we allow the variance-covariance matrix in the system to be cohort speci�c, we limit

the estimation to cohorts that are observed over a long time period. This means using balanced

pseudo panels with two cohorts: that born in the 1940s and that born in the 1950s. We experimented

with several speci�cations that di�ered in terms of the number of lags considered in the system. The

most general speci�cation included up to eight lags in both the consumption and income equation.

However, no coe�cient beyond lag 2 was either individually or jointly signi�cant. In the tables,

therefore, we focus on the speci�cation with two lags.

Table 1 uses as a de�nition of consumption the expenditure on non-durables and services. We

use three di�erent de�nitions of income. The �rst is gross earnings, the second gross earnings plus

all public transfers (the most important of which are unemployment insurance and housing bene�ts

- bene�ts awarded to the needy to cover housing expenses), and the third is net earnings plus

bene�ts. For each of the three de�nitions, we report two speci�cations: one with two lags in each

of the two equations and one where the insigni�cant coe�cients are restricted to zero.

Several interesting elements come out of the table. First, the dynamics of income are richer than

those of consumption. However, and perhaps surprisingly, the coe�cients on the lags of v2gt are

not statistically signi�cant and are constrained to zero in columns 2, 4 and 6. In the consumption

equation, the coe�cient on the �rst lag of v1gt is consistently signi�cant and attracts a negative

sign. As discussed above, this could be a sign of intertemporal non-separability of preference, maybe

induced by some elements of non-durable consumption having some durability at the quarterly

frequency.
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To implement the HRS test of the IBC, it is necessary that the marginal utility of consumption

satis�es a martingale property. In Table 1, such an assumption is imposed, in that lagged `income

shocks' do not enter the consumption equation. This hypothesis, however, can be tested. If we

do not impose the restriction, the estimated coe�cients are small in size and never signi�cantly

di�erent from zero, either individually or jointly. In the table, for each speci�cation, we report

the value of the LR test that the coe�cients on the �rst and second lag are jointly zero and its

corresponding p-value. This is an important result as it corresponds to a non-violation of the excess

sensitivity test.

The test of the intertemporal budget constraint, which is parametrized as πψ(δ̃)−β1(q̃), clearly

shows the presence of excess smoothness. Interestingly, such evidence is stronger for gross earnings.

The value of the test does not change much when we add bene�ts to gross earnings (as in columns

3 and 4). However, when we consider net earnings plus bene�ts, the value of the test is greatly

reduced in absolute value (moving from -0.49 to -0.26), although still statistically di�erent from zero.

Therefore, when we use a de�nition of income that includes an important smoothing mechanism,

we �nd much less evidence of consumption `excess smoothness' relative to that income de�nition.

Table 2 mirrors the content of Table 1, with the di�erence that the de�nition of consumption we

use now includes expenditure on durables. The results we obtain are, in many ways, similar to those

of Table 1. Perhaps surprisingly, the coe�cient on lagged v1gt in the consumption equation is smaller

in absolute value than in Table 1 and for two of the three income de�nitions, not statistically di�erent

from zero. The test of excess sensitivity, as in Table 1, does not reject the null that the coe�cients

on lagged income shocks are zero in the consumption equation (although the p-value for the test

corresponding to column 1 is 0.098). The most interesting piece of evidence, however, is that the

coe�cient that measures excess smoothness is now considerably lower in absolute value, indicating

less consumption smoothing relative to the null of the Bewley model. This is suggestive of the fact

that durables might be playing an important role in the absorption of shocks, as speculated, for

instance, by Browning and Crossley (2009). However, when we consider di�erent income de�nitions,

the evidence is consistent with that reported in Table 1, in that consumption consumption exhibit

much less `excess smoothness' relative to net earnings than to gross earnings.

4.1.2 Results in logs

When re-estimating the system using the speci�cation in logs, we try to use the same sample used

in the speci�cation in levels. However, as we aggregate the non-linear relationship (i.e., we take the

group average of logs), we are forced to drop observations that have zero or negative income. Apart
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from this, the sample is the same. We report our estimates in Table 3. Given the evidence on the

dynamics of consumption discussed above, we only report the results for total consumption, which

includes expenditure on durables. Results for non-durables and services are available upon request.

Our estimates of a are obtained under the assumption that λ = 1, which corresponds to log-utility

and δ = q. If q > δ, and γ > 1, λ would be less than unity. We have explored values for λ below 1,

obtaining similar results.

As with Tables 1 and 2, we test the hypothesis that lagged coe�cients of the `income' shock do

not appear signi�cantly in the consumption equation. In the case of the log speci�cation we should

stress, as mentioned in Section 3.3, that one could get a rejection either because of binding liquidity

constraints or because the second moments in equation (16) might depend on lagged variables.

While this is possible, empirically, this `excess sensitivity' test does not reject the null at standard

signi�cance values.22

As with the results in levels, we do �nd evidence of excess smoothness. The drop in the size of the

excess smoothness parameter when we move to de�nitions of income that include some smoothing

mechanisms is even more dramatic than in Table 2. In the last column, corresponding to net earnings

plus bene�ts, the excess smoothness parameter, while still negative, is not signi�cantly di�erent from

zero. This result suggests that most of the insurance available over and above self-insurance comes

from public transfers and taxation.

4.2 The evolution of cross-sectional variances

The empirical implications of the model we have stressed so far focus on the means of consumption

and income. Because of the lack of longitudinal data at the individual level, we were forced to

use synthetic panel data. This implies that purely idiosyncratic shocks are averaged away and the

`excess smoothness test' identi�es risk sharing across cohorts. To complement this evidence, it can

therefore be useful to consider the implications of the theory for the cross-sectional variances of

income and consumption. The test we develop here focuses on risk sharing within cohorts. For this

purpose, the closed-form solution derived in Web Appendix B for the model with two independent

shocks, one of which is assumed to be temporary and one permanent, is particularly useful. In this

case, we have (see equation (63))

ln cit =
1
ap

lnxit +
(1− λq)
aT

t−1∑
s=0

ln ξit−s + t
γ

2

[(
1
ap

)2

σ2
vp +

(
1− λq
aT

)2

σ2
vT

]
− t

ln q
δ

γ
+ µi + zt. (26)

22The issue of the estimation of log-linearized Euler equations like equation (16) is discussed in Attanasio and Low

(2004). The results we �nd are consistent with the �ndings of their simulations.
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The term µi allows for ex-ante heterogeneity, which could capture distributional issues, the

initial level of assets of individual i, or �xed e�ects which can be observable to the �rm but may

be unobservable to the econometrician. The term zt allows for aggregate shocks, which will be

assumed to be orthogonal to individual shocks and included in the information set of all agents in

the economy. If we compute the cross-sectional variance at time t of both sides of equation (26), we

have

V ar
(
ln cit

)
=

(
1
ap

)2

V ar
(
lnxit

)
+
(

1− λq
aT

)2

V ar

(
t−1∑
s=0

ln ξit−s

)
+ V ar

(
µi
)

(27)

+2

[
Cov

(
lnxit, µ

i
)

ap
+

(1− λq)
aT

∑
s

Cov
(
ln ξit−s, µ

i
)]
,

where we have used the fact that Cov (lnxt, ln ξt−s) = 0 for all s.23 We start by assuming that both

Cov
(
ln ξit−s, µ

i
)
and Cov

(
lnxit, µ

i
)
are time invariant. The time invariance of these terms can be

obtained by assuming constant µ′s across agents in the same group (as in our theoretical model).

If we now take the �rst di�erence of equation (27), neglecting the individual indices, we have

∆V ar (ln ct) =
(

1
ap

)2

∆V ar (lnxt) +
(

1− λq
aT

)2

V ar
(
ξit

)
, (28)

where ∆V ar (ln ct) := V ar (ln ct) − V ar (ln ct−1) and ∆V ar (lnxt) is similarly de�ned. Under our

assumptions, ∆V ar (ln yt) = ∆V ar (lnxt + ln ξt) = ∆V ar (lnxt) , which implies two things. First,

we can replace the permanent component xt by total income yt in the �rst term of the right hand

side of equation (28). Second, without independent identi�cation of the two components of income

(xt and ξt), only ap(= a) can be identi�ed.

Notice that equation (28) allows again the identi�cation of the structural parameter a, which

re�ects the severity of the moral hazard problem. As noted by Deaton and Paxson (1994), under

perfect risk sharing, the cross sectional variance of consumption is constant over time.24

Under the PIH, as pointed out by Blundell and Preston (1998), the changes in the variance of

consumption re�ect changes in the variance of (permanent) income. Here, we consider a speci�c

alternative to the perfect insurance hypothesis that implies that consumption variance grows, but

less than the increase in the variance of permanent income.

23Here we are making use of the income process with two separate shocks typically assumed in the PIH literature,

which we introduce in Web Appendix B. If we were to use the process with a single shock used in Section 3, equation

(26) for log consumption would be much more complicated, as reported in Web Appendix B. It is easy to see, however,

that the whole analysis goes through for Cov (lnxt, ln ξt−s) 6= 0, as long as it is time constant for all s ≥ 0.
24Attanasio and Szekely (2004) propose a test of perfect risk sharing based on changes in the cross-sectional

variances of marginal utilities.
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The empirical strategy we follow here is quite di�erent from Blundell et al. (2008). They study

the evolution of the cross- sectional variance of consumption growth,25 while we start from the

speci�cation for consumption levels in equation (26) to derive equation (28). We notice that, as we

do not have longitudinal data, we cannot identify separately ap and aT , while Blundell et al. (1998)

do identify the proportion of permanent and transitory shocks that can be insured.

The estimation of equation (28) also requires the identi�cation of groups. Here the group

implicitly de�nes the participants in a risk- sharing arrangement and the test will identify the

amount of risk sharing within that group. As with the estimation of the HRS system, the lack of

truly longitudinal data and the use of time series of cross-sections imply that the estimated variances

(for income and consumption) will have an error component induced by the variability of the sample.

This is particularly important for the changes in the variance of income on the right-hand side: the

problem induced is e�ectively a measurement error problem which induces a bias in the estimated

coe�cient. However, as explained in Web Appendix C, it is easy to obtain an expression for the

bias implied by an OLS estimator in �nite samples and correct it.

To estimate the parameters in equation (28), we use the same sample we used for the HRS test,

with the only di�erence being that we do not limit ourselves to the balanced pseudo-panel but use

four cohorts, although the youngest and oldest are only used for part of the time period. Otherwise,

the selection criteria used to form our sample are the same as above.

The results are reported in Table 4. There are four columns in the table, each reporting the slope

coe�cient of equation (28) and the implied a with the corresponding standard errors. The standard

error of a is computed by the delta method. In the �rst two columns, we use expenditure on non-

durables and services as our de�nition of consumption, while in the last two we use total expenditure.

In column 2 and 4, the consumption �gure is divided by the number of adult equivalents. The three

panels correspond to the same three de�nitions of income we used for the HRS test.

The �rst aspect to be noted is that all the slope coe�cients are positive and statistically di�erent

from zero. Moreover, consistently with the theory, they all imply a value of a greater than unity.

Finally, the results are a�ected only minimally by the consideration of adult equivalents.

If we analyse the di�erence across income de�nitions, we �nd results that are consistent with

the implications of the model and, by and large, with the evidence from the HRS approach. The

coe�cient on the changes in the variance of gross earnings is much smaller than the one on the

other income de�nitions. This is consistent with the evidence from Tables 1 and 2, which showed

more `excess smoothness' for this de�nition. Unlike in Tables 1 and 2, however, the main di�erence

25This has important advantages, but it forces to use the approximation V ar(∆ct) ≈ ∆V ar(ct).
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in the size of the coe�cient is between the �rst income de�nition on one side and the second and

third on the other. With the HRS approach, the main di�erence was between the �rst and second

on one side and the third on the other.

Finally, if we look at the di�erences between the de�nitions of consumption that include durables

and those that do not, we �nd that the coe�cients are (except for the �rst income de�nition) larger

for the former than the latter. Again, this is consistent with the evidence from the HRS approach,

which �nds less `excess smoothness' when one includes durables in the de�nition of consumption,

i.e., some self-insurance mechanisms seem to be at work via durables.

The consistency of the results obtained with the variance approach and those obtained with the

HRS approach is remarkable because the two tests, as stressed above, focus on di�erent aspects of

risk sharing: the latter on insurance across groups and the former on insurance within groups. It is

remarkable that both yield results that are in line with our model and indicate that the observed

amount of risk sharing is in between that predicted by a simple Permanent Income model and that

predicted by perfect insurance markets. Comparing the magnitudes of the coe�cients from the two

approaches, we can obtain a measure of the di�erent degrees of risk- sharing possibilities that are

available within cohorts as opposed to those available across cohorts.

5 Conclusions

In this paper, we discuss the theoretical and empirical implications of a model where perfect risk

sharing is not achieved because of information problems. A speci�c and important feature of our

model is that in addition to the standard moral hazard problem, in the economy we study, agents

have hidden access to the credit market. After characterizing the equilibrium of this model, we have

shown how it can be useful to interpret individual data on consumption and income.

Developing results in Abraham and Pavoni (2004), we have shown that in a competitive equilib-

rium of our model, agents typically obtain more insurance than in a Bewley set-up. Moreover, we

are able to construct examples in which we can get closed-form solutions for consumption. These

results have more than an aesthetic value: in our empirical approach they allow us to give a struc-

tural interpretation to some of the empirical results in the literature and to those we obtain. In

particular, in our model one should observe the so-called `excess smoothness' of consumption. More-

over, `excess smoothness' is distinct from the so-called `excess sensitivity' of income to consumption.

Finally, we can map the excess smoothness parameter into a structural parameter.

The presence of excess smoothness follows from the fact that, even in the presence of moral
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hazard and hidden assets, in general, a competitive equilibrium is able to provide some insurance

over and above what individuals achieve on their own by self-insurance. This additional insurance

is what generates excess smoothness in consumption, which can then be interpreted as a violation

of the intertemporal budget constraint with a single asset. The equilibrium allocations generated by

our model violate the IBC with a single asset because they neglect some state-contingent transfers

the agents use to share risk.

Tests of the risk-free intertemporal budget constraint become tests of market structure in our

framework. For this reason, we start our empirical work using a test of `excess smoothness' that

was �rst proposed as a test of the intertemporal budget constraint with a single asset by Hansen,et

al. (1991). We extend their approach so that it can be applied to micro data.

Because longitudinal data on consumption are rarely available, we work with time series of cross-

sections and synthetic cohort data. As we are forced to aggregate the consumption and income of

individuals belonging to a given year-of-birth cohort, we necessarily lose some of the variability in

idiosyncratic income and the possibility of studying the amount of risk sharing of these shocks. This

is one of the reasons why, in addition to the extension of the HRS test, we propose an additional test,

which uses the movements in the cross-sectional variances of consumption and income to identify

the same structural parameters of our model.

While related to the work of Deaton and Paxson (1994), Blundell and Preston (1998) and

Blundell, et al. (2008), our approach is di�erent in that it focuses on the variance in the level rather

than changes of consumption. Moreover, as is the case for the version of the HRS test we present,

we can give the coe�cients we estimate a structural interpretation in terms of our moral hazard

model.

While many papers, starting with Campbell and Deaton (1989) have documented the `excess

smoothness' of consumption using aggregate time- series data, the evidence based on micro data is

recent and very limited. Using our two di�erent approaches and data from the UK, we forcefully

reject both perfect risk sharing and the simple Bewley economy, while we do not reject the hypothesis

of `no excess sensitivity' of consumption to income. More generally, our results are consistent with

the model with moral hazard and hidden assets we considered. Particularly suggestive is the fact that

when we consider income de�nitions that include smoothing mechanisms, such as social assistance

and net taxes, we �nd less evidence of `excess smoothness'.

Our results have obvious policy implications, as one could, in principle, be able to quantify in

terms of welfare the insurance role played by the taxation system or unemployment insurance. Such

computations would be immediately feasible from our analysis. We would also be able to perform
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accurate counterfactuals in order to evaluate the e�ects of a given policy. All normative issues,

however, are left for future research.
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6 Appendix A

6.1 Implementing the e�cient allocation with income taxes

In this section we show that under some conditions the equilibrium allocation (e, c, y) can be `described'

using a transfer scheme τ which is function of income histories yt alone. This will simplify the analysis and

allow us to describe the consumption allocation in terms of observables.

Notice �rst, that through yt =yt(θt) the y component of the equilibrium allocation generates histories

of income levels yt. Let's denote by yt (θt) =
(
y1

(
θ1
)
, ..., yt (θt)

)
this mapping. In general yt(θt) is not

invertible, as it might be the case that for a positive measure of histories of shocks θt we get the same

history of incomes yt. A generalization of the argument used in Kocherlakota (2005) however shows that it

su�ces to assume that the optimal plan of consumption c alone is yt-measurable. That is, that there exists

a sequence of yt-measurable functions c∗ such that for all t, θt we have c∗t (yt (θt)) = ct(θt). We now show

that under fairly general conditions the implementation idea of Kocherlakota (2005) extends to the general

case with hidden savings.

Now, notice that yt is yt-measurable by construction. As a consequence, from (9) is easy to see that

the yt-measurability of c implies that τ is yt-measurable as well. From the transfer scheme τ , we can hence

obtain the new yt-measurable scheme τ∗ as follows: τ∗t (yt (θt)) = τt (θt). Given τ∗, let

E

[
T∑
t=1

δt−1 u (c∗t , êt) | ê

]
:=

T∑
t=1

δt−1

∫
Θt
u
(
c∗t
(
ŷt(θt)

)
, êt
(
θt
))
dµt(θt)

where c∗t (ŷt(θt)) = τ∗t (ŷt (θt)) + y∗t (ŷt (θt)) , and the new mapping is induced by ê as follows: ŷt (θt) =

f (θt, êt (θt)) for all t, θt. For any history of shocks θt, a plan ê not only entails di�erent e�ort costs, it also

generates a di�erent distribution over income histories yt hence on transfers and consumption. This justi�es

our notation for the conditional expectation.

We say that the equilibrium allocation (e, c, y) can be described with yt−measurable transfers if the agent

does not have incentive to deviate from c∗, e∗ given τ∗. The incentive constraint in this case is as follows:

E

[
T∑
t=1

δt−1 u (c∗t , e
∗
t ) | e∗

]
≥ E

[
T∑
t=1

δt−1 u (ĉt, êt) | ê

]
, (29)

where, as usual, the deviation path of consumption ĉ must be replicated by a plan of risk free bonds b̂.

An important restriction in the deviations ê contemplated in constraint (29) is that they are required to

generate `attainable' histories of y′s, i.e. histories of y′s that can happen in an equilibrium allocation. The

idea is that any o�-the-equilibrium value for yt will detect a deviation with certainty. One can hence set the

�rm's transfers to a very low value (perhaps minus in�nity) in these cases, so that the agent will never have

incentive to generate such o�-the-equilibrium histories.
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Finally, suppose the agent chooses an e�ort plan ê so that the realized history ŷt is attainable in equi-

librium. This means both that there is a reporting strategy σ̂ so that ŷt = (y1 (σ̂) , y2 (σ̂) , ..., yt (σ̂)) and

that given a consumption plan ĉ the utility the agent gets is E
[∑T

t=1 δ
t−1 u (ĉt, et) | (e, c, y) ; σ̂

]
, where

the notation is that in the main text.26 This e�ectively completes the proof since the incentive constraint

(4) guarantees that the agent will chose the truth-telling strategy which implies the equilibrium plans e and

c as optimal for him.

6.2 Proof of Proposition 1

We now show that, for the speci�cation of preferences and production function we stated in Proposition 1,

incentive compatibility fully characterizes the e�cient allocation. In fact, we will allow for a generic sequence

of bond prices {qt}T−1
t=1 faced by both the agents and the �rms in the economy.

In order to avoid the use of the taxation principle, we will consider transfers schemes that depend on

the revelation plan σ. This notation would also be more directly related to the Bewley model of Section 2.3.

Recall that T <∞, and consider the last period of the program. Using the budget constraint, assuming the

agent declared history θT−1 so far, and has wealth bT , after the realization of θT , his/her preferences over

the report σT of θT can be represented as follows:

u (cT − eT ) = u
(
θT + τT

(
θT−1, σT

)
+ bT

)
.

The key aspect to notice here is that since utility depends on the declaration σT only through the transfer, the

agent will declare the productivity level delivering the maximal transfer whenever possible. More precisely,

for any value of eT (θT−1, θT ), the local incentive compatibility implies that for a su�ciently small ε > 0 we

have

u
(
θT + τT

(
θT−1, θT

)
+ bT

)
26More in detail, notice that by de�nition we have êt (θt) = g (θt, ŷt (θt)) . Since ŷt (θt) is `attainable' it

can be induced from y by a `lie', i.e., there exists a σ̂ such that ŷt (θt) = yt (σ̂ (θt)). But then êt (θt) =

g (θt,yt (σ̂ (θt))) and from the de�nition of τ∗ we have c∗t (ŷt (θt)) = c∗t (yt (σ̂ (θt))) = ct (σ̂ (θt)) , which

implies that

E

[
T∑
t=1

δt−1 u (c∗t , êt) | ê

]
= E

[
T∑
t=1

δt−1 u (ct, et) | (e, c, y) , σ̂

]
for some σ̂ ∈ Σ. Finally, it is easy to see that c∗ (and b∗ ≡ 0) is incentive compatible among the deviations

that solve ĉσt (σ (θt)) + qb̂σt+1(σ (θt)) − b̂σt (σ
(
θt−1

)
) = c∗t (σ(θt)) and limt→T q

t−1b̂σt+1(σ (θt)) ≥ 0 a.s. for

all histories θt. A �nal remark. One can easily show that under the same conditions, e must also be xt-

measurable. If e is not xt-measurable it means that for at least two some θt, and θ̄t we have et (θt) 6= et
(
θ̄t
)

while f (θt, et (θt)) = f
(
θt, et

(
θ̄t
))
. However, since u is decreasing in e, e�ort incentive compatibility (at

bt = 0) implies that τs (θs) 6= τs
(
θ̄s
)
for some s ≥ t with τ not ys-measurable. A contradiction to the fact

that the equilibrium transfer scheme τ is yt−measurable.
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≥ u
(
θT + τT

(
θT−1, σT

)
+ bT

)
for all σT ∈ [θ − ε, θ + ε].

This condition applied to all θT ∈ Θ implies that a transfer payment τT which is invariant across θT 's is the

sole incentive compatible possibility.

Now consider the problem in period T − 1. We now show that - given θT−2 and θT−1 - an incentive

compatible transfers scheme must induce constant number for the present value of transfers τT−1

(
θT−1

)
+

qT−1τT
(
θT−1

)
across θT−1 levels. Note that in our notation we used the fact that τ is constant across θT .

Consider a generic history θT−2 and suppose that τT−1

(
θT−2, θ

′

T−1

)
+qT−1τT

(
θT−2, θ

′

T−1

)
< τT−1

(
θT−2, θ

′′

T−1

)
+

qT−1τT

(
θT−2, θ

′′

T−1

)
for θ′ su�ciently close to θ′′. This cannot be incentive compatible. The agent who

receives shock θ′T−1 would declare θ
′′

T−1 (and change e�ort by the di�erence between the two productivity

levels) and adjust his/her bond plan accordingly. We just have to show that there is a bond plan so that

the agent is better o� by declaring θ
′′

T−1.But this is easy to see since τT does not depend on θT . More

precisely, if cT−1, cT (θT ) is the consumption plan under θ′T−1 then cT−1 + κ
1+qT−1

, cT (θT ) + κ
1+qT−1

is one

of the consumption paths attainable by deviating, where κ > 0 is the di�erence between the two net present

values of transfers. A similar argument applies to the case where the inequality is reversed. In this case, the

pro�table deviation would be takes by the agent who receives shock θ′′T−1. The discounted value of transfer

must hence be constant across θT−1 as well, that is, τT−1(θT−1) + qT−1τT (θT ) is θT−2-measurable. Going

backward, we get that for all t the quantity

NPVt :=
T−t∑
n=0

(Πn
s=1qt−1+s) τt+n(θt+n)

is at most θt−1-measurable since it is a constant number for all continuation histories θt, θt+1, ..., θT following

node θt−1. If we consider the initial period (t = 1), (local) incentive compatibility implies that NPV1

(
θT
)

:=∑T
n=1

(
Πn−1
s=1 qs

)
τn is one number a.s. for all histories θT . As we argued already in the main text while

discussing equation (5), another necessary condition for incentive compatibility is the agent's Euler equation.

The problem of the �rm facing a relaxed (local) incentive compatibility constraint hence reduces to the choice

of the unique number NPV1 and the plan of bonds holdings for the agent. Since the agent and the �rm face

the same sequence of bond prices, it is easy to see that the �rm is indi�erent across all bond plans. This

implies that the only number NPV1 consistent with nonnegative pro�ts and with maximizing the agent's

utility is zero. Moreover, this number can be obtained by setting τt ≡ 0 (equivalently we could assume the

transfer τ is set so that the agent chooses bt ≡ 0). It is now obvious that τt ≡ 0 globally incentive compatible,

implying that it must be the optimal one. We have hence shown that the optimal allocation corresponds to

the bond economy allocation. Q.E.D.

More extensively, in all cases, the optimal contract must solve the standard Euler equation at each node

and the condition

NPV1

(
θT
)

:=
T∑
t=1

(
Πt−1
s=1qs

)
τ∗t
(
θt
)

=
T∑
t=1

(
Πt−1
s=1qs

) (
c∗t (θ

t)− y∗t (θ
t)
)

= 0 a.s. for all θT .
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But these are precisely the two de�ning properties for the self-insurance allocation: �rst, it must satisfy

the Euler equation. Second, it must satisfy the intertemporal budget constraint with the risk free bond, i.e.,

the period zero net present value must be zero for all θT . Since the Euler equation (5) is always satis�ed

in our allocation, the only way of obtaining a di�erent allocation is that the transfers scheme τ permitted

to violate the agent's period zero self insurance intertemporal budget constraint for some history θT . The

whole point of Proposition 1 is to demonstrate that it cannot be the case.

A �nal remark. Although the proof uses �nite time, by adapting the proof of Proposition 7 in Cole and

Kocherlakota (2001), we can show the result for T =∞, at least as long as u is a bounded function.
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7 Appendix B: Closed forms

The outcome of this section will be a set of closed form solutions to our model which give a structural

interpretation, in terms of the marginal cost/return of e�ort, of the coe�cient φ coming from a generalized

permanent income equation of the form:

∆ct = Γt + φ∆ypt ,

where the variable will be expressed in levels or in logs, depending on the speci�cation, and

φ =
1
a
,

with a ≥ 1, and where 1
a is the marginal return to shirking. Since in our model wealth e�ects are absent (at

least in the chosen space), the equilibrium contract implements a constant e�ort level in all periods, which

will be normalized to a given number: the �rst best level of e�ort. So the whole margin in welfare will come

from risk sharing. The incentive compatibility constraint will hence dictate the degree of such insurance as

a function of the marginal cost of e�ort. A lower e�ort cost/return allows the �rm to insure a lot the agent

without inducing him to shirk. And the �rm will use the whole available margin to impose transfers and

obtain consumption smoothing.

7.1 Closed form in levels: CARA utility

7.1.1 Model

Recall that we can perform a change in variable and assume yt = θt + et and u (c, e) = u (c− v(e)) , where

v(et) :=
1
a

min {et, 0}+
1
b

max {et, 0} , with a ≥ 1 ≥ b, (30)

Interestingly, as we have seen in Section (3.1) for a = b = 1 we are in the standard ACK case, hence there

is no room for risk sharing at all (on top of self insurance) and the allocation replicates that of the Bewley

model.

Finally, notice that as long as a > 1 (and b < 1) the �rst best e�ort level would be zero. However,

the �rst best allocation would also imply a constant consumption. This allocation can only be obtained by

imposing a constant tax rate such that τ ′t = −1. Obviously, this allocation is not incentive feasible in a world

where e�ort and productivity are private information of the agent.

The main steps towards the derivation of our closed form will be as follows. First, we consider a relaxed

optimization problem. More precisely, we consider an auxiliary problem for the �rm that imposes strictly

less stringent incentive constrains and the same objective function and the same technological constraints.

Then we show that the solution for the relaxed problem corresponds to our closed form. Finally, we show
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that our closed form satis�es the original incentive compatibility constraint. This implies that the closed

form solution solves the original maximization problem of the �rm.

7.1.2 The relaxed problem

We eliminate the time subscript whenever possible. Consider the following problem:

(R) max
τ,y

E0

[
T∑
t=1

δt−1u(y
(
θt
)

+ τ(θt)− v(y
(
θt
)
− θt))

]
s.t. for all θt, t ≥ 1 :

max b, θ̂t≤θt u
(
y
(
θt−1, θ̂t

)
+ τ(θt−1, θ̂t)− qtb− v(y

(
θt−1, θ̂t

)
− θt)

)
+ δVt

((
θt−1, θt

)
, θ̂t, b

)
≤ u(y

(
θt
)

+ τ(θt)− v(y
(
θt
)
− θt)) + δUt

(
θt
)

; and

0 ≥ E0

[∑
t

(
Πt
n=0qs

)
τ(θt))

]
.

In the above formulation, Ut (θt) is the equilibrium utility, and solves

Ut
(
θt
)

: = Et

[
T−t∑
s=1

δs−1u(y
(
θt+s

)
+ τ(θt+s)− v

(
y
(
θt+s

)
− θt+s

)
)

]

=
∫

Θ

[
u(y

(
θt, θt+1

)
+ τ(θt, θt+1)− v(y

(
θt+1

)
− θt+1)) + δUt+1

(
θt, θt+1

)]
dΦ
(
θt+1 | θt

)
,

while Vt

((
θt−1, θt

)
, θ̂t, b

)
represents the highest utility the agent can get by choosing freely the plan of

bonds but telling the truth

Vt

((
θt−1, θt

)
, θ̂t, b

)
= max

c,b
E

[
T−t∑
s=1

δs−1u(c
(
θt+s

)
− v

(
y
(
θ̂t+s

)
− θt+s

)
) | θt

]
s.t. : ct+s

(
θt+s

)
= y

(
θ̂t+s

)
+ τ(θ̂t+s) + qt+sbt+s+1

(
θt+s

)
− bt+s

(
θt+s

)
,

where in the previous expression, for all s ≥ 1, we denote θ̂t+s :=
(
θt−1, θ̂t, θt+1, ...θt+s

)
. Clearly, UT+1 ≡

VT+1 ≡ 0.

The maximization problem is relaxed with respect to the original problem solved by the �rm in equilib-

rium in a number of dimensions. First, the incentive constraints are only for downward deviations. Second,

the deviation is 'local' because it assumes that the agent never lies for more than one period although he is

allowed to deviate for more than one period in the bond decisions after a �rst deviation. Finally, also bond

deviations are 'local' since the agent starts with zero wealth at each node in equilibrium.

Lemma 1. The contract solving problem (R) implements e(θt) = 0 for all θt.

Proof. Take any contract and suppose that for some history θt we have e(θt) > 0. Then consider

the contract that keeps all transfers and recommendations as the previous one, but at history θt where it

recommends income ỹ(θt) = y(θt) − e(θt) and zero e�ort: ẽ(θT−1, θT ) = 0, and transfers τ̃(θt) = τ(θt) +

(1 − 1
b )e(θt). It is easy to see that - at all histories - the new contract delivers exactly the same argument
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of the utility function u in equilibrium. We have to show that the incentive constraints are all satis�ed

under the new contract. The fact that the in equilibrium for all histories the arguments of u are all the

same implies that Us (θs) are unchanged for all s and θs. Moreover, it should also be clear that future

values Vt+s

((
θt+s−1, θt+s

)
, θ̂t+s, b

)
for all s ≥ 0, θt+s and θ̂t+s, b do not change either. Finally, since the

modi�cation of the contract leaves the equilibrium utilities unchanged at all nodes (including node θt), the

values Vt−k

((
θt−k−1, θt−k

)
, θ̂t−k, b

)
for all k ≥ 1 are also una�ected by the change: since the argument

of the utility �ow u in equilibrium is unchanged - and Vt−k

((
θt−k−1, θt−k

)
, θ̂t−k, b

)
does not contemplate

deviations over declarations after period t− k - the set of consumption plans available by deviating only in

the bond are unchanged by the modi�cation to the contract.

Consider now how the change in the contract might a�ect the incentive constraint in period t. Clearly it

can a�ect the incentives for productivity levels above θt, call these values θ̄t ≥ θt (we include θ̄t = θt since

the agent with productivity θt might �nd pro�table the bond deviation under then new contract). Since the

equilibrium utilities (both �ows u and values Ut) do not change, in order to verify the new transfer scheme

solves period t incentive constraint, it su�ces to show that for all b and θ̄t > θt we have

u
(
y
(
θt−1, θt

)
+ τ(θt−1, θt)− qtb− v(y

(
θt−1, θt

)
− θ̄t)

)
+ δUt

((
θt−1, θt

)
, θ̄t, b

)
≥

u
(
ỹ
(
θt−1, θt

)
+ τ̃(θt−1, θt)− qtb− v(ỹ

(
θt−1, θt

)
− θ̄t)

)
+ δUt

((
θt−1, θt

)
, θ̄t, b

)
.

But again, since Ut
((
θt−1, θt

)
, θ̄t, b

)
is una�ected by the change, it su�ces to show that

u
(
x
(
θt−1, θt

)
+ τ(θt−1, θt)− qtb− v(x

(
θt−1, θt

)
− θ̄t)

)
≥ u

(
ỹ
(
θt−1, θt

)
+ τ̃(θt−1, θt)− qtb− v(ỹ

(
θt−1, θt

)
− θ̄t)

)
.

The last inequality is true because of the following. If y(θt−1, θt) − θ̄t > e(θt−1, θt) > 0 then the change in

transfer scheme generates exactly the same utility to the deviating agent. If y(θt−1, θt) − θ̄t < e(θt−1, θt)

then the utility from deviation decreases. We show it assuming that y(θt−1, θt) − θ̄t < 0. The case where

e (θt) > y(θt)− θ̄t > 0 is a combination of this cases and that we just analyzed. We have

u(y(θt−1, θt) + τ(θt−1, θt)−
1
a

(y(θt−1, θt)− θ̄t))

= u(y(θt−1, θt)−
1
a
y(θt−1, θt) + τ(θt−1, θt) +

1
a
θ̄t)

> u(y(θt−1, θt)−
1
a
y(θt−1, θt) + τ(θt−1, θt) + (

1
a
− 1
b

)e(θt−1, θt) +
1
a
θ̄t),

since ( 1
a −

1
b )e(θt−1, θt) < 0. The case against e(θt) < 0 follows from a similar line of proof. This implies that

the equilibrium utility of the agent is unchanged. At this point one can try to actually increase agent's utility

but we only need to show that our closed form solution belongs to the set of optimal contracts. Q.E.D.

Lemma 1 implies that we can re-write problem (R) as follows

(R') max
τ(θt)

E0

[
T∑
t=1

δt−1u(θt + τ(θt))

]
s.t. for all θt, t ≥ 1 :
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max b,θ̂t≤θt u
(
θ̂t + τ(θt−1, θ̂t)− qtb−

1
a

(θ̂t − θt)
)

+ δVt

((
θt−1, θt

)
, θ̂t, b

)
≤ u(θt + τ(θt)) + δUt

(
θt
)

; and (31)

0 ≥ E0

[∑
t

qtτ(θt))

]
,

where

Ut
(
θt
)

:= Et

[
T−t∑
s=1

δs−1u(θt+s + τ(θt+s))

]
=
∫

Θ

[
u(θt+1 + τ(θt, θt+1)) + δUt+1

(
θt, θt+1

)]
dΦ
(
θt+1 | θt

)
,

and

Vt

((
θt−1, θt

)
, θ̂t, b

)
: = max

c,b
E

[
T−t∑
s=1

δs−1u(c
(
θ̂t+s

)
) | θt

]
s.t. : ct+s

(
θt+s

)
= θt+s + τ(θ̂t+s) + qt+sbt+s+1

(
θt+s

)
− bt+s

(
θt+s

)
.

Assumption 1 The utility function takes the exponential (CARA) form:

u (c− v(e)) = −1
ρ

exp {−ρ(c− v(e))} with ρ > 0 and the function v is as in (30).

Proposition 2. If preferences are CARA, for each given θt−1, the present value of transfers solving problem

(R') - which are de�ned as PV Tt =
∑T−t
n=0 (Πn

s=0qt+s−1) τt+n (θt+n) - obeys to the following. There are θt−1-

measurable functions {ηt}Tt=1 such that for all θt, t ≥ 1 :

T−t∑
n=0

(Πn
s=0qt+s−1) τ

(
θt+n

)
= ηt

(
θt−1

)
+
T−t∑
n=0

(Πn
s=0qt+s−1)

[(
1
a
− 1
)
θt+n

]
(32)

or, equivalently, for all θt, t ≥ 1

τt
(
θt
)

+
T−t∑
n=1

(Πn
s=1qt+s−1) ηt+n

(
θt+n

)
= ηt

(
θt−1

)
+
(

1
a
− 1
)
θt.

In particular,
∑T−t
n=0 (Πn

s=0qt+s−1) τ (θt+n) admits partial derivative with respect to θt and for each �xed past

history θt−1, and �xed future θt+1, ..., θT , we have

∂

∂θt

T−t∑
n=0

(Πn
s=0qt+s−1) τ

(
θt+n

)
=
(

1
a
− 1
)
.

Proof. Keep in mind that we must show the following set of equations:

τT
(
θT
)

= ηT
(
θT−1

)
+
(

1
a
− 1
)
θT

τT−1

(
θT−1

)
+ qT−1ηT

(
θT−1

)
= ηT−1

(
θT−2

)
+
(

1
a
− 1
)
θT−1

....

τ1 (θ1) +
T−1∑
n=1

(Πn
s=1qt+s−1) ηn+1 (θn) = η1 +

(
1
a
− 1
)
θ1.
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We will prove our proposition backwards. Let's consider our problem in the last two periods. It is easy

to see from our relaxed problem that, since the agent has von Neumann-Morgenstern utility and the �rm

maximizes the expected discounted value of pro�ts, the only link across states comes from the incentive

constraints In the proof below we will only consider the relevant incentive constraints.

s.t. for all θT−1 :

u(θT−1 + τ(θT−1)) + δ

∫
Θ

u(θT + τ(θT−1, θT ))dΦ(θT | θT−1) ≥ (33)

max b,θ̂T−1≤θT−1
u(θ̂T−1 + τ(θT−2, θ̂T−1)− qT−1b−

1
a

(θ̂T−1 − θT−1)) +

+δ
∫

Θ

u(θT + b+ τ(θT−2, θ̂T−1, θT ))dΦ(θT | θT−1);

and

and for all θT−1, θT and θ̂T ≤ θT :

u(θT + τ(θT−1, θT )) ≥ u(θ̂T + τ(θT−1, θ̂T )− 1
a

(θ̂T − θT )); (34)

Lemma 2 If the utility function is CARA, the transfer scheme solving problem (R') satis�es the following

condition: for all θT−1 we have τ(θT−1, θ′T )− τ(θT−1, θ′′T ) = −(1− 1
a )(θ′T − θ′′T ) for all θ′T , θ

′′
T . In particular,

the partial derivative ∂
∂θT

τ
(
θT
)
exists and it equals ( 1

a − 1) for all θT−1.

Proof. It is easy to see from (34) (by taking the inverse of u transformation to both sides and apply it to

all θ ) that τ(θT−1, θ′T )−τ(θT−1, θ′′T ) ≥ −(1− 1
a )(θ′T −θ′′T ) for all θ′T , θ

′′
T is a necessary condition for incentive

compatibility.27 Now, suppose that for a range of productivities we have τ(θT−1, θ
′

T ) − τ(θT−1, θ′′T ) >

−(1 − 1
a )(θ′T − θ′′T ) for all θ′T , θ

′′
T ∈ [θ0

T − ε, θ0
T + ε]. We claim that there is a modi�cation to the contract

that keeps the same utility to the agent and reduces the net present value of the transfers for the �rm. The

new scheme is such that τ̃(θT−1, θ
′

T ) − τ̃(θT−1, θ′′T ) = −(1 − 1
a )(θ′T − θ′′T ) and for each node θT−1 the new

transfer solves
∫ θ+ε
θ−ε u(θT + τ̃(θT−1, θT ))dΦ(θT | θT−1) =

∫ θ+ε
θ−ε u(θT + τ(θT−1, θT ))dΦ(θT | θT−1). The fact

that the new scheme imposes less consumption dispersion to the agent implies that it is potentially able to

deliver the same agent's expected utility with lower average transfers. We have to show that this change is

incentive feasible. Let's start with condition (34). The new transfer scheme is incentive compatible in the

range [θ0
T − ε, θ0

T + ε] by construction. Moreover, it reduces the utility at the top extreme of the range while

it increases agent's utility at the bottom of the range. Now, from the speci�c form of u we have∫
Θ

u(θT + b+ τ̃(θT−1, θT ))dΦ(θT | θT−1) = exp{−ρb}
∫

Θ

u(θT + τ̃(θT−1, θT ))dΦ(θT | θT−1)

= exp{−ρb}
∫

Θ

u(θT + τ(θT−1, θT ))dΦ(θT | θT−1)

=
∫

Θ

u(θT + b+ τ(θT−1, θT ))dΦ(θT | θT−1)

for all b. The equality in the second row is true since the new scheme solves
∫

Θ
u(θT+τ̃(θT−1, θT ))dΦ(θT | θT−1) =

27If for a θT <∞, the transfer scheme has slope less that
(
1− 1

a

)
, we can choose θ′T > θT and obtain the

violation of the incentive compatibility constraint when the agent has shock θ′T .
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∫
Θ
u(θT + τ(θT−1, θT ))dΦ(θT | θT−1). This implies that the change does not a�ects (33) or any other incen-

tive constraint (31) as Vt

((
θt−1, θt

)
, θ̂t, b

)
are unchanged for all t, b. Note that this result implies that the

transfer τT is partially di�erentiable in θT with derivative equal to (1 − 1
a ) for all θT−1 and θT < θmax.

28

Note that when θmax =∞ the function τT is partially di�erentiable everywhere. Q.E.D.

To complete the induction argument we need the following.

Lemma 3. If a transfer scheme solving (R') is such that for all s > t ∂
∂θs

PV Ts(θs) = 1
a − 1 for all θs

and all (θs+1, ...θT ) , then ∂
∂θt

PV Tt(θt) = 1
a − 1 for all θt and all (θt+1, ...θT ).

Proof. First, note that from the incentive constraint we have for all θ′t ≤ θ′′t PV Tt(θt−1, θ′′t ) −
PV Tt(θt−1, θ′t) ≥ (1− 1

a )(θ′t − θ′′t ). If this were not true then the agent with realization θ′′t would declare θ′t

and improve welfare. In particular, let κ = PV Tt(θt−1, θ′′t )−PV Tt(θt−1, θ′t) and suppose κ < (1− 1
a )(θ′t−θ′′t ).

Consider an agent with productivity θ′′t declaring θ′t. The agent would (have to) reduce e�ort so that the

argument of the �ow utility u in case of zero bond decision would be θ′t + τ(θt−1, θ′t)− 1
a (θ′t− θ′′t ) as opposed

to θ
′′

t + τ(θt−1, θ
′′

t ) when telling the truth. We now show that there is a plan of bonds b̂ such that telling

the truth in the future and choosing the constructed bonds plan improves agents's welfare. Namely, we will

show that constraint (31) is violated at node θt. The bond plan b̂ is constructed so that the deviating agent

gets exactly the same argument in the �ow utility u all nodes but the last period one, where in each of the

last period nodes the agent consumes ĉT
(
θT
)

= cT
(
θT
)

+ (1− 1
a )(θ′t−θ

′′
t )−κ

Πsqs
. The bond plan b̂ is constructed

as follows. Let θt+s :=
(
θt−1, θ

′′

t , θt+1, ...θt+s

)
the true history of shocks. Note that the agent expectations

are taken according the distribution implied by this history. Moreover, let θ̂t+s :=
(
θt−1, θ′t, θt+1, ...θt+s

)
. In

order to obtain the plan of consumption ĉt+s

(
θ̂t+s

)
= ct+s (θt+s) = θt+s + τ(θt+s) for s > 1, the bond plan

must solve for all s > 1

bt+s
(
θt+s−1

)
− qt+sbt+s+1

(
θt+s

)
= ηt+s(θt+s−1)− ηt+s(θ̂t+s−1).

Moreover, in period t we have

qtbt+1

(
θt
)

=
[
θ
′′

t + τ(θt−1, θ
′′

t )
]
−
[
θ′t + τ(θt−1, θ′t)−

1
a

(θ′t − θ′′t )
]
.

It is east to see - by straightforward calculations - that the plan satis�es two key properties. First, it delivers

the same consumption plan to the agent at all nodes but the last as claimed. This is so because our inductive

hypothesis. Second, the plan is budget feasible if ĉT
(
θT
)

= cT
(
θT
)

+ (1− 1
a )(θ′t−θ

′′
t )−κ

Πsqs
> cT

(
θT
)
as claimed.

We now have to show that it cannot be the case that the inequality is strict. Suppose that for some

range of skills [θ0
t − ε, θ0

t + ε] and consider the modi�cation to the contract that makes it an equality and

delivers the same expected utility to the agent over this range. We now show that this change is incentive

compatible. The argument is a generalization of the last part of the proof of Lemma 2. Q.E.D.

28More precisely, for each θT < θmax choose θ′T > θT .We have just shown that for all θT such that θT ≤ θ′T
the transfer scheme has constant slope which equals

(
1− 1

a

)
.
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Assumption 2. The stochastic process for skills follows: θt−θt−1 = β (L) vt, where β (·) is a polynomial

of order p in the lag operator L, and the innovation vt is white noise (serially uncorrelated) process assumed

to be normally distributed with zero mean and variance σ2
v. The moving average process is invertible, that is

the roots of the polynomial β (L) lie outside the unit circle (we normalize β0 = 1).29 Moreover, assume that

qt = q for all t.

It should be clear from the proof, that next proposition - with the appropriate adjustments in notation -

can be shown with slightly more general processes for θt, as long as linearity in the law and the assumption

of Gaussian shocks are maintained. Moreover, the assumption of constant q is done only for notational

simplicity. The obtained expressions are those in the main text.

Proposition 3. Assume A1 and A2. For all t, T such that T − t − 1 ≥ p, the consumption process

follows

c∗t+1 − c∗t =
ln(δ/q)
ρ

+
ρ

2a2
[β (q)]2 σ2

v +
1
a
β (q) vt+1.

In particular, if the productivity process follows θt = θt−1 + vt, we have c∗t+1 − c∗t = Γt + 1
a

(
y∗t+1 − y∗t

)
=

ln(δ/qt)
ρ + ρ

2a2σ
2
v + 1

avt+1 no matter what is the time horizon and the sequence of bond prices.

Proof. First, from ct = yt + τt at all nodes,
30 we have that both

Et
T−t−1∑
n=0

qnc∗t+1+n = Et
T−t−1∑
n=0

qn
(
y∗t+1+n + τ∗t+1+n

(
yt+1+n

))
and (35)

Et+1

T−t−1∑
n=0

qnc∗t+1+n = Et+1

T−t−1∑
n=0

qn
(
y∗t+1+n + τ∗t+1+n

(
yt+1+n

))
.

Using the Euler equation

exp {−ρ(c∗t )} =
(
δ

q

)s
Et
[
exp

{
−ρ(c∗t+s)

}]
.

and the properties of the normal distribution, we have, for s ≥ 1

Etc∗t+s = c∗t + s
ln δ

q

ρ
− ρ

2

s∑
n=1

σ2
ct+n

Et+1c
∗
t+s = c∗t+1 + (s− 1)

ln δ
q

ρ
− ρ

2

s−1∑
n=1

σ2
ct+1+n

,

where σ2
ct is the variance of consumption growth in period t. This implies

T−t−1∑
s=1

(Et+1 −Et) qsc∗t+s =
1− qT−t

1− q

[
c∗t+1 − c∗t +

ln q
δ

ρ
− ρ

2
σ2
ct+1

]
,

29Obviously, we assume the following initial conditions for the process: θ0 = v0 = v−1 = ..v−p = 0, where p is the

maximum number of lags in the MA component of the process.
30One would obtain the same for any process for bonds using the standard rearrangements in the permanent

income literature (e.g., Deaton, 1992).
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and, using (35):

c∗t+1 − c∗t = Γt +
1− q

1− qT−t
(Et+1 −Et)

[
T−t−1∑
n=0

qn
(
y∗t+1+n + τ∗t+1+n

(
yt+1+n

))]
,

with Γt = ln(δ/q)
ρ + ρ

2σ
2
ct .

Second, if we apply Lemma 3 - in particular, see equation (32) - together with θt+n = y∗t+n for all t, n,

since (Et+1 −Et) ηt+1 (yt) = 0, we obtain

(Et+1 −Et)

[
T−t−1∑
n=0

qnτ∗t+1+n

(
yt+1+n

)]
=
(

1
a
− 1
)

(Et+1 −Et)

[
T−t−1∑
n=0

qny∗t+1+n

]
.

If we now combine the two last expressions, we obtain:

c∗t+1 − c∗t = Γt +
1
a

1− q
1− qT−t

(Et+1 −Et)

[
T−t−1∑
n=0

qny∗t+1+n

]
. (36)

hence Γt =
ln δ
q

ρ + ρ
2σ

2
ct .

From Assumption 2, for T − t− 1 ≥ p, equation (36) becomes31

c∗t+1 − c∗t =
ln δ

q

ρ
+
ρ

2
σ2
ct +

1
a

1− q
1− qT−t

T−t−1∑
n=0

qnβ (q) vt+1 =
ln δ

q

ρ
+
ρ

2
σ2
ct +

1
a
β (q) vt+1.

Finally, since the above expression implies that σ2
ct := vart

(
∆c∗t+1

)
= [β(q)]2

a2 σ2
v , we obtain the claimed

expression for consumption growth.

Clearly, the case with purely permanent shocks corresponds to the case where βi = 0 for i ≥ 1, hence

the result is trivial. It is also easy to show that in this case, b∗t ≡ 0 is consistent with

∂τt (yt)
∂yt

=
1
a
− 1 for all t; and

∂τt (yt)
∂yt−s

= 0 for all t, s > 0.

31Recall that yt follows

y∗t+1 = y∗t + β (L) vt+1,

with β (·) of order p. We hence have:

(Et+1 −Et) y
∗
t+1 = vt+1

(Et+1 −Et) qy
∗
t+2 = q (1 + β1) vt+1

(Et+1 −Et) q
2y∗t+3 = q2 (1 + β1 + β2) vt+1

....

(Et+1 −Et) q
ny∗t+1+n = qn (1 + β1 + ...+ βp) vt+1 for n ≥ p.

As long as T − t − 1 ≥ p, collecting terms `vertically' the expression takes the stable form we indicate in the main

text.
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It is hence easy to see that

∆c∗t+1 =
ln δ

q

ρ
+

ρ

2a2
σ2
v +

1
a

(
y∗t+1 − y∗t

)
, (37)

for all T <∞ and all {qt}T−1
t=1 . Q.E.D.

We now use that fact that the tax scheme is linear to show the following Lemma that concludes the

proof.

Proposition 4. If the agent has CARA preferences, when facing the above tax, the agent's problem is

concave, so the derived tax scheme is optimal.

Proof. Note that so far we have shown that the transfer scheme is di�erentiable. Moreover, the agent's

necessary conditions for e∗t (θt) = 0 to be an optimal choice is

∂

∂θt

T−t∑
n=0

qnτ
(
θt+n

)
∈
[

1
a
− 1,

1
b
− 1
]
.

Since we have shown that ∂
∂θt

∑T−t
n=0 q

nτ (θt+n)= 1
a − 1 the condition is met.

Now note that since e∗t (θt) ≡ 0, at all nodes we have yt (θt) = θt. We can hence invert the identity map

and write the transfer scheme as a function of income histories yt. We have to show that, when facing the

optimal tax scheme, the agent's problem is jointly concave in {et (θt)}Tt=0 and {bt+1 (θt)}Tt=0 . Consider two

contingent plans e1, b1, c1 and e2, b2, c2. Now consider the plan eα, bα, cα where for all yt, and α ∈ [0, 1] we

have eαt (θt) := αe1
t (θt) + (1− α) e2

t (θt) , and similarly for bαt and cαt . First of all, since assets enter linearly

in the agent's budget constraint and e�ort enters linearly in the production function, the concavity of the

agent's utility in c − v (e), and the additive separability over time and states imply that if we show that

cαt − v (eαt ) ≥ α
[
c1t − v

(
e1
t

)]
+ (1− α)

[
c2t − v

(
e2
t

)]
, we are done. If we set kt the constant of integration of

τt, an agent who chooses plan eα of e�ort, at node θt gets

cαt − v (eαt ) = yαt +
t−1∑
i=0

τ
(t−i)
t yαt−i + kt − v (eαt )

= θt + eαt +
t−1∑
i=0

τ
(t−i)
t

[
θt−i + eαt−i

]
+ kt − v (eαt )

≥
[
α
(
θt + e1

t

)
+ (1− α)

(
θt + e2

t

)]
+

t−1∑
i=0

τ
(t−i)
t

[
θt−i + eαt−i

] [
α
(
θt−i + e1

t−i
)

+ (1− α)
(
θt−i + e2

t−i
)]

+kt − α
[
v
(
e1
t

)]
+ (1− α)

[
v
(
e2
t

)]
= α

[
c1t − v

(
e1
t

)]
+ (1− α)

[
c2t − v

(
e2
t

)]
,

where the inequality in the penultimate row comes from the concavity of v in e. The last line uses the agent's

budget constraint ct (yt) = yt + τ (yt) . Q.E.D.

A �nal remark. Although the proof of the closed form uses �nite time, we conjecture that adapting the

proof of Proposition 7 in Cole and Kocherlakota (2001), we are able to show that same close form solution

for T =∞ despite u is unbounded below.

9



7.2 Quadratic utility

We now maintain the same assumptions on the cost function v (or the production function f) as in (30).

Moreover, we keep the linearity assumption for the process θt - ∆θt = β (L) vt - but we do not assume any

parametric distribution for the iid shocks vt (of course, we need to be able to take expectations). In fact, we

now need to assume that Θ is bounded above by θmax <∞, and that agent's preferences are quadratic:

u (c− v (e)) := −1
2
(
B̄ − (c− v (e))

)2
with B̄ >> Tθmax. (38)

Finally, we are able to derive the closed form only within the class of transfer schemes that admit symmetric

cross partial derivative. Making assumptions on endogenous variables is of course not desirable, but note

that the incentive constraint will always impose some degree of monotonicity on the transfer scheme. Since

monotone function on compact sets are absolutely continuous, under few further regularity conditions, we

conjecture that one would be able to show at least almost everywhere di�erentiability of the transfer scheme.

Of course, the symmetry of the Hessian is an even stronger condition which we did not investigate how to

show from primitives.

We have the following.

Proposition 5. If the agent has preferences as in (38) and θt = θt−1 + β (L) vt, within the class of

transfer schemes that admit symmetric cross derivatives, taxes are linear in income histories. Moreover, if

δ = q, the expression of marginal taxes is exactly as in the CARA case. In particular, for T ≥ t+ p+ 1, we

have

∆c∗t+1 =
1
a
β (q) vt+1.

Proof. First of all, from Lemma 1, in equilibrium we will get e∗t ≡ 0, hence the transfer scheme is

invertible and we can write it in terms of income histories yt. We now need a crucial lemma, which uses

di�erentiability.

Lemma 4. Within the class of within the class of transfer schemes that admit symmetric cross deriva-

tives, the discounted value of marginal transfers
∑T−t
n=0 q

n ∂τt+n(yt+n)
∂ys

does not depend on (yt, ..., yT ) for all

s. They are hence linear functions of ys given yt.

Proof. Consider the following relaxed problem the �rm: Maximize expected discounted pro�ts, choosing

the transfer scheme, subject to the �rst order conditions of the agent, namely for all t ≥ 1, and t ≥ s ≥ 0

1
b
−1 ≥ Et−s

T−t∑
n=0

δn
[
∂τt+n (yt+n)

∂yt

u′ (ct+n − et+n)
u′ (ct − et)

]
= Et−sEt

[
T−t∑
n=0

δn
∂τt+n (yt+n)

∂yt

u′ (ct+n − et+n)
u′ (ct − et)

]
≥ 1
a
−1;

(39)

and the Euler equations corresponding to u as in (38)

−B̄ + ct
(
yt
)

=
(
δ

q

)s
Et
[
ct+s

(
yt+s

)]
−
(
δ

q

)s
B̄. (40)
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The proof is by backwards induction. By looking at the last period of the problem, we have

1
b
≥ 1 +

∂τT
(
yT
)

∂yT
≥ 1
a
.

Since the �rm aims at insuring the agent, the relevant inequality is the second one. Moreover, given that

there is not gain in e�ciency in changing the implemented level of e�ort, and (40) is not a�ected as long

as the average value of transfers does not change, the �rm will set
∂τT (yT−1,yT )

∂yT
= 1

a − 1 for all yT−1 and

yT . This implies a zero cross derivative:
∂τT (yT−1,yT )

∂yT ∂yt
= 0 for all t. Given our assumptions on the class of

transfer schemes, by symmetry, it must be that
∂τT (yT )
∂yt

is constant in yT for all t < T .

Now consider τT−1. Since
∂τT (yT )
∂yT−1

does not depend on yT , the e�ort incentive compatibility can be

written as follows:

∂τT−1

(
yT−1

)
∂yT−1

+ δ
∂τT

(
yT
)

∂yT−1
ET−1

[
u′ (cT )
u′ (cT−1)

]
=

1
a
− 1, for all yT−2 and yT−1.

Since ET−1

[
u′(cT )
u′(cT−1)

]
= q

δ , we have that
∂τT−1(yT−1)

∂yT−1
+ q

∂τT (yT )
∂yT−1

is a constant for all all yT−2 and yT−1.

Again, since the transfer scheme is assumed to have symmetric cross derivative, this property implies that

∂τT−1(yT−1)
∂yt

+ q
∂τT (yT )
∂yt

is also constant in yT−1 (and yT ) for all t. Going backwards, we have our result:∑T
n=t q

n ∂τn(yn)
∂ys

is constant in yt, ..., yT for all s. Q.E.D.

Given the above results we can apply the law of iterated expectations and get, for a generic δ and q

Et

[
T−t∑
n=0

δn
∂τt+n (yt+n)

∂yt

u′ (ct+n − et+n)
u′ (ct − et)

]

= Et

[
T−t−1∑
n=0

δn
∂τt+n (yt+n)

∂yt

u′ (ct+n − et+n)
u′ (ct − et)

+ δT−tET−1

∂τT
(
yT
)

∂yt

u′ (cT − eT )
u′ (ct − et)

]

= Et

[
T−t−1∑
n=0

δn
∂τt+n (yt+n)

∂yt

u′ (ct+n − et+n)
u′ (ct − et)

+ δT−t
∂τT

(
yT
)

∂yt
ET−1

u′ (cT − eT )
u′ (cT−1 − eT−1)

u′ (cT−1 − eT−1)
u′ (ct − et)

]

= Et

[
T−t−1∑
n=0

δn
∂τt+n (yt+n)

∂yt

u′ (ct+n − et+n)
u′ (ct − et)

+ δT−t−1q
∂τT

(
yT
)

∂yt

u′ (cT−1 − eT−1)
u′ (ct − et)

]

= Et

[
T−t−2∑
n=0

δn
∂τt+n (yt+n)

∂yt

u′ (ct+n − et+n)
u′ (ct − et)

+ δT−t−1ET−2

(
∂τT−1

(
yT−1

)
∂yt

+ q
∂τT

(
yT
)

∂yt

)
u′ (cT−1 − eT−1)
u′ (ct − et)

]

= Et

[
T−t−2∑
n=0

δn
∂τt+n (yt+n)

∂yt

u′ (ct+n − et+n)
u′ (ct − et)

+ δT−t−2q

(
∂τT−1

(
yT−1

)
∂yt

+ q
∂τT

(
yT
)

∂yt

)
u′ (cT−2 − eT−2)
u′ (ct − et)

]
...

= Et

[
T−t∑
n=0

qn
∂τt+n (yt+n)

∂yt

]
. (41)

where we repeatedly used the linearity of expectations and the Euler equation. We are hence done since -

given that the obtained taxes are linear - Proposition 4 implies that this transfer scheme is optimal (now
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within the class of schemes we consider). Moreover, we are now able to follow the steps for the derivation of

the closed form for CARA utility and obtain a very similar closed form.

Since from the incentive compatibility for e�ort et, we have Et

[∑T−t
n=0 q

n ∂τ
∗
t+n(yt+n)
∂yt

]
= 1

a − 1, by using

the law of iterated expectations, one obtains:

(Et+1 −Et)

[
T−t−1∑
n=0

qnτ∗t+1+n

(
yt+1+n

)]
=
(

1
a
− 1
)

(Et+1 −Et)

[
T−t−1∑
n=0

qny∗t+1+n

]
. (42)

The expressions for the optimal individual taxes τt can be obtained working backwards. In the working

paper Attanasio and Pavoni (2006) we consider generic q and δ. When q 6= δ the expressions can get quite

complicated even for the purely temporary shocks. When δ = q however, from the Euler equation we have

Etc∗t+s = c∗t for all s. So, following exactly the lines of proof of Proposition 3 above for CARA - namely

using the standard re-arrangements of the permanent income literature - we obtain that

c∗t+1−c∗t =
1− q

1− qT−t
(Et+1 −Et)

[
T−t−1∑
n=0

qn
(
y∗t+1+n + τ∗t+1+n

(
yt+1+n

))]
=

1
a

1− q
1− qT−t

(Et+1 −Et)

[
T−t−1∑
n=0

qny∗t+1+n

]
.

Again, for T − t− 1 ≥ p, the expression stabilizes to the claimed one:

c∗t+1 − c∗t =
1
a
β (q) vt+1.

Q.E.D.

7.3 Isoelastic utility: A closed-form in logs

The outcome of this section will be an expression for innovation in log consumption of the form analogous

to those we obtained in Proposition 3 and 4 above for the CARA and quadratic agent's utilities

ln c∗t+1 − ln c∗t =
ln δ

q

γ
+

γ

2a2
[β (λq)]2 σ2

v +
1
a
β (λq) vt+1,

where vt+1 is the innovation to log of income and 1
γ is the intertemporal elasticity of substitution of con-

sumption at two consecutive dates, and λ > 0 is such that λq ≤ δ for γ ≥ 1. We will also obtain expressions

for tax rates at di�erent dates.

7.3.1 Model and derivation of the Permanent Income equation

Assume a production function of the form:

ln yt = ln θt + ln et,

and the following process for skills:

ln θt = ln θt−1 + β (L) vt.
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As for the CARA case, an additional assumption, which will be crucial for us to get an exact closed form, is

that the shocks vt are normally distributed with zero mean and variance σ2
v (note that we slightly abuse in

notation here).

Recall our speci�cation for preferences:(
ct · e−φ(et)

t

)1−γ

1− γ
=

1
1− γ

exp {(1− γ) (ln ct − φ (et) ln et)} ,

where φ (e) = 1
a for e ≤ 1 and φ (e) = 1

b for e ≥ 1. Our aim is to write the problem in logs in order to exploit

the analogies to the case in levels. Clearly, the objective function of the agent is concave in log decisions

whenever γ > 1, and assumption consistent with empirical �ndings.32 Since in equilibrium we have e∗t ≡ 1,

the Euler equation is the usual one

Et

[(
ct+1

ct

)−γ]
= Et

[
exp

(
−γ ln ct+1

ln ct

)]
= exp

(
−γµt + γ2 1

2
σ2
t

)
=
q

δ
, (43)

where we used the fact that in equilibrium ct+1 will be log-normally distributed,33 with µt and σ
2
t being the

conditional mean and conditional variance of ∆ ln ct+1 respectively.

Since we implement b∗t ≡ 0, the budget constraint in equilibrium implies that ln c∗t (yt) = ln y∗t +ln τ∗t (yt) .

In what follows, for notational simplicity, we will abuse in notation and use yt to denote the history of log

incomes. Since the logarithmic function is strictly monotone (and yt ≥ 0) every function of yt can be written

as a function of ln yt, and vice versa. The objective function for e�ort plans hence becomes

E0

∑
t=0

δt
1

1− γ
exp

{
(1− γ)

(
ln yt + ln τt

(
yt
)
− v (ln et)

)}
.

Given our speci�cation for v and u, the objective function can be all expressed in logs. It is now easy to see

the strong analogy to the case in levels considered above. In particular, we will follow the main line of proof

we adopted for the quadratic utility with the additional feature of log normality to obtain precise expression

for (deterministic) consumption growth rates as in the CARA case. If we assume that the transfer scheme

τ is di�erentiable, the �rst order condition for log of e�ort ln et is

Et
T−t∑
n=0

δn
(
ct+n
ct

)1−γ
∂ ln τt+n (yt+n)

∂ ln yt
=

1
a
− 1 (44)

Once again if the transfer scheme admits symmetric cross derivative we can show backwards that the con-

ditional expectations can be decomposed since
∂ ln τt+n(yt+n)

∂ ln yt
does not depend on (log) yt+n.

The strong similarity with the model in levels has one last caveat. Since ct is log normally distributed,

we have

Et

[(
ct+n
ct

)1−γ
]

= Et

[
exp

(
(1− γ)

ln ct+1

ln ct

)]
= exp

{
(1− γ)µt +

1
2

(1− γ)2
σ2
t

}
.

32For the UK, see Attanasio and Weber (1993).
33For a more extensive argument on this, see the very last section in the Appendix of Attanasio and Pavoni

(2006).
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Moreover, from the Euler equation (43) we obtain:

exp
{

(1− γ)µt +
1
2

(1− γ)2
σ2
t

}
= exp

{
−γµt + γ2 1

2
σ2
t

}
exp

{
µt +

1
2

(1− 2γ)σ2
t

}
=

q

δ
exp

{
µt +

1
2
σ2
t − γσ2

t

}
: =

q

δ
λt. (45)

where λt := exp
(
µt +

(
1
2 − γ

)
σ2
t

)
> 0. In the log utility case, when δ = q then λt = 1.34 Similarly, by the

law of iterated expectations, assuming constant µt and σ
2
2 , we get

Et

[(
ct+n
ct

)−γ]
= Et

[(
ct+1

ct

)−γ
Et+1

(
ct+2

ct+1

)−γ
· .. ·Et+n−1

(
ct+n
ct+n−1

)−γ]
=
(q
δ

)n
,

and

Et

[
exp

(
(1− γ)

ln ct+n
ln ct

)]
= Et

[
exp

{
−γ ln ct+1

ln ct

}
λEt+1 exp

{
−γ ln ct+2

ln ct+1

}
λ · .. ·Et+n−1 exp

{
−γ ln ct+n

ln ct+n−1

}
λ

]
=

(
qλ

δ

)n
.

Again, using using the law of iterated expectations in the same way we did to derive equation (41), the

incentive constraint (44) can be written as

Et
T−t∑
n=0

(qλ)n
∂ ln τt+n (yt+n)

∂ ln yt
=

1
a
− 1. (46)

Since in the log space, taxes are linear and the agent's objective function is concave for γ ≥ 1, the so

derived scheme is the optimal one within the class of di�erentiable schemes with symmetric cross-derivative

as it solves the relaxed problem (only subject to the �rst order conditions), while being globally incentive

compatible.

We can now follow the same steps as for the model in levels to obtain the desired permanent income

expressions: from lnct = ln yt + ln τt at all nodes, we get

Et
T−t−1∑
n=0

(qλ)n ln c∗t+1+n = Et
T−t−1∑
n=0

(qλ)n
(
ln y∗t+1+n + ln τ∗t+1+n

(
yt+1+n

))
Et+1

T−t−1∑
n=0

(qλ)n ln c∗t+1+n = Et+1

T−t−1∑
n=0

(qλ)n
(
ln y∗t+1+n + ln τ∗t+1+n

(
yt+1+n

))
.

34Since µt = ln δ/q
γ

+ γ
2
σ2
t , λt =exp

(
ln δ/q
γ

+ 1−γ
2
σ2
t

)
which implies λt ≤ δ

q
since γ ≥ 1. Moreover, when u is

logarithmic, we have λ = δ
q , which is obviously consistent with

lim
γ→1+

Et

[
exp
(

(1− γ)
ln ct+n
ln ct

)]
= 1.
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By repeatedly using Euler equation (43), together with the properties of the normal distribution, we obtain

ln c∗t+1 − ln c∗t =
ln(δ/q)
γ

+
γ

2
σ2 +

1− qδ
1− (qδ)T−t

(Et+1 −Et)

[
T−t−1∑
n=0

(qλ)n
(
ln y∗t+1+n + ln τ∗t+1+n

(
yt+1+n

))]
,

Finally, from the expression for marginal log taxes, we obtain

ln c∗t+1 − ln c∗t =
ln(δ/q)
γ

+
γ

2
σ2 +

1
a

1− qδ
1− (qδ)T−t

(Et+1 −Et)

[
T−t−1∑
n=0

(qλ)n
(
ln y∗t+1+n

)]
.

It is hence again easy to see that for T ≥ t + 1 + p - using the properties of the ARIMA(p) process we

postulated above - the previous expression stabilizes into

∆ ln c∗t+1 =
ln(δ/q)
γ

+
γ

2
σ2 +

1
a

1− qδ
1− (qδ)T−t

T−t−1∑
n=0

(qλ)n β (qλ) vt+1 =
ln(δ/q)
γ

+
γ

2
σ2 +

1
a
β (qλ) vt+1. (47)

Since the polynomial is invertible, and 0 <qλ ≤ δ, all expressions are well de�ned. Moreover, from (47) we

obtain that that σ2 := vart
(
∆ ln c∗t+1

)
= [Σi((qλ)iβi)]2

a2 σ2
v = [β(λq)]2

a2 σ2
v as claimed above.

7.3.2 Expressions for taxes

The analysis is tedious but straightforward. Taxes will be de�ned by the two incentive constraints: The e�ort

incentive constraints, and the Euler equations. Moreover, since taxes take very complicated expressions for

the periods close to T, we will derive the expressions only for stable values, hence for su�ciently large T.

The whole analysis will be considerably simpli�ed if we describe the transfer scheme in terms of the

histories of the shocks vt. In order to simplify the notation we keep all symbols as above (although this is

an abuse in notation of course). Let vt = (v1, ..., vt) be a given history of shocks. By repeatedly applying

the law for ln θt, we have

ln θt = ln θ0 +
t−1∑
s=0

β (L) vt−s. (48)

We will normalized θ0 = 1, and that lagged terms in the MA expressions v−s, s = 0, ..p, will be set to zero

as well by the other initial conditions. It is easy to see that in the last period we have

∂ ln τT
(
vT
)

∂vT
=

1
a
− 1. (49)

this is so since, given vT−1, the agent can lie over vT exactly in the same way as he would lie over θt, with

exactly the same marginal net costs/returns, as β0 = 1. As before, it is easy to show that taxes are linear

in vt. Note however that a lie over vt today a�ects future income not only through the transfer scheme, but

also via the persistence pattern of the process for θt. In particular, consider the an agent lying over vt and

then telling the truth over future vt+s. He/she will have to lie (implicitly) over all future θt+s, precisely by

the amount of the future e�ect of vt over θt+s. Of course, he/she will them forced to make income levels

to appear consistently with the lie, namely ŷt+s = θ̂t+s. For t ≤ T − p we hence have (note that we can
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eliminate the conditional expectation because of the linearity of taxes):

T−t∑
s=0

(qλ)s
∂ ln τt+s (vt+s)

∂vt
=
(

1
a
− 1
)[

1 + (qλ) (1 + β1) + (qλ)2 (1 + β1 + β2) + ...+ (qλ)p
β (1)

1− qλ

]
. (50)

Consider now, the Euler equation between periods t and t + 1, for t ≤ T − p. In order for b∗t ≡ 0 to be

incentive compatible at each node, we have

exp
{
−ρ(ln θt + ln τt

(
vt
)
)
}

=
δ

q
Et
[
exp

{
−ρ(ln θt+1 + ln τt+1

(
vt+1

)
)
}]
. (51)

As we saw, the incentive compatibility constraint together with the symmetric partial derivative assumption

implies that there is a function η̂t+1 such that ln τt+1

(
vt+1

)
= η̂t+1 (vt)+ τ

(t+1)
t+1 vt+1 (note that the functions

η̂ are not the same as the function η in Proposition 3 but very similar in nature, namely for all s ≥
0,

∂η̂t+1(vt)
∂vt−s

=
∂ ln τt+1(vt+1)

∂vt−s
). Since θt+1 is normally distributed, taking the log operator in both sides and

use the properties of the normal distribution, since Etvt+1 = 0, (51) becomes

ln θt + ln τt
(
vt
)

= Γt+1
t + Et ln θt+1 + η̂t+1

(
vt
)

= Γt+1
t + ln θt +

p∑
i=1

βivt+1−i + η̂t+1

(
vt
)
. (52)

where we used the projection result: Etθt+1 = θt +
∑p
i=1 βivt+1−i. We also used the linearity of the tax on

vt+1 together with Etvt+1 = 0. More in general, for all t, s ≥ 1, we have

ln θt + ln τt
(
vt
)

= Γt+st + ln θt +
min{s,p}∑
n=1

p∑
i=n

βivt+n−i + η̂t+s
(
vt
)
. (53)

Now, in order for (52) to hold true for all vt given v
t−1, it must be that

∂ ln τt (vt)
∂vt

=
∂η̂t+1 (vt)

∂vt
+ β1 =

∂ ln τt+1

(
vt+1

)
∂vt

+ β1.

In general, the Euler equation between period t and t+ s, s ≥ 1 implies

∂ ln τt (vt)
∂vt

=
∂ ln τt+s (vt+s)

∂vt
+

min{s,p}∑
i=1

βi. (54)

Hence, for s ≥ p, marginal taxes become constant. Now, in order for both the Euler equations and the

incentive constraint (50) to hold simultaneously, by repeatedly using (54) we have:

T−t∑
s=0

(qλ)s
∂ ln τt+s (vt+s)

∂vt
=

∂ ln τt (vt)
∂vt

[
1 + qλ (1− β1) + (qλ)2 (1− β1 − β2) + ...+ (qλ)p

2− β (1)
1− qλ

]
=

(
1
a
− 1
)[

1 + qλ (1 + β1) + (qλ)2 (1 + β1 + β2) + ...+ (qλ)p
β (1)

1− qλ

]
.

It is hence easy to see that

∂ ln τt (vt)
∂vt

=
(

1
a
− 1
) [

1 + qλ (1 + β1) + (qλ)2 (1 + β1 + β2) + ...+ (qλ)p β(1)
1−qλ

]
[
1 + qλ (1− β1) + (qλ)2 (1− β1 − β2) + ...+ (qλ)p 2−β(1)

1−qλ

] :=
(

1
a
− 1
)
κ,
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and of course all other taxes can be obtained from this expression from (54). Note that κ > 0 and, for future

reference, that when βi = 0 for all i > 0, κ = 1 so
∂ ln τt(vt)

∂vt
=

∂ ln τt+s(vt+s)
∂vt

= 1
a − 1.

Finally, we derive the expression relating the change in the cross sectional variance of consumption with

the change in cross sectional variance of income. Again, in order to have stable formulas we assume t ≥ p

and t ≤ T − p, so that all above expressions apply fully. We have

ln c∗t
(
θt
)

= ln y∗t + ln τ∗t
(
vt
)

+ ln θt + ln τ∗t
(
vt
)

(55)

= θt + τ
(0)
t vt + τ

(−1)
t vt−1 + ..+ τ

(−p)
t vt−p + τ

(−p)
t vt−p−1 + ...+ τ

(−p)
t v1 + τ0 + tΓ.

where, the constant of integration τ0 is chosen to satisfy the planner's budget constraint, and - as we have

shown above - for all t: τ
(−s)
t =

(
1
a − 1

)
κ− β1 − β2 − ...βs. Similarly, for t+ 1, we have

ln c∗t+1

(
θt+1

)
= θt+1 + τ

(0)
t+1vt+1 + τ

(−1)
t+1 vt + ..+ τ

(−p)
t+1 vt+1−p + τ

(−p)
t vt−p + ...+ τ

(−p)
t v1 + τ0 + (t+ 1) Γ,

where for all n we have τ
(−n)
t+1 = τ

(−n)
t . Recall that we are interested in computing the unconditional variance

of both the above term and that in (55), and then take the di�erence. This stated di�erence in variances

can be stated as follows:

∆var
(
ln c∗t+1

)
:= var

(
ln c∗t+1

)
− var (ln c∗t )

= var (θt+1)− var (θt) + var
(
τ∗t+1

(
vt+1

))
− var

(
τ∗t
(
vt
))

+ 2
[
cov

(
θt+1, τ

∗
t+1

(
vt+1

))
− cov

(
θt, τ

∗
t

(
vt
))]

.

Now, note the following:

var
(
ln τ∗t

(
vt
))

=
([
τ

(0)
t

]2
+ ..+ (1 + t− p)

[
τ

(−p)
t

]2)
σ2
v

while

var
(
ln τ∗t+1

(
vt+1

))
=

([
τ

(0)
t+1

]2
+ ..+ (2 + t− p)

[
τ

(−p)
t+1

]2)
σ2
v .

Moreover, for t ≥ p, τ (−n)
t+1 = τ

(−n)
t , we have

var
(
ln τ∗t+1

(
vt+1

))
− var

(
τ∗t
(
vt
))

=
[
τ

(−p)
t

]2
σ2
v .

and

cov
(
θt, τ

(−s)
t vt−s

)
= cov

(
θt+1, τ

(−s)
t+1 vt+1−s

)
, for s ≤ p, and

cov
(
θt, τ

(−p)
t vt−s

)
= cov

(
θt+1, τ

(−p)
t+1 vt+1−s

)
= τ

(−p)
t+1 β (1)σ2

v , for s ≥ p.

Given that for t ≥ p only the correlation with v1 remains in the t+ 1 terms, we have

cov
(
θt+1, τ

∗
t+1

(
vt+1

))
− cov

(
θt, τ

∗
t

(
vt
))

= τ
(−p)
t+1 β (1)σ2

v .

In summary:

∆var
(
ln c∗t+1

)
= ∆var (θt+1) +

[
τ

(−p)
t

]2
σ2
v + 2τ (−p)

t+1 β (1)σ2
v .
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Finally, since from the de�nition of θt in (48), for t ≥ p we have

∆var
(
ln y∗t+1

)
= ∆var (ln θt+1) = [β (1)]2 σ2

v > 0,

which implies

∆var
(
ln c∗t+1

)
=
[
β (1) + τ

(−p)
t+1

]2
σ2
v =

[
β (1) + τ

(−p)
t

]2
[β (1)]2

∆var
(
ln y∗t+1

)
,

where, recall that

τ
(−p)
t+1 =

(
1
a
− 1
) [1 + qλ (1 + β1) + (qλ)2 (1 + β1 + β2) + ...

]
[
1 + qλ (1− β1) + (qλ)2 (1− β1 − β2) + ...

] − β (1) + 1

hence β (1) + τ
(−p)
t = 1 +

(
1
a − 1

)
κ and

∆var
(
ln c∗t+1

)
=

(
1 +

(
1
a − 1

)
κ

β (1)

)2

∆var
(
ln y∗t+1

)
. (56)

Since both β (1) > 0 and κ > 0 the parameter a is identi�ed. Moreover, for βi = 0 for all i, we have

∆var
(
ln c∗t+1

)
=

1
a2

∆var
(
ln y∗t+1

)
. (57)

7.4 An extended model with two types of shocks

We now brie�y present an extension of our model that allows for two types of (independent) shocks to income,

with di�erent degrees of persistence. Although we develop the model in levels, very similar expressions can

be derived for the log-linear case.

Assume agents have preferences over ct, lt and et as follows: −1
ρ exp {−ρ (ct − et − lt)} . Moreover,

assume that individual income can be decomposed into two components: yt = xt+ξt, where xt = f (θpt , et),

and ξt = g
(
vTt , lt

)
. In this model, xt represents the permanent component of income as θpt = θpt−1 + vpt ,

with vpt iid; while ξt represents the temporary one, as vTt is iid. The production function f is as in (13), and

a similar functional form for g is assumed:

ξt = g
(
vTt , lt

)
= vTt + aT min {lt, 0}+ bT max {lt, 0} with aT > 1 > bT .

Since e�ort will be again time constant, in equilibrium, the income process will display the following

process:35

yt = yt−1 + vpt + ∆vTt . (58)

35We could easily allow the temporary shock vTt to follow a MA (p) process.
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We now follow a line of proof very similar to that used for the baseline model, and show that the reaction

of consumption to the di�erent shocks for T →∞ can be written as36

∆c∗t =
ln(δ/q)
ρ

+
ρ

2

[(
1
ap

)2

σ2
vp +

(
1− q
aT

)2

σ2
vT

]
+

1
ap
vpt +

1− q
aT

vTt , (59)

where, for consistency, we denoted by ap the slope of f for et ≤ 0.

The closed form for the version of our model with two types of shocks provides a structural interpretation

of recent empirical evidence. Using the evolution of the cross sectional variance and covariance of consumption

and income, Blundell et al. (2008) estimate two parameters, φ and ψ, representing the fraction of permanent

and temporary shocks re�ected into consumption. Within our model estimates of these parameters can be

interpreted as the severity of informational problems for income shocks of di�erent persistence.

7.4.1 Proof of the closed form expression (59).

The analysis is performed separately for the two type of shocks. Obviously, e∗t = l∗t = 0 at all nodes. We

can hence equivalently describe the transfer scheme in terms of incomes. In presence of both permanent and

temporary shocks, the �rm should obviously condition its transfers on ξt = g
(
vTt , lt

)
realizations as well.

Denote by ht = (xt, ξt) the combined public history. In the CARA case, by following the same line of proof

of Proposition 3 we can show the di�erentiability of the scheme and the �rst order conditions of the agent

solving

Et
T−t∑
n=0

δn
[
∂τt+n (ht+n)

∂ξt

u′ (ct+n − et+n − lt+n)
u′ (ct − et − lt)

]
=

1
aT
− 1

and

Et
T−t∑
n=0

δn
[
∂τt+n (ht+n)

∂xt

u′ (ct+n − et+n − lt+n)
u′ (ct − et − lt)

]
=

1
ap
− 1,

where, for consistency, we denoted by ap the slope of f for et ≤ 0. By the same proposition, the slopes
∂τt+n(ht+n)

∂ξt
do not depend on histories before or after period t, we can uses the Euler equation and apply

the law of iterated expectations and get, for a generic δ and a deterministic sequence of bond prices (in the

notation below ζ stays for x or ξ)

Et

[
T−t∑
n=0

δn
∂τt+n (ht+n)

∂ζt

u′ (ct+n − et+n − lt+n)
u′ (ct − et − lt)

]
= Et

[
T−t∑
n=0

(Πn
s=0qt+s−1)

∂τt+n (ht+n)
∂ζt

]
.

Of course, in the quadratic utility case, exactly the same expression for marginal taxes can be obtained

assuming the transfer scheme admits symmetric cross-derivatives in all elements of ht. If we write the

36The corresponding expression for the model in logs is

∆c∗t+1 =
ln(δ/q)

γ
+
γ

2

[(
1

ap

)2

σ2
vp +

(
1− λq
aT

)2

σ2
vT

]
+

1

ap
vpt+1 +

1− λq
aT

vTt+1.
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expressions for a constant q, we get:

Et
T−t∑
n=0

qn
∂τt+n (ht+n)

∂ξt
=

1
aT
− 1

and (60)

Et
T−t∑
n=0

qn
∂τt+n (ht+n)

∂xt
=

1
ap
− 1.

Assuming CARA (or quadratic) preferences, for permanent shocks (i.e., xt follows an ARIMA(0)), the Euler

equation implies that only contemporaneous marginal taxes are positive, and

∂ ln τt (yt)
∂ lnxt

=
1
a
− 1.

In this case, absent temporary shocks, we would have

∆ ln ct+1 =
ln δ

q

γ
+
γ

2
σ2
c +

1
a
vt+1,

Since, from the above expression, the variance of log consumption is σ2
c = 1

a2σ
2
v , we have

ln τt
(
yt
)

=
(

1
a
− 1
)

ln yt + t

[
ln δ

q

γ
+

γ

2a2
σ2
v

]
+ ln τ0. (61)

If we add temporary shocks. Since the analysis can be done independently, by comparing Euler equations

ad di�erent dates, one can easily show that the tax rates for the purely temporary shock are related as follows:

1 +
∂τt (ht)
∂ξt

=
∂τt+s (ht+s)

∂ξt
≥ 0, for all t,s > 0. (62)

It is hence easy to see by direct inspection of (62) and (60) that, as T → ∞, the expressions for transfers

become:

1 + τx =
1
ap

and 1 + τξ =
1− q
aT

,

where 1+τx = 1+
∂τt(ht)
∂xt

and 1+τξ = 1+
∂τt(ht)
∂ξt

=
∂τt+k(ht+k)

∂ξt
for k > 0. Hence tax rates are time-invariant,

and the agent's consumption reaction to income shocks is given by:37

∆ct+1 = Γ +
1
ap

∆xt+1 +
1− q
aT

∆ξt+1 = Γ +
1
ap
vpt+1 +

1− q
aT

vTt+1,

where Γ ≥ 0 and Γ = 0 when u is quadratic and δ = q.

As explained in the proof of Proposition 4, all the above expressions constitute optimal transfer schemes

since the agent's problem is concave as all taxes are linear in all arguments.

37As it should be clear from the analysis for the isoelastic model, the corresponding equation for the model in logs

is

∆ ln ct+1 = Γ +
1
ap

∆ lnxt+1 +
1− λq
aT

∆ ln ξt+1 = Γ +
1
ap
vpt+1 +

1− λq
aT

vTt+1,

where λ = exp
{

ln δ/q
γ

+ 1−γ
2
σ2
c

}
.
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Finally, given the expressions for marginal taxes, we have

c∗t
(
ht
)

= y∗t + τ∗t
(
ht
)

= x∗t + ξ∗t +
(

1
ap
− 1
)
x∗t +

(
1− q
aT

− 1
)
ξ∗t +

t−1∑
s=1

1− q
aT

ξ∗t−s

=
1
ap
x∗t +

1− q
aT

t−1∑
s=0

ξ∗t−s + tΓ + τ0. (63)

Now,

∆var
(
c∗t
(
ht
))

=
[
var

(
1
ap
x∗t

)
− var

(
1
ap
x∗t−1

)]
+ var

(
1− q
aT

t−1∑
s=0

ξ∗t−s

)
− var

(
1− q
aT

t−2∑
s=0

ξ∗t−s

)

=
(

1
ap

)2

σ2
vp +

(
1− q
aT

)2

σ2
vT (64)

=
(

1
ap

)2

∆var (y∗t ) + ψ,

where ψ :=
(

1−q
aT

)2
σ2
vT is a constant in the regression, and the last lines uses the fact that var (y∗t ) =

var (x∗t ) + var (ξ∗t ) + 2cov (x∗t , ξ
∗
t ) = var (x∗t ) + σ2

vT hence ∆var (y∗t ) = ∆var (x∗t ) .
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8 Appendix C: Bias correction for the variance based test

The observable version of equation (28) is:

∆V ar (cgt) =
1
a2

∆V ar (ygt) +
1
a2

∆εygt −∆εcgt, (65)

where εygt = V ar(ygt) − V ar (ygt), and εcgt = V ar(cgt) − V ar (cgt). The variance of the residuals ε will

go to zero as the size of the cells in each time period increases. Moreover, information on the within cell

variability can be used to correct OLS estimates of the coe�cients in equation (65). In particular, a bias

correct estimator will be given by the following expression:

θ̂ = A−1[θ̃ −B] (66)

where θ̃ = (Z ′Z)−1Z ′w is the OLS estimator, B = (Z ′Z)−1
{

1
T−1

∑T
t=2

σcygt
Ngt

+ σcygt−1
Ngt−1

}
allows for the

possibility of correlation between the εyt and εct and A is given by

A =

[
I − (Z ′Z)−1 1

T − 1

T∑
t=2

(
σ2
ygt

Ngt
+
σ2
ygt−1

Ngt−1

)]
,

In computing the variance covariance matrix of this estimator it will be necessary to take into account

the MA structure of the residuals as well as the possibility that observations for di�erent groups observed

at the same time will be correlated.

22



Table 1
Non Durable Consumption

gross earnings gross earnings gross earnings + gross earnings + net earnings + net earnings +
benefits benefits benefits benefits

income equation
Own shock
ayy(t) 1 1 1 1 1 1

- - - - - -
ayy(t-1) 0.505 - 0.333 - 0.376 -

(20.735) - (25.683) - (18.240) -
ayy(t-2) -0.672 - -0.748 - -0.507 -

(12.252) - (18.183) - (10.247) -
Income/Consumption Shock
ayc(t) 1.159 1.171 1.073 1.064 0.771 0.793

(0.346) (0.317) (0.329) (0.317) (0.253) (0.243)
ayc(t-1) -1.140 -1.148 -0.887 -0.894 -0.602 -0.587

(0.454) (0.415) (0.492) (0.459) (0.342) (0.323)
ayc(t-2) 0.992 0.995 0.827 0.844 0.619 0.568

(0.370) (0.331) (0.356) (0.311) (0.257) (0.227)
consumption equation
Income/Consumption Shock
acc(t) 1 1 1 1 1 1

- - - - - -
acc(t-1) -0.577 -0.493 -0.604 -0.491 -0.612 -0.499

(0.196) (0.114) (0.193) (0.116) (0.191) (0.111)
acc(t-2) 0.084 - 0.116 - 0.118 -

(0.201) - (0.191) - (0.193) -
Log L -773.3 -773.9 -759.5 -760.6 -685.0 -685.5

excess smoothness -0.491 -0.499 -0.489 -0.493 -0.273 -0.263
se (0.171) (0.165) (0.160) (0.153) (0.132) (0.128)

excess sensitivity
Log L unrestricted model -771.87 -773.4 -759.45 -758.9 -684.64 -684.4
LR 2.9 0.94 0.1 3.38 0.68 2.22
P-value 0.235 0.625 0.951 0.185 0.712 0.330

Comparison with 4 lags model
Log L 4lags model -771.5 -773.6 -756.3 -760.4 -681.7 -685.3
LR 3.7 0.54 6.34 0.42 6.52 0.34
P-value 0.717 0.763 0.386 0.811 0.368 0.844

NOTES:
- all data are in (first diff of) levels
- SE in parentheses
- excess smoothness test computed as sum(acc(t-L))-sum(ayy(t-L))=0, with L=0,…,4
- interest rate =0.01
- Income/consumption shock is the shock that enters both the income and the consumption equation

- excess sensitivity test computed as LR test (restrictions: acy(t-1)=acy(t-2)=0)



Table 2
Total Consumption Expenditure

gross earnings gross earnings gross earnings + gross earnings + net earnings + net earnings +
benefits benefits benefits benefits

income equation
Own shock
ayy(t) 1 1 1 1 1 1

- - - - - -
ayy(t-1) 51.615 - 0.400 - 0.321 -

(1535.290) - (9.124) - (28.027) -
ayy(t-2) -36.884 - -0.968 - -0.765 -

(1072.450) - (7.222) - (20.287) -
Income/Consumption Shock
ayc(t) 0.596 0.586 0.730 0.497 0.683 0.662

(0.427) (0.351) (0.383) (0.346) (0.236) (0.205)
ayc(t-1) -0.341 -0.673 -0.472 -0.533 -0.277 -0.273

(0.638) (0.473) (0.572) (0.477) (0.358) (0.304)
ayc(t-2) 0.572 0.981 0.561 0.910 0.330 0.363

(0.451) (0.467) (0.430) (0.451) (0.280) (0.238)
consumption equation
Income/Consumption Shock
acc(t) 1 1 1 1 1 1

- - - - - -
acc(t-1) -0.349 -0.346 -0.386 -0.345 -0.372 -0.395

(0.406) (0.208) (0.366) (0.202) (0.367) (0.172)
acc(t-2) -0.069 - -0.022 - -0.031 -

(0.358) - (0.330) - (0.319) -
Log L -885.2 -886.0 -869.4 -870.5 -788.0 -788.9

excess smoothness -0.233 -0.224 -0.217 -0.203 -0.131 -0.174
se (0.128) (0.144) (0.116) (0.113) (0.099) (0.128)

excess sensitivity
Log L unrestricted model -882.9 -885.3 -869.25 -868.7 -786.8 -788.8
LR 4.64 1.36 0.36 3.64 2.4 0.1
P-value 0.098 0.507 0.835 0.162 0.301 0.951

Comparison with 4 lags model
Log L 4lags model -882.3 -885.4 -867.8 -869.6 -786.2 -788.3
LR 5.78 1.24 3.26 1.82 3.54 1.1

0.448 0.538 0.776 0.403 0.739 0.577

NOTES:

all data are in (first diff of) levels
SE in parentheses
excess smoothness test computed as sum(axx(t-L))-sum(ayx(t-L))=0, with L=0,…,4
interest rate =0.01
excess sensitivity test computed as LR test (restrictions: acy(t-1)=acy(t-2)=0)



Table 3

Total Consumption Expenditure: log specification

gross earnings gross earnings gross earnings + gross earnings + net earnings + net earnings +

benefits benefits benefits benefits

income equation

Own shock

ayy(t) 1 1 1 1 1 1

- - - - - -

ayy(t-1) 0.332 - 0.181 - 0.159 -

(14.452) - (4.936) - (1.982) -

ayy(t-2) -0.748 - -0.779 - -0.595 -

(10.305) - (3.957) - (1.426) -

Income/Consumption Shock

ayc(t) 0.889 0.816 0.717 0.748 0.799 0.570

(0.200) (0.155) (0.162) (0.146) (0.191) (0.187)

ayc(t-1) -1.102 -1.250 -0.685 -0.836 -0.523 -0.222

(0.249) (0.206) (0.216) (0.177) (0.253) (0.211)

ayc(t-2) 0.393 0.660 0.094 0.223 -0.120 0.086

(0.229) (0.199) (0.191) (0.139) (0.214) (0.152)

consumption equation

Income/Consumption Shock

acc(t) 1 1 1 1 1 1

- - - - - -

acc(t-1) -0.601 -1.011 -0.647 -1.011 -0.578 -0.619

(0.243) (0.008) (0.279) (0.008) (0.324) (0.125)

acc(t-2) -0.411 - -0.368 - -0.444 -

(0.247) - (0.282) - (0.330) -

Log L 100.9 97.2 153.3 148.6 173.8 168.2

LR 7.4 9.38 11.16

P-Value 0.060 0.025 0.011

excess smoothness -0.181 -0.226 -0.133 -0.141 -0.170 -0.048

se (0.100) (0.079) (0.050) (0.053) (0.066) (0.106)

excess sensitivity

Log L unrestricted model 101.9 97.9 153.5 149.9 174.4 168.6

LR 2.0 1.4 0.4 2.58 1.24 0.8

P-value 0.368 0.497 0.819 0.275 0.538 0.670

NOTES:

all data are in (first diff of) levels

SE in parentheses

excess smoothness test computed as sum(axx(t-L))-sum(ayx(t-L))=0, with L=0,…,4

interest rate =0.01

excess sensitivity test computed as LR test (restrictions: acy(t-1)=acy(t-2)=0)



Table 4
Variance Based Test

non durable consumption non durable consumption total consunmption total consumption
per ad.eq. per ad.eq.

Ind. Var.

Gross earnings 0.0709 0.0376 0.0765 0.0547
0.0133 0.0154 0.0177 0.0196

implied a 3.7556 5.1571 3.6144 4.2746
0.0484 0.0900 0.0610 0.0865

Gross earnings+ 0.2357 0.1476 0.3019 0.2495
benefits 0.0302 0.0355 0.0401 0.0448

implied a 2.0596 2.6032 1.8200 2.0021
0.0447 0.0747 0.0492 0.0634

Net earnings + 0.2601 0.1466 0.3478 0.2733
benefits 0.0351 0.0413 0.0463 0.0519

implied a 1.9608 2.6121 1.6957 1.9129
0.0482 0.0871 0.0511 0.0686

Number of observations 505 505 505 505


