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Abstract

IMPORTANCE Acute kidney injury (AKI) is one of themost common complications after noncardiac

surgery. Yet current postoperative AKI risk stratificationmodels have substantial limitations, such as

limited use of perioperative data.

OBJECTIVE To examine whether adding preoperative and intraoperative data is associated with

improved prediction of noncardiac postoperative AKI.

DESIGN, SETTING, AND PARTICIPANTS A prognostic study using logistic regression with elastic

net selection, gradient boosting machine (GBM), and random forest approaches was conducted at 4

tertiary academic hospitals in the United States. A total of 42 615 hospitalized adults with serum

creatinine measurements who underwent major noncardiac surgery between January 1, 2014, and

April 30, 2018, were included in the study. Serum creatinine measurements from 365 days before

and 7 days after surgery were used in this study.

MAINOUTCOMES ANDMEASURES Postoperative AKI (defined by the Kidney Disease Improving

Global Outcomes within 7 days after surgery) was the primary outcome. The area under the receiver

operating characteristic curve (AUC) was used to assess discrimination.

RESULTS Among 42 615 patients who underwent noncardiac surgery, the mean (SD) age was 57.9

(15.7) years, 23 943 (56.2%) were women, 27 857 (65.4%) were white, and the most frequent

surgery types were orthopedic (15 718 [36.9%]), general (8808 [20.7%]), and neurologic (6564

[15.4%]). The rate of postoperative AKI was 10.1% (n = 4318). The progressive addition of clinical data

improvedmodel performance across all modeling approaches, with GBM providing the highest

discrimination by AUC. In GBMmodels, the AUC increased from 0.712 (95% CI, 0.694-0.731) using

prehospitalization variables to 0.804 (95% CI, 0.788-0.819) using preoperative variables (inclusive

of prehospitalization variables) (P < .001 for AUC comparison). The AUC further increased to 0.817

(95% CI, 0.802-0.832) when adding intraoperative variables (P < .001 for comparison vs model

using preoperative variables). However, the statistically significant improvements in discrimination

did not appear to be clinically significant. In particular, the AKI rate among patients classified as high

risk improved from 29.1% to 30.0%, a net of 15 patients were appropriately reclassified as high risk,

and an additional 15 patients were appropriately reclassified as low risk.

CONCLUSIONS AND RELEVANCE The findings of the study suggest that electronic health record

data may be used to accurately stratify patients at risk of perioperative AKI, but the modest

improvements from adding intraoperative data should be weighed against challenges in using

intraoperative data.
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Key Points

Question Is adding preoperative and

intraoperative data associated with

improved risk stratification of patients

undergoing noncardiac surgery for

postoperative acute kidney injury?

Findings In this prognostic study of

42 615 patients who underwent

noncardiac surgery, the addition of

preoperative to prehospitalization data

improved model performance (area

under the curve increased from0.71 to

0.80) as did adding preoperative plus

intraoperative data (area under the

curve further increased to 0.82).

Meaning Although electronic health

record data may be used to accurately

stratify patients at risk of postoperative

acute kidney injury, there appears to be

only modest improvement in

performance when adding

intraoperative data to risk

stratificationmodels.
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Introduction

Acute kidney injury (AKI) is a common postoperative complication, occurring in 12% of patients

undergoing surgical procedures,1 that has been associated with poor clinical outcomes, including the

development of chronic kidney disease, increased health care use, and death.2,3Because of evidence

describing the association of AKI with mortality,4 there has been heightened interest in improved

risk stratification for postoperative AKI among the 40million patients undergoing noncardiac surgery

in the United States annually.5 To our knowledge, no consensus risk stratification algorithms or tools

exist either before or after surgery. Improving risk stratificationmay be helpful for preoperative and

perioperative management in the setting of noncardiac surgery.

Existing models to predict AKI providemoderate6 levels of accuracy,7-10 although they have not

used consistent definitions of the AKI outcome, have used amix of statistical andmachine learning

approaches, and have not uniformly focused on noncardiac surgery. For example, large studies of AKI

after general or other noncardiac surgery demonstratedmoderate predictive accuracy (eg, area

under the receiver operating characteristic curve [AUC], 0.73-0.80), but predated current consensus

standards on AKI definition.11,12 The lack of common definitions andmethods underscores the need

to compare performance across these various approaches. Furthermore, while some studies have

used data from the electronic health record (EHR), they have not incorporated detailed physiological

and clinical data (eg, vital signs, dosages of vasopressor medications, blood loss) collected

intraoperatively. Because adding such data improves risk stratification for other postoperative

complications,13 these data may also yield improvements in risk stratification for AKI.

In this study, we examined whether adding intraoperative data was associated with improved

prediction of noncardiac postoperative AKI compared with models using administrative and

preoperative clinical information alone. Furthermore, we compared performance across multiple

statistical andmachine learning approaches and definitions of AKI.

Methods

StudyData

Electronic health record data were collected on adult patients undergoing noncardiac surgery during

an inpatient admission between January 1, 2014, and April 30, 2018, at the University of Pennsylvania

Health System.We used code developed by theMulticenter Perioperative Outcomes Group that was

run onUniversity of Pennsylvania Health SystemEpic Clarity databases to standardize intraoperative

and postoperative data and combined the datawith administrative and preoperative data.14 Cohort

data were randomly split by patient into derivation (60%), validation (20%), and test (20%) sets.15

The University of Pennsylvania Institutional Review Board approved the study design and

granted a waiver of informed consent from study participants for secondary use of electronic health

records. This study follows the Transparent Reporting of a Multivariable Prediction Model for

Individual Prognosis or Diagnosis (TRIPOD) reporting guideline.16

Study Population

Patients 18 years or older across 4 academic medical centers in University of Pennsylvania Health

System during the study period were included if they underwent major noncardiac surgery. We

identified noncardiac surgery using primary Current Procedural Terminology codes (10021-32999,

34001-69990)17 and restricted tomajor therapeutic procedures using Agency for Healthcare

Research Quality Healthcare Cost Utilization Project Surgery Flag Software.18We focused on

noncardiac surgery because the association between preoperative and intraoperative variables and

AKI likely differ for cardiac surgery owing to the use of cardiopulmonary bypass.

Patients who underwent multiple major surgical procedures during the same visit were

excluded (4249 [5.4%] of surgical cases) to avoid overlap between preoperative and postoperative

periods. In addition, patients were excluded if they did not have at least 1 preoperative and
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postoperative serum creatinine measurement (27 704 [35.5%] of surgical cases), had end-stage

renal disease and underwent dialysis within the past year, had an elevated baseline serum creatinine

level greater than or equal to 4.5 mg/dL (to convert to micromoles per liter, multiply by 88.4),9 or if

they met criteria for AKI within the 7 days before surgery (additional details and billing codes in

eMethods in the Supplement).

Outcomes

Our primary outcomewas the incidence of AKI within 7 days after surgery. For our primary analyses,

we used the Kidney Disease Improving Global Outcomes guidelines for stage 1 AKI, defined as a

serum creatinine level increase of 1.5 times baseline or of 0.3 mg/dL in a 48-hour period.19We

excluded the urine output criteria owing to concerns for poor specificity for AKI classification20 and

the lack of reliable data in our data set. If discharge occurred earlier than 7 days after surgery and

there was no evidence of AKI to date, an outcome of no AKI was assigned. Secondary outcomes

included use of inpatient dialysis, a postsurgical length of stay of 7 or more days (to reflect a

prolonged postsurgical stay), and in-hospital mortality (eMethods in the Supplement).

Baseline Kidney Function Assessment

Baseline values were defined first as the lowest serum creatinine measurement value and estimated

glomerular filtration rate value within 7 days before the start of surgery21 or, if no values were

present, the most recent value up to 365 days before the surgery.22

Variables

The unit of observation was an inpatient hospitalization for noncardiac surgery. Variables were split

into 3 groups reflecting increasing inclusiveness of data: prehospitalization, preoperative, and

perioperative variables. Prehospitalization variables included age, sex, race, and insurance type.

Historical comorbidities were also included, derived from International Classification of Diseases,

Clinical Modification, Ninth Revision, and International Statistical Classification of Diseases, Clinical

Modification, 10th Revision, diagnostic codes.23 Preoperative variables combined the

prehospitalization variables with clinical information related to the patient’s admission but before

surgery, such as laboratory measurements, American Society of Anesthesiologists physical status,24

and surgical procedure type. To categorize operations, we used Agency for Healthcare Research

Quality Healthcare Cost Utilization Project Clinical Classification Software to map each primary

Current Procedural Terminology code to 244 unique procedure groups.25Data for these variables

were collected from the start of the admission up until the start of the surgical procedure.

Perioperative variables added intraoperative data to preoperative variables. Intraoperative data

included variables such as heart rate and blood pressure; fluid status, such as total fluid

administration and estimated blood loss; and drug use, such as vasopressors and intraoperative

rescue medications (eg, calcium chloride). Data for this category were collected between the start

and end of the surgical procedure using timestamps in the EHR (full list of variables reported in the

eAppendix in the Supplement).

Missing Data onVariables

Because some variables contain data artifacts and extreme values, we set variables with values below

the first percentile to the first percentile value and values greater than the 99th percentile to the

99th percentile value. After data cleaning, rates of missing data within observations ranged from

0.10% (ie, intraoperative heart rate) to 98.6% (ie, N-terminal pro b-type natriuretic peptide

laboratory measurement) (eTable 1 in the Supplement). To avoid excluding observations that were

missing data on predictor variables, we added dichotomous variables for each covariate that

indicated whether an observation had amissing value. For observations with a missing indicator

equal to 1, the missing covariate data were replaced with a fixed value.26 This approach allowed us to

use a larger study sample while preserving information about present vs missing values. This
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approach ismore flexible than general mean imputation and less stringent than the commonmissing-

at-random assumption required in multiple imputation.

Statistical Analysis

To examine improvements in predictive accuracy and risk stratification when addingmore variables

throughout the surgery encounter, we implemented models for each variable group

(prehospitalization, preoperative, and perioperative) separately. We used 3modeling approaches:

logistic regression with elastic net selection, random forest, and gradient boosting machines (GBMs),

which we applied to each definition of AKI. For random forest and GBMmodels, we used a

randomized grid search using 3-folds across 30 iterations on our derivation data set for selecting

optimal model parameters. For GBMs, we used decision trees as the weak learner with logistic

regression for the loss function. Validation sets were used to evaluate, verify, and finalize our model

parameters. Final model results are reported for the test sets of data only.

Model Performance

We compared differences between the development, validation, and test data sets and reported

results of model performance using the test data sets (20% of sample). Categorical variables were

compared using χ2 tests and continuous variables were compared using Mann-Whitney tests. Model

performance was assessed using the AUC,27which we calculated by comparing the AKI estimated

from themodels with observed AKI. We calculated 95% CIs using themethod of DeLong et al28with

1000 bootstrapping samples to test for significance betweenmodels. We comparedmodel

performance within each of the 3modeling approaches for each of the 3 groups of variables

(reflecting the progressive addition of data), as well as across the 3modeling approaches when using

the same group of data elements.

Risk Stratification

To illustrate implications for clinical utility, we stratified patients as high and low risk for Kidney

Disease Improving Global Outcomes AKI and compared incidence rates of our primary and secondary

outcomes associatedwith AKI. Patients were stratified into a high-risk category if their predicted risk

for AKI was in the top 20%of the test data set population (n = 8494),29with the remaining 80%of

patients stratified into a low-risk category. Risk stratification was conducted on prehospitalization,

preoperative, and perioperative data sets, examined for primary and secondary outcomes, and

examined by patient encounters with and without events.

Sensitivity Analyses

We tested the sensitivity of our results to several data andmodeling decisions, including using a

super learner algorithm, classifying outlier data values as missing, by surgical type (eg, orthopedic,

general, and neurologic), and alternative definitions of AKI (eMethods in the Supplement).30-32Given

the lack of an evidence-based definition of a high-risk probability value for AKI, the top 20%was

arbitrarily selected and so we examined sensitivity to cutoff by using top 10% and top 30%.

Logistic regression with elastic net selection (PROC GLMSELECT) was implemented using SAS

software, version 9.4 (SAS Institute Inc). Super Learner was implemented using the R, version 3.4.3

SuperLearner Package (R Foundation). All other code and predictive models

(RandomForestClassifier, GradientBoostingClassifier) were conducted in Python, version 3.6 (Python

Software Foundation), with Pandas 0.23.3 and Scikit-learn 0.19.1 libraries. Two-tailed tests were

considered statistically significant at P < .05.
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Results

Study Population

Of the 77 975 patients who underwent major noncardiac surgery, we identified 42 615 noncardiac

surgical patient encounters that met study criteria (Table 1). Mean (SD) patient age was 57.9 (15.7)

years, 23 943 (56.2%) patients were women, 27 857 (65.4%) patients were white, and 19 470

patients (45.7%) had commercial insurance. Themost common surgery types were orthopedic

(15 718 [36.9%]), general (8808 [20.7%]), and neurologic (6564 [15.4%]). Most patients were

classified as American Society of Anesthesiologists physical status 3 (severe systemic disease) or 2

(mild systemic disease) before surgery.24 A total of 3859 patients (9.1%) had multiple operations

Table 1. Patient Characteristics in theModel Derivation, Validation, and Test Setsa

Characteristic

No. (%)

All Visits
(N = 42 615)

Set

Derivation
(n = 25 616)

Validation
(n = 8505)

Test
(n = 8494)

Age, mean (SD), y 57.9 (15.7) 57.9 (15.6) 57.8 (15.9) 58 (15.6)

Women 23 943 (56.2) 14 438 (56.4) 4783 (56.2) 4722 (55.6)

Marital status

Married 22 519 (52.8) 13 499 (52.7) 4500 (52.9) 4520 (53.2)

Single 12 707 (29.8) 7630 (29.8) 2564 (30.2) 2513 (29.6)

Other/unknown 7389 (17.3) 4487 (17.5) 1441 (16.9) 1461 (17.2)

Race

White 27 857 (65.4) 16 717 (65.3) 5554 (65.3) 5586 (65.8)

Black 11 395 (26.7) 6874 (26.8) 2296 (27.0) 2225 (26.2)

Asian 934 (2.2) 545 (2.1) 186 (2.2) 203 (2.4)

Other/unknown 1034 (2.4) 626 (2.4) 205 (2.4) 203 (2.4)

Insurance

Commercial 19 470 (45.7) 11 673 (45.6) 3857 (45.4) 3940 (46.4)

Medicare 16 978 (39.8) 10 233 (40.0) 3363 (39.5) 3382 (39.8)

Medicaid 5504 (12.9) 3336 (13.0) 1114 (13.1) 1054 (12.4)

Other 663 (1.6) 374 (1.5) 171 (2.0) 118 (1.4)

Surgery type

Breast/dermatologic 2419 (5.7) 1426 (5.6) 498 (5.9) 495 (5.8)

Endocrine 482 (1.1) 292 (1.1) 93 (1.1) 97 (1.1)

General 8808 (20.7) 5259 (20.5) 1791 (21.1) 1758 (20.7)

Gynecologic 2344 (5.5) 1427 (5.6) 441 (5.2) 476 (5.6)

Neurologic 6564 (15.4) 3899 (15.2) 1398 (16.4) 1267 (14.9)

Obstetric 371 (0.9) 216 (0.8) 73 (0.9) 82 (1.0)

Orthopedic 15 718 (36.9) 9526 (37.2) 3082 (36.2) 3110 (36.6)

Thoracic 1495 (3.5) 914 (3.6) 275 (3.2) 306 (3.6)

Transplant 386 (0.9) 226 (0.9) 90 (1.1) 70 (0.8)

Urologic 1210 (2.8) 715 (2.8) 243 (2.9) 252 (3.0)

Vascular 1929 (4.5) 1161 (4.5) 357 (4.2) 411 (4.8)

Other 889 (2.1) 555 (2.2) 164 (1.9) 170 (2.0)

ASA physical status

1 1349 (3.2) 770 (3.0) 283 (3.3) 296 (3.5)

2 18 515 (43.5) 11 106 (43.4) 3732 (43.9) 3677 (43.3)

3 21 068 (49.4) 12 710 (49.6) 4163 (49.0) 4195 (49.4)

≥4 1604 (3.8) 980 (3.8) 314 (3.7) 310 (3.7)

Unknown 79 (0.2) 50 (0.2) 13 (0.2) 16 (0.2)

Time to surgery, median (IQR),
min

250 (170-835) 249 (169-806) 255 (173-840) 246 (170-913)

Surgery duration, median (IQR),
min

121 (78-195) 121 (78-194) 119 (77-193) 123 (78-197)

Abbreviations: ASA, American Society of

Anesthesiologists; IQR, interquartile range.

a Baseline characteristics of the 42 615 patients who

underwent major noncardiac surgery.
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during the study period. Of the study sample, 4318 patients (10.1%) experienced AKI (Table 2), which

was similar across definitions (eTable 2 in the Supplement). In addition, 103 patients (0.2%)

underwent inpatient dialysis, 8335 patients (19.6%) experienced a postoperative length of stay of 7

or more days, and 255 patients (0.6%) died in the hospital. Patient characteristics, rates of AKI, and

other clinical outcomes did not exhibit substantial differences between derivation, validation, and

test sets (Table 2).

Model Performance

Among the 8494 patients in the test set, 845 patients (9.9%) experienced Kidney Disease Improving

Global Outcomes AKI (Table 2). Use of logistic regression with elastic net selection resulted in

increasing AUCs as clinical variables were added (Figure): the AUCwas 0.700 (95% CI, 0.681-0.719)

with prehospitalization variables, 0.782 (95% CI, 0.765-0.799) with preoperative variables that

included prehospitalization variables (P < .001 for AUC comparison vsmodel using prehospitalization

variables only), and 0.790 (95% CI, 0.773-0.807) with perioperative variables that included

intraoperative variables (P = .02 for AUC comparison vs model using preoperative variables only).

The random forest models resulted in an AUC of 0.710 (95% CI, 0.690-0.728) with

prehospitalization variables, a higher AUC of 0.787 (95% CI, 0.770-0.803) with preoperative

variables (P < .001 for AUC comparison vs model using prehospitalization variables only), and the

highest AUC of 0.808 (95% CI, 0.790-0.823) using perioperative variables (P < .001 for AUC

Table 2. Clinical Outcomes in theModel Derivation, Validation, and Test Setsa

Clinical Outcome

No. (%)

All Visits (N = 42 615)

Set

Derivation (n = 25 616) Validation (n = 8505) Test (n = 8494)

Acute kidney injury 4318 (10.1) 2655 (10.4) 818 (9.6) 845 (9.9)

Inpatient dialysis 103 (0.2) 54 (0.2) 17 (0.2) 32 (0.4)

Length of stay ≥7 d 8335 (19.6) 5032 (19.6) 1634 (19.2) 1669 (19.7)

In-hospital death 255 (0.6) 157 (0.6) 40 (0.5) 58 (0.7)

a Primary and secondary clinical outcomes of the

42 615 patients who underwent major

noncardiac surgery.

Figure. Comparison of the Performance of 3Modeling Approaches Using Prehospitalization, Preoperative, and Perioperative Data for Acute Kidney Injury
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Gradient boosting machineC

Perioperative Preoperative Prehospitalization

Logistic regression with elastic net selection (A), random forest (B), and gradient

boosting machine (C) methods used for modeling. The cyan line is themodel containing

prehospitalization variables. The orange line is the model using preoperative variables

(including prehospitalization variables). The navy line is the model using perioperative

data (including preoperative and prehospitalization variables). Receiver operating

characteristic curves (AUCs) for eachmodel using prehospitalization, preoperative, and

perioperative variable groups are shown in the test set. The AUC or C-statistic is

calculated along with 95% CIs. The DeLong et al28 test indicates a significant difference

betweenmodel AUCs (P < .001).
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comparison vs model using preoperative variables only). The GBMmodels generated the highest

AUCs across all models with an AUC of 0.712 (95% CI, 0.694-0.731) using the prehospitalization

variables, a higher AUC of 0.804 (95% CI, 0.788-0.819) with preoperative variables (P < .001 for

AUC comparison vs model using prehospitalization variables only), and the highest AUC of 0.817

(95% CI, 0.802-0.832) when using perioperative variables (P < .001 for AUC comparison vs model

using prehospitalization variables only). Full model performance across data sets, calibration curves,

and variable coefficients and importance can be found in eTables 3-7 and the eFigure in the

Supplement.

Risk Stratification

A total of 1699 of the 8494 patients (20.0%) were classified as high risk and 6795 patients (80.0%)

were classified as low risk, using the GBMmodel (Table 3 and Table 4). We applied this risk

stratification to each group of variables separately (reflecting progressive addition of clinical

variables) and compared classification. Although the improvement in discrimination was statistically

significant when adding perioperative data, the improvement did not appear to be clinically

significant. In particular, the AKI rate among patients classified as high risk improved from 29.1% to

30.0%; however, only a net of 15 patients were appropriately reclassified as high risk (ie, 67 patients

were reclassified appropriately as high risk, but 52 patients were reclassified inappropriately as low

risk) and an additional net of 15 patients were appropriately reclassified as low risk (ie, 329 patients

were appropriately reclassified as low risk but 314 patients were inappropriately reclassified as high

risk) (Table 3).

Table 3. Acute Kidney Injury Risk as Predicted byModels That Add and DoNot Add Intraoperative Data

in Test Data Seta

GBM Preoperative Model

No. (%)

GBM-Perioperative Modela

Total, No.Low Risk High Risk

Low Riskb

Encounters 6414 (94.4) 381 (5.6) 6795

Events 283 (80.9) 67 (19.1) 350

Nonevents 6131 (95.1) 314 (4.9) 6445

Proportion of encounters with events 0.044 0.176 0.052

High Riskb

Encounters 381 (22.4) 1318 (77.6) 1699

Events 52 (10.5) 443 (89.5) 495

Nonevents 329 (27.3) 875 (72.7) 1204

Proportion of encounters with events 0.136 0.336 0.291

Abbreviation: GBM, gradient boosting machine.

a Risk stratification of GBMmodels in the test set for

the outcome of acute kidney injury using

preoperative and perioperative data in the test data

set (n = 8494). For the GBMmodel using the

perioperative model, the overall proportion of

encounters with events was 0.300 and 0.049 for

high- and low-risk groups, respectively.

b High risk was defined as the top 20% of predicted

risk. Low risk was defined as the bottom 80% of

predicted risk.

Table 4. Acute Kidney Injury Risk Stratification in Test Data Set and Rates of Clinical Outcomes

by Variable Groupa

GBM Acute Kidney Injury
Model Risk Stratificationb

Sample
(n = 8494)

No. (%)

Acute
Kidney Injury
(n = 845)

Inpatient
Dialysis
(n = 32)

Postoperative
Length of Stay ≥7 d
(n = 1669)

In-Hospital
Death
(n = 58)

Prehospitalization Variables

High risk 1699 378 (22.3) 22 (1.3) 567 (33.4) 34 (2.0)

Low risk 6795 467 (6.9) 10 (0.2) 1102 (16.2) 24 (0.4)

Preoperative Variables

High risk 1699 495 (29.1) 28 (1.7) 738 (43.4) 40 (2.4)

Low risk 6795 350 (5.2) 4 (0.1) 931 (13.7) 18 (0.3)

Perioperative Variables

High risk 1699 510 (30.0) 30 (1.8) 774 (45.6) 51 (3.0)

Low risk 6795 335 (4.9) 2 (0.03) 895 (13.2) 7 (0.1)

Abbreviation: GBM, gradient-boosting machine.

a Risk stratification of GBMmodels in the test data set

(n = 8494). Incidence rates of primary and

secondary clinical outcomes were calculated from

sample totals. In-patient dialysis was defined using

International Classification of Diseases, Ninth

Revision, Clinical Modification procedure codes

(eMethods in the Supplement).

b High risk was defined as the top 20% of predicted

risk. Low risk was defined as the bottom 80% of

predicted risk.
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The small improvements were concordant across primary and secondary outcomes (Table 4).

Rates of Kidney Disease Improving Global Outcomes AKI in the high-risk groups increased as more

data were added (prehospitalization, 22.3%; preoperative, 29.1%; perioperative, 30.0%). Rates of

secondary outcomes increased similarly: inpatient dialysis (prehospitalization, 1.3%; preoperative,

1.7%; perioperative, 1.8%), postoperative length of stay greater than or equal to 7 days

(prehospitalization, 33.4%; preoperative, 43.4%; perioperative, 45.6%), and in-hospital death

(prehospitalization, 2.0%; preoperative, 2.4%; perioperative, 3.0%). The largest increases were

observed after adding preoperative data, while smaller increases were observed after adding

intraoperative data.

Sensitivity Analyses

The results of several sensitivity analyses were consistent with our main results (eTables 8-12 in the

Supplement).

Discussion

The findings of this study suggest that clinical EHR data can be used to develop reasonably accurate

predictivemodels for risk-stratifying adults undergoingmajor noncardiac surgery for postoperative

AKI. Model performance increased as more clinical information was incorporated, with the largest

performance gains noted when preoperative data were added. This finding was robust to different

modeling techniques and definitions of AKI.

However, the gains in accuracy from adding intraoperative data to preoperative data were

modest at best, showing onlymarginal gains in the AUC, and did not seem to be clinically meaningful.

These results were similarly reflected in risk stratification. For example, of the entire test set

population of 8494 patients, only 30were appropriately reclassified as high or low risk when adding

perioperative data. This findingmay suggest that adding intraoperative data to risk stratification

models for AKI may not yield substantial benefits relative to the complexity in implementation. This

is further highlighted by the contrast in results for models of other postoperative complications, such

as in-hospital mortality, for which the addition of intraoperative data yields substantial improvements

in risk stratification.13

Although our models did not demonstrate substantially higher discrimination on average across

the entire study population, theremay be subgroups of patients for whom addition of intraoperative

data improves risk stratification in a clinically meaningful fashion. Additional research exploring

subgroups is underway as part of a broader effort to implement such algorithms into practice. One

feature of the models we used is that they are suited to implementation in electronic systems that

receive or pull data from the EHR.

Another contribution of this study was to implement multiple statistical andmachine learning

methods as well as use of multiple definitions of AKI as the primary outcome. This approach suggests

that our results may reflect the accuracy of risk stratificationmodels for AKI and highlights that

variability in modeling approach and AKI outcome definitions may be unlikely to explain differences

in discrimination (ie, AUCs ranging from0.73 to 0.80) in previous studies.8-10

Limitations

The study has several limitations. First, this was a single-institution study and the availability of EHR

data as well as practice patterns may vary at other institutions. However, we used data frommultiple

hospitals within a health systemwith different surgery and anesthesia groups and clinicians.

Furthermore, the intraoperative data that we used are likely captured as part of routine monitoring

of patients while in surgery. Third, our follow-up period was limited to the hospital setting and there

may have been limited documentation of other important clinical outcomes. We did not capture

longitudinal outcomes, whichmay affect the ability to risk stratify for other important, longer-term
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outcomes. Fourth, we did not have reliable data on urine output, which could have led to incomplete

identification of AKI.

Conclusions

The findings of this study suggest that EHR data can be used to accurately stratify patients at risk of

perioperative AKI. However, the modest improvements in performance from adding intraoperative

data should be weighed against clinical utility and examination of whether particular subgroups may

benefit from the addition requires further research.
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