
ORIGINAL RESEARCH
published: 09 July 2019

doi: 10.3389/fphys.2019.00841

Frontiers in Physiology | www.frontiersin.org 1 July 2019 | Volume 10 | Article 841

Edited by:

Zbigniew R. Struzik,

The University of Tokyo, Japan

Reviewed by:

Luca Faes,

University of Palermo, Italy

Philip Thomas Clemson,

Lancaster University, United Kingdom

*Correspondence:

Steffen Schulz

Steffen.Schulz@eah-jena.de

Specialty section:

This article was submitted to

Computational Physiology and

Medicine,

a section of the journal

Frontiers in Physiology

Received: 07 February 2019

Accepted: 19 June 2019

Published: 09 July 2019

Citation:

Rodriguez J, Schulz S, Giraldo BF and

Voss A (2019) Risk Stratification in

Idiopathic Dilated Cardiomyopathy

Patients Using Cardiovascular

Coupling Analysis.

Front. Physiol. 10:841.

doi: 10.3389/fphys.2019.00841

Risk Stratification in Idiopathic
Dilated Cardiomyopathy Patients
Using Cardiovascular Coupling
Analysis
Javier Rodriguez 1,2, Steffen Schulz 3*, Beatriz F. Giraldo 1,2,4 and Andreas Voss 3

1 Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain, 2 Automatic

Control Department (ESAII), Barcelona East School of Engineering (EEBE), Universitat Politècnica de Catalunya, Barcelona,

Spain, 3 Institute of Innovative Health Technologies, Ernst-Abbe-Hochschule Jena, Jena, Germany, 4Centro de Investigación

Biomédica en Red de Bioengenieria, Biomateriales y Nanomedicina, Madrid, Spain

Cardiovascular diseases are one of the most common causes of death; however, the

early detection of patients at high risk of sudden cardiac death (SCD) remains an issue.

The aim of this study was to analyze the cardio-vascular couplings based on heart

rate variability (HRV) and blood pressure variability (BPV) analyses in order to introduce

new indices for noninvasive risk stratification in idiopathic dilated cardiomyopathy

patients (IDC). High-resolution electrocardiogram (ECG) and continuous noninvasive

blood pressure (BP) signals were recorded in 91 IDC patients and 49 healthy subjects

(CON). The patients were stratified by their SCD risk as high risk (IDCHR) when after two

years the subject either died or suffered life-threatening complications, and as low risk

(IDCLR) when the subject remained stable during this period. Values were extracted from

ECG and BP signals, the beat-to-beat interval, and systolic and diastolic blood pressure,

and analyzed using the segmented Poincaré plot analysis (SPPA), the high-resolution joint

symbolic dynamics (HRJSD) and the normalized short time partial directed coherence

methods. Support vector machine (SVM) models were built to classify these patients

according to SCD risk. IDCHR patients presented lowered HRV and increased BPV

compared to both IDCLR patients and the control subjects, suggesting a decrease in

their vagal activity and a compensation of sympathetic activity. Both, the cardio -systolic

and -diastolic coupling strength was stronger in high-risk patients when comparing with

low-risk patients. The cardio-systolic coupling analysis revealed that the systolic influence

on heart rate gets weaker as the risk increases. The SVM IDCLR vs. IDCHR model

achieved 98.9% accuracy with an area under the curve (AUC) of 0.96. The IDC and the

CON groups obtained 93.6% and 0.94 accuracy and AUC, respectively. To simulate a

circumstance in which the original status of the subject is unknown, a cascademodel was

built fusing the aforementioned models, and achieved 94.4% accuracy. In conclusion,

this study introduced a novel method for SCD risk stratification for IDC patients based

on new indices from coupling analysis and non-linear HRV and BPV. We have uncovered

some of the complex interactions within the autonomic regulation in this type of patient.

Keywords: idiopathic dilated cardiomyopathy, heart rate variability, blood pressure variability, coupling analysis,
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INTRODUCTION

According to the 2015 update of the heart disease and stroke
statistics of the American Heart Association (Mozaffarian et al.,
2015), ∼325,000 cases of sudden cardiac death (SCD) occurred
in the United States in that year, and it is the cause of 15–
20% of mortality worldwide (Saour et al., 2017). The implantable
cardioverter defibrillator (ICD) is commonly recommended in
patients that are at high risk of suffering SCD, and the risk of
SCD is halved when one is implanted, although the presence or
absence of an ICD implant has no significant influence over the
rate of death itself (Kober et al., 2016).

The implantation of an ICD is suggested in patients with
an ejection fraction (EF) lower or equal to 35%. Currently,
there is no effective means to stratify SCD risk in patients with
EF above the risk threshold, who constitutes at least 70% of
the patients who will suffer SCD (Chugh, 2017). Additionally,
the effectiveness of ICD therapy is time dependent, making a
prediction of the duration of the treatment desirable for the
purpose of optimizing costs. Therefore, there is still a need for
additional predictors to identify patients with idiopathic dilated
cardiomyopathy (IDC) who have an increased risk of SCD
and who benefit from ICD implantation (Bristow et al., 2004;
Duray et al., 2006).

Previous studies have hypothesized various strategies to assess
SCD risk based on clinical tests and data, imaging techniques,
and signal processing methods, among others. The corrected
QT interval was tested in elderly subjects and was associated
with SCD risk (Panikkath et al., 2011); others analyzed T-wave
inversions, wide QRS-T angle, and the left bundle branch block
and found it prolonged the ability of QRS to predict all-cause
mortality, including SCD (Aro et al., 2011, 2012a,b), but despite
being useful for prediction, it is unable to predict individual
risk. Sympathetic dominance of the autonomic nervous system
in conjunction with pro-arrhythmic processes increases the
probability of SCD in patients with ventricular fibrillation
problems (Schwartz et al., 1992).

Studies related to cardiac imaging have analyzed the
myocardial scar, including the peri-infarction border zone, to
stratify SCD risk. The quantification of the total myocardial
scar was explored, proving to be superior to the left ventricular
ejection fraction (LVEF) in predicting an appropriate ICD
therapy in cardiomyopathy patients (Bertini et al., 2012). Other
studies demonstrated that the image-based analysis ofmyocardial
scars can contribute to the decision to implant ICDs in SCD
patients (Schmidt et al., 2007; Roes et al., 2009; Wu et al., 2012).

Heart rate variability (HRV) has been studied as a
measurement of autonomic tone. Higher vagal tone activity
is related to increased spontaneous variations in heart rate,
and multiple non-linear techniques have been applied to
study it (Wolf et al., 1978; Task-Force-of-the-European-
Society-of-Cardiology-the-North-American-Society-of-Pacing-
Electrophysiology, 1996; Ebrahimzadeh et al., 2014; Wu et al.,
2014; Fujita et al., 2016). Lower levels of indices related to
this variability have been associated with patients at SCD
risk, regardless of their LVEF (La Rovere et al., 1998, 2003).
Another index explored is heart rate turbulence, a consistent

phenomenon in low-risk ischemic heart disease patients, as
a measure of autonomic function. It is capable of predicting
SCD-related mortality by assessing the absence of this behavior
(Schmidt et al., 1999). The dynamics of the cardiovascular
system behave in a highly complex way through the interplays
of different linear and non-linear subsystems (Voss et al., 2009).
Changes in blood pressure are reflected in changes in heart-rate
regulation, and vice versa (Cohen and Taylor, 2002).

Several linear and non-linear time series analysis approaches
have been developed for the quantitative analysis of the
cardiovascular system in bivariate ways. However, linear
approaches might be insufficient to quantify non-linear
structures and the complexity of physiological systems.
Therefore, approaches from non-linear time-series analysis seem
to be more suited to capture complex interactions between
time series, and are able to quantify direct interrelationships
such as the nonlinear influence of blood pressure on heart
rate. These coupling approaches are used to quantify direct
and indirect relationships, as well as causal and non-causal
relationships between time series, providing deeper insights into
alterations of the cardiovascular system and leading to improved
knowledge of the interacting regulatory mechanisms under
different physiological and pathophysiological conditions. These
approaches represent promising tools for detecting multivariate
information flows (Schulz et al., 2013a). Some studies are based
on the analysis of these interactions through the application of
bivariate coupling methods.

For example, the directional cardiovascular interactions
on young healthy subjects were assessed by bivariate and
multivariate coupling measures, finding that bivariate measures
better quantify the information transferred between indices,
while trivariate better reflects the existence and delay of directed
interactions (Javorka et al., 2017). Information decomposition
measurements, in terms of variance or entropy, were explored
to assess information dynamics in cardiovascular networks
(Faes et al., 2017), analyzing the heart period, the systolic
blood pressure, and the respiratory activity. The authors
concluded that these measures of information transfer and
information modification are better assessed through entropy-
based and variance-based methods. Other work explored the
polysomnographic recordings and the finger blood pressure
measurements in healthy subjects in order to investigate the
differences between the wake-sleep states in the heart period
and the systolic blood pressure coupling (Silvani et al., 2008).
They found that at low frequencies there are differences between
these states in human subjects. Additionally, the complexity and
causality of the interactions of cardiovascular variability series
was assessed through linear model-based and non-linear model
free techniques (Porta et al., 2014), and deducing that model
freemethods provide additional insights compared to the simpler
linear model based approaches.

The behavior of cardiovascular coupling differs based on
physiological conditions. Consequently, we hypothesize that the
relationships between the cardiac and vascular systems will be
different between the IDC patients at a high and low risk of SCD.
Therefore, the aim of this study is to analyze the suitability of
cardiovascular couplings for risk stratification in these patients.
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We propose the characterization of these interactions through
features extracted from ECG and blood pressure signals, to better
describe the complex dynamics of the cardiovascular interaction
and identify new indices of cardiovascular risk.

DATABASE

The signals analyzed in this study are part of German Autonomic
Regulation Trial (ART) study, oriented to evaluate risk predictors
of SCD and to improve the risk stratification in IDC patients.
Signals from 220 IDC patients were recorded in two hospitals: the
Friedrich-Schiller University Hospital in Jena (44 patients) and
the Franz-Volhard Clinic in Berlin (176 patients). All participants
provided their written informed consent to a protocol approved
by the local ethics committee of the two hospitals. This study
complies with the Declaration of Helsinki. The study was
approved by the local Ethics Committee (No. 0986-11/02).

In the acquisition protocol, the ECG signals (32 bit resolution,
1,600Hz sampling frequency) and blood pressure (32 bit,
500Hz) were synchronously recorded for 30min. The ECG
recordings were performed with a Porti system (TMSi BV,
Netherlands), and the blood pressure recordings with the
Portapress NIBP monitor (TNO Biomedical Instrumentation,
Amsterdam, the Netherlands). All patients were recorded under
resting conditions in supine position.

The inclusion criteria for the IDC patients were LVEF <45%
and/or fractional shortening <25%, and the left ventricle end-
diastolic diameter (LVEDD) >117%. Additionally, the New
York heart association index (NYHA) of each patient was
included. The exclusion criteria were systemic hypertension at
rest, coronary artery disease, congenital heart disease, pericardial
diseases, valvular heart diseases, systemic disease known to
cause dilated cardiomyopathy, chronic alcoholism, sustained
ventricular tachycardia, atrial fibrillation, diabetes mellitus, renal
failure, and active permanent cardiac pacemaker as well as
patients without sinus rhythm (Voss et al., 2010, 2012b).

Afterwards, an additional exclusion criteria was applied to
discard patients with comorbidities and confounding factors
influencing the autonomic regulation system. 129 of the
220 patients were excluded due to the following reasons:
36 with paced rhythm, 34 patients suffered coronary artery
disease, 32 presented a high (>5%) percentage of ectopic
beats or artifacts, 19 with atrial fibrillation, four because
of technical problems, two suffered from hypertrophic non-
obstructive cardiomyopathy, one patient with arrhythmogenic
right ventricular cardiomyopathy, and another patient who was
clinically unstable due to acute decomposition (Voss et al.,
2012b). Finally, a total number of 91 IDC patients (21 female, 70
male) were investigated in this work.

After a median follow-up period of 28 months (range:
17–38 months), the patients were classified into two groups
according to their SCD risk. The group of patients that remained
in stable physical condition were considered as low risk for
cardiovascular sudden death (IDCLR). The remaining patients,
who either died of SCD or needed resuscitation because of a
life-threatening tachyarrhythmia, were categorized as high risk

for cardiac sudden death (IDCHR). None of these patients died
from a non-cardiac disease. Additionally, 49 healthy subjects (30
male, 19 female; aged 46 ± 14 years) were used as control group
(CON). Table 1 presents the baseline clinical information of the
IDC patients.

In order to characterize autonomous regulation of the
cardiovascular systems, the following time series from
ECG (RR interval) and BP signals were extracted using in-
house software (programming environment Delphi 3 and
MATLAB R© R2011b):

- Time series of heart rate consisting of successive beat-to-beat
intervals [BBI, tachogram, (ms)] from the ECG signal.

- Time series consisting of the maximum successive end-systolic
blood pressure amplitude values over time in relation to the
previous R-peak [SBP, systogram, (mmHg)] from the BP signal.

- Time series consisting of the minimum successive end-
diastolic blood pressure amplitude values over time in relation
to the previous R-peak [DBP, diastogram, (mmHg)] from the
BP signal.

All extracted time series (BBI, SBP, DBP) were filtered by
applying an adaptive variance estimation algorithm (Wessel et al.,
2000) to remove and interpolate seldom occurring ventricular
premature beats and artifacts (e.g., movement, electrode noise,
and extraordinary peaks) to obtain normal-to-normal beat
time series (NN). To obtain synchronized time series, BBI,
SBP, and DBP were resampled using a linear interpolation
method (2 Hz).

METHODS

The BBI, SBP, and DBP time series were extracted using
algorithms based on zero crossings and different thresholds.
These data were evaluated through several non-linear
characterization techniques such as high resolution joint
symbolic dynamics (HRSJD), segmented Poincaré plot
analysis (SPPA) and normalized short-time partial directed
coherence (NSTPDC).

TABLE 1 | Baseline clinical information of ART database IDC patients (median and

interquartile range).

IDCHR IDCLR p-value

N = 77 (59 ♂, 18 ♀) N = 14 (11 ♂, 3 ♀)

Follow-up duration

[months]

27 [17; 37] 30 [21; 38] n.s.

Age (years) 55 [50; 60] 56 [50; 63] n.s.

LVEF (%) 29 [27; 37] 35 [27; 46] n.s.

LVEDD (mm) 69 [61; 79] 61 [58; 68] n.s.

LVESD (mm) 60 [53; 69] 49 [44; 56] 0.0028

NYHA 3 [2; 4] 2 [2; 3] 0.0024

IDCHR and IDCLR, high risk and low risk group of patients with dilated cardiomyopathy;

N, number of patients within the groups (♂ = Male; ♀ = Female); LVEF, Left ventricular

ejection fraction; LVEDD, Left ventricular end-diastolic diameter; LVESD, left ventricular

end-systolic diameter; NYHA, New York heart association index.
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High Resolution Joint Symbolic Dynamics
The joint symbolic dynamics (JSD)method (Baumert et al., 2002)
is based on the analysis of dynamic processes by the means
of symbols. Considering BBI, SBP, and DBP time series, X is
defined as a bivariate sample vector that contains two out of the
three time series, for all their possible combinations (BBI-SBP,
BBI-DBP, and SBP-DBP), as expressed in Equation (1),

XBBI_SBP =
[

xBBIn , xSBPn

]T

XBBI_DBP =
[

xBBIn , xDBPn

]T

XSBP_DBP =
[

xSBPn , xDBPn

]T











n = 0, 1, . . . , N with x ∈ R, (1)

being N the total number of samples.
In JSD, the increments between two successive values of

the temporal series are coded as “1” and the decrements and
equilibriums are coded as “0,” these increments and decrements
are considered in relation to a threshold l. The vector X can be
transformed into the symbolic vector S using the rules set out in
Equation (2), were the threshold l is set equal to 0 (Baumert et al.,
2002; Giraldo et al., 2015).

SBBI_SBP =
[

SBBIn , SSBPn

]T

SBBI_DBP =
[

SBBIn , SDBPn

]T

SSBP_DBP =
[

SSBPn , SDBPn

]T











n = 0, 1, . . . , N, with S ∈ 0, 1

SBBIn =

{

0 :
(

xBBIn+1 − xBBIn

)

≤ 0

1 :
(

xBBIn+1 − xBBIn

)

> 0
(2)

SSBPn =

{

0 :
(

xSBPn+1 − xSBPn

)

≤ 0

1 :
(

xSBPn+1 − xSBPn

)

> 0

SDBPn =

{

0 :
(

xDBPn+1 − xDBPn

)

≤ 0

1 :
(

xDBPn+1 − xDBPn

)

> 0

Sequences of symbols are considered words of length k. The
words are then arranged in a vector matrix W. Particularly, for
k = 3 (Sn, Sn+1, Sn+2) an 8 × 8 vector matrix can be derived,
taking values from (000, 000)T to (111, 111)T .

In order to obtain JSD indices that are more robust against
noise, fluctuations and artifacts, the comparison threshold should
be something other than 0. There are several advantages for
choosing a non-zero threshold. For instance, a state will be
generated that will help to distinguish between small and
large changes in the system’s variability. It is also possible to
differentiate between decrements and equilibrium because both
states are no longer coded with the same symbols. Lastly, the
number of word types including “0” will not be the most
prevalent within the W matrix (Schulz et al., 2013b, 2015b).
The high-resolution joint symbolic dynamics (HRJSD) method
implements a three symbol JSD after setting a threshold l. The
increment states are coded as “2,” the decrements are coded as “1”
and the equilibrium states are coded as “0.” With this technique,

the transformation fromX to S varies as is shown in Equation (3).

SBBIn =



















0 :
(

xBBIn+1 − xBBIn

)

< −lBBI

1 :−lBBI ≤
(

xBBIn+1 − xBBIn

)

≤ lBBI

2 :
(

xBBIn+1 − xBBIn

)

> lBBI

SSBPn =



















0 :
(

xSBPn+1 − xSBPn

)

< −lSBP

1 :−lSBP ≤
(

xSBPn+1 − xSBPn

)

≤ lSBP

2 :
(

xSBPn+1 − xSBPn

)

> lSBP
(3)

SDBPn =



















0 :
(

xDBPn+1 − xDBPn

)

< −lDBP

1 :−lDBP ≤
(

xDBPn+1 − xDBPn

)

≤ lDBP

2 :
(

xDBPn+1 − xDBPn

)

> lDBP

The new space is composed of combinations of 27 different
possible types of words (from 000 to 222) and a total of 729
indices. All the word types were grouped into eight pattern
families, transforming the vector matrix W into a vector
matrix family (Wf ). These indices were analyzed by their
occurrence probabilities. Afterwards, these indices were grouped
according to their family description (Table 2). These pattern
families represent different interactions between the branches
of the autonomic regulation system, leading to indices with
statistically sufficient occurrence probabilities (Schulz et al.,
2015b). Additionally, the Shannon entropy (Rundle et al., 2019)
was calculated for all the proposed families to assess the
complexity of the coupling.

The thresholds applied were 5ms and 1 mmHg on the
BBI and the blood pressure time series, respectively. These
threshold values were successfully applied in earlier work (Schulz
et al., 2013b). The threshold level using spontaneous baroreflex
sensitivity, in contrast to other thresholds, is the most suitable for
highlighting different specific cardiovascular coupling patterns.

Segmented Poincaré Plot Analysis
The Poincaré plot analysis (PPA) is used to quantify self-
similarity in processes by plotting the data into a higher
dimensional state space. Considering a time series X (n) =

TABLE 2 | Description of pattern families explored in the HRJSD method.

Family Description

E0 No variation of 3 successive “0” symbols (“000”)

E1 No variation of 3 successive “1” symbols (“111”)

E2 No variation of 3 successive “2” symbols (“222”)

LU1 Low increasing behavior (“122,” “022,” “112,” “221,” “220,” “211,”

“121,” “212”)

LD1 Low decreasing behavior (“011,” “001,” “002,” “110,” “100,”

“200,” “010,” “101”)

LA1 Fast alternant behavior (“020,” “202”)

P Alternant peak-like behavior (“120,” “201,” “210”)

V Alternant valley-like behavior (“021,” “102,” “012”)
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x1, x2, x3, . . . , xn, the Poincaré plot is obtained by plotting X (n)
vs. X (n+ 1). The typical representation is an elongated scatter of
plots through the line of identity with all the points whose values
are near the mean placed toward the center. Long- and short-
term variability indices can be by fitting an ellipse to the shape of
the plot andmeasuring the dispersion along the minor (SD1) and
major (SD2) axis of the ellipse, corresponding to their standard
deviation (Rodriguez et al., 2017).

Although PPA is a non-linear characterization method,
indices SD1 and SD2 can be correlated with the linear behavior
of the system, hence making them a suboptimal way to explore
information about the non-linear part of the process (Seeck et al.,
2011; Voss et al., 2012a).

The Segmented Poincaré plot analysis (SPPA) is an enhanced
pseudo-phase space quantification method that yields indices
that also represent the non-linear information of the system. In
SPPA the SD1 and SD2 indices are calculated similarly to PPA.
Then, the scatter points are rotated α degrees around the main
focus of the plot as defined in Equation (4),





X
′

n

X
′

n+1

z
′



 =





Xn

Xn+1

z



+









cosα − sinα 0

sin α cosα 0

0 0 1



×





Xn − Xn

Xn+1 − Xn+1

z







 .

(4)

The x and y axis correspond to X (t) and X (t + 1) values, Xn and
Xn+1 are the mean values of the original and shifted X time series
respectively, and z is the axis of the rotation (Voss et al., 2010,
2012a; Seeck et al., 2011). In this case we define α = 45 degrees
in order to simplify the estimating procedure of the SD1/SD2
adapted probability. Afterwards, a 12 × 12 rectangular grid is
drawn for the plot. The size of the rectangles (height, width) is
adapted based on the SD1 (row) and SD2 (column) values.

Finally, for each rectangle in position (i, j) the single
probability (ρij) is calculated considering the number of points
contained by the total number of points in the series. Afterwards,
the probabilities of each row (ρri) and column (ρcj) are calculated
as the sum of their single probabilities, as shown in Equation (5):

ρri =

12
∑

j= 1

ρij (5)

ρcj =

12
∑

i=1

ρij.

Normalized Short-Time Partial
Directed Coherence
The directed coherence method (DC) describes how and whether
two complex physiological signals are functionally connected
(Faes et al., 2012). The DC method studies the relative structural
relationships between the systems by breaking down their
interactions into feedback and feedforward aspects.

The partial directed coherence method (PDC) determines the
either direct or indirect causality between the systems analyzed.
The PDC is limited to work on stationary signals and is unable

to yield information about the partial correlative short-time
interaction properties (Baccala and Sameshima, 2001).

The NSTPDC is able to manage non-stationary signals by
evaluating their dynamic coupling changes and detecting their
level and directions in multivariate and complex dynamic
systems (Adochiei et al., 2013; Schulz et al., 2015a).

Normalized short-time partial directed coherence based on
an m-dimensional multichannel auto-regressive model (MAR)
process with model order p to determine Granger causality in the
frequency domain. For the selection of the optimal model order
popt of the AR(p) model and for the estimation of its coefficients,
the stepwise least squares algorithm (Neumaier and Schneider,
2001) and the Schwarz’s Bayesian Criterion (SBC) were applied
(Schneider and Neumaier, 2001). NSTPDC is based on the time-
variant partial directed coherence approach (tvPDC, πxy(f , n))
providing information about the partial correlative short-time
interaction properties of non-stationary signals, with f as the
frequency and n the number of windows (Milde et al., 2011).

To quantify the coupling direction between two time series, X
and Y (e.g., BBI and SBP: with xBBI and ySBP) with the covariate z
(e.g., DBP with zDBP), a coupling factor (CF) was introduced. CF
was obtained by dividing the mean value πxy(f , n) by the mean
value of πyx(f , n), defined as

CF =
1
n

∑

πxBBIySBP

(

f , n
)

1
n

∑

πySBPxBBI

(

f , n
) , a =

1

n

∑

πxBBIySBP

(

f , n
)

,

b =
1

n

∑

πySBPxBBI

(

f , n
)

. (6)

These results were normalized to become a specific set of values
leading to the (normalized) factor NF representing the coupling
direction, given by

NF =















2, if
(

max = a & a

b
> 5

)

1, if (max = a & 2 < a

b
≤ 5)

0, if (max = a & 0 ≤ a

b
≤ 2)

and

NF =















−2, if
(

max = b & b
a > 5

)

−1, if
(

max = b & 2 < b
a ≤ 5

)

0, if (max = b & 0 ≤ b
a ≤ 2)

. (7)

A normalization procedure was applied to CF leading to the
normalized factor (NF). NF determinates the direction of the
causal connections between the investigated time series (xBBI
and ySBP) as a function of frequency f. NF takes the following
values: NF = {−2, −1, 0, 1, 2}. Strong unidirectional coupling
is indicated if NF is −2 or 2 (where −2 denotes ySBP as the
driver), bidirectional coupling if NF = −1 or 1 (−1 denotes ySBP
as the driver), and an equal influence in both directions and/or
no coupling if NF = 0 in respect to coupling strengths (if both
area indices reveal equal values that are larger than zero an equal
influence in both directions is present, on the other hand, if both
area indices reveal equal values but are zero there is no coupling).

For determining the coupling strength between two time
series, e.g., xBBI and ySBP with covariate (zDBP), the areas
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(ABBI→SBP(DBP), ASBP→BBI(DBP), [a.u.]) generated in space by
CF were estimated in each window within the frequency band
f = 0–2Hz, and afterwards, averaged. ABBI→SBP(DBP) and
ASBP→BBI(DBP) ranges between 0 to 1 [0, 1]. Hereby, 1 indicates
that all causal influence originating from time series X are
directed toward (arrows:→ ) time series Y.

In order to take advantage of the aspect of stationarity and
scale-invariance for NSTPDC analyses, a normalization (zero
mean and unit variance) of the time series BBI, SBP, and DBP
was performed (Schulz et al., 2015a). Therefore, each sample i of
the BBI-, SBP-, or DBP- time series X = {xi, i = 1, . . .N} and
Y =

{

yi, i = 1, . . .N
}

with N as the maximal number of samples
i (temporal index) was first normalized by subtracting the mean
of x and, then divided by the standard deviation (std) of X or
Y, respectively. The normalized time series xnorm and ynorm (zero
mean and unit variance) were thus obtained as seen in (8)

xnorm (i) =
x (i)− x

std (x)
and ynorm (i) =

y (i)− y

std
(

y
) . (8)

Dual Sequence Method
A widely spread method to investigate the spontaneous
baroreflex sensitivity (BRS) is the sequence method (Bertinieri
et al., 1988). The BRS was obtained scanning the SBP and BBI
time series for sequences of three or more successive heart beats
in which a progressive increase (or decrease) in SBP was followed
(with a one-beat delay). The dual sequence method (DSM) was
developed to improve the analysis of the baroreflex sensitivity
(Malberg et al., 1999, 2002). A fluctuation is defined when there
are variations greater than 1 mmHg (increasing or decreasing)
in SBP and greater than 5ms in BBI values. The highest slope
of every sequence was taken for the linear regression. The slopes
of the regression lines between the SBP and BBI sequences were
taken as an index for local BRS [ms/mmHg] and calculated
in each recording. The DSM is based on standard sequence
methods, the enhancement lies in the analysis of two different
kinds of BBI response: bradycardic (an increase in SBP causes
an increase in BBI) and tachycardic fluctuations (a decrease in
SBP causes a decrease in BBI), whereas only the bradycardic
fluctuations represented the classical spontaneous baroreflex
sensitivity (bslope). The analysis of the tachycardic fluctuations
(tslope) provides additional information about autonomous
cardiovascular regulation (Parati et al., 2000).

Heart Rate and Blood Pressure Variability
Standard Indices
The HRV and the blood pressure variability (BPV) were
quantified using the standard indices from time and frequency
domain. The following indices were calculated from the BBI,
SBP, and DBP time series, with NN being the normal-to-
normal intervals:

- The mean of BBI, SBP, and DBP time series (BBI_meanNN,
SBP_meanNN and DBP_meanNN, respectively).

- The standard deviation of BBI, SBP, and DBP time series
(BBI_sdNN, SBP_sdNN, DBP_sdNN).

- The proportion derived by dividing NN50 (number of pairs
of adjacent NN intervals differing by more than 50ms in

the entire recording) by the total number of NN intervals
(BBI_PNN50, SBP_PNN50, DBP_PNN50).

- The square root of the mean squared differences of BBI, SBP,
and DBP time series (BBI_rmssd, SBP_rmssd, DBP_rmssd).

- The power of the low frequency components (0.04–0.15Hz) of
BBI, SBP, and DBP time series (BBI_LF, SBP_LF, DBP_LF).

- The power of the high frequency components (0.15–0.4Hz) of
BBI, SBP, and DBP time series (BBI_HF, SBP_HF, DBP_HF).

- The ratio between the low and high frequency power
components of BBI, SBP, and DBP time series (BBI_LF/HF,
SBP_LF/HF, DBP_LF/HF).

Feature Extraction
A total number of 621 indices were extracted to analyze the
interaction between the coupling across all signals (ECG and
blood pressure signals). The “cd” label represents the cardiac and
diastolic coupling, “cs” label indicates the cardiac and systolic
coupling, and “ds” label the diastolic and systolic coupling.

The distribution of these indices is as follows: 264 indices from
theHRJSD, 216 from the SPPA, 97 from the JSD, 12 from the PPA,
9 from theNSTPDC, 21 from the standardHRV and BPV indices,
and 2 from the DSMs. Summary descriptions of the indices are
shown in Table 3.

STATISTICAL ANALYSIS

In order to reduce dataset dimensionality, Mann Whitney non-
parametric statistical test was used to determine the statistical
significance of the indices obtained in the characterization

TABLE 3 | Coupling indices extracted from high-resolution joint symbolic

dynamics, segmented Poincaré plot analysis, and normalized short-time partial

directed coherence.

Index Description

HRJSDxy_Fx-Fy Probability of occurrence of the Fx and Fy word

families from the x–y coupling

HRJSDShxy Shannon entropy of all the word families from the

x-y coupling

HRJSDxy-Fx Summation of the occurrences of Fx on all the

families from the x-y coupling

SPPAxy_Row_n-m Probability of occurrence of the Row n-m from the

x-y coupling

SPPAxy_Column_n-m Probability of occurrence of the Column n-m from

the x-y coupling

JSDxy-n Probability of occurrence of the word n from the x-y

coupling

PPAxy_SD1 Short-time standard deviation from the x-y coupling

PPAxy_SD2 Long-time standard deviation from the x-y coupling

PPAxy_SD1/SD2 Short and long deviations ratio from the x-y coupling

NSTPDCxy_NF Normalized coupling factor from the x-y coupling

NSTPDCxy_ Ax→ y Coupling strength of x-y from x to y

NSTPDCxy_ Ay→ x Coupling strength of x-y from y to x

x and y represent the couplings cd, cs, and ds; F represents the word families: E0, E1,

E2, LU1, LD1, LA1, P and V; n and m represent the number of row and column in the

PPA based indices, respectively.
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process. The results were analyzed for different levels of
significance, including the Bonferroni criterion, considering:

n.s. ρ ≥ 0.01

∗ ρ ≤ 0.01 significant

∗∗ ρ ≤ 0.001 highly significant

∗ ∗ ∗ ρ ≤ 0.0000167 Bonferroni criterion

n = 621 indices

Additionally, a correlation analysis was performed on the
statistically significant indices. The ones with high correlation
(ρ ≥ 0.7) and relative lower significance were discarded.

The leave-one-out cross-validation procedure was used to
validate the results. The classification results are presented in
terms of accuracy (Acc), sensitivity (Sn), specificity (Sp), and area
under the curve (AUC).

CLASSIFICATION TECHNIQUES

The objective of the support vector machines (SVM) method is
to find a higher dimensional space where a classification problem
can be more easily solved than in the original space. The vectors
that defines the hyperplane are called support vectors. This
technique allows separating groups of data that are not originally
possible using linear classifiers (Giraldo et al., 2015).

Being X = {x1, . . . , xL} , x ∈ R a given set of data vectors and
Y =

{

y1, . . . , yL
}

their corresponding labels, the SVM function,
defined as a linear discriminant function, known as hyperplane,
is given can be defined by Equation (9),

f (x) = wz + b =
∑L

i
αiyiK

(

xiyi
)

+ b, (9)

where w is the normal vector to the hyperplane. The function
K(xiyi) is the Kernel function that will shape the hyperplane and
αi and b define the efficiency of the classifier on the optimal
values. In this study we evaluated the Gaussian, Laplace, and
ANOVA kernels.

The Gaussian kernel is useful to model radially distributed
data, and is defined in Equation (10), where σ is a
penalization term,

K
(

x, y
)

= e
−

(

‖x−y‖2

2σ2

)

. (10)

Laplace kernel is a less σ influenced version of the Gaussian
kernel, given by Equation (11)

K
(

x, y
)

= e
−

(

‖x−y‖2

2σ

)

. (11)

The ANOVA kernel works well on multidimensional support
vector regression models (Stitson et al., 1999) and is defined by
Equation (12), where σ and d are the optimization indices of
its function,

K
(

x, y
)

=
∑n

k=1
e(−σ (xk−yk)

2
)
d

. (12)

The classification problem is solved by maximizing the margin
while minimizing the training error. Using the Lagrange
multipliers method, a dual formulation can be obtained (Cortes
and Vapnik, 1995) (Equation 13),

minP
(

w, b
)

=
1

2
‖wmz‖

2 + C
∑

i
K1

[

yif (xi)
]

(13)

where C is a penalty parameter. Besides the scale of C having
no direct meaning, as its value increases, the penalty assigned
to errors is stronger, narrowing the decision boundary (Ben-Hur
et al., 2008).

Each feature was scaled and normalized (zero mean and unit
variance) in order to avoid scaling biases. For each iteration of
features, themodel was built by optimizing the value ofC for each
of the kernels considered, by iterating different values of σ and d.
The indices that showed statistical differences and low correlation
were used in pairs to build several SVM models. The accuracy of
each model was then calculated and the one with the higher value
was chosen as optimal for each type of kernel.

RESULTS

The calculated indices were used to analyze the cardiovascular
coupling in 91 IDC patients and 49 healthy subjects. Four
different comparisons were performed:

• The high risk IDC patients (IDCHR) vs. the low risk IDC
patients(IDCLR).
• The IDC patients vs. the CON subjects.
• The high risk IDC patients (IDCHR) vs. the CON subjects.
• The low risk IDC patients (IDCLR) vs. the CON subjects.

IDCHR Patients vs. IDCLR Patients
Compared With CON Subjects
We obtained statistically significant differences in the symbolic
dynamic analysis, for both the cardio-diastolic (BBI–DBP) and
diastolic-systolic (DBP-SBP) couplings. Figures 1, 2 present an
example of the three-dimensional plots of the word distribution
density matrix of the couplings, using the HRJSD method from
(Figures 1A,C, 2A,C) IDCLR and (Figures 1B,D, 2B,D) IDCHR

patients, respectively.
Figure 3 shows an example of the Poincaré plot method

applied to a patient for each analyzed group, considering the
systogram from (Figure 3A) a CON subject, (Figure 3B) a IDCLR

patient, and (Figure 3C) a IDCHR patient.
Figure 4 represents the averaged NSTPDC applied on the BBI,

SBP, and DBP time series couplings, for (Figure 4A) the CON,
(Figure 4B) IDCLR, and (Figure 4C) IDCHR groups.

Figure 5 presents the relationships between all three analyzed
groups, where the arrows represent the coupling direction and
the arrow thickness indicating the coupling strength. In addition,
the level of statistical significance has been represented (p≤ 0.01).

When comparing the IDCHR and IDCLR groups, 96 indices
presented statistically significant differences, corresponding to:
76 indices from the HRJSD, 12 from the SPPA, and 7 from the
NSTPDC. After the correlation analysis, a total of 36 statistically
significant indices were chosen for the classification process.
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FIGURE 1 | Three-dimensional plots of the word distribution density matrix using the HRJSD method (single word probabilities, word families), from a patient of (A,C)

IDCLR and (B,D) IDCHR, respectively, for cardio-diastolic coupling.

Some of the most relevant indices, expressed in a mean value and
95% confidence interval, are shown in Table 4.

IDC Patients vs. CON Subjects
When comparing IDC patients vs. CON subjects, 261 indices
presented statistically significant differences between the two
groups: 169 from the HRJSD, 76 from the SPPA, and 13
from NSTPDC. A total of 82 indices remained after discarding
the highly correlated indices. Table 5 shows the most relevant
of them.

IDCHR and IDCLR Patients vs.
CON Subjects
When comparing IDCHR patients vs. CON subjects and IDCLR

patients vs. CON subjects, the differences were found in 182 and
247 indices, respectively. After the correlation analysis, 61 and
85 remaining indices were chosen for the classification step. A
summary of the most relevant indices is shown in Tables 6, 7.

HRV and BPV Standard Indices and
DSM Results
When the HRV and BPV standard indices and the DSM
were evaluated in the IDCHR vs. IDCLR comparison, no
statistically significant indices were found. In the remaining
comparisons, seven indices presented statistical significances:
two from the sequence analysis and five from the HRV and
BPV standard indices. A summary of these results is shown
in Table 8.

Classification Results
After the SVM classification step, the PPAs_SD1/SD2 and
HRJSDds_LU1-P indices were deemed the optimal choices for
the Laplace kernel SVM model, achieving an accuracy of 98.9%
and an AUC of 0.96 for the IDCHR vs. IDCLR comparison.
The HRJSDds-E0d and NSTPDCcs_Area_c-s allowed us to
classify IDC patients from the CON group with an accuracy
of 93.6 % and an AUC of 0.94 using the Laplace kernel.
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FIGURE 2 | Three-dimensional plots of the word distribution density matrix using the HRJSD method (single word probabilities, word families), from a patient of (A,C)

IDCLR and (B,D) IDCHR, respectively, for diastolic-systolic coupling.

A B C

FIGURE 3 | Systolic blood pressure Poincaré plot analysis results from (A) a CON subject, (B) a IDCLR patient, and (C) a IDCHR patient.
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FIGURE 4 | Averaged NSTPDC plots for cardiovascular coupling analyses for (A) the CON, (B) the IDCLR, and (C) the IDCHR group. Arrows indicating the causal

coupling direction from one time series to another time series, e.g., SYS←BBI, indicating the causal link from BBI to SYS. Coupling strength ranges from blue (0, no

coupling) to red (1, maximum coupling) where BBI are beat-to-beat intervals, and SYS are successive end-systolic blood pressure amplitude values over time.

FIGURE 5 | Graphical representation of the entire cardiovascular coupling structure (coupling strengths and directions) among the cardiac (BBI), systolic blood

pressure (SYS), and diastolic blood pressure (DIA) systems, when comparing (A) CON vs. IDCLR, (B) CON vs. IDCHR, and (C) IDCHR vs. IDCLR. The arrows direction

indicates the causal coupling direction and the thickness the coupling strength. *Indicates that the NSTPDC index associated to the coupling represented by the

arrow is statistically significant when *p ≤ 0.01; **p ≤ 0.001; ***p ≤ 0.0000167.

Meanwhile, the HRJSDds_LD1-V and the NSTPDCcs_Area_c-
s were able to discriminate between IDCHR patients and the
CON group with an accuracy of 96.9% and AUC of 0.95
applying the Gaussian kernel. Finally, the HRJSDds-E1d and
the NSTPDCcs_Area_c-s were found to be the best indices to
classify IDCLR patients from the CON group, obtaining 89.6
% accuracy and a 0.85 AUC with the Laplace kernel. The
classification plots and the results are shown in Figure 6 and
Table 9, respectively.

Cascaded Risk Stratification
In order to consider the typical clinical case in which the original
condition of the subject is unknown, a cascade model was
developed to classify this new subject using the label SDC risk,
comparing the IDC vs. CON and IDCHR vs. IDCLR models
(Figure 7). The general idea of this model is to classify the subject
in either CON, LR, or HR without any prior labeling. The first
step is to decide if a subject is an IDC patient or not using the IDC
vs. CON model. Afterwards, those classified as IDC patients are
analyzed based on the LR vs. HR model to predict their risk level.

The cascade model achieved 94.4% accuracy. From a One
vs. All approach, the results for the CON group were 86.1%
sensitivity and 92.8% specificity, from the perspective of the HR
group, the model yielded a sensitivity of 93.2 and specificity of
94.5%, and for the LR group, themodel achieved 98.8% sensitivity
and 89.0% specificity.

DISCUSSION

The aim of this study was to find indices capable of stratifying
SCD risk in IDC patients. In order to achieve this, we derived
indices extracted from BBI (ECG) and systolic and diastolic
blood pressure (BP) temporal series using linear and non-linear
univariate and bivariate (coupling analysis) techniques. The
indices extracted from these techniques revealed patterns that
behave differently in patients at high risk of SCD. These indices
(mainly from coupling analyses) were used to train several SVM
models in order to classify the subjects based on different levels
of SCD risk.
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TABLE 4 | Mean value and 95% confidence interval of the most significant indices

when comparing the IDCHR and IDCLR patients.

Index IDCHR (N = 14) IDCLR (N = 77) p-value

PPAs_SD1/SD2 0.26 [0.22; 0.30] 0.20 [0.18; 0.22] *

PPAd_SD1/SD2 0.27 [0.25; 0.28] 0.19 [0.17; 0.20] **

PPAd_SD1 1.21 [1.15; 1.26] 0.92 [0.85; 0.98] **

SPPAcd_Column_5 13.97 [13.54; 14.39] 12.09 [12.01; 13.02] *

SPPAcd_Column_8 13.77 [13.53; 14.03] 12.71 [12.35; 13.06] n.s.

HRJSDcd_E1-LD1 0.03 [0.024; 0.035] 0.09 [0.081; 0.091] **

HRJSDcd_ LD1-V 0.056 [0.039; 0.073] 0.025 [0.021; 0.028] **

HRJSDds_P-LU1 0.028 [0.022; 0.034] 0.016 [0.013; 0.019] **

HRJSDds_V-LD1 0.050 [0.040; 0.060] 0.026 [0.022; 0.029] **

NSTPDCcd_NF −0.15 [−0.44; 0.14] −0.71 [−0.85; −0.56] *

NSTPDCcd_Area_c-d. 0.26 [0.23; 0.29] 0.20 [0.18; 0.21] **

*ρ ≤ 0.01; **ρ ≤ 0.001; n.s. ρ ≥ 0.01; IDCHR, idiopathic cardiomyopathic patients at high

risk of IDCLR, idiopathic cardiomyopathic patients at low risk of SCD; PPA, Poincaré plot

analysis; SPPA, segmented Poincaré plot analysis; HRJSD, high resolution joint symbolic

dynamic; NSTPDC, normalized short-time partial directed coherence; cd, cardio-diastolic

coupling; ds, diastolic-systolic coupling.

TABLE 5 | Mean value and 95% confidence interval of the most significant indices

comparing IDC patients and CON subjects.

Index IDC (N = 91) CON (N = 49) p-value

HRJSDds-

E0d

0.018 [0.014; 0.021] 0.0064 [0.0048; 0.0071] ***

NSTPDCcs_

Area_c-s

0.25 [0.23; 0.28] 0.15 [0.13; 0.17] ***

PPAc_SD1 14.18 [10.44; 17.93] 23.27 [20.70; 25.84] **

PPAc_

SD1/SD2

0.29 [0.23; 0.34] 0.36 [0.33; 0.38] **

HRJSDcd-

E2d

0.02 [0.18; 0.21] 0.05 [0.045; 0.054] *

HRJSDcd-

LD1d

0.23 [0.22;0.24] 0.28 [0.27; 0.29] **

HRJSDds_

LD1-E2

0.0014 [0.0010; 0.0018] 0.0053 [0.0035; 0.0071] ***

HRJSDcd_

E0-LA1

0.0004 [0.00028; 0.00053] 0.00014 [0.00010; 0.00019] ***

HRJSDds_

LD1-LD1

0.069 [0.063; 0.074] 0.093 [0.086; 0.10] ***

*ρ ≤ 0.01; **ρ ≤ 0.001; ***ρ ≤ 0.0000167; n.s. ρ ≥ 0.01; IDC, idiopathic cardiomyopathic

patients; CON, control group; PPA, Poincaré plot analysis; HRJSD, high resolution

joint symbolic dynamic; NSTPDC, normalized short-time partial directed coherence; cd,

cardio-diastolic coupling; cs, cardio-systolic coupling; ds, diastolic-systolic coupling.

Our findings revealed that the cardio-diastolic coupling
(NSTPDCcd_NF) is bidirectional with the diastolic activity as
a driver in IDCLR patients. Additionally, the coupling strength
from cardiac activity over both the systolic and diastolic blood
pressure (NSTPDCcs_Area_c->s, NSTPDCcs_Area_c->d) gets
stronger when the patients are at high risk, suggesting that the
cardiac activity is significantly dominating the blood pressure.
This type of relationship has been observed before in congestive
heart failure patients (Marinazzo et al., 2006).

Our results also revealed that there is a significant increase in
systolic pressure activity as a response to the alternant activity

TABLE 6 | Mean value and 95% confidence interval of the most significant indices

comparing the IDCHR patients and CON subjects.

Index IDCHR (N = 14) CON (N = 49) p-value

HRJSDds_LD1-V 0.05 [0.040; 0.066] 0.02 [0.020; 0.027] ***

NSTPDCcs_Area_c->s 0.29 [0.24; 0.35] 0.15 [0.13; 0.17] ***

NSTPDCcd_Area_c->d 0.31 [0.27; 0.36] 0.22 [0.20; 0.24] **

SPPAds_Column_2-6 27.23 [25.73; 28.72] 22.44 [21.26; 23.63] **

HRJSDcd_LD1-E2 0.003 [0.001; 0.006] 0.012 [0.010; 0.015] **

**ρ ≤ 0.001; ***ρ ≤ 0.0000167; IDCHR, idiopathic cardiomyopathic patients at high

risk of sudden cardiac death; CON, control group; SPPA, segmented Poincaré plot

analysis; HRJSD, high resolution joint symbolic dynamic; NSTPDC, normalized short-time

partial directed coherence; cd, cardio-diastolic coupling; cs, cardio-systolic coupling; ds,

diastolic-systolic coupling.

TABLE 7 | Mean value and 95% confidence interval of the most significant indices

comparing the IDCLR patients and CON subjects.

Index IDCLR (N = 77) CON (N = 49) p-value

HRJSDcd-

E1d

0.33 [0.29; 0.37] 0.21 [0.17; 0.26] **

NSTPDCcs_

Area_c-s

0.25 [0.22; 0.27] 0.15 [0.13; 0.17] ***

SPPAcd_

Column1–8

5.40 [4.95; 5.85] 7.19 [6.56; 7.82] **

HRJSDcd_

E0-LA1

0.0004 [0.0002; 0.0005] 0.0014 [0.0010; 0.0019] ***

HRJSDds_

LD1-LD1

0.070 [0.064; 0.075] 0.093 [0.086; 0.101] ***

**ρ ≤ 0.001; ***ρ ≤ 0.0000167; IDCLR, idiopathic cardiomyopathic patients at low

risk of sudden cardiac death; CON, control group; SPPA, segmented Poincaré plot

analysis; HRJSD, high resolution joint symbolic dynamic; NSTPDC, normalized short-time

partial directed coherence; cd, cardio-diastolic coupling; cs, cardio-systolic coupling; ds,

diastolic-systolic coupling.

of diastolic pressure in patients at risk of SCD (HRJSDds_P-
LU1). Similar patterns were also observed in the cardio-diastolic
coupling (HRJSDcd_LD1-P), suggesting that the deterioration
of autonomic regulation is more severe in patients at high risk
of SCD. Earlier studies indicated that symmetric patterns in the
HRJSD could be related to baroreflex-like response patterns. This
suggests that this kind of behavior is also more pronounced in
patients at high risk (Baumert et al., 2005; Schulz et al., 2016).

The Poincaré plot analysis revealed that the patients from
the HR group have higher short-term systolic blood pressure
deviation than the patients from the LR group and the CON
subjects. This pathological behavior is also reflected in the
PPAs_SD1/SD2 index, which is less balanced as the illness
progresses. The diastolic blood pressure behaved in a similar
way: the short-term diastolic blood pressure deviation was
significantly lower in HR patients and their PPAd_SD1/SD2 was
less balanced as well, indicating higher BPV in patients with
critical conditions. In earlier studies (Tatasciore et al., 2013;
Ribeiro et al., 2017), higher short-term BPV was associated
with several cardiac maladies such as left ventricular systolic
dysfunction and atherosclerosis, amongst others. This BPV
behavior was also present in sinoaortic denervated cats (Di
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TABLE 8 | Mean value, 95% confidence interval and p-value of the HRV and BPV standard indices and the dual sequence method across all comparisons.

Index IDCHR (N =14) IDCLR (N = 77) CON (N = 49) p-value p-value p-value p-value

IDCHR vs.

IDCLR

IDC vs.

CON

IDCHR vs.

CON

IDCLR vs.

CON

bslope 5.36 [3.49; 7.22] 7.81 [6.8; 8.75] 10.29 [9.09; 11.49] n.s. ** ** *

tslope 5.51 [3.75; 7.27] 7.94 [7.05; 8.83] 11.01 [9.78; 12.24] n.s. ** ** **

BBI_meanNN 828.42 [775.26; 881.57] 906.95 [879.27; 934.63] 883.79 [853.34; 914.23] n.s n.s n.s. n.s.

BBI_sdNN 33.44 [25.06; 41.81] 36.98 [32.8; 41.09] 47.82 [43.45; 52.19] n.s. ** * **

BBI_rmssd 17.43 [12.00; 22.87] 20.53 [18.22; 22.84] 32.90 [28.25; 37.55] n.s. ** * **

BBI_pNN50 2.48 [1.45; 3.52] 3.44 [2.73; 4.14] 0.14 [0.09; 0.18] n.s. ** * **

BBI_HFn 0.65 [0.60; 0.70] 0.67 [0.63; 0.70] 0.62 [0.58; 0.67] n.s. n.s. n.s. n.s.

BBI_LFn 0.34 [0.29; 0.39] 0.32 [0.29; 0.36] 0.37 [0.32; 0.41] n.s. n.s. n.s. n.s.

BBI_LF/HF 2.48 [1.45; 3.52] 3.44 [2.73; 4.14] 2.55 [2.06; 3.04] n.s. n.s. n.s. n.s.

SYS_meanNN 121.3 [107.6; 135] 112.6 [108.3; 117] 122.5 [116.7; 128.2] n.s. n.s. n.s. **

DIA_meanNN 61.5 [55.2; 67.9] 58.5 [55.8; 61.2] 60.6 [56.7; 64.5] n.s. n.s. n.s. n.s.

DIA_VLF 0.48 [0.4;.0.56] 0.48 [0.45; 0.51] 0.39 [0.35; 0.44] n.s. ** n.s. **

*p ≤ 0.01; **p ≤ 0.001; n.s. p ≥ 0.001; IDCHR, idiopathic cardiomyopathic patients at high risk of sudden cardiac death; IDCLR, idiopathic cardiomyopathic patients at low risk of sudden

cardiac death; CON, control group; bslope, bradycardic fluctuations; tslope, tachycardic fluctuations; BBI, beat-to-beat cardiac interval; SYS, systolic blood pressure; DIA, diastolic

blood pressure.

FIGURE 6 | SVM classification plots: (A) IDC vs. CON (Laplace kernel), (B) IDCHR vs. IDCLR (Laplace kernel), (C) IDCHR vs. CON (Gaussian kernel), and (D) IDCLR

vs. CON (Laplace kernel).

Rienzo et al., 1991). Additionally, baroreflex effectiveness has
been studied in paraplegic subjects (Castiglioni et al., 2007), and it
their BPV, compared to control subjects, was found to be higher.

The aforementioned patterns were also present when the
IDC patients were compared to the CON group. In general,
the indices found in the PPA suggest that short-term BPV is
higher in patients with pathological conditions (Mancia et al.,
1983; Mehlum et al., 2018). The PPA indices regarding the BBI
revealed that short-term deviation and the short- and long-term
deviation ratio of the heart rate is higher in the CON group,

suggesting that the HRV in the CON group is higher than in IDC
patients. Additionally, the BBI_rmssd index suggests that the
HRV is lower in IDC patients compared with the CON subjects
(Shaffer and Ginsberg, 2017). It is known that reduced HRV is a
predictor of an adverse prognosis in patients with cardiac disease
(Task-Force-of-the-European-Society-of-Cardiology-the-North-
American-Society-of-Pacing-Electrophysiology, 1996; Gang
and Malik, 2003). Several studies have related low HRV with
heart failure (Dekker et al., 2000; Musialik-Lydka et al., 2003;
Sandercock and Brodie, 2006; Patel et al., 2017). Additionally, an
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TABLE 9 | Accuracy (Acc), sensitivity (Sn), specificity (Sp), and area under the

curve (AUC) obtained with the best SVM model for each comparison.

IDCHR vs.

IDCLR

IDC vs. CON IDCHR vs.

CON

IDCHR vs.

CON

Indices PPAs_

SD1/SD2

HRJSDds_

LU1-P

HRJSDds-

E0d

NSTPDCcs_

Area_c-s

HRJSDds_

LD1-V

NSTPDCcs_

Area_c-s

HRJSDds-

E1d

NSTPDCcs_

Area_c-s

C 7 5.5 1 0.3

Kernel Laplace Laplace Gaussian Laplace

σ 1 1.5 0.3 1

Acc (%) 98.9 93.6 96.8 84.9

Sn (%) 100 93.7 92.9 89.6

Sp (%) 93.1 95.5 98.0 79.5

AUC 0.96 0.94 0.95 0.85

FIGURE 7 | Cascade model structure. The subject is evaluated in the IDC vs.

CON model, and resulting IDC patients’ level of risk is evaluated by means of

the HR vs. LR model.

increase complexity in BBI randomness and a lower fractal-like
behavior have been associated with SDC (Huikuri et al., 2000).

The DSM revealed that both the tslope and bslope are
significantly lower in IDC patients compared to CON subjects,
and lower values of these sequences are associated with baroreflex
dysfunction (Di Rienzo et al., 2001; La Rovere et al., 2008). In
addition, a trend emerged in these indices when the patients were
compared by their level of risk: IDCHR patients showed lower
tslopes and bslopes.

The segmented approach of the Poincaré Plot analysis
revealed that some patterns in the cardiovascular coupling
are more common in HR patients. There was a significantly
higher concentration of these patterns in column 5 and
8 in both cardio-diastolic and cardio-systolic couplings in
patients at higher risk of SDC, indicating a lower variability
in their baroreflex activity compared with patients at low
risk. SPPA patterns (SPPAcd_Column_5, SPPAcd_Column_8)
occurred more frequently and were more concentrated in low
risk patients, suggesting that these patients present a higher HRV
compared to patients at higher risk of SCD. The viability of HRV
as a reliable predictor of SCD in IDC patients was questioned
in an earlier study (Grimm et al., 2003), which did not support
the hypothesis that HRV is a reliable predictor of SCD in IDC
patients. However, their results were based on a time domain
analysis of HRV only, whereas the significant indices analyzed
in our work come primarily from non-linear methods. These

characterization methods are more suitable for describing the
non-linear behavior of HRV in pathological conditions.

The HRJSD results suggest that patients at high risk adapt
less frequently to changes in blood pressure, reflected in the
lower presence of decreasing patterns of BBI (E0) in response
to decreasing patterns in diastolic blood pressure (LD1). This
may be a result of the vagal response, causing less frequent
parasympathetic activity, leading to a less effective control of the
blood pressure, and consequently the heart rate, in patients at
higher risk conditions.

These results were consistent when CON subjects were
compared with IDC patients: decreasing patterns (E0) in
diastolic BPV were reflected in decreasing heart rates at higher
frequencies in CON subjects. The DIA_LF/HF was higher in
the patients when compared to the CON group. Higher levels
of this index reflects efferent sympathetic activity (Mccraty and
Shaffer, 2015). Additionally, a higher prevalence of unchanging
patterns (E1) was found in the IDC patients compared with
the CON group, indicating that changes in blood pressure are
frequently not reflected in changes in heart rate in patients with
pathological conditions.

In addition, the HRJSDcd-E2d and HRJSDcd-LD1d indices
showed that steady (E2) and low decreasing (LD1) diastolic blood
pressure patterns, independent from all BBI patterns, are more
frequent in CON subjects. These indices suggest a worsened
circulatory homeostasis in IDC patients and support the idea
of the influence of baroreflex activity in pathological conditions
(Kishi, 2018).

Earlier studies (Gavish et al., 2008; Schillaci and Pucci,
2010) have stated that the relationship between systolic and
diastolic blood pressure should be coherent: if one of them
increases, the other is expected to increase as well. The results
of the systolic-diastolic coupling revealed that patterns that are
opposing in nature (sLU1-dP, sLD1-dV) are more frequent in the
HR group. This suggests that the relationship between systolic
and diastolic blood pressure loses linearity as the pathological
condition worsens.

The coupling strength of the cardiovascular and diastolic-
systolic couplings are stronger in pathological conditions. In
addition, the symmetric patterns of the diastolic-systolic coupling
activity were less frequent in patients. This may be caused by the
effect of the autonomic regulation mechanisms in pathological
conditions (Floras, 2009; Kishi, 2012).

To summarize, our results suggest that there is a gradual
loss of HRV as SCD risk increases and, at the same time, BPV
increases alongside SCD risk. There is great controversy about
the prognostic value of linear time and frequency domain HRV
indices for risk stratification among this type of patient (Grimm
et al., 2003; Hohnloser et al., 2003; Minamihaba et al., 2003;
Valencia et al., 2009; Voss et al., 2010, 2012a). The results of this
work support the idea that the commonly used techniques for
analysis of the time and frequency domain of HRV is not suitable
for risk stratification. However, the combination of non-linear
HRV analysis and linear as well as non-linear coupling analysis
seems to be a promising tool for risk assessment in IDC patients
(Voss et al., 2012b; Valencia et al., 2013; Fischer and Voss,
2014). The processes involved in the circulatory homeostasis
are by nature non-linear. Therefore, the differences between
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the stages of this process can be more adequately revealed by
the quantification of the signal properties rather than by the
assessment of their magnitude.

We hypothesize that a dysfunction of the vagal activity, and
in general of the baroreflex mechanism as a whole, prevents
the body from maintaining circulatory homeostasis correctly.
This reduction in vagal activity and increase in the sympathetic
influence exposes the cardiovascular system to frequent states
of stress that contribute to the worsening of the condition
over time. The gradual worsening of the heart rate and blood
pressure variability’s in the different SDC risk stages considered
here supports this assumption. This kind of impairment has
also been associated with other cardiac pathological conditions
like ventricular fibrillation during myocardial ischemia (La
Rovere et al., 2001). Abnormal sympathetic neural firing has
been associated with SCD and the genesis of ventricular
tachyarrhythmias (Esler et al., 1995). A similar behavior has
been observed in elder mice (Freeling and Li, 2015), who
presented a reduced baroreflex bradycardic response compared
to younger mice.

This study has some limitations that are important to
consider. The average age in the CON group was lower than in
the IDC group, the influence of age in the study of HRV has been
widely studied in earlier work (Voss et al., 2015). However, this
limitation does not affect our results for HR vs. LR comparisons.
A higher number of indices were analyzed than the number of
patients in the database. Consequently, in order to minimize
problems due to possible overfitting, we stablished different levels
of statistical significance to reduce the dataset dimensionality,
including the Bonferroni-Holm correction criterion.

The characterization of linear and non-linear coupling could
be also analyzed based on linear and non-linear Granger causality
in time- and frequency domains (Schulz et al., 2013a). The
objective of this study was to evaluate the general behavior of
the underlying coupling, through the average of all features
(windows) over time was performed. Nevertheless, it is uncertain
if another time-invariant time domainmeasure based onGranger
causality would be more appropriate and would have more
discriminative power (Porta and Faes, 2016). It would be
interesting for an ongoing study.

Another limitation of this work is related to comorbidities
and confounding factors influencing the autonomic regulation
system. Therefore, these exclusion criterions make risk
stratification not yet applicable to every patient.

CONCLUSION

With this study we suggest that indices from coupling analysis
and non-linear HRV and BPV can contribute to the development

of risk stratification in IDC patients. We have introduced a novel
cascade model that successfully classified subjects into different
levels of SCD risk (CON, IDCLR, and IDCHR). Further, this study
allowed us to uncover, for the first time, some of the complex
interactions that take place within autonomic regulation, leading
to a more accurate modeling, and interpretation of these
processes in pathological conditions. Our findings revealed that
there is a gradual decrease of HRV and an increase of BPV
as the SCD risk increases. We conclude that patients at high
risk of SCD can no longer maintain circulatory homeostasis
consistently, leading to states of stress that worsens the
condition over time.

However, these results should be validated with a greater
number of patients, especially in the high-risk group. Therefore,
the results presented in this work are more of a hypothesis-
generating nature than confirmatory.
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