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1. Introduction. A common task in stochastic modeling is that of approximating a complex, or only partially
understood, random variable Y by a linear combination

�Y = c0+ c1X1+ · · ·+ cnXn

of random variables Xj which are better known, or more accessible, than Y , or thought to express the major
influences on Y . The coefficients c0� c1� � � � � cn are chosen to control the approximation error Y − �Y as a random
variable and optimize it from some standpoint. This is the essence of linear regression, but for the most part
only a few cases have received much attention.
The classical approach is to use least squares, in which the expectation of �Y − �Y 	2, or equivalently the square

root of that expectation, is minimized; this amounts to minimizing the standard deviation of Y − �Y subject to the
expectation of Y − �Y being 0. In quantile regression (Koenker [9], Koenker and Bassett [10]), a different measure
of the error is minimized with the aim of providing direct estimates for quantiles of Y . Other approaches could
also be taken, however. What might be said about them and why might one be preferred over another in some
situations? How might they affect model building itself?
Our goal in this paper is to build a bridge between statistical ideas and their application to diverse areas of

operations research, especially finance, which opens a broad way to posing and answering such questions. We
develop an axiomatic framework, encompassing least squares and quantile regression along with much more, in
which measures of error � on random variables X (quantifying how far any X is from being just the 0 random
variable) are coordinated with generalized measures of deviation � beyond standard deviation (which quantify
how far X is from being constant, or “certain”). Such measures of deviation � are naturally paired moreover
with measures of risk � (providing numerical surrogates for the overall “loss” associated with a prospect X).
The measures �, �, and� bring out features of interest in many situations—in particular for risk management

in finance—and furthermore tie in with a “statistic” � which identifies, from the perspective of the chosen
measure of error, the constant C that is closest to a given random variable X. By putting all these notions together
for the first time in a single package, we come to a view of generalized linear regression in which optimization is
at the forefront, and techniques for estimating and approximating random variables can be tuned to the purposes
of a particular model. Quantile regression already offers some precedents for taking this optimization perspective
(as explained well in the book by Koenker [9]), but we go much further.
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It is important then to address the issue that arises, in this new horizon of capabilities for generalized linear
regression, of how the available choices can be used advantageously in particular applications. In finance, for
example, where so much seems at present to hinge on variance and covariance, practitioners could well wonder
why anything other than least squares approaches to estimation should ever be brought in. But regression based
on least squares concentrates basically on estimating expectations, while in financial modeling tail behavior
is often of greater concern. Quantile regression could, for instance, help with that. A recent paper (Trindade
et al. [21]) goes in a direction related to quantile regression that and adds constraints.
A key reason why one mode of regression might be preferable over another in a practical setting is provided

by factor models in finance. A brief explanation of this will provide advance motivation for the theory to be
developed.
A portfolio is commonly described by a random variable x1r1+· · ·+xmrm in which the ri’s are the returns, or

rates of return, of the instruments i= 1� � � � �m incorporated in the portfolio, and the xi’s are their weights. The
weights are to be adjusted in accordance with some objective, and this involves paying attention to functions
having the form

f �x1� � � � � xm�=� �x1r1+ · · ·+ xmrm� (1.1)

for a functional � that acts on random variables. For instance, � might quantify some aspect of the risk in the
portfolio. (Deviation measures � and risk measures � both do this, but we do not exclude still other possibilities
when we speak of “aspects” of risk.) The random variables ri may be difficult or complicated to handle directly,
however. This leads, in a factor model, to approximating each ri by a linear combination of a much smaller
number of other random variables, called factors. In other words, ri is approximated by some r̂i obtained through
linear regression on those factors. This means that f �x1� � � � � xm� is replaced by

f̂ �x1� � � � � xm�=� �x1r̂1+ · · ·+ xmr̂m�� (1.2)

But what can be said then about the difference f �x1� � � � � xm�− f̂ �x1� � � � � xm� and its behavior as a function of
the weights xi?
This difference, constituting an error of another sort, is affected by the approach taken to regression in the

factor model, so the idea comes up of tuning that approach to achieve optimal behavior. We will be able to show
that, for functionals � of type � =� or � =� associated with aspects of risk, such tuning can definitely be
carried out. This will emerge from the way risk and error are coordinated in the framework that we set up.
We start §2 with a summary of some concepts and results in our recent paper (Rockafellar et al. [16]) on which

we need to rely. We then develop the notion of “error projection” and how it leads from an error measure � not
only to a deviation measure � but also to an associated “statistic” � . Various examples are laid out. Among
other new results is the identification of an error measure that projects to a given mixture of deviation measures,
such as may be associated with the risk profile of an investor.
In §3, we go on to generalized linear regression and the basic results about it. In §4, we characterize regression

coefficients from the angle of optimality conditions with respect to the minimization of error. These results are
concerned with approximating a single given random variable Y by other random variables in the setting of a
particular linear space of random variables. They do not relate yet to what happens in a parametric situation as
explained in connection with factor models, where the approximation is to be controlled somehow for a whole
range of parameter vectors �x1� � � � � xn�. That is the topic in §5.
In the long run, it will be important from the angle of statistical estimation to explain also how these ideas

can be supported by asymptotic results about the use of empirical data and sampling, rather than just the ideal
approximations obtained with “true” random variables. Such results, which are well known, of course, for least
squares and quantile regression, have been further investigated for financial prediction with constrained tail risk
in Trindade et al. [21]. However, for our general context this will entail a sizable development beyond what can
fit in this paper, so we reserve it for later.

2. Measures of error, deviation, and risk. In the background for our work, there is a space � of future
states � which has been supplied with the structure of a probability space: a field � of measurable sets on
which there is a probability measure P . Random variables are construed as (measurable) functions X from �
to � such that

∫
�
�X����2 dP��� is finite. In other words, we focus on random variables as elements of the

linear space �2����� P�, which we denote simply by �2���. The choice of this space simplifies the picture
of duality which will appear later and coordinates with the role of �2-concepts in classical statistics and linear
regression.
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The integral of X with respect to P is the expectation EX of X. The standard deviation of X is ��X� =
�X−EX�2 for the norm �X�2 = �E�X2	�1/2. The symbol C will typically stand for a constant in �, or for the
corresponding constant random variable; we simply write X = C, meaning technically that X��� = C almost
surely. Similarly, for the essential supremum and infimum of X we just write supX and inf X. Thus, inf X is
the supremum of the set of all C ∈� such that X���≥C almost surely, and likewise for supX.
Of immediate interest to us is the case where a random variable X may represent an approximation error,

as in linear regression. If X = 0, the error vanishes, but if X �= 0, it may be assessed in different ways. By a
measure of error (error quantifier), we will have in mind a functional �� �2���→ �0�
	 satisfying the axioms
(E1) ��0�= 0 but ��X� > 0 when X �= 0; also, ��C� <
 for constants C.
(E2) ���X�= ���X� when �> 0 (positive homogeneity).
(E3) ��X+X ′�≤��X�+��X ′� for all X, X ′ (subadditivity).
(E4) �X ∈�2��� ���X�≤ c� is closed for all c <
 (lower semicontinuity).

A closely related notion is that of a measure of deviation (deviation quantifier), which, in contrast to a measure
of error, assesses the degree of uncertainty (inconstancy) in a random variable X. In that case we will have in
mind a functional �� �2���→ �0�
	 satisfying the axioms
(D1) ��X�= 0 for constant X, but ��X� > 0 otherwise.
(D2) ���X�= ���X� when �> 0 (positive homogeneity).
(D3) ��X+X ′�≤��X�+��X ′� for all X, X ′ (subadditivity).
(D4) �X ∈�2��� ���X�≤ c� is closed for all c <
 (lower semicontinuity).

Axioms (E2) and (E3) and (D2) and (D3), respectively, imply that � and � are convex functionals on the linear
space �2���. For some purposes these conditions might be replaced in each case by a single axiom merely
requiring that convexity so as to enlarge the definitions beyond the property of positive homogeneity in (E2)
and (D2). But that property will be important to us, and we therefore hold back here from such an extension.
Axiom (D1) has the consequence, shown in Rockafellar et al. [16], that

��X−C�=��X� for all constants C. (2.1)

On the other hand, the second part of (E1) ensures through (E3) that

if ��X−C�<
 for some C� then ��X−C�<
 for every C. (2.2)

Axioms (E4) and (D4) require � and � to be lower semicontinuous as functionals on �2���, this being a
natural property which serves technical needs when working in that chosen space. When � consists only of a
finite set of future states �, and � and � do not take on 
, this lower semicontinuity is automatic.
The definitions do not require � or � to be symmetric: perhaps ��−X� �= ��X� or ��−X� �=��X�. This

is essential in our framework because we want to allow for applications to finance in which gains and losses
might not be viewed symmetrically. Some examples of such error measures are

��X�= �amax�0�X�+ bmax�0�−X��p with a> 0� b > 0� 1≤ p≤
� (2.3)

Here ��X��p is the usual �p norm (which is well defined on �2��� but able to take on 
 when p > 2, unless
� is a finite set so that �2��� is finite dimensional).
Many people think of the risk inherent in a financial random variable as tied entirely to the uncertainty (incon-

stancy) in that variable. Measures of deviation were introduced in our working paper (Rockafellar et al. [15]) in
order to quantify that aspect of risk and keep it distinct from another aspect which has come to be quantified
instead by “risk measures,” most notably the coherent measures of risk developed by Artzner et al. [3, 4]. Risk
measures in the vein of Artzner et al. [3, 4], will be important here as well, but our project requires us to
concentrate on an “averse” class which differs in some crucial assumptions from the “coherent” class in Artzner
et al. [3, 4]. The overlap is substantial, however. A full discussion of the relationships is available in Rockafellar
et al. [16].
The class we need to work with is defined as follows. By an averse measure of risk (risk quantifier), we will

mean a functional �� �2���→ �−
�
	 satisfying the axioms
(R1) ��C�=−C for constants C, but ��X� > E�−X	 for nonconstant X.
(R2) ���X�= ���X� when �> 0 (positive homogeneity).
(R3) ��X+X ′�≤��X�+��X ′� for all X, X ′ (subadditivity).
(R4) �X ∈�2��� ���X�≤ c� is closed for all c <
 (lower semicontinuity).
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This concept depends on a particular “orientation” being implicit in how random variables X are regarded:
positive outcomes X��� are deemed good (associated with profits or gains, say), whereas negative outcomes
X��� are deemed bad (through connection with costs or losses). The value ��X� assigned to X, which we call
the �-risk of X, is intended as a numerical surrogate for the overall “badness” of X. This being the perspective,
the definition is adopted as in Artzner et al. [4] that,

the �-risk in X is acceptable if and only if ��X�≤ 0� (2.4)

Axioms (R2), (R3), and (R4) guarantee, as in the case of the preceding functionals � and �, that � is a
lower semicontinuous, convex functional on �2��� with ��0�= 0. But Axiom (R1) implies

��X−C�=��X�+C for all constants C� (2.5)

which contrasts sharply with the property of deviations measures � in (2.1).
It was shown in Rockafellar et al. [16, Theorem 2] (and earlier in the working paper Rockafellar et al. [15])

that averse measures of risk � and measures of deviation � correspond one-to-one through the relations

��X�=E�−X	+��X�� ��X�=��X−EX�� (2.6)

The axioms for � and �, as laid out here, differ slightly in their statement from the ones in Rockafellar
et al. [16] but are equivalent to them on the basis of results in that paper. Our terminology in Rockafellar
et al. [16] of a “strictly expectation bounded” measure of risk has been shortened to that of an “averse” measure
of risk, which more accurately reflects the concept.
Connections with coherency have been fully worked out in Rockafellar et al. [16] and more will be said about

this later. The axioms for coherency can be presented in various ways, but they differ essentially in that the strict
inequality in (R1) is dropped (the weak inequality already follows from the combination of (R1) and (R3)), and
on the other hand the monotonicity rule is added that ��X�≤��Y � when X ≥ Y . Not every averse measure of
risk is coherent, nor is every coherent measure of risk necessarily averse. An example of an averse measure of
risk which lacks coherency (because it fails to obey the monotonicity rule), but is popular in finance and other
situations that require safeguarding, is

��X�=E�−X	+���X�� � > 0� (2.7)

The corresponding measure of deviation, through (2.6), is obviously

��X�= ���X�� (2.8)

The acceptability of the �-risk in X then revolves around having EX be at least � standard deviation units
above 0. To put it another way, X is acceptable provided that the “losses” associated with realizations X��� < 0
only occur in the tail of the distribution of X that lies more than � standard deviation units below the expectation.
Although good reasons abound for emphasizing risk measures that are coherent (see the tutorial paper by
Rockafellar [12]), we are obviously obliged in studying regression to include �-based deviation measures like
(2.8), and therefore, through the one-to-one correspondence in (2.6), must allow incoherent risk measures like
(2.7) to enter the picture.
An elementary example of a coherent measure of risk that is not averse is ��X� = E�−X	. Acceptability

merely corresponds in that case to having EX ≥ 0. In general, coherent measures of risk are not obliged to
satisfy the strict inequality in (R1), but on the other hand must obey the rule that ��X�≤��Y � when X ≥ Y .
(That fails for the risk measure in (2.7), in particular.)
More will soon be offered in the way of examples of deviation measures and risk measures, but we must now

get back to measures of error, since they will be primary in our study of linear regression. Other explorations in
the direction of quantifying risk by a functional � can be found in many places, including Acerbi [1], Bassett
et al. [5], Ben Tal and Teboulle [6], Föllmer and Schied [8], and Ruszczyński and Shapiro [19, 20].
There are two fundamental modes of relationship between measures of error and measures of deviation. The

simplest is to start with any measure of error � and take ��X�=��X−EX�. Then � is a measure of deviation,
as can readily be seen from the axioms. Examples in that direction have been analyzed in detail in Rockafellar
et al. [16]. In this paper, our attention will be centered instead on a different way of obtaining a deviation
measure � from an error measure �. For that, we will want from � the following property, which we call
nondegeneracy:

inf
X�EX=C

��X� > 0 for constants C �= 0� (2.9)
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All the examples in (2.3) are nondegenerate measures of error, inasmuch as ��X��p ≥ ��X��1 ≥ �EX�. When � is
a finite set, so that �2��� is finite dimensional, nondegeneracy of � is an automatic consequence of axioms
(E1)–(E4). When �2��� is infinite dimensional, however, this property is not automatic, and there are examples
for which it fails. A condition obviously sufficient for (2.9) is:

there exists #> 0 such that ��X�≥ #�EX� for all X� (2.10)

The examples in (2.3) satisfy (2.10) with # = min�a� b�, for instance. In fact, (2.10) is also necessary for
nondegeneracy:

Conditions (2.9) and (2.10) are equivalent expressions of nondegeneracy.

(Let $�C� denote the infimum in (2.9). Then from (E2) one has $�C�=C$�1� for C > 0 and $�C�= �C�$�−1�
for C < 0, where $�1� > 0 and $�−1� > 0; therefore $�C�≥ #�C� for some #> 0.)
Through the notion of nondegeneracy, we are able to extend, with a similar proof, a previous result in

Rockafellar et al. [16, Theorem 4] which was articulated only for error measures � belonging to the category
in (2.3). In this version we also say more about � �X� and provide a bound for it.

Theorem 2.1 (Error Projection). For any nondegenerate error measure �, let � be defined by

��X�= inf
C
��X−C�� (2.11)

where the minimization takes place over all C ∈�. Let � �X� be the set of C for which the minimum is attained
and finite:

� �X�= argmin
C

��X−C�� (2.12)

Then � is a deviation measure having �X ���X� <
�= �X � ��X� <
�, and for each X in that set, � �X�
is a nonempty closed interval in � (likely reducing to just a single number). Moreover for # > 0 expressing
nondegeneracy as in (2.10), there is the bound:

C ∈� �X� implies EX− #−1��X�≤C ≤EX+ #−1��X�� (2.13)

Proof. First, fix X and consider %�C� = ��X − C� as a function of C ∈ �, noting that it is nonnegative
by (E1), convex by (E2) and (E3), and lower semicontinuous by (E4). Clearly ��X� <
 if and only if %�C� <

for some C. Also %�C� <
 for every other constant C as well; cf. (2.2). In particular, ��X� <
 if and only
if %�0� <
, which is the same as ��X� <
. Thus, under the assumption henceforth on X that ��X� is finite,
we have % finite on �, and because % inherits the convexity of �, also continuous on �. The set of C where %
attains its minimum over �, which is � �X�, is therefore closed and convex, hence an interval if nonempty. It is
the same as the set of C where % attains its minimum subject to the constraint %�C�≤ %�0�, so to be sure of
nonemptiness we only need to know that the interval �C � %�C�≤ %�0��= �C ���X−C�≤��X�� is bounded.
That follows from the nondegeneracy of � as expressed in (2.10), which gives us ��X −C�≥ #�EX −C� and
implies from ��X−C�≤��X� that �EX−C� ≤ #−1��X�. That is the source also of (2.13).
We shift our attention now to properties of �. It is elementary from (E2) and (E3) that � satisfies (D2) and

(D3). Also, we have from (E1) and the formula (2.11) that ��X�= 0 for constant X and ��X�≥ 0 otherwise;
but we have to verify that this inequality is strict for nonconstant X. We have already seen the existence of C
such that ��X�=��X−C�, namely any C ∈� �X�. But ��X−C�> 0 by (E1) unless X is itself the constant C.
Hence indeed, ��X� > 0 unless X is constant.
The last task is confirming (D4). Due to (D2), we can concentrate on c = 1. Suppose we have a sequence

of random variables Xi satisfying ��Xi�≤ 1 and converging in �2��� to �X. We have to show that ���X�≤ 1
as well. For each i there exists Ci ∈ � �Xi�. Then ��Xi − Ci� = ��Xi� ≤ 1; hence #�EXi − Ci� ≤ 1 by the
nondegeneracy in (2.10). Since EXi converges to E �X, this implies that the sequence of constants Ci is bounded.
By passing to subsequences if necessary, we can suppose that Ci converges to a constant �C while Xi converges
to �X, in which case Xi −Ci converges to �X− �C. Because ��Xi −Ci�≤ 1 we also have ���X− �C�≤ 1 by (E4).
On the other hand, ���X�≤���X− �C� by (2.11). We conclude that ���X�≤ 1, as required. �

In the circumstances of Theorem 2.1, we will call ��X� the deviation of X projected from �, and � �X� the
statistic of X associated with �. We get from � �X� a best approximation of X by a constant C, with respect
to the criterion set by �, and then from ��X� the magnitude of the residual uncertainty in that approximation.
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Although � �X� may contain more than one C, we have by the definitions of ��X� and ��X� in (2.12) and
(2.13) that

��X�=��X−C� for any C ∈� �X�� but ��X� <��X−C� when C �� �X��

It will be valuable later, in appreciating how generalized linear regression effectively operates, to note that this
implies

��X�=��X� when 0 ∈� �X�� but ��X� <��X� when 0�� �X�� (2.14)

Moreover the rules hold that

� �X−C�=� �X�−C for any constant C�

� ��X�= �� �X� for any �> 0�
(2.15)

Because � �X� is a nonempty closed interval in �, we can give it, when convenient, the expression

� �X�= �� −�X���+�X�	 for

{
� −�X�=min�C �C ∈� �X���

�+�X�=max�C �C ∈� �X���
(2.16)

Much of the time this interval reduces to a single number; however, we have � −�X�=�+�X�, and in that case
are able to use the same notation � �X� to stand for that number.
Example 2.1 (Standard Deviation). Let ��X�= ��X�2 for an arbitrary �> 0. Then � is a nondegenerate

measure of error for which the projected measure of deviation � is given by (2.8) and its corresponding measure
of risk by (2.7). The associated statistic is � �X�=EX.
Example 2.2 (Range Deviation). Let ��X� = �X�
. Then � is a nondegenerate measure of error, and

��X� <
 if and only if X satisfies both supX <
 and inf X >−
. The measure of deviation � projected
from �, and the associated statistic � for bounded X, are the radius of the range of X, and its center, given by

��X�= 1
2 �supX− inf X	� � �X�= 1

2 �supX+ inf X	�
Example 2.3 (Median Absolute Deviation). Let ��X�= �X�1 =E�X�. Then � is a nondegenerate mea-

sure of error, and ��X� < 
 for all X ∈ �2���. The statistic � �X� is med�X�, the median of X, and the
projected measure of deviation is ��X�= E�X −med�X�� under the interpretation that this expression stands
for E�X−C� for an arbitrary choice of C ∈med�X� (the particular choice makes no difference).
The notation in this example requires some explaining, as it will also come up in other situations later. We

are coping with the fact that med�X� is in principle an interval which, in the manner of (2.16), could be written
as �med−�X��med+�X�	. It is conventional to select just the value med−�X� from this interval and dub it as
“the median,” but we prefer, at least in this paper, to think of the whole interval as constituting “the median,”
because that is what fits the framework of deriving medians from error minimization.
The next example brings in the value-at-risk VaR&�X� and conditional value-at-risk CVaR&�X� of a random

variable X at a probability level &. We refer to Rockafellar and Uryasev [14] and Föllmer and Schied [8] for
more on these concepts.1 These notions are tied to quantiles and, as we shall see later, to quantile regression.
In order to define them, we consider for any random variable X its cumulative distribution function FX and, for
any & ∈ �0�1�, the interval

q&�X�= �q−&�X�� q
+
& �X�	 for

{
q−&�X�= inf�x � FX�x�≥ &��

q+
& �X�= sup�x � FX�x�≤ &��

We call this the &-quantile (interval) for X, although the convention in statistics is to fix on just q−&�X� as the
“quantile” in question. Note that q&�X� becomes med�X� when &= 1/2.
With the orientation we have imposed on random variables in connection with evaluating “risk” (positive

values good, negative values bad), the value-at-risk of X at level & is

VaR&�X�=−q+
& �X�= q−1−&�−X��

1 Conditional value-at-risk and the CVaR notation originated in Rockafellar and Uryasev [13], but other terms that have come into play for
the same concept, under varying degrees of generality, are expected shortfall (Acerbi and Tasche [2]) and average value-at-risk (Föllmer and
Schied [8]).
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while CVaR&�X� is the conditional expectation of the “loss” −X in the lower &-tail of its distribution (having
probability &). But the definition of that tail requires careful description when a probability atom sits at its
endpoint or, in other words, when FX has a jump at −VaR&�X�; see Rockafellar and Uryasev [14]. Through a
change of variables, this develops into the formula that

CVaR&�X�=
1
&

∫ &

0
VaR)�X�d)�

Anyway, the precise relationships can be expressed most interestingly for our purposes through error projection,
as follows.
Example 2.4 (CVaR Deviation and Quantiles). For any choice of & ∈ �0�1�, the formula

��X�=E�max�0�X�+ �&−1− 1�max�0�−X�	 (2.17)

defines a nondegenerate measure of error for which the projected measure of deviation is

��X�=CVaR&�X−EX��

corresponding to the averse measure of risk

��X�=CVaR&�X��

and the associated statistic is
� �X�= q&�X��

Observe that the expression for � in (2.17) is the case of (2.3) for a= 1, b= &−1−1, and p= 1. The connec-
tion in Example 2.4 between � and � goes to the origins of quantile regression (cf. Koenker and Bassett [10],
Koenker [9]), but the CVaR tie-in with � and � was first brought out in Rockafellar and Uryasev [13, 14].
There can well be more than one error measure � projecting onto a given deviation measure �. Uniqueness

cannot be expected, and is not necessarily even desirable. This is underscored by the next example.
Example 2.5 (Inverse Projection). For any � deviation measure, let ��X�=��X�+ �EX�. Then � is a

nondegenerate measure of error projecting to �, and the associated statistic is � �X�=EX.
Example 2.5 settles the question of whether every deviation measure can be viewed as coming from some

nondegenerate error measure in the manner of (2.11), but the error measure it furnishes might not always be
the most interesting or convenient. The deviation measures � in Examples 2.3, 2.4, and 2.5, for instance, arise
also from other error measures � of deeper significance. This raises a challenge. Ways are known for combining
known measures of deviation or risk to get new ones, but how should these operations be coordinated with
corresponding “natural” measures of error?
For example, given probability levels &k ∈ �0�1� for k= 1� � � � � r and weights �k > 0 adding to 1, the mixed

CVaR formula
��X�= �1CVaR&1

�X�+ · · ·+�rCVaR&r
�X� (2.18)

defines an averse measure of risk which is partnered with the mixed CVaR deviation measure

��X�= �1CVaR&1
�X−EX�+ · · ·+�rCVaR&r

�X−EX�� (2.19)

But is there an error measure � which projects to � in a manner akin to that in Example 2.4? The answer is
yes. It comes out of the new and much broader result about error projection which we establish next.

Theorem 2.2 (Mixed Deviations and Weighted Statistic). For k = 1� � � � � r let �k be a measure of
deviation, with �k as the corresponding averse measure of risk, and let �k be a nondegenerate measure of
error that projects to �k. Then, for any weights �k > 0 adding to 1,

��X�= �1�1�X�+ · · ·+�r�r �X�

is a measure of deviation for which the corresponding averse measure of risk is

��X�= �1�1�X�+ · · ·+�r�r �X��

and the formula
��X�= inf

C1� � � � �Cr
�1C1+···+�rCr=0

��1�1�X−C1�+ · · ·+�r�r �X−Cr�� (2.20)

defines a nondegenerate measure of error which projects to � and furnishes, as the associated statistic,

� �X�= �1�1�X�+ · · ·+�r�r �X�� (2.21)
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Proof. The initial assertions about � and � are evident from (2.6) and the axioms (and were noted pre-
viously in Rockafellar et al. [16]), but the existence of a corresponding error measure � with the specified
formula is new. The fact that �, defined by (2.20), is nonnegative with ��0�= 0 and ��C� <
, and satisfies
(E2) and (E3), is elementary from those properties holding for each �k. The calculation that � projects to � is
also straightforward:

inf
C
��X−C� = inf

C�C1� � � � �Cr
�1C1+···+�rCr=0

��1�1�X−C −C1�+ · · ·+�r�r �X−C −Cr��

= inf
C�C ′

1� � � � �C
′
r

�1�C
′
1−C	+···+�r �C ′

r−C	=0
��1�1�X−C ′

1�+ · · ·+�r�r �X−C ′
r ��

= inf
C�C ′

1� � � � �C
′
r

�1C
′
1+···+�rC ′

r=C
��1�1�X−C ′

1�+ · · ·+�r�r �X−C ′
r ��

= inf
C ′
1� � � � �C

′
r

� �1�1�X−C ′
1�+ · · ·+�r�r �X−C ′

r ��

= �1inf
C ′
1

�1�X−C ′
1�+ · · ·+�r inf

C ′
r

�r �X−C ′
1�

= �1�1�X�+ · · ·+�r�r �X�=��X��

Moreover, � �X� is revealed in this way as consisting of the values of �1C
′
1 + · · · + �rC

′
r generated by taking

C ′
k ∈�k�X�, thus confirming (2.21). Also, the infimum in (2.20) is attained when finite.
We show next that � is nondegenerate. The nondegeneracy of each �k provides through (2.10) a #k > 0 such

that �k�X�≥ #k�EX�. Choose #=min�#1� � � � � #r�, so that �k�X�≥ #�EX� for every k. Then, in recalling that
the �k’s in (2.20) are positive weights adding 1, we get (through the convexity of the absolute value function
on �, and the constraint �1C1+ · · ·+�rCr = 0) that

�1�1�X−C1�+ · · ·+�r�r �X−Cr�≥ �1#�EX−C1� + · · · +�r#�EX−Cr �
≥ #��1�EX−C1�+ · · ·+�r�EX−Cr�� = #�EX− ��1C1+ · · ·+�rCr	� = #�EX��

In the minimum, therefore, we have ��X�≥ #�EX� as in (2.10), so � is nondegenerate.
We still have to confirm that � obeys (E4). In view of (E2), that amounts to considering a sequence of

random variables Xi satisfying ��Xi�≤ 1 which converges to a random variable �X, and then demonstrating that
���X�≤ 1. We already know that the infimum in the formula defining ��Xi� is attained. Thus, there are constants
Cik such that �1Ci1+ · · ·+�rCir = 0 and

�1�1�Xi −Ci1�+ · · ·+�r�r �Xi −Cir�=��Xi�≤ 1� (2.22)

We also have, from our dealings with nondegeneracy, a #> 0 such that �k�Xi−Cik�≥ #�EX−Cik� for every k.
Because �EXi −Cik� ≥ �Cik� −E�Xi�, this entails through (2.22) that

1≥ �1#�E�Xi −Ci1�� + · · · +�r#�E�Xi −Cir�� ≥ #��1�Ci1� + · · · +�r �Cir � −E�Xi���
or, in other words, �1�Ci1� + · · · + �r �Cir � ≤ 1 + E�Xi�. Since Xi converges to �X, we have E�Xi� converging
to E� �X�, and the sequence of vectors �Ci1� � � � �Cir � ∈ �r must therefore be bounded. We can suppose, by
passing to a subsequence if necessary, that it converges to some � �C1� � � � � �Cr� ∈�r . Then from (2.22), the lower
semicontinuity of each �k, and the formula for ���X�, we have

1≥ �1�1��X− �C1�+ · · ·+�r�r ��X− �Cr�≥���X��
which furnishes the inequality we needed to establish. �

The prescription in Theorem 2.2 can be applied in the case where �k is the quantile error measure for &k in
(2.17), which, because max�0�X�−max�0�−X�=X, can be expressed equivalently in the form

�k�X�=EX+&−1
k E�max�0�−X�	�

The formula in (2.20) then yields to simplifications, and the following result is obtained.
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Example 2.6 (Mixed Quantiles and Mixed CVaR Deviation). For any choice of probability thresholds
&k ∈ �0�1� and weights �k > 0 adding to 1, the formula

��X�=EX+ inf
C1� � � � �Cr

�1C1+···+�rCr=0

{
�1
&1

E�max�0�C1−X�	+ · · ·+ �r

&r

E�max�0�Cr −X�	

}
(2.23)

defines a nondegenerate error measure which projects to the mixed CVaR deviation measure � in (2.19). The
associated statistic is

� �X�= �1q&1�X�+ · · ·+�rq&r �X�� (2.24)

Weighted combinations of quantiles have a considerable history in statistics, as recounted by Koenker in [9,
Chapter 5]. However, their usage there has revolved mainly around certain “smoothing effects” in estimation,
without the naturally associated error measure in (2.23) ever coming up. In fact there is much more to the topic
than this, because the mixed-CVaR risk measures and deviation measures in (2.18) and (2.19) are deeply con-
nected with representations of subjective risk aversion; see Acerbi [1] and Rockafellar et al. [16, Proposition 5].
The error measure in (2.23) will be especially important for us later when we deal with regression in “factor
models” of the sort mentioned in our introduction.
We finish this section with an application of the same idea to the symmetrization of a deviation measure.
Example 2.7 (Symmetrized Deviation). Let � be a deviation measure projected from a nondegenerate

error measure �, and let �� be the symmetrization of �:

���X�= 1
2 ���X�+��−X�	�

Then the formula
���X�= 1

2 infC
���X−C�+��C −X��

furnishes a nondegenerate error measure which projects to ��.
This is the case in Theorem 2.2, where �1�X� = ��X�, �2�−X� = ��−X�, and �1 = �2 = 1/2. Inci-

dentally, the averse measure of risk corresponding to the symmetrized deviation measure �� is R̂�X� =
�1/2����X�+��−X�	−EX.

3. Linear regression. With this background at our disposal, we are ready to look at how regression might
be carried out with a general measure of error and what implications that might have in terms of risk and
deviation.
We take � now to be any measure of error and consider a random variable Y which is to be approximated

by a linear combination of given random variables Xj , j = 1� � � � � n, and a constant term. Specifically, we wish
to solve the following linear regression problem:

���Y �
choose c0� c1� � � � � cn to minimize ��Z�c0� c1� � � � � cn��,

where Z�c0� c1� � � � � cn�= Y − �c0+ c1X1+ · · ·+ cnXn	.

Here Z�c0� c1� � � � � cn� is the error in approximating Y by c0 + c1X1 + · · · + cnXn, seen as a random variable,
whereas ��Z�c0� c1� � � � � cn�� is the magnitude of this random variable, as assessed by �.
Note that because � might not be symmetric, minimizing the magnitude of Z�c0� c1� � � � � cn� need not turn

out to be the same as minimizing the magnitude of the random variable

−Z�c0� c1� � � � � cn�= �c0+ c1X1+ · · ·+ cnXn	− Y �

Minimizing ��−Z�c0� c1� � � � � cn�� would amount to the regression problem for −Y with respect to
−X1� � � � �−Xn, which could be different in this general setting. The possible asymmetry might be helpful in
situations where there is more concern about overestimating Y than underestimating it. Positive realizations of
Z�c0� c1� � � � � cn� could be penalized less severely than negative realizations.
Due to the convexity of � as a functional on �2���, coming from axioms (E2) and (E3), ���Y � is an

optimization problem of convex type in �n+1. This is valuable in drawing a number of conclusions.
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Theorem 3.1 (Existence and Potential Uniqueness of Regression Coefficients). As long as
��Y � <
, the solution set

	�Y �= ��c̄0� c̄1� � � � � c̄n� furnishing the minimum in problem ���Y ��

is a nonempty, closed, convex subset of �n+1. It is bounded if and only if the random variables Xj satisfy the
linear independence condition that

c1X1+ · · ·+ cnXn is not constant unless c1 = · · · = cn = 0� (3.1)

In those circumstances, 	�Y � still might not reduce to a single vector, but this does hold in the special case
where � has, beyond �E3�, the property that

��X+X ′� <��X�+��X ′� for nonzero X and X ′

as long as X ′ is not just a positive multiple of X. (3.2)

Proof. Let f �d� c0� � � � � cn� = ��dY − �c0 + c1X1 + · · · + cnXn	�. The axioms (E1)–(E4) on � imply
that f is convex, positively homogeneous, and lower semicontinuous on �n+2 with f �1�0� � � � �0� < 
 and
f �0�0� � � � �0� <
. We are concerned with minimizing f subject to the constraint that d= 1.
The solution set is guaranteed to be convex and closed, but is it nonempty? A sufficient condition for

that is available from convex analysis in terms of the so-called recession vectors �b�a0� � � � � an� for f ,
which are characterized equivalently at any point �d� c0� � � � � cn� where f is finite, by the condition that
f �d+ tb� c0+ ta0� � � � � cn + tan� is nonincreasing as a function of t > 0. Invoking that characterization at
�d� c0� � � � � cn�= �0�0� � � � �0� and recalling the formula for f , we see that �b�a0� � � � � an� is a recession vector
if and only if ��tbY − �ta0 + ta1X1 + · · · + tanXn	� is nondecreasing as a function of t > 0, which in view of
(E2) is the same as ��bY − �a0+a1X1+· · ·+anXn	�= 0 and, through (E1), bY − �a0+a1X1+· · ·+anXn	= 0.
The criterion we wish to invoke from convex analysis is the following (Rockafellar [11, Corollary 27.3.1]) f

attains its minimum relative to the constraint d = 1 if every recession vector of the form �0� a0� � � � � an� also
has −�0� a0� � � � � an� as a recession vector. This results in saying that whenever a0 + a1X1 + · · · + anXn = 0,
then �−a0�+ �−a1�X1+ · · ·+ �−an�Xn = 0, which is trivial. Hence 	�Y � �= �.
The boundedness of 	�Y � corresponds to the boundedness of the set where f attains its minimum relative

to the constraint d = 1, and that, too, has a characterization in terms of recession vectors (Rockafellar [11,
Theorem 27.1(d)]). It holds if and only if there is no nonzero recession vector. That reduces to the condition
in (3.1).
The question now is whether 	�Y �, although bounded, might contain different solutions �c̄0� � � � � c̄n� and

�c̃0� � � � � c̃n�. Then Z�c̄0� � � � � c̄n� and Z�c̃0� � � � � c̃n� have the same �-magnitude, say &, and by (E2) cannot
just be positive multiples of each other unless &= 0, which is impossible. (That would make Z�c̄0� � � � � c̄n�= 0
and Z�c̃0� � � � � c̃n�= 0 by (E1), implying that c̄0+ c̄1X1+ · · · + c̄nXn = c̃0+ c̃1X1+ · · · + c̃nXn and furnishing a
contradiction to (3.1).) Consider

�c0� � � � � cn�= 1
2 �c̄0� � � � � c̄n�+ 1

2 �c̃0� � � � � c̃n��

noting that 2Z�c0� � � � � cn�=Z�c̄0� � � � � c̄n�+Z�c̃0� � � � � c̃n�� We then have, by (E2) and (3.2),

2&≤ 2��Z�c0� � � � � cn�� <��Z�c̄0� � � � � c̄n��+��Z�c̃0� � � � � c̃n��= &+&�

which is an inconsistent inequality revealing that our assumption of the existence of two different solutions is
untenable. �

Although the additional condition in (3.2) holds for some measures of error, such as in the classical case of
Example 2.1 where � is the �2 norm, it fails in many other cases of significance, such as the quantile error
measure in Example 2.2. Therefore, the possibility of nonuniqueness cannot be swept aside.
A noteworthy consequence of the positive homogeneity property (E2) of � in problem ���Y � is the obvious

scaling effect it has on solutions:
	��Y �= �	�Y � for any �> 0�

In other words, if the random variable Y being approximated is rescaled by �, the regression coefficients are
simply rescaled accordingly, and the ratios among them are unchanged. Shifting Y to Y − C likewise leaves
these ratios unchanged for k= 1� � � � � n but moves c̄0 to c̄0−C.
Thus, the constant c̄0 determined in the regression has a distinct role of its own, which we discuss next. We let

Z0�c1� � � � � cn�= Y − �c1X1+ · · ·+ cnXn	� so that Z�c0� c1� � � � � cn�=Z0�c1� � � � � cn�− c0� (3.3)
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Theorem 3.2 (Error-Shaping Decomposition of Regression). Let � be a nondegenerate measure of error,
let � be the projected measure of deviation, and let � be the associated statistic. Then, in the notation (3.3),
the solutions to problem ���Y � are characterized by the prescription that

�c̄0� c̄1� � � � � c̄n� ∈	�Y � if and only if



�c̄1� � � � � c̄n� ∈ argmin

c1� � � � �cn

��Z0�c1� � � � � cn���

c̄0 ∈� �Z0�c̄1� � � � � c̄n���

In particular, the regression coefficients c̄1� � � � � c̄n depend only on �. Indeed, problem ���Y � is equivalent to
the following:

choose c0� c1� � � � � cn to minimize ��Z�c0� c1� � � � � cn��

subject to the constraint that 0 ∈� �Z�c0� c1� � � � � cn��� (3.4)

Proof. The argument is based on a standard principle. Suppose we have a function g�c0� c1� � � � � cn� on �
n+1.

Let h�c1� � � � � cn�= infc0 g�c0� c1� � � � � cn� be its inf-projection on �n. Then, in order to have �c̄0� c̄1� � � � � c̄n�
minimize g, it is necessary and sufficient to have �c̄1� � � � � c̄n� minimize h and then take c̄0 to minimize
g�c0� c̄1� � � � � c̄n�. Here we are merely applying this principle to g�c0� c1� � � � � cn� = ��Z�c0� c1� � � � � cn�� and
invoking the formulas for the corresponding � and � in Theorem 2.1, with c0 replacing C. Through (2.15) we
have c̄0 ∈� �Z0�c̄1� � � � � c̄n�� if and only if 0 ∈� �Z0�c̄1� � � � � c̄n�− c̄0�=� �Z�c̄0� c̄1� � � � � c̄n��. �

This basic result provides important insights into the capabilities of generalized linear regression as a method
for “shaping” the uncertain error Z�c0� c1� � � � � cn� = Y − �c0 + c1X1 + · · · + cnXn	 in contrast to “keeping it
small.” Further insights into the formulation in (3.4) are gained through the rule in (2.14), according to which

��Z�c0� c1� � � � � cn��=��Z�c0� c1� � � � � cn�� when 0 ∈� �Z�c0� c1� � � � � cn���

Once the “statistic” of the error is fixed at 0 by the constraint in (3.4), the rest of the approximation revolves
around adjusting the error so that it differs from that statistic as little as possible with respect to the penalties
imposed by � for negative outcomes of Z�c0� c1� � � � � cn����, which correspond to overapproximations of Y ���
versus positive outcomes Z�c0� c1� � � � � cn����, which correspond to underapproximations of Y ���.
In the familiar case of standard linear regression, corresponding to �, �, and � as in Example 2.1, the

regression coefficients are chosen to minimize the standard deviation �or variance� of the error subject to
the expected value of the error being 0. For the range deviation in Example 2.2, regression seeks to choose
�c0� c1� � � � � cn� to shrink the range of the error as much as possible while keeping it centered at 0. For the
median absolute deviation in Example 2.3, in the case where the median reduces to a single value rather than an
interval (for simplicity of interpretation), the task instead is to minimize the �1-magnitude of the error subject
to its median being 0.
This generalizes to quantile regression beyond the median, with �, � and � as in Example 2.4 for some

& ∈ �0�1�. In fact this is the idea of quantile regression, going back to Koenker and Bassett [10] and explained
at length in Koenker [9]. Again supposing for simplicity that the quantiles reduce from intervals to single values,
the regression coefficients are chosen in this case to minimize the CVaR& deviation of the error subject to the
&-quantile of the probability distribution of the error being 0, or in other words, subject to the probability of
overestimation being just &.
This feature of quantile regression extends in a similar manner to regression with mixed CVaR deviation as

in (2.19), as we now demonstrate.
Example 3.1 (Mixed Quantile Regression). For k= 1� � � � � r consider probability thresholds &k ∈ �0�1�

and weights �k > 0 adding to 1, and let ��X� be the corresponding mixed CVaR deviation in (2.19). Let � �X�
be the mixed quantile statistic in (2.24). Then the error-shaping problem in (3.3) is the linear regression problem
with respect to the error measure � in (2.23). Furthermore, this problem can be solved as follows. First,

minimize E
[
Y −

n∑
j=1

cjXj

]
+

r∑
k=1

�k

(
&−1
k E

[
max

{
0�Ck −

n∑
j=1

cjXj

}]
−Ck

)

over all choices of c1� � � � � cn�C1� � � � �Cr � obtaining c̄1� � � � � c̄n� �C1� � � � � �Cr� (3.5)

Then set
c̄0 = �1 �C1+ · · ·+�r

�Cr� (3.6)
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Detail. This utilizes the result in Example 2.6. Changing the notation in (2.23) from parameters Ck to
parameters Dk, we get

��Z�c0�c1�� � � �cn�	 = E�Z0�c1�� � � �cn�	−c0+ inf
D1� � � � �Dr

�1D1+···+�rDr=0

{
�1
&1

E�max�0�D1−c0−Z0�c1�� � � �cn��	

+···+ �r

&r

E�max�0�Dr−c0−Z0�c1�� � � �cn��	

}
� (3.7)

In terms of Ck =Dk − c0, the condition that �1D1+ · · · +�rDr = 0 translates to �1C1+ · · · +�rCr = c0. Under
this change of variables, the minimization in (3.5) reduces to that in (3.7), with the optimal value of c0 given
by (3.6). �

When the space � of future states is a finite set, the minimization problem in (3.5) can be converted to linear
programming and solved efficiently by available software. The technique is explained in a similar situation in
Rockafellar and Uryasev [14].
It has already been mentioned that classical regression with the error measure in Example 2.1 corresponds, in the

pattern of Theorem 3.2, to minimizing ��Z�c0� c1� � � � � cn�� subject to insisting that E�Z�c0� c1� � � � � cn�	= 0.
In general, however, the side condition in the risk-shaping problem in (3.4) focuses on the particular statistic
associated with the error measure � being used. But as a matter of fact it is always possible to revert to
expectation as the statistic, in the following manner.
Example 3.2 (Unbiased Linear Regression with General Deviation Measures). For any deviation

measure � projected from an error measure �, the problem of choosing coefficients c0� c1� � � � � cn so as to
minimize ��Z�c0� c1� � � � � cn�� subject to the constraint that

E�Z�c0� c1� � � � � cn�	= 0
can be solved as follows. First, obtain c̄0� c̄1� � � � � c̄n by solving problem ���Y � with respect to � as before.
Then replace c̄0 by

c̄′0 =E�Z0�c1� � � � � cn�	=EY − c̄1EX1− · · ·− c̄nEXn�

This is equivalent to solving the linear regression problem ���Y � with respect to the error measure �′�X�=
��X� + �EX� instead of �. On the other hand, in terms of the risk measure � associated with �, this is
equivalent also to the problem

minimize ��Z�c0� c1� � � � � cn�� subject to E�Z�c0� c1� � � � � cn�	= 0�
This modification merely shifts the approximation of Y up or down until the error random variable giving

the difference has expectation equal to 0, disregarding the stipulation in (3.4) relative to the statistic associated
with �. The first equivalent interpretation is justified by the observation in Example 2.5 that �′ projects to the
same deviation measure �, along with the fact that in Theorem 3.2, c̄1� � � � � c̄n depend only on �. The second
equivalence is immediate from the relationship between � and � in (2.6): one always has

��Z�c0� c1� � � � � cn��=��Z�c0� c1� � � � � cn�� when E�Z�c0� c1� � � � � cn�	= 0�
Another such adjustment of basic linear regression, again involving the risk measure �, could also be inter-

esting in some situations.
Example 3.3 (Risk-Acceptable Regression). For any deviation measure �, projected from a nondegen-

erate error measure �, let � be the averse risk measure corresponding to �. Then the problem

choose c0� c1� � � � � cn to minimize ��Z�c0� c1� � � � � cn��

subject to the constraint that ��Z�c0� c1� � � � � cn��= 0 (3.8)

can be solved as follows. First, obtain c̄0� c̄1� � � � � c̄n by solving problem ���Y � with respect to � as before,
but then replace c̄0 by

c̄∗0 =E�Z0�c̄1� � � � � c̄n�	−��Z0�c̄1� � � � � c̄n�	�

Then too, the resulting error Z�c̄∗0� c̄1� � � � � c̄n� has

E�Z�c̄∗0� c̄1� � � � � c̄n�	=��Z�c̄∗0� c̄1� � � � � c̄n�	≥ 0� (3.9)
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This conclusion is evident from the observation that

��Z�c0� c1� � � � � cn�� = ��Z�c0� c1� � � � � cn��−E�Z�c̄0� c̄1� � � � � c̄n�	

= ��Z0�c1� � � � � cn��−E�Z0�c̄1� � � � � c̄n�	+ c0�

The rationale behind regression in the mode of (3.8) hinges on the concept of a random variable X having an
acceptable level of risk with respect to � when ��X�≤ 0. Here we apply that to X = Z�c0� c1� � � � � cn�. The
risk perspective is to control the degree to which Y might be overestimated by the regression approximation:
overestimates correspond to negative outcomes of the random variable Z�c0� c1� � � � � cn�. Observe that the risk-
acceptability constraint in (3.8) is equivalent through (3.9) to requiring overestimates to comprise the tail of the
error distribution lying one full deviation unit (with respect to �) below the expectation of the error.
In contrast to the modified regression in Example 3.2, which could be construed as linear regression in the

sense of problem ���Y � for a modification �′ of �, it is unclear whether the modified regression in Example 3.3
can be given a parallel interpretation with � replaced by some �∗.

4. Characterization of regression coefficients. With the generalized regression problem ���Y � viewed
as an optimization problem with respect to the variables c0� c1� � � � � cn, the next question is how to characterize
�c̄0� c̄1� � � � � c̄n� as a solution. A basic step has already been taken toward answering that. We know from
Theorem 3.2 that the value of c̄0 is immediately determined as soon as the optimal coefficient vector �c̄1� � � � � c̄n�
has been determined. Moreover the vector �c̄1� � � � � c̄n� solves the problem:

minimize f �c1� � � � � cn� over all �c1� � � � � cn� ∈�n� where

f �c1� � � � � cn�=��Y − �c1X1+ · · ·+ cnXn	��

This is a finite-dimensional problem in which f is a convex function by virtue of the convexity of � (coming
from (D2) and (D3)). The problem appears to be unconstrained, but here a subtle issue arises. It is truly
unconstrained if f �c1� � � � � cn� <
 for all �c1� � � � � cn� ∈ �n, but otherwise there is the implicit constraint of
keeping to the subset of �n where f is finite (the so-called effective domain of f ). That set might not be all of
�n if � is able to take on infinite values, which in our general framework would happen if the error measure
� from which � is projected can take on infinite values. An illustration of this possibility is furnished by the
range deviation measure in Example 2.2.
Here we wish to avoid the complications of such cases, and furthermore to make use of subgradient chain

rules for composite functions like f which we developed in Rockafellar et al. [17] for the case where not only
are the deviation values in (5.1) finite, but those of other random variables as well. We therefore limit our
analysis of optimality in this section to deviation measures � that are finite on �2��� (with the same holding
for � and the associated risk measure �).
Note that � satisfies this finiteness condition on �2��� in the CVaR and mixed-CVaR cases of Examples 2.5

and 2.8 (covering the median deviation of Example 2.3 in particular), and also, of course, when � is a multiple
of standard deviation as in Example 2.1. It also satisfies it even for the range deviation of Example 2.2 when �
is a finite set, standing for just finitely many “future scenarios.” Thus, for practical purposes the restriction to
finite � causes no inconvenience. (Incidentally, our need to encompass standard deviation along with the CVaR
and mixed CVaR deviations in this manner has dictated our choice of �2��� instead of �1��� as the space for
our random variables X.)
Optimality in this setting is addressed through the concept of the risk envelope 
 associated with �. As

explained in Rockafellar et al. [16], convex analysis uniquely associates with any deviation measure � satisfying
(D1)–(D4) a set 
⊂�2��� (the risk envelope in question) which satisfies the axioms
(Q1) 
 is nonempty, closed and convex.
(Q2) EQ= 1 for all Q ∈ 
.
(Q3) For each X �= 0 there exists Q ∈ 
 with E�QX	 < EX.

This set 
 expresses � through the formula that

��X�=EX− inf
Q∈


E�QX	 for all X ∈�2���� (4.1)

In that association, our assumption that � is finite on �2��� corresponds to 
 being bounded, in which event

 is weakly compact in �2��� and the infimum in (4.1) is sure to be attained for every random variable X.
The nonempty set


�X�= argmin
Q∈


E�QX	
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(again convex and weakly compact) is the risk identifier for X in the terminology of Rockafellar et al. [16]
(going back to Rockafellar et al. [15]). It depends only on the nonconstant aspects of X: one has


�X−C�= 
�X� for all X and constants C. (4.2)

The case where the risk measure � paired with � is coherent (in the sense pioneered in Artzner et al. [3, 4])
can also be identified as the case where Q ≥ 0 for every Q ∈ 
 (cf. Rockafellar et al. [16]). It allows the
elements Q of the risk envelope 
 to be seen as probability densities with respect to the underlying probability
measure P . Then the elements Q ∈ 
�X� maximize the corresponding expected loss −E�QX	 that could come
from X. However, we hold back from treating only that case because it would exclude standard deviation,
�= � . There is no sense in building a theory of generalized linear regression which excludes classical linear
regression. Anyway, it deserves to be noted that all CVaR and mixed-CVaR risk measures are coherent, in
particular.

Theorem 4.1 (Risk Identifier Characterization of Regression Coefficients). For a nondegenerate
error measure � that is finite everywhere on �2���, let � be the projected deviation measure and let 
 be its asso-
ciated risk envelope. Then in the linear regression problem ���Y �, a vector �c̄1� � � � � c̄n� furnishes the regression
coefficients for the random variables X1� � � � �Xn if and only if, in terms of �Z0 = Y − �c̄1X1+ · · ·+ c̄nXn	,

there exists �Q ∈ 
� �Z0� such that E� �QXj	=EXj for j = 1� � � � � n� (4.3)

Proof. We apply our general result in Rockafellar et al. [17, Theorem 2] concerning the minimization of
the deviation of a sum of random variables subject to linear constraints on the coefficients. Problem ���Y � fits
that framework as the very special case where we wish to

minimize ��c1�−X1	+ · · ·+ cn�−Xn	+ cn+1�Y 	� over all
�c1� � � � � cn� cn+1� satisfying 0c1+ · · ·+ 0cn + 1cn+1 = 1�

(Here, and in the next display, implicit coefficients have been made explicit in order to connect clearly with the
coefficient format in the cited result (Rockafellar et al. [17, Theorem 2]).) The optimality of �c̄1� � � � � c̄n� c̄n+1�,
necessitating c̄n+1 = 1 is characterized by the cited result as corresponding, for the random variable c̄1�−X1	
+ · · ·+ c̄n�−Xn	+ c̄n+1�Y 	, which here is �Z0, to the existence of �Q ∈ 
� �Z0� and a multiplier � ∈� such that

E� �Q�Xj −EXj�	= �0 for j = 1� � � � � n and E� �Q�EY − Y �	= �1�

This characterization says the same thing about �c̄1� � � � � c̄n� as the assertion in the theorem. �

Note that having �Q ∈ 
� �Z0� is the same as having �Q ∈ 
� �Z� for �Z= Y − �c̄0+ c̄1X1+· · ·+ c̄nXn	, due to the
insensitivity to constants in (4.2). The first condition on �Q in (4.3) is equivalent through (4.1) to having

�� �Z0�=E� �Z0	−E� �Q �Z0	=E� �Z	−E� �Q �Z	�
but through axiom (Q2) and the expectation relations in (4.3), that comes out as

�� �Z0�=EY −E� �QY 	=− covar� �Q�Y ��
In particular, therefore, covar�Q�Y � < 0 (unless �Z0 completely vanishes). Likewise, the expectation relations
in (4.3) can be expressed equivalently by

covar� �Q�Xj�= 0 for j = 1� � � � � n�
Descriptions of the risk envelopes 
 specific to the examples we have considered are available in Rockafellar

et al. [16, 17] and elsewhere. These descriptions can be applied to get further details from Theorem 4.1. We
limit ourselves here to a single, but rich, example.
Example 4.1 (Optimal Coefficients in Mixed Quantile Regression). For probability levels &k with

0<&1 < · · ·<&r < 1, and weights �k > 0 with �1+ · · ·+�r = 1, consider the deviation measure
��X�= �1CVaR&1

�X�+ · · ·+�rCVaR&r
�X�

and the error measure � in (2.23), which projects to �. In terms of �Z = Y − �c̄0 + c̄1X1 + · · · + c̄nXn	, and
under the simplifying assumption that the distribution of �Z contains no probability atoms (i.e., the distribution
function F �Z has no jumps), the following conditions are necessary and sufficient for �c̄0� c̄1� � � � � c̄n� to belong
to the solution set 	�Y � in problem ���Y �:

�1q&1�
�Z�+ · · ·+�rq&r �

�Z�= 0�
�1E�Xj � �Z ≤ q&1�

�Z�	+ · · ·+�rE�Xj � �Z ≤ q&r �
�Z�	=EXj for j = 1� � � � � n� (4.4)
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Detail. Our assumption about no atoms ensures that the quantiles for �Z reduce to single values and we
can avoid dealing with them as intervals. The first condition in (4.4) then merely reflects two things we already
know, namely that optimality fixes c̄0 by requiring � � �Z� � 0 (Theorem 3.1) for the statistic corresponding to �,
and that this is � � �Z� = �1q&1�

�Z�+ · · · + �rq&r �
�Z� (from Example 2.6). We appeal then to the description in

Rockafellar et al. [16, Example 4] of the risk envelope 
 for � as consisting of all Q= �1Q1 + · · · + �rQr in
which Qk belongs to the risk envelope 
k for �k =CVaR&k

. Then E�QXj	=
∑r

k=1 �kE�QkXj	, Moreover, 
k� �Z�
consists of the single function Qk which has Qk���= &−1

k for � ∈� such that �Z���≤ q&k�
�Z� but Qk���= 0

otherwise (up to equivalence with a set of probability zero). Then E�QkXj	 is the conditional expectation of Xj

subject to having �Z in its lower &k-tail. This yields the stated result. �

Of course, the special case where there is only one quantile, not a mixture, can immediately be extracted
from Example 4.1.

5. Application to parametric risk expressions. We now take up the topic featured in the introduction,
which concerns functions f �x1� � � � � xm� defined on �m as in (1.1) with respect to a weighted combination
x1r1 + · · · + xmrm of given random variables. We suppose that each random variable ri is approximated by a
linear combination

r̂i = ci0+ ci1F1+ · · ·+ cinFn (5.1)

of some other collection of random variables F1� � � � � Fn (so-called factors), so that

ri = r̂i +Zi�ci0� ci1� � � � � cin�= r̂i +Zi0�ci1� � � � � cin�− ci0

for the error expressions

Zi�ci0� ci1� � � � � cin�= ri − �ci0+ ci1F1+ · · ·+ cinFn	� Zi0�ci1� � � � � cin�= ri − �ci1F1+ · · ·+ cinFn	�

Specifically, we envision producing these approximations by generalized linear regression with respect to some
error measure �. The question is how estimates of the difference between f �x1� � � � � xn� and the corresponding
expression f̂ �x1� � � � � xn�, obtained by substituting r̂i for ri, might influence the choice of �.
Although regression is the basis for what we are investigating, we are not employing it directly. We are

approximating the parameter-dependent random variable

Y �x1� � � � � xm�= x1r1+ · · ·+ xmrm (5.2)

by the similarly parameter-dependent random variable

�Y �x1� � � � � xm�= x1r̂1+ · · ·+ xmr̂m (5.3)

for some version of r̂1� � � � � r̂m generated in the form of (5.1). It is not enough for the approximation to be carried
out for a fixed weight vector �x1� � � � � xm�. If that were the case, we could merely revert to linear regression of
Y �x1� � � � � xm� itself relative to F1� � � � � Fn. Instead, the approximation should be effective for a suitable range
of weight vectors �x1� � � � � xm�.
This issue will be explored with regard to the “risk aspects” of Y �x1� � � � � xm�, by which we mean character-

istics captured either by deviation measures � or by risk measures �.
We deal first with deviation measures as applied to (5.2) and (5.3). We restrict our study to weight vectors

�x1� � � � � xm� ∈�m
+, i.e., with xi ≥ 0 for i = 1� � � � �m. The deviation axioms (D2) and (D3) allow us to calcu-

late that

�

( m∑
i=1

xiri

)
=�

( m∑
i=1
�xir̂i + xi�ri − r̂i	�

)
≤�

( m∑
i=1

xir̂i

)
+

m∑
i=1

xi��ri − r̂i��

Since ri − r̂i = Zi�ci0� ci1� � � � � cin�= Zi0�ci1� � � � � cin� and � is insensitive to constants, cf. (2.1), this provides
the upper bound

�

( m∑
i=1

xiri

)
−�

( m∑
i=1

xir̂i

)
≤

m∑
i=1

xi��Zi0�ci1� � � � � cin��� (5.4)

A parallel calculation with the roles of ri and r̂i reversed leads to the lower bound

�

( m∑
i=1

xiri

)
−�

( m∑
i=1

xir̂i

)
≥−

m∑
i=1

xi��−Zi0�ci1� � � � � cin���
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By combining the upper and lower bounds, making essential use once more of the nonnegativity of each xi, we
arrive at the absolute bound∣∣∣∣�

( m∑
i=1

xiri

)
−�

( m∑
i=1

xir̂i

)∣∣∣∣≤
m∑
i=1

ximax���Zi0�ci1� � � � � cin�����−Zi0�ci1� � � � � cin���� (5.5)

We can then explore how these bounds may be made as tight as possible.

Theorem 5.1 (Approximation Estimates for Deviation Measures). Let � be any deviation measure
and let

f��x1� � � � � xn�=��x1r1+ · · ·+ xmrm�� f̂��x1� � � � � xn�=��x1r̂1+ · · ·+ xmr̂m��

with r̂i as in (5.1). Then, as an estimate of how much f̂� may differ from f�, the best upper bound coming out
of (5.4) in the form

f��x1� � � � � xn�− f̂��x1� � � � � xn�≤
m∑
i=1

aixi for all �x1� � � � � xm� ∈�m
+� where ai ≥ 0�

is obtained by employing an error measure � that projects to � to carry out, for each random variable ri,
linear regression with respect to the factors F1� � � � � Fn, and then, from the regression coefficients c̄ij thereby
determined, taking

ai =��Zi0�c̄i1� � � � � c̄in�� for i= 1� � � � �m�
On the other hand, the best symmetric bound of the form

�f��x1� � � � � xn�− f̂��x1� � � � � xn�� ≤
m∑
i=1

āixi for all �x1� � � � � xm� ∈�m
+� where āi ≥ 0�

is obtained in the same way, but with regression based instead on a symmetric error measure �� which projects
to the symmetric deviation measure

���X�=max���X����−X��� (5.6)

and then taking
āi = ���Zi0�c̄i1� � � � � c̄in�� for i= 1� � � � �m� (5.7)

Proof. Clearly, the upper bound in (5.4) is optimized by choosing �c̄i1� � � � � c̄in� in order to minimize
��ci1� � � � � cin� for each i. This corresponds to linear regression as described (but with the constants c̄i0 open to
any convenient choice). For the absolute bound, the argument is similar except that the max expression indicates
replacing � by the deviation measure �� in (5.6). �

For a risk measure � instead of a deviation measure �, bounds corresponding to (5.4) and (5.5) can be
obtained in much the same manner from axioms (R2), (R3), and the nonnegativity of xi. The upper bound is

�

( m∑
i=1

xiri

)
−�

( m∑
i=1

xir̂i

)
≤

m∑
i=1

xi��Zi�ci0� ci1� � � � � cin��� (5.8)

but in the absolute bound parallel to (5.5) the right side is initially in the form
m∑
i=1

ximax���Zi�ci0� ci1� � � � � cin�����−Zi�ci0� ci1� � � � � cin���

and needs to be reworked to get more out of it. A tool is available in the relations in (2.6), which lead to the
inequalities

��Zi�ci0� ci1� � � � � cin�� = ��Zi�ci0� ci1� � � � � cin��+E�−Zi�ci0� ci1� � � � � cin�	

≤ ��Zi0�ci1� � � � � cin��+ �EZi�ci0� ci1� � � � � cin���
��−Zi�ci0� ci1� � � � � cin�� = ��−Zi0�ci0� ci1� � � � � cin��+EZi�ci0� ci1� � � � � cin�

≤ ��Zi0�ci1� � � � � cin��+ �EZi�ci0� ci1� � � � � cin���
That way, we get an absolute bound in the form∣∣∣∣�

( m∑
i=1

xiri

)
−�

( m∑
i=1

xir̂i

)∣∣∣∣≤
m∑
i=1

xi�max���Zi0�ci1� � � � � cin�����−Zi0�ci1� � � � � cin���

+ �EZi�ci0� ci1� � � � � cin��	� (5.9)
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Theorem 5.2 (Approximation Estimates for Risk Measures). Let � be any averse measure of risk,
and let

f��x1� � � � � xn�=��x1r1+ · · ·+ xmrm�� f̂��x1� � � � � xn�=��x1r̂1+ · · ·+ xmr̂m��

with r̂i as in (5.1). Then, as an estimate of how much f̂� may differ from f�, the best upper bound coming out
of (5.8) in the form

f��x1� � � � � xn�− f̂��x1� � � � � xn�≤
m∑
i=1

aixi for all �x1� � � � � xm� ∈�m
+� where ai ≥ 0�

is actually achieved with
ai = 0 for i= 1� � � � �m�

It is obtained through generalized linear regression of each ri with respect to the factors F1� � � � � Fn, using in all
cases an error measure � that projects to the deviation measure � paired with �, and then, as in Example 3.3,
replacing each c̄i0 by

c̄∗i0 =��Zi0�c̄i1� � � � � c̄in�� for i= 1� � � � �m�
On the other hand, the best symmetric bound coming out of (5.9) in the form

∣∣f��x1� � � � � xn�− f̂��x1� � � � � xn�
∣∣≤ m∑

i=1
āixi for all �x1� � � � � xm� ∈�m

+� where āi ≥ 0�

is obtained with regression based instead on a symmetric error measure �� which projects to the symmetric
deviation measure �� in (5.6), taking āi as in (5.7) and then, as in Example 3.2, replacing each c̄i0 by

c̄′i0 =EZi0�c̄i1� � � � � c̄in� for i= 1� � � � �m�
Proof. Much as in Theorem 4.1, this is evident from the bounds in (5.8) and (5.9) and the regression

modifications in the cited examples. �

The result in the first part of Theorem 5.2 has the following interesting interpretation. If the regression
in approximating ri by r̂i with respect to the factors Fj is carried out relative to the risk measure � as in
Example 3.3, then

f̂��x1� � � � � xn�≤ c ensures f��x1� � � � � xn�≤ c for any c.

Recall that in this setting the approximation error ri − r̂i has ��ri − r̂i� = 0, which means that, with respect
to the standard set by �, the risk of ri being overapproximated by r̂i is acceptable, in fact just at the limit of
acceptability; cf. (2.3).
This observation has powerful consequences for the role of generalized linear regression in dealing with risk

constraints in factor models in finance or elsewhere.

Corollary 5.1 (Safeguarded Approximation of Risk Constraints). For k = 1� � � � � r , let �k be an
averse measure of risk and let

S = �x ∈�m
+ ��k�x1r1+ · · ·+ xmrm�≤ ck for k= 1� � � � � r��

Let each ri be approximated by r̂i relative to factors F1� � � � � Fn through �i-risk-acceptable linear regression as
laid out in Example 3.3, and let

Ŝ = �x ∈�m
+ ��k�x1r̂1+ · · ·+ xmr̂m�≤ ck for k= 1� � � � � r��

Then Ŝ serves surely to approximate S from within: one has Ŝ ⊂ S, and in a definite sense this is the best
approximation of such type.

The surprising feature of this way of dealing with the feasibility of x = �x1� � � � � xm� is that, to obtain the
best results, regression must be carried out in a different way for each constraint!
Other recent work on factor models can be found, for example, in Cherny and Madan [7], where, however,

different issues than these are at the center, and linear regression as presented here is not really involved.
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