
Risk, Unexpected Uncertainty, and Estimation
Uncertainty: Bayesian Learning in Unstable Settings
Elise Payzan-LeNestour1*, Peter Bossaerts2,3

1 University of New South Wales, Sydney, Australia, 2 California Institute of Technology, Pasadena, California, United States of America, 3 Swiss Finance Institute at EPFL,

Lausanne, Switzerland

Abstract

Recently, evidence has emerged that humans approach learning using Bayesian updating rather than (model-free)
reinforcement algorithms in a six-arm restless bandit problem. Here, we investigate what this implies for human
appreciation of uncertainty. In our task, a Bayesian learner distinguishes three equally salient levels of uncertainty. First, the
Bayesian perceives irreducible uncertainty or risk: even knowing the payoff probabilities of a given arm, the outcome
remains uncertain. Second, there is (parameter) estimation uncertainty or ambiguity: payoff probabilities are unknown and
need to be estimated. Third, the outcome probabilities of the arms change: the sudden jumps are referred to as unexpected
uncertainty. We document how the three levels of uncertainty evolved during the course of our experiment and how it
affected the learning rate. We then zoom in on estimation uncertainty, which has been suggested to be a driving force in
exploration, in spite of evidence of widespread aversion to ambiguity. Our data corroborate the latter. We discuss neural
evidence that foreshadowed the ability of humans to distinguish between the three levels of uncertainty. Finally, we
investigate the boundaries of human capacity to implement Bayesian learning. We repeat the experiment with different
instructions, reflecting varying levels of structural uncertainty. Under this fourth notion of uncertainty, choices were no
better explained by Bayesian updating than by (model-free) reinforcement learning. Exit questionnaires revealed that
participants remained unaware of the presence of unexpected uncertainty and failed to acquire the right model with which
to implement Bayesian updating.
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Introduction

In an environment where reward targets and loss sources are

stochastic, and subject to sudden, discrete changes, the key

problem humans face is learning. At a minimum, they need to be

able to assess estimation uncertainty [1–4], i.e., the extent to which

learning still has to be completed. High levels of estimation

uncertainty call for more learning, while low levels of estimation

uncertainty would suggest slower learning.

To correctly gauge estimation uncertainty, two additional

statistical properties of the environment ought to be evaluated: risk,

or how much irreducible uncertainty would be left even after the best

of learning; and unexpected uncertainty, or how likely it is that the

environment suddenly changes [5]. The notion of risk captures the

idea that, to a certain extent, forecast errors are expected, and

therefore should not affect learning. Under unexpected uncertainty,

these same forecast errors are indications that learning may have to

be re-started because outcome contingencies have changed discretely.

With Bayesian learning, the three notions of uncertainty are

tracked explicitly. This is because Bayesians form a model of the

environment that delineates the boundaries of risk, estimation

uncertainty and unexpected uncertainty. The delineation is

crucial: estimation uncertainty tells Bayesians how much still

needs to be learned, while unexpected uncertainty leads them to

forget part of what they learned in the past.

This contrasts with model-free reinforcement learning. There,

uncertainty is monolithic: it is the expected magnitude of the

prediction error [6]. Under reinforcement learning, only the value

of a chosen option is updated, on the basis of the reward (or loss)

prediction error, i.e., the difference between the received and the

anticipated reward (or loss) [7]. No attempt is made to disentangle

the different sources of the prediction error. Usually, the learning

rate is kept constant. If not, as in the Pearce-Hall algorithm [8],

adjustment is based on the total size of the prediction error.

Recently, evidence has emerged that, in environments where

risk, estimation uncertainty and unexpected uncertainty all vary

simultaneously, humans choose as if they were Bayesians [9].

Formally, the experiment that generated this evidence involved a

six-arm restless bandit problem. Participants were asked to choose

among six options with different risk profiles and differing

frequencies of changes in reward (and loss) probabilities. Assuming

softmax exploration [10], the Bayesian updating model was shown

to provide a significantly improved fit over standard reinforcement

learning as well as the Pearce-Hall extension.

To discover that humans are Bayesians implies that they must have

tracked the three levels of uncertainty. Here, we discuss how the levels

differentially affected the Bayesian learning rate in our restless bandit

task, and how participants could have distinguished between them.

Neural implementation of Bayesian learning would require

separate encoding of the three levels of uncertainty. Recent human
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imaging studies appear to be consistent with this view. The

evidence has only been suggestive, however, as no imaging study

to date involved independent control of risk, estimation uncer-

tainty and unexpected uncertainty.

Indeed, to our knowledge, ours is the first comprehensive study

of risk, estimation uncertainty, and unexpected uncertainty. Many

studies have focused on risk [11–13]. Estimation uncertainty has

been investigated widely in the economics literature, where it is

referred to as ambiguity [14], and a few imaging studies have

explored its neurobiological basis [3,15,16]. Unexpected uncer-

tainty has only rarely been considered [4,5]. [4] is closest to our

study in that it was the first to document that humans correctly

adjust their learning rates to changes in the average level of

unexpected uncertainty (referred to in [4] as volatility).

The task in [4] involved a bandit with only two arms, however.

For our purposes, this entails a number of disadvantages. First, it is

impossible to independently track the three levels of uncertainty

with only two arms; at a minimum, six arms are needed, and this is

what is implemented in the experiment here. As a matter of fact, in

[4], risk was decreased along with unexpected uncertainty,

introducing a confound that masked the full effect of unexpected

uncertainty on the learning rate. Second, the two arms in [4] have

perfectly negatively correlated reward probabilities, and as such,

the task is one of reversal learning [17]. This means that outcomes

for one arm are fully informative for the other one. Consequently,

exploration is of no consequence.

This is important because, here, we are interested in re-visiting

the data in [9] and investigate exploration. One of the notions of

uncertainty, namely, estimation uncertainty, is not only an

important determinant of the learning rate. It has been

conjectured to be a key driving force behind exploration.

Specifically, some have proposed that an ‘‘exploration bonus’’ be

added to the value of an option, and that this exploration bonus be

increased with the need to learn, i.e., with estimation uncertainty

[1,10,18].

In our six-arm restless bandit problem, estimation uncertainty

varied substantially over time and across arms, thus providing

power to detect the presence of an exploration bonus in valuation,

and hence, an effect of estimation uncertainty on exploration.

Before our study, behavioral evidence in favor of an exploration

bonus had been weak: [10] showed that human exploration can be

modeled using softmax, but found no reliable evidence of an

exploration bonus. But in their (four-armed) bandit problem,

estimation uncertainty varied little across bandits, unlike in ours.

Firing of dopaminergic neurons in response to novel, uncertain

stimuli has been interpreted as signaling exploration value [18];

yet, it can be questioned whether estimation uncertainty ought to

enter valuation through a bonus. Findings in economics, starting

with [19], would make one believe otherwise. There, evidence

abounds that humans are averse to estimation uncertainty – there

called ambiguity. Ambiguity aversion often leads to fundamental

inconsistencies in choices, as exemplified by the Ellsberg Paradox

[14]. If anything, this suggests that estimation uncertainty enters

valuation through a penalty.

We re-visited the choices generated by the restless six-arm

bandit problem of [9] and investigated whether estimation

uncertainty changed valuation positively (exploration bonus) or

negatively (ambiguity penalty).

Finally, we studied to what extent the empirical support for

Bayesian learning depended on the level of detail participants

received regarding the outcome generating process. In [9],

participants were fully informed about the structure of the bandit

problem (risks could be different across bandits; probabilities

jumped with differing frequency across bandits; and jumps

occurred simultaneously for a number of bandits). They were

ignorant only about the values of the parameters (outcome

probabilities, jump frequencies, occurrence of jumps). As such,

there was no ‘‘structural uncertainty’’ (or Knightian uncertainty as it

is known in economics; [20–24]). In contrast, in [4], participants

were naive about the task structure, so there was substantial

structural uncertainty. There, participant choices reflected adjust-

ment of learning rates to average unexpected uncertainty, suggesting

that they had learned some aspects of the outcome generating

process.

Here, we report new results that clarify to what extent trial-by-

trial choices reflected Bayesian updating under structural uncer-

tainty. We re-ran the six-arm restless bandit experiment, but we

varied the amount of structural uncertainty. In one treatment, we

told participants nothing about the outcome generating process. In

another treatment, we informed the participants about everything

except unexpected uncertainty. The third treatment was a

replication of [9], to calibrate the findings.

Results

Formal Analysis of the Task
Our task was a six-arm restless bandit problem, visually

presented as a board game (see Fig. 1A). Arms were color-coded:

the outcome probabilities for the red arms jumped more

frequently. At each trial, arms paid one of three possible rewards:

1, 0 and 21 Swiss francs (CHF) for the blue arms, and 2, 0, 22

CHF for the red arms. Outcome probabilities were unknown.

Outcome probabilities within a color group jumped simulta-

neously. Participants did not know the jump frequencies. Nor did

they know when jumps occurred. As such, there was unexpected

uncertainty. After a jump, the outcome probabilities are given

new, unknown values. Specifically, they did not revert to old values

as in reversal learning tasks (e.g., [17]), and hence, there is

estimation uncertainty throughout the duration of the task.

In the version of this task in [9], participants were fully informed

about the structure of the outcome generating process. They

merely had to learn (and, after each perceived jump, re-learn) the

Author Summary

The ability of humans to learn changing reward contin-
gencies implies that they perceive, at a minimum, three
levels of uncertainty: risk, which reflects imperfect
foresight even after everything is learned; (parameter)
estimation uncertainty, i.e., uncertainty about outcome
probabilities; and unexpected uncertainty, or sudden
changes in the probabilities. We describe how these levels
of uncertainty evolve in a natural sampling task in which
human choices reliably reflect optimal (Bayesian) learning,
and how their evolution changes the learning rate. We
then zoom in on estimation uncertainty. The ability to
sense estimation uncertainty (also known as ambiguity) is
a virtue because, besides allowing one to learn optimally, it
may guide more effective exploration; but aversion to
estimation uncertainty may be maladaptive. Here, we
show that participant choices reflected aversion to
estimation uncertainty. We discuss how past imaging
studies foreshadowed the ability of humans to distinguish
the different notions of uncertainty. Also, we document
that the ability of participants to do such distinction relies
on sufficient revelation of the payoff-generating model.
When we induced structural uncertainty, participants did
not gain awareness of the jumps in our task, and fell back
to model-free reinforcement learning.

Learning In Restless Bandits
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values of the outcome probabilities, as well as the probabilities of a

jump (or the occurrence of a jump). We replicated this base version

– to be referred to as Treatment 3 below. Additionally, we ran two

variations of this board game, where we reduced the amount of

structural information we gave the participants. We elaborate

below. The three variations represent varying levels of model or

structural uncertainty.

To analyze the results, we implemented a forgetting Bayesian

algorithm [25] based on multinomial sampling under the Dirichlet

prior with dynamic adjustment of the learning rate to evidence of

the presence of jumps. In [9], a hierarchical Bayesian scheme was

investigated as well. While qualitatively the same (and producing

indistinguishable behavioral fits), the forgetting algorithm produc-

es explicit learning rates, while in the hierarchical Bayesian approach,

learning rates are only implicit. The availability of explicit

formulae facilitated our analysis of the impact of the three levels

of uncertainty on the learning speed.

In each trial T , an option l generated either the fixed loss

outcome, denoted by r1, with probability pl1T , the null outcome

(r2), with probability pl2T , or the fixed reward outcome (r3), with

Figure 1. Six-arm restless bandit task. A The six-arm restless bandit is implemented graphically as a board game. Six locations correspond to the
six arms. Locations are color-coded; blue locations have lower average unexpected uncertainty than red locations. Blue locations pay 1, 0 or 21 CHF
(Swiss francs). Red locations pay 2, 0 or 22 CHF. Chosen option is highlighted (in this case, location 5). Participants can freely choose a location each
trial. Histories of outcomes in locations chosen in the past are shown by means of coin piles. B Visual representation of risk and estimation
uncertainty. Risk can be tracked using entropy, which depends on the relative magnitudes of the outcome probabilities, i.e., the relative heights of
the bars in the left chart. The bars represent the three estimated outcome probabilities (mean of the posterior probability distribution or PPD).
Entropy (risk) is maximal when the bars are all equal. Estimation uncertainty is represented by the widths of the posterior distributions of the
outcome probabilities, depicted in the right chart.
doi:10.1371/journal.pcbi.1001048.g001
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probability pl3T . The triplet plT~(pl 1 T ,pl 2 T ,pl 3 T ) is in the three-

dimensional simplex H; H~ pjpi§0, i~1 . . . 3,
P3
i~1

pi~1

� �
.

We start from the same prior distribution of outcome

probabilities for all options. It is denoted P0. We take it to be an

uninformative Dirichlet. At each trial T the Bayesian model

updates the distribution of outcome probabilities based on a

sufficient statistic that is constructed from the count vector

clT~(cliT ,i~1 . . . 3), where cliT~drli
(rliT ). Here, drli

denotes

point mass at ri. The forgetting algorithm takes the weighted

geometric mean between the usual Bayesian update of the

Dirichlet prior absent jumps and the original prior (for the case

a jump occurred). Weighting is based on the subjective likelihood

that no jump has occurred at trial T , l(T) – more on the nature of

l(T) below. For large T , the resulting posterior is Dirichlet, like

the prior. Specifically,

pl T*Dir(p̂pl T,nlT),

p̂pi l T~
1

nlT

n0 p̂pi 0zNl
l(T) bclicli(T)

� �
, ð1Þ

nlT~n0zNl
l(T), ð2Þ

where

Nl
l(T)~

X
t[Dl (T)

P
T

s~t
l(s)

is the effective number of data used in the estimation of the

outcome probabilities. Here, Dl(T) is the set of trials before (and

including) trial T when option l was chosen. The sufficient statisticbclicli(T) is defined as:

bclicli(T)~

P
t[Dl (T) P

T

s~t
l(s)

� �
clit

Nl
l(T)

:

Significantly, this sufficient statistic can be obtained using simple

recursive computations. Specifically, if option l was chosen in trial

T ,

bclicli(T)~ bclicli(T{1) 1{gl(T)ð Þzgl(T)cliT , ð3Þ

where gl(T), the learning rate, equals:

gl(T)~
1

1z
l(T)

gl (T{1)

: ð4Þ

The other case (when option l was not chosen in trial T ) is

discussed in the Methods.

In Eqn 3, gl(T) controls the relative weight of the new observation

during learning. As such, it functions as the Bayesian learning rate.

This is fortunate. Usually, the learning speed in Bayesian updating is

only implicit; e.g., [4]. Because we have chosen to implement a

forgetting algorithm, the speed of learning becomes explicit, in the

form of a learning rate to be applied to the new observation.

The posterior mean outcome probabilities are computed as

follows:

�ppl i T~
Nl

l(T) bclicli(T)z1=3

Nl
l(T)z1

,i~1, . . . ,3:

From these posterior means, the Bayesian decision maker

computes the expected value (payoff) of option l, Q(l,T).

To model adjudication between the six options, we opted for a

softmax rule. Specifically, in trial Tz1, option l is chosen with

probability

Pp(l,Tz1)~
exp bQ(l,T)ð ÞP6

l’~1

exp bQ(l’,T)ð Þ
: ð5Þ

Here, b (also referred to as inverse temperature) measures the

propensity to choose the option of currently greatest value rather

than the others. As such, b reflects the trade-off between the urge

to exploit, i.e., to choose the best option, and the interest in

exploring, i.e., to choose options currently deemed sub-optimal

with the goal of learning more about their values [26,27].

Evolution of Uncertainty and Effect on the Learning Rate
[9] documents that in the current task, learning strategies

behind human choices are better explained using Bayesian

updating than (model-free) reinforcement learning, even if the

learning rates in the latter are allowed to differ across choices with

differing jump probability, or allowed to change over time as a

function of the size of the reward prediction error. Crucial to

correct setting of the Bayesian learning rate in our task is the

ability to track three levels of uncertainty: risk, parameter

estimation uncertainty, and unexpected uncertainty. The Bayesian

model tracks these three levels independently, and they jointly

affect the learning rate. We first illustrate their evolution, and then

elaborate on how they modulate the learning rate.

Risk can be measured by the entropy of the outcome

probabilities. Since outcome probabilities are unknown through-

out our experiment, entropy needs to be estimated. We compute

entropy based on the posterior mean of the outcome probabilities.

See Fig. 1B for a graphical representation (left panel). Estimation

uncertainty, on the other hand, reflects the spread of the posterior

distribution of outcome probabilities. One could estimate it as the

variance of the posterior distribution, or its entropy. See Methods

for more information. Estimation uncertainty is depicted graph-

ically in Fig. 1B (right panel). Unexpected uncertainty is the

likelihood that outcome probabilities jump. Unexpected uncer-

tainty changes over time, as evidence for jumps fluctuates. Average

unexpected uncertainty differs also across options: blue locations

on our board game have lower chance of jumping; red locations

exhibit higher jump probabilities.

Fig. 2A displays the evolution of estimation uncertainty in one

instance of the task, based on choices of one participant.

Estimation uncertainty is measured here at each trial as entropy

of the posterior distribution of outcome probabilities. Estimation

uncertainty is shown only for the chosen option. Blue dots indicate

that an option was chosen with low average unexpected

uncertainty (a blue location); red dots indicate choices of options

with high average unexpected uncertainty (red locations).

Estimation uncertainty increases each time the participant

switches locations. The participant either switches to another

location with the same color code (same average unexpected

uncertainty) or to a location with a different color code.

Fig. 2B displays the evolution of the probability that no jump

occurred in the first 200 trials of another instance. High levels

Learning In Restless Bandits
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indicate low levels of unexpected uncertainty. Low levels suggest

detection of a jump, and hence, high unexpected uncertainty. Blue

dots indicate trials when the chosen option was blue (low average

unexpected uncertainty) and a jump in blue locations occurred

simultaneously. Red dots indicate trials when the chosen option

was red and a jump occurred (for the red options). At times, the

participant seemed to have falsely detected a jump (e.g., in trial

54); but generally, the participant’s belief that a jump has occurred

correlates with actual occurrence of jumps.

The presence of unexpected uncertainty and the recurring

parameter estimation uncertainty make it more difficult to

correctly assess risk. Fig. 2C shows the mean level of risk assessed

in one instance of the task. Bayesian updating is assumed. Shown

are the average outcome entropies of each of the six options based

on posterior mean probabilities. Options are numbered 1 through

6. For comparison, we also display the true outcome entropies.

Results are stratified by level of average unexpected uncertainty:

blue options had lower probability of jumps in outcome

probabilities, while red options had high jump probabilities. The

presence of high unexpected uncertainty affects learning of risk

levels. On average, correct assignment of risk obtains for blue

locations. But it is more difficult to correctly assess the risk of red

locations.

The latter illustrates the antagonistic relationship [5] between the

perceptions of unexpected uncertainty and risk. If the former is

high, the latter is harder to estimate. A legitimate concern is,

therefore, whether these two sources of uncertainty can be

separately identified if participants are not told about their

presence. We will elaborate below.

The different levels of uncertainty affect the learning rate in

complex ways. Inspection of Eqn. 4 shows that the learning rate

glT changes as a function of the ratio of the probability that no

jump has occurred and the past learning rate:

l(T)

gl(T{1)
:

If the evidence for unexpected uncertainty is very low, i.e., if a

jump is deemed unlikely, l(T) is close to 1, and hence, the

learning rate decreases as in the absence of jumps, reflecting

merely the decrease in estimation uncertainty. If, in contrast, the

evidence for jumps is high, i.e., l(T) is close to zero, then the

learning rate increases towards 1 irrespective of the past learning

rate. This increase reflects the likely presence of a jump, and

hence, the need to learn anew. That is, estimation uncertainty

increases and so should the learning rate.

This shows how unexpected uncertainty affects estimation

uncertainty, and hence, the learning rate. While not directly,

estimation uncertainty itself does affect the learning rate, through

its effect on unexpected uncertainty. This can be verified by

inspecting the formula for the probability that no jump occurred in

trial T :

l(T)~
1

1z
p̂pi�0(nlT{1z1)

nlT{1p̂pi�lT{1z1

, ð6Þ

where p̂pi�0 and p̂pi�lT{1 denote the estimated probability, initially

and in trial T respectively, of observing outcome i� (i�~1,2,3, for

loss, zero income, and gain, respectively) and where nlT{1

parameterizes the precision of the posterior distribution of outcome

probabilities, which depends on the effective number of data used in

estimating those outcome probabilities (see Eqn. 2). (See Methods

for the derivation.) Estimation uncertainty, or its inverse, precision

of the posterior distribution of outcome probabilities, therefore

influences the estimate of the likelihood that no jump has occurred,

and hence, unexpected uncertainty. In turn, unexpected uncertain-

ty determines changes in the learning rate.

An analogous result obtains for risk – here defined as the entropy

of the outcome probabilities. Intuitively, entropy is the variability in

the probabilities across possible outcomes. If all outcome probabil-

ities are the same, entropy is maximal. If one or more outcome

probabilities are extreme (high or low), then entropy will be low.

Eqn. 6 shows that unexpected uncertainty depends on outcome

probabilities. The intuition is simple: if a particular outcome is

estimated to occur with low probability, and that outcome does

realize, the likelihood that it occurred because there was a jump is

higher; conversely, if an outcome had high a priori probability, then

its occurrence is unlikely to be attributed to unexpected uncertainty.

Through its effect on unexpected uncertainty, estimated outcome

probabilities have an effect on the learning rate.

Consequently, while the three levels of uncertainty separately

influence the learning rate, unexpected uncertainty is pivotal. That

is, estimation uncertainty and risk impact the learning rate

through their effect on unexpected uncertainty. For instance, if the

probability of an outcome is estimated with low precision

(estimation uncertainty is high) or if it is estimated to be average

(around 1=3), revealing high risk, then the realization of this

outcome is unlikely to be attributed to a jump. The parameter

l(T) is therefore high, and the Bayesian learning rate glT reduces

as if one were in a jump-free world.

Fig. 3 displays the evolution of the learning rate for two options

in one instance of the task. Shown are the (logarithm of) the

learning rates of (i) an option with low risk and low average jump

probability (low average unexpected uncertainty) [top], (ii) an

option with low risk and high average jump probability [bottom].

The learning history is based on the actual choices of one of the

participants in the experiment. Crosses on the horizontal axis

indicate trials where the participant chose the option at hand.

One can easily discern the effect of a reduction in estimation

uncertainty on the learning rate. During episodes when the

participant chooses an option, she learns about the outcome

probabilities, which reduces estimation uncertainty, and hence, the

learning rate. This continues until she stops visiting the location at

hand, and consequently, the – now imaginary – learning rate

Figure 2. Three kinds of uncertainty in the task. A Evolution of the estimation uncertainty (entropy of mean posterior outcome probabilities) of
chosen options in one instance of the board game. Learning is based on choices of one participant in our experiment. Blue dots on the horizontal axis
indicate trials when a blue location was chosen; red dots indicate trials when a red location was visited. B Evolution of the unexpected uncertainty of
chosen options in one instance of the board game, measured (inversely) as the probability that no jump has occurred. Learning is based on choices of
one participant in our experiment. Blue dots on the horizontal axis indicate trials when outcome probabilities for the visited blue location jumped;
red dots indicate trials when outcome probabilities for the visited red location jumped. C Average estimated risk (entropy of outcome probabilities)
in one instance of the board game, by location (numbered 1 to 6). Learning is based on the choices of one participant in our experiment. Locations
are arranged by level of unexpected uncertainty (blue: low; red: high). Average estimated risks are compared with true risks. The participant managed
to distinguish risk differentials across blue locations, but not across red locations. Average estimated risks regress towards the grand mean because of
estimation uncertainty after each jump in outcome probabilities.
doi:10.1371/journal.pcbi.1001048.g002
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increases again. (We call the learning rate ‘‘imaginary’’ because

there are no outcomes to be used to update beliefs; belief updating

for the unchosen options evolve only because of what one learns

about the chosen options.)

Exploration Bonuses and Ambiguity Penalties
To implement Bayesian learning, the decision maker has, at a

minimum, to track estimation uncertainty. As such, the decision

maker senses that she does not know the parameters, and hence,

she is ambiguity sensitive.

In multi-armed bandit settings, exploration is valuable. Only by

trying out options will one be able to learn, thus reducing

estimation uncertainty. As such, there should be a bonus to

exploration of options with high ambiguity. This was recently

proposed [18,28]. Decision makers should therefore be ambiguity

seeking, which conflicts with claims that humans generally exhibit

ambiguity aversion [14,19].

Here, we re-visit behavior in our six-arm restless bandit task to

determine to what extent choices reflect the presence of an exploration

bonus or an ambiguity penalty, both equal to the level of estimation

uncertainty. To this end, we added to the expected value of each

option an exploration bonus, or alternatively, we subtracted an

ambiguity penalty – computational details are provided in Methods.

For each participant, we compared the maximum log-likelihood of the

model with exploration bonus to that of the base version of the

Bayesian model; likewise, we compared the log-likelihood of the model

with ambiguity penalty to that of the base model. The log-likelihood of

a model is defined by Eqn. 8 in Methods.

The model with exploration bonus fitted worse than the one

without any correction of valuations for estimation uncertainty. In

contrast, the model with ambiguity penalty generated a better

likelihood than did the base version of the Bayesian model for 90%
of the participants. The individual log-likelihoods are reported

graphically in Fig.S1 of the Supporting Information. Fig. 4

displays the mean negative log-likelihoods and the corresponding

sample standard deviations across the 62 subjects. A paired t-test

based on the difference between the log-likelihoods of the two

models (n~62) leads to reject the hypothesis that this difference is

null with a p-value equal to 0.

Structural Uncertainty
To investigate to what extent the evidence in favor of Bayesian

updating is related to our providing subjects with ample structural

knowledge of the outcome generating process, we ran a new

Figure 3. Evolution of the (logarithm of the) Bayesian learning rate for two options in one instance of the board game. Learning is
based on the choices of one participant in our experiment. Top option has low average unexpected uncertainty (low chance of jumps) and low risk
(one outcome probability was very high); bottom option has high average unexpected uncertainty and low risk. Crosses on the horizontal axis
indicate trials when the option was chosen.
doi:10.1371/journal.pcbi.1001048.g003
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experiment. We considered three treatments. In the first treatment,

we provided subjects only with the rules of the game, and no

structural information. In the second treatment, subjects were given

some structural information (e.g., within a color group, one option

was ‘‘biased’’ in the sense that its entropy was lower, while another

option was close to random), but were left ignorant about the

presence of jumps in the outcome probabilities; which means they

were not informed about the potential of unexpected uncertainty.

The third treatment was a replication of the original setting in [9].

43 undergraduates from the same institution (Ecole Polytechni-

que Fédérale Lausanne) participated in the first treatment; 32 (30)

of them participated in the second (third) treatment. (We presented

the three treatments as three separate experiments, whereby

participants in the first treatment were invited but not forced to

participate in the two others.)

To calibrate the results, we first compare the fits of the third

treatment to those of [9]. Like in [9], we compare the log-

likelihood of the base version of the Bayesian model to the one of a

Rescorla-Wagner rule in which the learning rates are allowed to

differ across choices with differing jump probability (henceforth,

the ‘‘reinforcement learning model’’), and also to the one of the

Pearce-Hall extension of reinforcement learning. Fig. 5 displays

the mean BIC across the 30 participants for each of the three

models – the BIC or Schwarz Criterion [29] of a model is the

negative log-likelihood corrected for differences in number of

parameters to be estimated. Corresponding sample standard

deviations are also reported. A paired t-test based on the difference

between the BICs of the Bayesian and reinforcement learning

models (n~30) leads to the conclusion that the Bayesian model

fitted better than the reinforcement learning model with a p-value

smaller than 0:001. Like in [9], the Pearce-Hall model fitted the

data worst. The finding that the model with ambiguity penalty

provided the best fit is also replicated. The distributions of the

individual log-likelihoods for all four models (the base version of

the Bayesian model, the version with ambiguity penalty, the

reinforcement learning model and the Pearce-Hall extension) are

available in the Supporting Information (see Fig.S2).

Having replicated the results with full disclosure of the structure

of the outcome generating process, we turn to the first treatment,

where subjects were not given any structural information. Fig. 6A

compares the mean BIC of the Bayesian model with ambiguity

penalty – which appeared to outperform the base Bayesian model

in all treatments – to the one of the reinforcement learning model.

Corresponding sample standard deviations are displayed as well.

The fit of the ambiguity averse Bayesian model now does not

improve any more upon simple reinforcement learning, according

to a paired t-test based on the difference between the BICs of the

two models (n~43, p~0:2). In the second treatment, the

reinforcement learning model marginally outperformed the

ambiguity averse Bayesian model: a paired t test (n~32) leads to

the conclusion that the reinforcement learning model fitted better

with a p-value equal to 0:01. See Fig. 6B. In both treatments, the

fit of the Pearce-Hall model was worst for the large majority of the

subjects, and we do not report it on Fig. 6A or Fig. 6B. The

distributions of the individual log-likelihoods of all models are

reported in the Supporting Information (see Fig.S3 and Fig.S4).

Common to both Treatments 1 and 2 is the absence of

information on the presence of unexpected uncertainty. The

findings suggest that participants were not able to recognize that

outcome probabilities jumped. To verify this conjecture, we

examined the answers to the debriefing questionnaire after the

experiment – participant answers are available upon request.

Pooling the first two treatments (with a total of 75 cases), only 8
participants detected the presence of instability (they realized that

for certain of the six arms, ‘‘dark periods’’ alternated with good ones

during the task). When asked whether it would be ‘‘equally difficult

to learn on the red locations and the blue ones,’’ many subjects

answered affirmatively, despite the fact that the probability of a

jump (in outcome probabilities) on the red locations was four times

higher. A typical case was that of a participant in the second

treatment who reported: ‘‘At some point I got several bad outcomes

but I tried to be rational and stay since it was the good one.’’ The

participant mis-attributed a sequence of bad outcomes to risk, rather

than interpreting it as evidence for a regime shift.

These findings are significant. In no way did the instructions

attempt to mislead the participants. On the contrary, we stated

explicitly that subjects had to watch out for features of the outcome

generating process other than those spelled out in the instructions.

Figure 4. Goodness-of-fits of the Bayesian models, with (right) and without (left) penalty for ambiguity. Based on approximately 500
choices of 62 participants. Data are from [9]. Heights of bars indicate mean of the individual negative log-likelihood; line segments indicate standard
deviations. ���: pv0:001; ��: pv0:01; �: pv0:1.
doi:10.1371/journal.pcbi.1001048.g004
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In contrast, in the third treatment (as well as in the original

experiment of [9]), responses on the debriefing questionnaire

indicated that participants managed to detect changes during the

task, and could often estimate quite accurately the relative jump

probabilities across location colors.

Discussion

Neural Evidence for Separate Encoding of Uncertainty
Levels

On occasion, humans have been shown to choose like Bayesian

decision makers. In a context where outcome contingencies

change constantly, this implies that humans should be able to

distinguish various types of uncertainty, from unexpected

uncertainty, over (parameter) estimation uncertainty, to risk. We

will argue here that there exists emerging neurobiological evidence

for separate encoding of these categories of uncertainty. As such,

key components for neural implementation of Bayesian learning

have become identified in the human brain.

Numerous studies have localized neural signals correlating with

risk. Some sub-cortical regions are also involved in tracking

expected reward (striatal regions; [30]) and the relatively crude

fMRI evidence is supported by single-unit recordings in the

monkey brain [31]; the evidence for neural signals of risk

independent of expected reward has been identified mostly in

cortical structures (anterior insula, anterior cingulate cortex,

inferior frontal gyrus, and interparietal sulcus) [11,12,30,32–35].

Estimation uncertainty, or ambiguity as it is referred to in

economics, has also recently been investigated in imaging studies.

Early evidence pointed to involvement of the amygdala and lateral

orbitofrontal cortex [15]; subsequent parametric work has corrobo-

rated [12] and extended with activation of the frontopolar cortex [3].

Experimental paradigms where estimation uncertainty is manipulat-

ed as in the six-arm restless bandit problem have yet to be organized.

Involvement of locus coeruleus and the neurotransmitter

norepinephrine in tracking unexpected uncertainty has been

conjectured a number of times and the evidence in its favor is

suggestive [5,28,28], but further proof is needed. Unexpected

uncertainty will have to be manipulated parametrically, as

norepinephrine is known to be generally involved in attention

modulation as well as general exploratory behavior [36]. Without

parametric manipulation, activations can as well be interpreted as

reflecting attention or exploration.

Activation of the amygdala-hippocampus complex to novel

images in a learning context may be conjectured to reflect

unexpected uncertainty [37,38]. Neural correlates with the

Bayesian learning rate have been identified in the precuneus and

anterior cingulate cortex [4,39]. Because of the close relationship

between the Bayesian learning rate and unexpected uncertainty

(effects of risk and estimation uncertainty on the learning rate

operate through unexpected uncertainty, as explained before), these

neural signals could as well reflect unexpected uncertainty (changes

in the likelihood that outcome probabilities have jumped).

Bayesian Exploration
Evidence has thus emerged that the distinction of the three

forms of uncertainty exists at the neuronal level. The well-

documented sensitivity of humans to ambiguity (estimation

uncertainty) further proves that the distinction can readily be

observed in behavior. Confirming humans’ sensitivity to estima-

tion uncertainty, we presented evidence here that participants’

tendency to explore in a six-arm restless bandit task decreased with

estimation uncertainty. This finding falsifies the hypothesis that

estimation uncertainty ought to induce exploration. It is, however,

consistent with evidence of ambiguity aversion in the experimental

economics literature, starting with [14,19]. We are the first to show

the parametric relationship between estimation uncertainty and

exploration: the relationship is negative.

The reader may wonder why we have not augmented the

reinforcement learning model with an ambiguity penalty, and

examined the behavioral fit of this version of model-free

reinforcement learning. The point is that non-Bayesians do not

sense ambiguity. Indeed, the concept of a posterior belief is foreign

to non-Bayesian updating, and hence, the variance or entropy of

the posterior distribution of outcome probabilities, our two

measures of estimation uncertainty, are quintessentially Bayesian.

Since the representation of ambiguity is absent in the context of

model-free reinforcement learning, a fortiori ambiguity cannot

weigh in the exploration strategy. In light of this, one should not

combine model-free reinforcement learning with an ambiguity

penalty/bonus.

Figure 5. Replication of the experiment in [9]. Mean BICs and standard deviations of the Bayesian, reinforcement and Pearce-Hall learning
models without structural uncertainty (Treatment 3). Based on the choices of 30 participants in approximately 500 trials of our board game. The
Bayesian model is the base version (unadjusted for ambiguity aversion). ���: pv0:001; ��: pv0:01; �: pv0:1.
doi:10.1371/journal.pcbi.1001048.g005
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Ambiguity vs. Structural Uncertainty
A third major finding was that full Bayesian updating is reflected

in human learning only if enough structural information of the

outcome generating process is provided. Specifically, the ability to

track unexpected uncertainty, and hence, to detect jumps in the

outcome probabilities, appeared to rely on instructions that such

jumps would occur. When participants were not informed about

the presence of unexpected uncertainty, their choices could

equally well be explained in terms of simple reinforcement

learning. This evidence emerged despite suggestions to watch for

features of the outcome generating process that were not made

explicit in the instructions.

Situations where decision makers are ignorant of the specifics of

the outcome generating process entail model or structural

uncertainty. Our study is the first to discover that humans cannot

necessarily resolve model uncertainty. In our experiment, many

participants failed to recognize the presence of unexpected

uncertainty. Consequently, in the exit questionnaires they often

took the arms to be ‘‘random’’ [in our language, risky] which

illustrates the antagonistic relationship between risk and unexpected

uncertainty – jumps were confounded with realization of risk.

Our participants’ failure to detect jumps may suggest that their

‘‘mental models’’ excluded nonstationarity a priori. Mental models

are expectancies or predispositions which serve to select and

organize the information coming from the environment [40,41].

Nudging [42] may be needed, whereby the instructions bring the

likely presence of jumps to the attention of the participants.

Structural uncertainty was originally suggested in the economics

literature, where it is referred to as Knightian or Keynesian

uncertainty [20,21]. Nevertheless, even in economics, structural

uncertainty is often treated interchangeably with estimation

uncertainty or ambiguity; e.g., [43]. In principle, structural

uncertainty can be dealt with by introducing extra parameters

that identify the possible models of the outcome generating

process. Structural uncertainty thereby collapses to simple

(parameter) estimation uncertainty.

Nevertheless, we think it is important to refrain from reducing

structural uncertainty to mere parameter estimation uncertainty,

because the number of possible models of the outcome generating

process in any given situation is large, and hence, the number of

parameters to be added to capture structural uncertainty can be

prohibitively high [24]. It is well known that Bayesian updating

will fail dramatically when the parameter space is high-

dimensional [44]; in such situations, model-free reinforcement

learning produces, in a simple and consistent way, the right

statistics to guide choice.

The latter may explain our finding that human choice in our six-

arm restless bandit task reveals less evidence of Bayesian updating

when we introduce structural uncertainty. Since reinforcement

learning provides ready guidance in situations where Bayesian

updating may fail, our participants understandably switched

learning strategies. Because they became (model-free) reinforcement

learners, they no longer detected unexpected uncertainty. Indeed,

uncertainty is monolithic in the absence of a model of the outcome

generating process; there is no distinction between risk, estimation

uncertainty, unexpected uncertainty, or even model uncertainty.

To conclude, our results suggest that learning-wise, structural

uncertainty should not be thought of as an extension of ambiguity.

We thus advocate a separation of situations entailing structural

uncertainty and situations entailing ambiguity in future studies of

decision making under uncertainty. We would also advocate a

clear separation of situations where the outcome probabilities

change suddenly and the related but mathematically distinct

situations, where outcome probabilities change continuously. The

former entail unexpected uncertainty. The latter are analogous to

the contexts where Kalman filtering provides optimal forecasts,

but where risk is stochastic. In financial economics, one therefore

uses the term stochastic volatility [45]. Recently, computational

neuroscientists have underscored the need to distinguish between

unexpected uncertainty and stochastic volatility [46].

In our six-arm restless bandit, the three levels of uncertainty

change in equally salient ways. Future imaging studies could

therefore rely on our task to better localize the encoding of

uncertainty and its three components. In addition, our task could

allow one to investigate engagement of brain structures in the

determination of the learning rate.

Methods

Ethics Statement
All the experiments reported on here had the approval from the

ethics commission of the Ecole Polytechnique Fédérale Lausanne.

The Task
We implemented a six-arm restless bandit task with a board game.

See Fig. 1A. Participants played approximately 500 trials of this

game. We investigated learning behind participants’ choices from

two experiments. The data from the first experiment were originally

presented in [9]. In this experiment, participants were given precise

instructions about the structure of the outcome generating process.

That is, there was no structural uncertainty. In the second

experiment, we invited new participants to play our board game,

under one of three treatments. In Treatment 1, participants were not

told anything about the structure of the outcome generating process.

That is, there was full structural uncertainty. In Treatment 2,

participants were told everything about the outcome generating

process except the presence of jumps. Participants were warned that

the structural description was not complete, and were invited to pay

attention to possible structure beyond that revealed in the

instructions. Treatment 3 was a replication of the experiment in

[9] – as such, there was no structural uncertainty.

Bayesian Learning in the Task
In our Bayesian learning model, the distribution of outcome

probabilities is updated using Bayes’ law and a stabilized forgetting

[25] operator. At trial T , Bayes’ law transforms the given prior to

the posterior using the likelihood of the observed outcome and the

prior. The transformation depends on a sufficient statistic which is

Figure 6. Goodness-of-fits of the Bayesian and reinforcement learning models under varying levels of structural uncertainty. A
Goodness-of-fits of the Bayesian and reinforcement learning models under full structural uncertainty (Treatment 1). Based on the choices of 43
participants in approximately 500 trials of our board game. The Bayesian model includes a penalty for estimation uncertainty – like in the data from
[9], this model turned out to fit the data better than the base version of the Bayesian model. Heights of bars indicate mean of the individual Bayesian
Information Criterion (BIC); line segments indicate standard deviations. The difference in the mean BIC is not significant (pw0:1). B Goodness-of-fits of
the Bayesian and reinforcement learning models under partial structural uncertainty (Treatment 2). Mean BICs and standard deviations of the
Bayesian and reinforcement learning models in Treatment 2. Based on the choices of 32 participants in approximately 500 trials of our board game.
The Bayesian model includes a penalty for estimation uncertainty. Participants knew the structure of the game except for the jumps in outcome
probabilities. They were told that the description of the structure was incomplete. ���: pv0:001; ��: pv0:01; �: pv0:1.
doi:10.1371/journal.pcbi.1001048.g006
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constructed from the count vector clT~(cliT ,i~1 . . . 3), where

cliT~drli
(rliT ). Here, drli

denotes the point mass at ri (i.e.,

drli
(rliT )~1 if the outcome at location l in trial T equals rli, and 0

otherwise).

Since our task involves multinomial outcomes, we chose a Dirichlet

prior to initiate learning. Without jumps, posterior distributions will

be Dirichlet as well. As initial (first-trial) prior, we take the

uninformative Dirichlet with center p̂p0~(p̂pi)i~1,2,3~(1=3,1=3,1=3)
and precision n0~(n0,n0,n0) where n0~1. Formally, the Dirichlet

prior equals:

P0 pð Þ~ P3
i~1 C(n0p̂pi0)

C(n0)

� 	{1

P
3

i~1
pi

n0 p̂pi0{1ð Þ dH(p),

where p~(pi)i~1,2,3, C is the Gamma function (C(x)~(x{1)!)

and H denotes the three-dimensional simplex, i.e.,

H~ pjpi§0,i~1 . . . 3,
P3
i~1

pi~1

� �
.

Let Pl T=T~Pl(pjclT) denote the posterior distribution absent

jumps. It is obtained from the prior in the usual way, by combining

the prior with the (multinomial) likelihood of the count vector clT.

The posterior is Dirichlet as well, like the prior.

In a stationary world, this would provide the optimal inference.

Because jumps may occur (outcome probabilities may change), we

augment the standard Bayesian updating using a forgetting

operator, which we denote FT .

FT combines two distributions to generate a new posterior,

Pl Tz1=T . These two distributions are the following.

N After a jump in trial T , the posterior should no longer be

Pl T=T , but another reference probability distribution. Here,

we use P0, the initial prior.

N In the absence of a jump, the decision maker should use the

standard Bayesian posterior, here denoted Pl T=T .

Therefore, in principle, the new posterior should either be

Pl T=T , when there is no jump, or P0, when there is one. But the

decision maker does not observe jumps directly, and hence, has to

weight the two cases based on the evidence for a jump. Our

forgetting operator thus mixes the two possibilities:

Pl Tz1=T~FT (Pl T=T ,P0):

From minimization of a Bayes risk criterion, FT has to be taken

to be a weighted geometric mean (see [9]). That is, Pl Tz1=T is the

(weighted) geometric mean of P0 and Pl T=T . The weight depends

on the estimate of the likelihood that a jump has not occurred,

l(T). (Note that l(T) depends on the color of the location only, as

all options within a same color category jump simultaneously.) The

complement of l(T), 1{l(T), is a measure of jump likelihood,

and hence, unexpected uncertainty.

Consequently, the forgetting operator equals:

Pl Tz1=T~FT (Pl T=T ,P0)~ Pl T=T


 �l(T)
P0ð Þ1{l(T):

The geometric mean is a tractable way to introduce information

on unexpected uncertainty in the updating because, for large T ,

the posterior probability distribution is well approximated by a

Dirichlet distribution, so that updates remain in the same family of

distributions as the priors, namely, the family of Dirichlet priors.

The proof is available upon request.

Another advantage of the forgetting operator, important for our

purposes, is that updating can be expressed directly in terms of a

learning rate. Usually, with Bayesian updating, learning rates are

only implicit (because the Bayes transformation is generally non-

linear). We shall use the symbol gl(T) for the learning rate for

option l in trial T .

Specifically, with the forgetting algorithm, the posterior mean

probability vector is computed as follows:

p̂plT~
Nl(T)bclcl(T)zn0 p̂p0

Nl(T)zn0
,

where Nl(T), the effective number of observations used to update

beliefs for location l, equals

Nl
l(T)~1zl(T)Nl

l (T{1),

if location l was chosen in trial T , and otherwise:

Nl
l(T)~l(T)Nl

l(T{1);

and where bclcl(T) is a sufficient statistic based on past observed

outcomes for location l, and updated as follows:

bclicli(T)~bclicli(T{1) 1{gl(T)ð Þzgl(T)cliT

if option l was chosen in trial T , and

bclicli(T)~ bclicli(T{1)

if not.

The learning rate gl(T) determines the weight on the most

recent observation in the updating equation for the sufficient

statistic bclcl(T). It is defined, recursively, as follows: if location l is

chosen in trial T , then

gl(T)~
1

1z
l(T)

gl (T{1)

,

otherwise

gl(T)~
gl(T{1)

l(T)
:

One can express the learning rate non-recursively:

gl(T)~
X

t[Dl (T)

P
T

s~t
l(s)

� �24 35{1

,

where the set Dl(T) contains the trials up to T when location l was

visited.

Model-Free Reinforcement Learning
For model-free reinforcement learning, we applied a simple

Rescorla-Wagner rule. Let Q(l,T) denote the value of option l

after the outcome in trial T .

N If l is sampled at trial T,
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Q(l,T)~Q(l,T{1)zgblue d(T) if l is blue,

Q(l,T)~Q(l,T{1)zgred d(T) if l is red,

�
ð7Þ

where d(T)~rlT{Q(l,T{1) is the prediction error (outcome

rlT minus prediction).

N If l is not sampled at trial T , then Q(l,T)~Q(l,T{1).

Here, the learning rate is fixed but color-specific. As such, the

reinforcement learning model allows for adjustment of the learning

rate to the average level of unexpected uncertainty (red options

jump more often than blue ones), in line with evidence that the

learning rate increases with average unexpected uncertainty [4]. We

also tested model-free reinforcement learning with a single learning

rate across choices. The fit was worse, even after penalizing the

model with dual learning rates for the extra degree of freedom.

We also fit a modified reinforcement learning model, where the

learning rate adjusts to the size of the prediction error in the last

trial. This is the Pearce-Hall model [8].

Computation of Unexpected Uncertainty in the Bayesian
Model

The computations, which are provided in [9], and available in

Text S1. We repeat the key arguments here, for ease of reference. At

each trial, the Bayesian decision maker needs to infer whether a jump

has occurred. Since jumps are color-dependent only, the Bayesian

model extrapolates such inference to all options with the same color

as the chosen one. As before, l(T) denotes the probability that no

jump has occurred. l(T) is color-specific and we shall write lblue(T)
for the blue options and lred(T) for the red ones. Without loss of

generality, take l, the visited location at trial T , to be red. (In the main

text, and earlier in the Methods Section, we dropped the color

reference, to avoid unnecessary notational burden.) Formally,

l(T)red~P(JredT~0jclT):

The computation of this subjective probability leads to

lred(T)~
1

1z
p̂pi�0(nlT{1z1)

1znlT{1p̂pi�lT{1

,

where i� refers to the realized component of the count vector at time

T{1. (For example, suppose that location l delivered the loss

outcome at trial T{1; then clT{1~(1,0,0), and i� is equal to 1.)

Thus, lred(T) depends on
p̂pi�0

p̂pi�lT{1
, the strength of evidence for the

hypothesis that a jump has occurred at time T .

Unexpected uncertainty, the chance that a jump has occurred,

is complementary to the chance that no jump has occurred. At the

red location, it equals 1{lred(T). Therefore, lred(T) tracks

unexpected uncertainty at the red location.

Computation of Estimation Uncertainty in the Bayesian
Model

Estimation uncertainty is the dispersion of the posterior

distribution of outcome probabilities. It can be measured either

by the variance or the entropy.

The variance metric for option l at trial T is computed as follows:

vlT~
X3

i~1

p̂pi l T vilT~
X3

i~1

p̂pilT

p̂pi l T 1{p̂pi l Tð Þ
nlTz1

:

From [47], we define the entropy of the posterior probability

distribution for option l at T as follows:

elT:e PlTð Þ~{EPT ln
PlT

P0

� 	
~{

ð
H

PlT (p)ln
Pl T (p)

P0(p)

� �
dp:

The entropy metric is thus

elT~ln
P3

i~1C(nlT p̂pilT )C(n0)

C(n0=3)3C(nlT )

 !
{

X3

i~1

(nlT p̂pilT{n0=3) F(nlT p̂pilT ){F (nlT )ð Þ,

where F (x)~
L lnC(x)

Lx
is the Digamma function.

Choice Model
We used the softmax function to transform valuations for the

options into choice probabilities. It generated a probability

distribution Pp(l,Tz1) that location l would be visited in the

subsequent trial Tz1. In the base version, valuations remained

unadjusted, namely, the expected payoff in the next trial Q(l,T).
The softmax function depended on one parameter, namely, the

inverse temperature b. See Eqn. 5.

A couple of alternative versions were considered, by taking the

average of the expected payoff and a bonus or (if negative) a

penalty. The bonus/penalty was equal to the level of parameter

estimation uncertainty (variance or entropy of the posterior

distribution as defined above). In the model with bonus, Q(l,T)
in Eqn. 5 was replaced with either vQ(l,T)z(1{v)vlT (when

measuring estimation uncertainty with the variance metric) or

vQ(l,T)z(1{v)elT (when using the entropy metric). In the

model with penalty, it was replaced with vQ(l,T){(1{v)vlT or

vQ(l,T){(1{v)elT . Without loss the parameter v can be set

equal to 1/2. This particular value is not pivotal in the sense that

replacing it with 1=4 or 3=4 does not change the main results

qualitatively (i.e., whatever the value of the parameter, the version

with penalty significantly improved the fit of the base model, and

the version with bonus did not).

Model Fitting
Using participant choices, we fitted the free parameters of each

model: b for the Bayesian and Pearce-Hall learning models; b,

gblue and gred for the reinforcement learning model. For each

participant, best fit was obtained by maximizing the log-likelihood

LL compounded over trials:

LLs~
XTs

t~1

ln Pp(lst � ,t), ð8Þ

where lst� is the option chosen by subject s in trial t, and Ts is the

number of trials participant s played.

Supporting Information

Figure S1 Graphical display of the individual (negative) log-

likelihoods of the Bayesian models, with penalty for ambiguity (Y-

axis) and without (X-axis).

Found at: doi:10.1371/journal.pcbi.1001048.s001 (0.01 MB PDF)

Figure S2 Graphical display of the individual (negative) log-

likelihoods of the models in Treatment 3.
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Found at: doi:10.1371/journal.pcbi.1001048.s002 (0.02 MB PDF)

Figure S3 Graphical display of the individual (negative) log-

likelihoods of the models in Treatment 1.

Found at: doi:10.1371/journal.pcbi.1001048.s003 (0.02 MB PDF)

Figure S4 Graphical display of the individual (negative) log-

likelihoods of the models in Treatment 2.

Found at: doi:10.1371/journal.pcbi.1001048.s004 (0.02 MB PDF)

Text S1 Supplemental material.

Found at: doi:10.1371/journal.pcbi.1001048.s005 (0.20 MB PDF)
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