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Theoretical models may be applied to cognitive perfor-
mance data for any of several distinct purposes. Among
these purposes are:

1. To smooth trends in noisy data. In the wake of the
pioneering example of Ebbinghaus (1885/1964), this
goal characterized the great body of work on curves of
practice and forgetting for more than a half century.

2.To select from among a set of alternative models the
one that best meets some criterion of success in account-
ing for relevant empirical data.

3. To obtain the estimates of a particular model’s pa-
rameters that yield the best prediction of the set of ob-
served performance scores of a group of subjects. This
goal is well achieved by the hierarchical linear modeling
approach (Bryk & Raudenbush, 1987). A limitation of
this approach is that if there are individual differences
among subjects of a group with respect to values of the
model’s parameters, the predictions of the model for any
one subject depend to some degree on the performances
of the other members of the group.

4. To obtain the estimates of the model’s parameters
that best serve the purpose of yielding evidence about
underlying cognitive processes in individual subjects

when applying a particular model to a set of cognitive
performance scores.

Although the methods discussed in this article may
contribute indirectly to Goals 1 and 2, our focus is strictly
on Goal 4. However, in pursuing this goal, an investigator
faces a dilemma: Best-fitting1 models predict true per-
formance of individuals, but individual performance data
to which models are applied reflect a composite of true
effects and experimental error (Brown & Heathcote,
2003; Estes, 1956, 2002; Maddox & Estes, 2004; Myung,
Kim, & Pitt, 2000). To reduce the effects of error, inves-
tigators frequently resort to using averaged data for
groups of subjects. There is danger, however, that indi-
vidual differences among subjects with respect to values
of a model’s parameters may cause averaging to produce
distorted inferences about true patterns of individual per-
formance and the cognitive processes underlying them.

The tradeoff between the risks of depending on model
fits to error-prone individual performance and the risks
of fitting averaged data is the subject of this article. We
depart from the tradition of nearly all previous work on
this problem, first by concentrating upon the effects of
averaging on recovery of the values of a model’s param-
eters from a fit of the model to data, and also by giving
prime attention to magnitudes rather than simply the ex-
istence of effects.

Effects of Individual Differences and Averaging
in Experimental Data

In this section, we treat data analyses based on two
ways of fitting a model: (1) estimation of the model’s pa-
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rameters separately from the fit of the model to the data
of each individual subject in a group and (2) estimation
of the model’s parameters from the fit of the model to
the averaged data of the group. Methods 1 and 2 are
henceforth designated FI and FA, respectively.

All analyses are based on applications of array models
(Estes, 1994; Estes & Maddox, 2002; Maddox & Estes,
2004). Samples of data analyzed come from two studies
of recognition memory and a study of category learning.

The design of the experiment for which we give the
most detailed analysis, henceforth termed the list
strength experiment, is essentially that used in much re-
cent research on tests of models for recognition memory
(Murdock & Kahana, 1993; Ratcliff, Clark, & Shiffrin,
1990; Shiffrin, Huber, & Marinelli, 1995; Shiffrin, Rat-
cliff, & Clark, 1990). A second experiment, termed the
familiarity–recollection experiment, deals with recogni-
tion memory in relation to issues raised by Jacoby (1991);
its analysis bears on the role of model complexity. The
third, category learning, experiment is relevant to gener-
ality across experimental paradigms. Essentials of all
three experiments are described in Appendix A.

Parameter estimation: List strength experiment.
The first task we address is a comparison of parameter
estimation from FI and FA for the list strength experi-
ment. The relevant results in terms of mean estimates of
parameters are shown in Table 1. The four parameters—
sm, snm, a1, and a2—are defined in Appendix B.

Of these, sm and snm pertain to similarity comparisons
between test items and their representations in memory,
and a1 and a2 to probability that an item presented on a
study trial has its representation stored in memory. A no-
table finding exhibited in Table 1 is the very large over-
all difference in magnitudes of mean parameter values
between the estimates from FI and those from FA in both
replications.

The question of generality of this result immediately
arises. We cannot give any final answers, but we can as-
semble some relevant evidence about the way FI versus
FA comparisons are affected by various changes in prop-
erties of the model or data under consideration.

Parameter estimation: Familiarity–recollection
experiment. Two models were applied to the same data
set from an experiment on recognition memory similar
to that of Yonelinas (1994). The simpler of these is of the
same type as the one applied to the list strength experi-
ment but has only three parameters to be estimated. The
more complex one is a dual-process model developed as
an alternative to the “remember–know” model of Jacoby
(1991) and Yonelinas (1994), and it has five parameters
to be estimated (see Appendix B).

The salient results for parameter estimation by FI ver-
sus FA model fits are given in Table 2. The gist of these
results is that estimates are uniformly smaller in magni-
tude for FA and that the difference is much greater for
the more complex model. In particular, extremely low
estimates occur only for the more complex model. It is
interesting to note that, considering only the three pa-
rameters that are common to the two models (s1, s2, and
B), FI versus FA differences are much larger when the
parameters are embedded in the more complex model.

Parameter estimation: Category learning experi-
ment. The data were fitted using both FI and FA for a sim-
ple exemplar-based model with three parameters, denoted
sm, snm, and a (Appendix B). Mean estimates of the three
parameters, in the order just given, were .6781, .0958, and
.9905 for FI and .0001, .0637, and .9740 for FA.

Estimates from FA are uniformly smaller than those
from FI, as in all of the preceding analyses, with differ-
ences ranging from small to extremely large.

Effects of Averaging and Individual Differences
in Artificial Data

Constructing an artificial data set. The critical ques-
tion left untouched by the results of the preceding section
is how model fits by FI or FA compare with respect to re-
covering true parameter values. For real experimental
data, the question cannot be answered, because even if the
model used is “correct” for the situation, the true values
of its parameters for the real subjects are necessarily un-
known. However, some progress can be made by using
artificial, computer-generated data for which true pa-
rameter values are known.

To obtain a data set appropriate for our purposes, we
used a tactic described previously by Maddox and Estes
(2004).

The gist of the method was to yoke the simulation to
a real experiment. We started with the parameter values
estimated for each of the 48 subjects in each of replica-
tions R1 and R2 of the list strength experiment and gen-
erated “true” scores for 48 hypothetical subjects using
the computer program that embodied the array model.
However, these scores could not be used, as they stood to
constitute the “observed” data for the simulations be-
cause they were error free. Thus, we added to the score
for each hypothetical subject on each trial an error vari-
able assumed to come from a population with a mean of
0 and standard deviation σij. To obtain data at two levels

Table 1
Mean Estimates of Array Model Parameters in Fits to

Individual or Average Data of List Strength Experiment

Estimated Value

Replication Parameter FI FA

R1 smn .059 .008
snm .029 .008
a1n .248 .000
a2n .526 .000

R2 smn .037 .000
snm .043 .001
a1n .248 .000

a2 a2n .350 .000

Note—FI, fit with individuals; FA, fit with average.
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of error, we drew values of the error variable from this
population with σij set equal to .10 for one simulation
and to .14 for a second simulation in each replication.

With the simulated performance scores in hand, we fit-
ted the array model to the artificial data with our parameter-
search program for FI and FA just as we had done previ-
ously for the real data of the list strength experiment.

Estimation of parameters. For the data of the R1 and
R2 replications at both levels of error, parameter esti-
mates obtained with the two methods of model fitting are
summarized in Table 3. The format of Table 3 differs
from that of Table 2 by the addition of a column of mean
true values (i.e., the values that were used in generation
of the artificial data). On the whole, the mean parameter
estimates obtained for the 48 individual subjects by FI
move toward the true values as the error level (σi j) drops
from .14 to .10, and the estimates exhibit patterns of rel-
ative value over the four parameters that agree reason-
ably well with those of the true values.

The same trends do not hold for the estimates pro-
duced by FA. FA estimates uniformly fall into a very nar-
row range, as was found in the analysis of the real data
(Table 1), and do not conform well to the pattern that
holds for the true values.

To bring out the relation between the FI–FA difference
and the number of subjects entered into the model fits,
we expanded the analysis of the σi j � .10 segment of the
artificial data set to give results separately for subgroups
of 6, 12, and 24 subjects, as well as for the full 48. The
results, exhibited in Table 4, show that the correspon-

dence between patterns of FI parameter estimates and of
true (Tr) values and the frequency of extremely small es-
timates by FA both increase with group size.

In view of our goal of obtaining useful parameter es-
timates for individual subjects, it is important to go be-
yond comparisons of means by examining comparisons
for individuals. One approach is illustrated in Figure 1,
which shows for each individual simulated subject in the
artificial data set the difference between the true value of
a parameter and the value estimated by FI compared with
this difference for the estimate by FA.

For a similarity parameter (upper panel), estimates by
FI are closer to true values for more than 3/4 of individ-
uals than are any estimates by FA. For a storage proba-
bility parameter (lower panel), estimates by FI are close
to the true values for about 1/3 of individuals, but esti-
mates by FA for almost none.

Discussion
Summary of findings. Regarding the advantages and

disadvantages of FI and FA for applications of cognitive
models, an overall conclusion from the work reported in
this article is that one should think of this issue in terms
of tradeoffs rather than of sweeping generalizations. As
is pointed up most sharply in Figure 1, we have found FI
to be far superior to FA in yielding accurate recovery of
true parameter values for individual subjects; but we
have also found FI to yield the largest disparities be-
tween true and estimated values.

One of the most pervasive factors influencing param-
eter recovery by either FI or FA has proved to be model
complexity. From mathematical analyses, it is known
that, under some conditions, the two types of model fit-
ting are indistinguishable: (1) when the model is linear in
its parameters, as in linear regression; (2) when the
model includes no more than two free parameters and is
simple enough in structure that “model-preserving”
forms of averaging can be used (Estes, 1956; Myung,
Kim, & Pitt, 2000). When these conditions are not met,
however, as in the case of most models used in research
on memory, categorization, and decision making, haz-
ards of indiscriminate use of FA become acute (Ashby,
Maddox, & Lee, 1994; Maddox, 1999).

Table 2
Mean FI Versus FA Parameter Estimates for

Single- and Dual-Process Models

Dual-Process Model Single-Process Model

Parameter FI FA FI FA

s1 2.037 0.004 2.027 1.025
s2 2.727 0.615 2.402 1.373
B2 2.558 0.669 2.019 1.528
r 2.160 0.105
r′ 2.115 0.003 .003 .003

Note—FI, fit with individuals; FA, fit with average.

Table 3
True Values and Estimates of Array Model Parameters for Artificial Data

With Error σ Equal to .10 or .14

Estimate From Simulation

FI FA

Replication Parameter True .10 .14 .10 .14

R1 smm .023 .058 .064 .015 .017
snm .010 .026 .038 .006 .007
a1m .389 .175 .148 .004 .001
a2m .529 .320 .218 .008 .003

R2 smm .020 .048 .036 .018 .020
snm .007 .025 .026 .008 .009
a1m .375 .212 .139 .012 .003

a2 a2m .538 .312 .208 .018 .005

Note—FI, fit with individuals; FA, fit with average.
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Analyses of both experimental and artificial data in
this study complement the work of Myung (2000) on the
role of complexity in model selection by showing that
differences between results of parameter recovery from

FI versus FA depend strongly on model complexity, as
do differences in degree of approximation of parameter
estimates to true values.

In contrast, FI versus FA comparisons seem insensi-
tive to the nature of the response scale (ratings on a con-
tinuous scale versus binary choices) and to number of
conditions in an experiment, but they do depend strongly
on group size.

The question might be raised whether FA is being un-
fairly penalized in the analyses reported because, for
some reason, the model-fitting program does not pro-
duce as close agreement between observed and predicted
performance scores for FA as for FI. This possibility can
be readily checked for any situation of interest. In the
case of our analysis of an artificial data set, for example,
the mean square of disparities between observed and
predicted scores was .008 for FA. For the 48 subjects in
FI, this measure ranged from .005 to .035, signifying a
poorer, not a better, fit in FI than in FA.

We are concerned with gaining information about pa-
rameters of a model from fits to noisy data not as an end
in itself, but because this information contributes to eval-
uation of the usefulness of a model for elucidation of the
cognitive processes underlying performance. For in-
stance, given a model that has accrued empirical support,
two versions of the model are fitted to a data set, one ver-
sion including and the other not including a parameter
corresponding to a particular process. Superiority of the
former version is taken to support inclusion of the given
process in the model. In the studies reported in this arti-
cle, we found that information relevant to this objective
was obtained by analyses of type FI but virtually never
by those of type FA.

Analyzing fits of several models in different experi-
mental designs yielded evidence suggesting some gen-
erality for our findings across research situations, but
this result should not be overinterpreted. The main point
we wish to emphasize is that our results point up first the
failures of parameter recovery that can be produced by
averaging, and also the desirability of studying the ap-
plication of a new model to data in the manner illustrated
in this article before the model is used as a tool for gain-
ing information about the cognitive processes that un-
derlie performance.

Table 4
Mean Parameter Estimates for Artificial Data With Error σ Equal to

.10 as a Function of Group Size

Number of Subjects

6 12 24 48

Parameter Tr FI FA Tr FI FA Tr FI FA Tr FI FA

smn .02 .09 .03 .02 .03 .03 .02 .05 .03 .02 .05 .02
snm .00 .04 .02 .01 .02 .01 .01 .03 .02 .01 .03 .01
a1n .49 .12 .00 .36 .26 .08 .33 .23 .00 .38 .21 .01
a2n .64 .22 .01 .50 .39 .11 .50 .35 .01 .53 .34 .01

Note—Tr, true value; FI, fit with individuals; FA, fit with average.

Figure 1. Difference for each subject in the artificial data between
true parameter value and estimate by FI or FA. Parameters sm and
a1 are represented in the upper and lower panels, respectively.
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On the use of artificial data. Although many aspects
of FI versus FA comparisons have been effectively illus-
trated by model fits to experimental data, for the purpose
of evaluating the capability of model fits to yield infor-
mation about true parameter values, it is essential to an-
alyze fits to artificial data for which true parameter val-
ues are known. This procedure needs to be used with
some care, however, and we list here some constraints
that we have found essential.

1. To yield results that are of practical relevance to an
investigator’s purposes, the data need to be generated by
the model under consideration for a hypothetical exper-
iment of the same design as the one used in the investi-
gator’s relevant research, with the number of hypotheti-
cal subjects matching the number of real subjects, with
the same performance measure, and with values of the
model’s parameters chosen so that the real and artificial
performance scores fall in about the same range with re-
spect to magnitude.

2. It has become well accepted in cognitive modeling
that performance scores obtained in cognitive research
must represent composites of true scores and error
(Brown & Heathcote, 2003; Estes, 2002; Myung, Kim,
& Pitt, 2000; Pitt, Myung, & Zhang, 2002). As in our re-
lated work (Maddox & Estes, 2004), we realized this re-
quirement by adding to each model-generated perfor-
mance score an error component drawn from a normal
distribution with a variance chosen to keep the error
component from being so small as to have negligible ef-
fects or so large as to cause scores to stray out of the al-
lowable range.

To construct artificial data sets appropriate for some
kinds of performance measures (e.g., binary choices or
reaction times), replacement of the normal error distri-
bution with binomial, gamma, or other distributions
would not be expected to affect any of the conclusions of
this study. In all cases, it might be necessary to truncate
the distributions to handle the range problem. Further-
more, we have found it good practice to check on the
comparability of real and artificial data sets by examin-
ing the results of analyses that can be done similarly on
real and artificial data (Maddox & Estes, 2004).

Guidelines. Some of our findings have implications
for cognitive modeling that we have translated into
guidelines for our own work. For example:

1. In all research involving model fitting, use adequate
numbers of subjects, even at the cost of conducting fewer
experiments.

2. Avoid the use of FA for preliminary appraisals of
models in small pilot studies or in applications to results
of other investigators that have been published only in
the form of predictions of models for averaged data.

3. When drawing conclusions from applications of FI,
go beyond dependence on parameter estimates averaged
over subjects and examine the full range of estimates ob-
tained for individuals (as can be accomplished by the
type of analysis illustrated in Figure 1).
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NOTE

1. By the “fit” of a model to data we mean the goodness of agree-
ment between observed and predicted performance scores as measured
either by the computed likelihood of the data given the model or by
the mean of squared discrepancies between observed and predicted
scores. The likelihood measure has theoretical advantages if the results
are being used for model selection (Myung, 2003), but for the pur-
poses of this article, we find the squared discrepancies (MSe) method
preferable.
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APPENDIX A
Sources of Experimental Data

All data used in illustrative analyses came from unpublished studies conducted in our research program.
List strength experiment. A standard study–test paradigm was employed with 48 university undergrad-

uates as subjects. Each participated in the same design in which list length (4 or 8 items), study duration (400
or 1,200 msec per item), and study frequency (one or two occurrences of an item in the study list) were crossed
factorially. The entire design was replicated for each subject with two different samples of pseudoword stim-
uli from the same population, the replications being labeled R1 and R2. The recognition test for each list in-
cluded all items of the study list plus an equal number of new items drawn randomly from the master list. For
each test item, subjects gave a rating on a 0–100 scale of confidence that the item was “old” (i.e., that it came
from the study list).

Familiarity–recollection experiment. This experiment on study–test recognition memory was concerned
with the question of whether recognition depends both on familiarity of test items and on recollection of oc-
currences of the items in study contexts. Following Yonelinas (1994), presentation of two study lists succes-
sively was followed by separate tests on the two lists. Performance scores were binary choices (“old” or “new”
responses to test items). The subjects were 30 university undergraduates.

Category learning experiment. The experiment constituted five blocks of trials, each composed of 20
observation trials followed by 15 test trials. The stimuli were pseudowords, and the categories were verb or
noun. Performance scores on the tests were subjects’ ratings (on a scale of 0 to 100) of confidence that the
test item belonged to a specified category. The subjects were 37 university undergraduates.

APPENDIX B
Parameters of the Array Model

The array model for category learning is described by Estes (1994), and the versions applicable to recog-
nition memory by Estes and Maddox (2002) and Maddox and Estes (2004). For the applications in this arti-
cle, parameters to be estimated were as follows.

List strength experiment and artificial data. The parameters were sm, snm, a1, and a2. The first two rep-
resented similarities, on a 0–1 scale, between a test item and an item representation in memory: sm applied
when the study frequency of a test item matched that of the memory element it was being compared with, and
snm applied when there was no match. Parameters a1 and a2 were probabilities that a studied item was stored
in memory when study time was short or long, respectively.

Familiarity–recollection experiment. In the simpler model, the parameters were s1, s2, and B, where s1
and s2 applied to tests on List 1 or List 2, respectively, and B was a reference parameter.

In the more complex model, the parameters were s1, s2, B, r, and r	, the last two being interpretable as prob-
abilities of correct or incorrect recollection on test trials.

Category learning experiment. The parameters were sm, snm, and a, where a was the storage probability
on study trials.
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