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Abstract 6 
 7 
Dam-break flood waves are associated with major environmental disasters provoked by the sudden 8 
release of water stored in reservoirs. Ritter found in 1892 an analytical solution to the wave 9 
structure of an ideal fluid released during an instantaneous dam failure, propagating over initially 10 
dry horizontal terrain. This solution, though ideal, hence frictionless, is widely used to test 11 
numerical solutions of the Shallow Water Equations (SWE), and as educational tool in courses of 12 
fluid mechanics, given that it is a peculiar case of the Riemann problem. However, the real wave 13 
structure observed experimentally differs in a major portion of the wave profile, including the 14 
positive and negative fronts. Given the importance of an accurate prediction of the dam break wave, 15 
the positive and negative wave portions originating from the breaking of a dam with initially dry 16 
land on the tailwater reach are revisited in this work. First, the propagation features of the dry-front 17 
are investigated using an analytical boundary-layer type model (Whitham/Dressler/Chanson model) 18 
constructed matching an (outer) inviscid dynamic wave to an (inner) viscous diffusive wave. The 19 
analytical solution is evaluated using an accurate numerical solution of the SWE produced using the 20 
MUSCL-Hancock finite-volume method, which is tested independently obtaining the solution based 21 
on the discontinuous Galerkin finite-element method. The propagation features of the negative 22 
wave are poorly reproduced by the SWE during the initial stages of dam break flows, and, thus, are 23 
then investigated using the Serre-Green-Naghdi equations for weakly-dispersive fully non-linear 24 
water waves, which are solved using a finite volume-finite difference scheme. 25 
 26 
Keywords: Dam-break wave; Dry-front; Rarefaction wave; Ritter's solution; Saint-Venant 27 
equations; Serre-Green-Nagdhi equations 28 
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1 Introduction 37 
 38 
The sudden release of the water stored in a reservoir due to an instantaneous dam collapse can lead 39 
to serious environmental problems in the downstream valley, risk to human life, and severe 40 
economical damage. Thus, dam-break flows are a major concern in hydraulic and environmental 41 
engineering practice [1]. The hydraulic prediction of the wave resulting from the breaking of a dam 42 
gained impulse during the World War II, given the risk of dam destruction by military action [2]. In 43 
modern times, it is a major disaster linked to un-frequent engineering failure (Fig. 1a), but the 44 
hydraulic phenomenon is basically the same occurring in canals during the sudden gate operation 45 
[3, 4]. The dam break flood wave after the instantaneous failure of a dam propagates along natural 46 
waterways involving uneven beds, non-prismatic cross sections, and wet-dry fonts [5] (Fig. 1b). 47 
These problems are efficiently tackled using modern shock-capturing methods for the solution of 48 
the shallow-water flow equations. However, before attempting to solve real-life problems, where 49 
there is a need to deal with the peculiar constraints imposed by nature, it is an accepted practice to 50 
check numerical models using simple, idealized test cases. It cannot be expected to solve with any 51 
accuracy a complex real flow problem if a simplified and ideal test is not adequately addressed by a 52 
numerical model. In this context, Ritter’s ideal dry-bed dam break solution for a rectangular and 53 
horizontal channel (see Appendix II) [6] is still today, after more than a century, a tool of wide use 54 
by modelers [5, 7]. It is also a very important material for teaching purposes in undergraduate 55 
courses of hydraulics and fluid mechanics [1, 3]. 56 
 57 

 58 
Figure 1 (a) Example of instantaneous dam break: the St Francis dam, USA (Courtesy of Santa 59 
ClaritaValley Historical Society) - Looking upstream at the dam wall ruins (b) experimental test of 60 
dam break wave, where the turbulence at the dry-bed front is visible 61 
 62 
The shallow-water flow equations, or Saint-Venant equations are, for a frictionless and horizontal 63 
channel of prismatic and rectangular cross-section [1, 3, 8] 64 

    0h h U
U h

t x x

  
  

  
 ,    (1) 65 

    0U U h
U g

t x x

  
  

  
.    (2) 66 

Here h is the water depth, U the depth-averaged velocity positive downstream in the x-direction, t is 67 
the time, x the horizontal coordinate with x = 0 at the dam wall, and g the gravitational acceleration. 68 
 69 
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    70 
Figure 2 Instantaneous dam-break flow (a) Ritter’s idealized wave (b) real wave structure observed 71 
experimentally [10] 72 
 73 
Equations (1)-(2) are obtained from the Euler equations assuming that the vertical accelerations can 74 
be neglected, and that the velocity profile in the x-direction is uniform across the water layer of 75 
thickness h [1, 5]. Ritter’s solution to Eqs.(1)-(2) for the instantaneous failure of a dam is (Fig. 2a) 76 

     
2

1 21 2
9 o

x
h gh

g t

    
,    (3) 77 

     1 22
3 o

x
U gh

t

    
,     (4) 78 

with ho as the water depth in the reservoir at the initiation of the dam collapse. The idealized 79 
solution given by Eqs. (3)-(4) is widely used to check numerical solutions of Eqs. (1)-(2). Further, 80 
in the context of fluid dynamics, it is a particular case of the Riemann problem, with the state-vector 81 
at one side of the discontinuity implying dry-bed conditions, and a motionless state at the other side 82 
of the interface [5, 9]. It is well-known based on a generalized solution of the Riemann problem that 83 
Ritter’s solution is a particular rarefaction wave. The solution involves a similarity structure of the 84 
(h, U) predictors, depending solely on the coordinate (x/t). The wave structure includes a positive 85 
dry-bed front propagating at speed 2(gho)1/2, and a negative front spreading back at rate −(gho)1/2 86 
over the still water (Fig. 2a) (see Jain [3] or Toro [5] for detailed derivations). We denote as the 87 
positive wave the portion of the solution for any x > 0 and t > 0, with the dam axis located at x = 0. 88 
Likewise, the negative wave is the solution at coordinate points x < 0 for any time. The propagation 89 
speed of the positive and negative wave fronts is information of particular interest for natural hazard 90 
assessment and planning for an eventual evacuation of population from the tailwater reach of a 91 
river. 92 
 93 
However, detailed experimental observations [10, 17] indicated a number of features not accounted 94 
for by Ritter’s idealized wave structure. In particular, Ritter's prediction of the propagation speeds 95 
of the waves is not accurate. Near the front of the positive wave, the frictional resistance and 96 
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turbulence dominates the flow [11, 12, 13, 14] (see Fig. 1b), and cannot be ignored. As result of 97 
these real fluid flow features, the free surface profile in the “tip-portion” of the positive wave 98 
changes its curvature from the positive values indicated by the parabolic-law by Ritter [see Eq. (3)] 99 
to negative values [10, 14, 15] (See Fig. 2b). Consequently, the positive front propagates much 100 
slower than predicted by Ritter’s theory [10]. Given the importance of flow resistance on the 101 
positive wave propagation, more advanced solutions were attempted in the literature to overcome 102 
the limitations of Ritter's theory. The effect of flow resistance on the dam break wave was 103 
considered analytically by Dressler [11], Whitham [12], and Chanson [14]. Chanson [14] expanded 104 
Whitham's [12] conceptual model which is based on the assumption that near the positive front the 105 
resistance forces are exactly balanced by pressure forces, and flow accelerations are therefore 106 
ignored. This simplified solution at the tip portion is then matched to the inviscid dynamic wave 107 
model, corresponding to Ritter’s solution, away front the front. The result is a simplified analytical 108 
solution of Saint-Venant equations, much in the sense of boundary-layer methods, where an outer 109 
(inviscid dynamic wave) and inner (viscous diffusive wave) solutions are matched. This conceptual 110 
model was compared with experiments, and a fair agreement was noted [14]. It was recently 111 
compared with 3D computational results based on the RANS equations [16]. This model is a 112 
simplified analytical solution of the Saint Venant equations, and, thus, it is of interest to compare it 113 
with the general solution of the Saint Venant equations. Given that an exact analytical solution of 114 
Saint Venant equations for the dam break wave with boundary friction is so far unknown, it is 115 
necessary to compare Whitham's boundary layer type conceptual model with the numerical solution 116 
of the Saint Venant equations for the viscous dynamic wave. 117 
 118 
As regards to the negative wave, Dressler [17] and Lauber [10] found experimentally that the 119 
negative front propagates much faster than predicted by Ritter’s theory, with a free surface profile 120 
implying strong negative curvatures, and largely deviating from a parabolic shape, during the initial 121 
instants following the instantaneous dam break. Dressler [17] and Lauber and Hager [15] linked 122 
these strong differences to the existence of severe vertical accelerations. To date, this hypothesis 123 
was not verified, except in the near-vicinity of the wall [4]. In order to account for these features, it 124 
is necessary to introduce vertical accelerations and non-hydrostatic pressures in a depth-averaged 125 
model via use of the vertical momentum balance [18, 19]. However, the negative front propagation 126 
celerity remains so far un-analyzed by using a depth-averaged flow model including vertical 127 
accelerations. 128 
 129 
Given the conceptual importance of Ritter’s dam break idealized structure, the need to predict 130 
accurately the positive and negative front propagation, and the discrepancies observed 131 
experimentally, the specific objectives of this work are: 132 
 133 
1. Testing the Whitham/Dressler/Chanson [11, 12, 14] conceptual model for the dry-bed dam break 134 
flow problem. To address this objective, the comparison of this simplified analytical model with the 135 
full solution of Saint-Venant equations, is conducted. For this task, two accurate numerical 136 
solutions of the Saint-Venant equations are produced for reference, using the MUSCL-Hancock 137 
finite volume method, and the discontinuous Galerkin finite element method. 138 
 139 
2. Detailing the rarefaction wave propagation by including vertical accelerations in a depth-140 
averaged model. To address this objective, vertical accelerations are accounted for by using the 141 
Serre-Green-Naghdi equations for weakly-dispersive and fully non-linear water waves, which are a 142 
generalization of Saint-Venant equations. The equations are solved by using a hybrid finite volume-143 
finite difference model. 144 
 145 
These objectives are systematically developed in the next sections. 146 
 147 
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2 Shallow flow approximations 148 
 149 
2.1 Dynamic wave with friction effects 150 
 151 
A detailed solution of the viscous dynamic wave model is necessary to test the approximate 152 
analytical solution composed of a diffusive wave model matched to a inviscid dynamic wave, 153 
corresponding to Ritter's model [14]. In this section, two independent numerical models were 154 
implement to produce an accurate reference solution of Saint Venant equations with friction effects. 155 
 156 
2.1.1 Finite volume method 157 
 158 
Equations (1)-(2) are written in conservative vector form, including the flow resistance force, as [5] 159 

     
t x

 
 

 
U F S .     (5) 160 

Here U is the vector of conserved variables, F is the flux vector and S the source term vector, given 161 
by 162 

  2 2

0
, , .1

2 f

hU
h q

ghShU F hU gh

                         

U F S   (6) 163 

Shock capturing finite volume solutions of Eq.(6) using the Godunov upwind method, assisted by 164 
robust Riemann solvers (approximate or exact), produce accurate solutions of shallow-water flows 165 
[5, 20]. The integral form of Eq.(6) over a control volume in the x-t plane is [5, 9] 166 

  
1 2 1 2

1 2 1 21 2 1 2

d d d d d d
i i

i i
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U F F S . (7) 167 

To solve Eq. (7) a splitting approach is used. First, the inviscid flow problem, corresponding to the 168 
integral solution of the homogeneous system 169 

    
t x

 
 

 
U F 0 ,      (8) 170 

is tackled. For a rectangular control volume in the x-t plane, Eq.(7) reads [5] 171 

    1
1 2 1 2

k k

i i i i

t

x


 


  


U U F F ,    (9) 172 

which is used to update the vector U. Here ∆t and ∆x are the step sizes in the x and t axes, 173 
respectively, k refers to the time level, i is the cell index in the x-direction, and Fi+1/2 is the 174 
numerical flux crossing the interface between cells i and i+1 (Fig. 3). In this work the MUSCL-175 
Hancock method is used to solve Eq. (9) [5, 9], which is second-order accurate in both space and 176 
time. The solution process starts with the cell-averaged values of conserved variables at time level 177 
k, Ui

k. For second order space accuracy, a piecewise linear reconstruction is conducted within each 178 
cell [5] (Fig. 3). Linear slopes resulting from the reconstructed solution must be limited to avoid 179 
spurious oscillations near discontinuities. Let letters L and R denote the reconstructed variables at 180 
the left and right sides of a cell interface, the resulting values of U at each of its sides are 181 

    
1 2 1 2 1 2 3 21 1 2 1

1 1;
2 2i i i i

L k k k R k k k

i i i i i i   

 
          U U U U U U U U , (10) 182 

with 
1 2i

  and 
3 2i

  as diagonal limiter matrices [5]. The Minmod limiter is used in this work. In 183 

the MUSCL-Hancock method, an evolution of boundary extrapolated values 
1 2i

L


U  and 

1 2i

R


U  at 184 

interface i+1/2 over half the time step is conducted to regain second order accuracy in time. Based 185 
on a Taylor series expansion in space and time, interface values are then given by [5] 186 
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  189 
Figure 3 Finite volume discretization 190 
 191 
With these evolved boundary extrapolated variables 1 2i

L

U  and 1 2i

R

U  defining states L and R, the 192 
numerical flux is computed using the HLL approximate Riemann solver as [5] 193 

   
1/2

if 0
, if 0
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R L L R R L R L

i L R

R L
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F
F F U U

F
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  (12) 194 

Here FL and FR are the fluxes computed at states L and R. Robust wave speeds estimates SL and SR 195 
for a wet bed are given by [5] 196 
   ,L L L L R R R RS U a q S U a q    ,   (13) 197 
where a = (gh)1/2, and qK(K = L, R) is 198 

   

1 2
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*
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1
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h h h
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q h
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    (14) 199 

The flow depth at the star region of the Riemann problem at each interface h* is [5] 200 

      
2

*
1 1 1

2 4L R L Rh a a U U
g

     
 

.    (15) 201 

For the dry-bed problem, the celerity of the signals are given by 202 
     2 if 0 , 2 if 0L R R L R L L RS U a h S U a h       .  (16) 203 
Once Eq. (9) is applied, the effect of the source terms is introduced by solving the ODE [5] 204 

     d
dt


U S .     (17) 205 

Given that the only source term in Eq. (17) is the resistance force appearing in the momentum 206 
equation, it is reduced to the scalar ODE 207 

     2d
d 8
q f

U
t
  ,     (18) 208 
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where f is the Darcy-Weisbach friction factor. Equation (18) is discretized implicitly, resulting in 209 
the algebraic expression 210 

     21 1
1 18

k
k ki
i ik k

i i

q f
U t U

h h

 
  


.   (19) 211 

Equation (19) is a quadratic equation that is solved each time step to obtain the cell-averaged 212 
velocity Ui

k+1 accounting for the friction effects. In this work, a threshold value of 10‒8 is used to 213 
identify dry cells. If the water depth is negative at a cell after the evolution of conserved variables, 214 
the vector U is set to zero. If the water depth falls below the threshold value, the velocity is set to 215 
zero. For stability in time of the explicit scheme, the Courant-Friedrichs-Lewy number CFL must 216 
be less than unity [5]. Given the value of CFL, Δt is determined at time level k from 217 

   
 1 2

max k k

i i

x
t

U gh

 
    
  

CFL .    (20) 218 

In Fig. 4 the experiments by Schoklitsch [21] for a dam break wave in a dry, rectangular, horizontal 219 
flume are considered as test case. The flume is 0.093 m in width, 0.08 m in height, and 20 m in 220 
length. The dam was located at coordinate x = 10 m, and the removal was considered instantaneous. 221 
The tailwater portion of the flume was initially dry, and the water depth in the dam 0.074 m. 222 
Experimental measurements conducted by Schoklitsch [21] for two times after removal of the dam, 223 
namely t = 3.75 s and t = 9.4 s, are plotted in Fig. 4a and 4b, respectively. The predictions using the 224 
finite volume model were conducted adopting f = 0.03 [14], resulting in a good agreement with 225 
observations, as depicted in Fig. 4. The numerical solution was conducted using 700 cells and CFL 226 
= 0.1 to produce accurate results, despite stable results were feasible with CFL = 0.9 and half of the 227 
cells. The effect of flow resistance in this test was significant, as observed from the deviation of 228 
Ritter's solution in the same figure. 229 
 230 
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 231 
Figure 4 Dry-bed dam break wave test case: Comparison of computed and measured [21] 232 
instantaneous free surface profiles 233 
 234 
2.1.2 Discontinuous Galerkin finite element method 235 
 236 
An alternative solution to the dynamic wave model may be developed using the discontinuous 237 
Galerkin method (DGM) [7, 22]. The computational domain is divided in a number of finite 238 
elements, and the value of U at the common interface of two adjacent elements is allowed to be 239 
discontinuous (Fig. 5a). Within a generic element "e" the solution U(x, t) is approximated by the 240 
interpolation function  241 

         
2

1

ˆ, j j

j

x t x t


 U U N U ,   (21) 242 

where Uj are the nodal values of U at the boundaries of each element (j = 1 for left node and j = 2 243 
for right node). At a node, shared by two adjacent elements, U has two different values at its left- 244 
and right-sides. Basically, this produces a number of local Riemann problems at the interfaces of 245 
elements. The shape functions Nj(x) are, in local normalized coordinates ξ of an element (Fig. 5b), 246 
       1 20.5 1 , 0.5 1N N     .   (22) 247 
In the discontinuous Galerkin method, the test functions are taken equal to the shape or 248 
interpolating functions. Thus, Eq. (5) is multiplied by Ni (with i = 1 and 2), and integrated oven an 249 
element, resulting [7] 250 
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Integrating Eq. (23) by parts, and substituting the predictor of U(x, t) within the element, given by 252 
Eq. (21), produces [7] 253 
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where 255 
              ˆˆ ˆ ˆ,   F U F U F U S U S U S U .  (25) 256 
Equation (24) is the basic relation of the DGM. Equation (24) yields for the discretized continuity 257 
equation a system of two equations to determine the evolution of the water depths (h1, h2) at each 258 
node of the element, namely [7] 259 

  1 21 1
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. (26) 260 

Likewise, from Eq. (24) the evolution of discharge at the nodes of the element (q1, q2) is given by 261 
the system [7] 262 
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where the integrals were transformed from the global x-coordinate to the local element coordinate ξ 264 
[7]. 265 
 266 

 267 
Figure 5 Finite element discretization 268 
 269 
The numerical flux Fe+1/2 at the common interface of two adjacent finite elements (Fig. 5a) is 270 
computed solving a local Riemann problem by using the HLL approximate Riemann solver, already 271 
described for the finite volume solver. The slope of the solution within an element, determined by 272 
the actual values of U1 and U2, must be limited to avoid unphysical oscillations near shocks, but 273 
preserving the corresponding element-averaged values [7]. Here, the minmod limiter is used. The 274 
space integrals are evaluated by a two-point Gaussian quadrature formula, using the identities stated 275 
in Eq. (25). A friction factor f = 0.03 is used in the simulations. Once numerical fluxes at element 276 
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boundaries and space integrals along the element are evaluated, based on the known information at 277 
the actual time level k, Eqs. (26) and (27) are used to evolve in time h1, h2, q1 and q2 by resort to a 278 
one-step forward Euler method. 279 
The solution for the dam break propagation on a dry bed previously presented in Fig. 4 is further 280 
considered in Fig. 6, where the results of the DGM, produced using 700 elements and CFL = 0.1, 281 
are compared with the former results of the finite volume method, for both h(x, t) and q(x, t). For 282 
the DGM, the maximum CFL for stability is 1/3 [7]. To have a meaningful comparison of the DGM 283 
method and the finite volume method, both models are solved with identical CFL and spatial 284 
divisions of the domain, therefore. It can be observed that results of both techniques are in excellent 285 
agreement. It is not claimed that the discontinuous Galerkin method is more precise than the 286 
MUSCL-Hancock finite volume method, or vice-versa; Simply, two accurate methods to solve the 287 
Saint-Venant equations are used in this work to produce a solution to a problem where an exact 288 
analytical solution is unknown, namely the viscous dam break wave. Both methods excellently 289 
agree, thereby confirming the accuracy of the numerical solution produced. Such high quality 290 
reference solution is necessary to undertake a precise evaluation of the simplified analytical solution 291 
based on the Whitham/Dressler/Chanson boundary-layer type conceptual model [11, 12, 14]. Given 292 
that both numerical solutions excellently agree, in the rest of the work only the results 293 
corresponding to the finite volume method are presented. 294 
 295 

  296 
Figure 6 Comparison of finite volume method and DGM for the viscous dam break wave 297 
 298 
2.2 Boundary-layer analytical solution 299 
 300 
Whitham, Dressler and Chanson [11, 12, 14] conceptualized the computation of the dam break flow 301 
over a dry bed using boundary layer arguments. Near the dry bed front, they argued that frictional 302 
resistance controls the motion, which is assumed to be not accelerated. Then, of necessity, an exact 303 
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balancing of friction and hydrostatic forces must be preserved. Basically, these are the conditions of 304 
the so-called diffusive wave, obtained from the momentum balance contained in Eq. (5) as 305 

     
2

8
h f U

x gh


 


.     (28) 306 

At an undermined point away from the dry-bed front, frictional forces are negligible, but 307 
accelerations (local and convective) are then significant. The conceptual model proposed was 308 
therefore made up of a composite wave solution matching Eq. (28) to Ritter's solution for the 309 
inviscid dynamic wave. The matching point is determined forcing conservation of the water volume 310 
initially at rest in the reservoir [14]. This model was briefly presented by Dressler [17] and 311 
extensively developed by Chanson [14]. As additional hypothesis, it was assumed that the velocity 312 
in the tip wave portion is not largely varying in space, that is, U(x, t) ≈ UF(t), which is, thus, the dry-313 
front celerity. Analytical integration of Eq. (28) between an arbitrary point and the dry-front, where 314 
x = xF and h = 0, produce [12, 14, 17] 315 
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Curiously, we remark here that Whitham [12] discarded Eq. (29), which he considered inaccurate 317 
without giving evidence. However, both Dressler [17] and Chanson [14] found elements in favor of 318 
it. Thus, a detailed comparison of this simplified analytical solution with the detailed numerical 319 
solution of Saint-Venant equations is presented as follows. The dimensionless dry-front celerity is 320 
given, based on mass conservation, by the identity [14] 321 

     

311
8 1 2
3

T
f





  
   ,    (30) 322 

where the normalized time is T = t(g/ho)1/2 and the dimensionless front celerity is θ = UF/(gho)1/2. 323 
Equation (30) gives the function θ = θ(T) upon numerical solution. The assembling point xe of the 324 
inner (viscous diffusive wave) and outer (inviscid dynamic wave) solutions is given by [14] 325 
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,    (31) 326 

where Xe = xe/ho, and the dry-front position is [14] 327 
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.   (32) 328 

The free surface profile up- and downstream of xe is determined from Eqs. (3) and (29), 329 
respectively. Likewise, upstream of xe the velocity profile is given by Ritter's Eq. (4), reaching the 330 
constant value UF along the tip portion. 331 
Computations using the analytical model were conducted as follows. First, Eq. (30) was 332 
numerically solved for a given instant T using a Newton-Raphson algorithm [23] to get the 333 
corresponding value of θ. Second, Eqs. (31) and (32) were used to determine the boundaries of the 334 
tip portion, where Eq. (29) gives the free surface profile. Upstream from xe Ritter's solution was 335 
applied. The finite volume numerical results previously presented in Fig. 4 for t = 9.4 s are plotted 336 
again in Fig. 7 to evaluate the analytical results.  337 
 338 
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 339 
Figure 7 Comparison of the numerical solution of the dynamic wave with the simplified boundary-340 
layer type analytical solution 341 
 342 
The analytical solution for the water depth, velocity and discharge is presented in the same figure. It 343 
can be observed that the analytical water depth prediction is very close to the numerical solution 344 
(Fig. 7a), despite the visible slope break at the assembling point of the inviscid dynamic wave and 345 
the viscous diffusive wave. Velocity profiles are compared in Fig. 7b. As expected, the constant 346 
velocity profile in the tip portion is only an approximation, given that the numerically-computed 347 
velocity profiles also increase in this domain, in agreement with Lauber's [10] experimental 348 
observations. However, the dry-bed front position is adequately predicted by the analytical model 349 
(Fig. 7b), giving evidence of the accuracy of the dry-front celerity prediction. The numerical and 350 
analytical discharges are compared in Fig. 7c, where a fair agreement is noted. Notably, the 351 
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approximation of the velocity profile in the tip zone provokes some deviations from the numerical 352 
solution, but, overall, the simplified analytical solution gives a reasonable estimate of the discharge. 353 
 354 

 355 
Figure 8 Momentum balance terms along the viscous dam break wave (dam wall coordinate al x = 356 
10 m) 357 
 358 
The momentum balance written in primitive or non-conservative variables (h, U) is [5, 14] 359 

    0f

U U h
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.   (33) 360 

The terms with spatial derivatives in Eq. (33) were discretized using second-order accurate central 361 
finite differences, and the time derivative using a forward finite difference. The discretized 362 
derivatives were evaluated using the numerical solution produced using the finite-volume method. 363 
The results are displayed in Fig. 8. The numerically-computed local and convective accelerations 364 
are compared with those obtainable from Ritter's inviscid solution, namely, 365 
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and 367 
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respectively. Further, the pressure force gradient was also determined from the inviscid solution, 369 
resulting 370 
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A fact that deserves consideration on inspecting Eqs. (34)-(36) is that the local acceleration exactly 372 
balances the sum of the convective acceleration plus the pressure force gradient. It implies that the 373 
unsteady dam break wave is largely governed by local acceleration effects, a matter rarely 374 
emphasized. It is instructive to look how the flow resistance modifies this structure existing in the 375 
inviscid dynamic wave. As revealed in Fig. 8, away from the tip portion the inviscid dynamic wave 376 
is a very good approximation. Local and convective accelerations are little affected by friction (Fig. 377 
8 a, b). Approaching the dry-bed front, the friction force increases, as also does the pressure force 378 
gradient given that the water surface slope becomes steeper (Fig. 8 c, d). According to Whitham 379 
[12], one would expect an exact balancing of the pressure and resistance forces. As indicated by the 380 
numerical results in Fig. 8e, this is in fact a very good approximation, but not exact; convective 381 
accelerations can be ignored near the dry front, but the magnitude of ∂U/∂t, tough small, cannot be 382 
ignored at first glance. Its magnitude near the dry front is about 15% of the resistive force. 383 
However, despite the diffusive wave assumption is not exactly verified, the water surface 384 
predictions of this model are in fact very good. 385 
 386 
3 Wave solution accounting for vertical accelerations 387 
 388 
In this section the viscous dam break wave is simulated using a depth-averaged model where the 389 
vertical acceleration effects are introduced, namely the Serre-Green-Nagdhi equations. 390 
 391 
3.1 Serre-Green-Naghdi equations for fully non-linear and weakly dispersive water waves 392 
 393 
Serre [24] derived equations for weakly-dispersive, fully non-linear water waves by depth-394 
averaging of the mass and momentum conservation equations, resulting the system 395 
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,    (37) 396 
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.  (38) 397 

To obtain these equations, Serre [24] assumed that the velocity in the x-direction is uniform with 398 
depth and equal to its depth-averaged value U = q/h. The compatible vertical velocity component 399 
resulted to be linearly distributed with depth. By introducing these velocity components in an 400 
inviscid vertical momentum balance, obtained from the corresponding Euler equation, the effect of 401 
the vertical acceleration was accounted for into the depth-averaged x-momentum balance [see term 402 
under-braced in Eq. (38), where Ux = ∂U/∂x, Uxx = ∂2

U/∂x
2 and Uxt = ∂2

U/∂x∂t]. Equation (38) was 403 
obtained by Shu and Gardner [25] and Green and Naghdi [26, 27] by applying the irrotational flow 404 
theory. The system is called the Serre-Green-Naghdi equations in coastal engineering, despite in 405 
civil and environmental engineering these are named as Serre equations [28], or simply Boussinesq 406 
equations [29]. These equations are discussed in depth by Barthelemy [30], Cienfuegos et al. [31], 407 
Dias and Milewski [32], and Bonneton et al. [33], where numerical solutions of coastal engineering 408 
problems are addressed, including solitary wave propagation. Castro-Orgaz and Chanson [34] 409 
applied the steady-state version of Eqs. (37)-(38) to model near-critical flows, like undular 410 
hydraulic jumps. Here, we focus on their application to Ritter's dam break problem. 411 
For a dam break wave propagating over an initially wet bed, the inviscid acceleration term 412 
introduced into Eq. (38) produces undulations in the shock front [28, 29, 35, 36]. These undulations 413 
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are not attenuated as the wave evolves in time, given that a drawback of Eq. (38) is that wave 414 
breaking and turbulence effects are not accounted for. It is well-known experimentally that 415 
undulations on the shock are formed if the ratio of downstream to upstream initial water depths in 416 
the dam is above 0.4 [35, 36]. For smaller ratios, turbulence produce wave breaking and the 417 
undulations are progressively suppressed, until no wave trains are finally observed for a dry-bed 418 
dam break flow wave. Vertical accelerations are very strong at the initial stages of dam break waves 419 
[13, 37, 38], but turbulence and wave breaking are dominant features [13]. If dam break wave 420 
simulations are conducted using Eqs. (37)-(38), undulations at the shock front generated by the 421 
inviscid acceleration term are produced even for ratios of tailwater to upstream depth below 0.4. 422 
Thus, for a realistic prediction of dam break waves based on Eqs. (37)-(38) turbulence effects must 423 
be accounted for. Hosoda and Tada [39] and Hosoda et al. [40] proposed a simple correction to Eq. 424 
(38), where turbulence effects are accounted for introducing a damping factor ε as 425 
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2 3x xx xt f

Uh h h
g U h U UU U ghS

t x


  
          

. (39) 426 

This parameter is used to model the turbulence reduction of the inviscid vertical acceleration effects 427 
in the x-momentum balance. The parametrization proposed by Hosoda and Tada [39] is based on 428 
the assumption that if the non-hydrostatic inviscid terms are not important, then the results from the 429 
Serre equations should collapse with those from the Saint-Venant equations. Basically, it implies 430 
that under the action of turbulence the vertical momentum balance of an inviscid fluid is damped, 431 
approaching a hydrostatic vertical momentum balance as turbulence intensity increases. Thus, the 432 
energy dissipation due to wave breaking is assumed to be adequately accounted for by the Rankine-433 
Hugoniot jump conditions across moving shocks [5, 41]. Hosoda and Tada [39] and Hosoda et al. 434 
[40] proposed a damping factor ε that gradually attenuates the non-hydrostatic term under the action 435 
of turbulence using the solitary wave as conceptual model (Appendix I). If a branch of the solitary 436 
wave profile is assumed to describe the first wave of an undular shock front, wave breaking of a 437 
solitary wave may be linked to the wave breaking at the undular shock. Based on undular bore 438 
experimental data, the limiting supercritical Froude number for wave breaking of an undular shock 439 
is adopted to be F1 = 1.25 [39, 40]. Thus, if the solitary wave breaks at this value of F1, the 440 
maximum water surface slope on the upstream branch of the solitary wave profile is located at the 441 
inflection point, with a value, upon using the solitary wave profile function [40], 442 
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This slope is adopted as a threshold value above which wave breaking occurs due to the action of 444 
turbulence. Hosoda and Tada [39] proposed the factor ε 445 
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,   (41) 446 

that gradually introduces the damping effect of turbulence on the vertical acceleration, depending 447 
on the local free surface slope. Comparison with laboratory data of undular hydraulic jumps 448 
indicates a calibration parameter ς = 2 [39]. The friction slope Sf is determined using Darcy-449 
Weisbach equation. 450 
 451 
3.2 Computation of the wave profile 452 
 453 
The system of Eqs. (37) and (39) is solved here using a finite volume-finite difference method. 454 
Boussinesq-type water wave propagation models are extensively solved in the coastal engineering 455 
literature using 4th-order accurate schemes in space and time [31, 41, 42, 43, 44]. The reason 456 
underlying this practice is that truncation errors originating from the discretization to second-order 457 
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accuracy of Saint-Venant type leading terms can induce numerical dispersion. This problem is 458 
serious for large scale simulations using sparse time-space meshes [42]. However, if a fine mesh is 459 
used in second-order accurate schemes this effect disappears, rendering the model a simple and 460 
useful tool. It is not infrequent to find unsteady non-hydrostatic models solved using second-order 461 
accurate schemes [19, 39, 45, 46], or even of first-order [47], producing very good results. For the 462 
basic test cases conducted here, a second-order accurate model in space and time was implemented 463 
based on the previously described MUSCL-Hancock scheme. After some mathematical 464 
manipulation, using Eq. (37) and treating ε as independent of x, Eq. (39) can be rewritten in the 465 
convenient form 466 

  
3 2 3

2 2 2

flow resistance term
Saint-Venant flux term non-hydrostatic source termcollected term for time-stepping

3 2 3x f xx x x x

h h h
Uh U g U h ghS UU U U q h
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 467 

          (42) 468 
where all time derivatives are collected in a single time-stepping term, and convective contributions 469 
originating from non-hydrostatic pressures are treated as a source term. Thus, the one-dimensional 470 
system of conservation laws to be solved is 471 
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The solution of Eq. (43) was conducted using a finite volume-finite difference method as follows. 476 
First, using known values of the variables (h, q) at time level k, the numerical flux Fi+1/2 was 477 
determined as previously described using the MUSCL-Hancock method with the HLL approximate 478 
Riemann solver. This step is identical to the solution of Saint-Venant equations, therefore. Once this 479 
computation is done, the water depths at the new time level k+1 are from the finite-volume 480 
conservative formula 481 
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where Δt is determined using Eq. (20). This value of the water depth is then used to evaluate the 483 
source term Z; the auxiliary variable σ at the new time level is then from the finite-volume method 484 
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The spatial derivatives in the source term Ω are approximated using second-order central finite 486 
differences. Once the values of σ are determined at each finite-volume for the new time level, the 487 
following elliptic problem is stated at each cell of the computational domain 488 
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.  (47) 489 

The space derivatives in Eq. (47) are discretized using second-order central finite differences, and 490 
the value of εik is determined using Eq. (41). Equation (47) produces an algebraical relation 491 
containing the unknown values of the velocity at the new time level for the 3 surrounding cells i−1, 492 
i and i+1. Equation (47) for all i-cells are assembled, producing a tridiagonal system of equations, 493 
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that is easily solved using the Thomas algorithm [23]. Once the velocity Ui
k+1 is determined, the 494 

cell-averaged discharge qi
k+1 is evaluated. 495 

The prediction of the time evolution of the wave profile using the Serre equations is compared in 496 
Fig. 9 with the experimental measurements by Ozmen-Cagatay and Kocaman [48] at different 497 
normalized times T since the gate opening. In these experiments, the gate opening time was 498 
between 0.6 and 0.8 s based on image-processing work, and it is considered in fact an instantaneous 499 
opening, therefore. The shape of the dam break wave curves presented in Fig. 9 are very similar to 500 
those previously measured by Dressler [17]. The upstream water depth in the experiments by 501 
Ozmen-Cagatay and Kocaman [48] was ho = 0.25 m. For the simulation 1300 cells and CFL = 0.1 502 
were used, with a constant friction factor f = 0.015. It can be observed that the prediction based 503 
upon the Serre equations is in good agreement with observations even for very small times since the 504 
gate opening, e.g. T = 1.13. For reference, the same experiments are plotted in Fig. 10 and 505 
compared with the parabolic prediction by Ritter [6]. It can be observed that the parabolic shape 506 
predicted by Ritter [6] is not in agreement with observations, even for the quite large time T = 6.64. 507 
At this time, the positive wave is in fair agreement with data, but the negative wave is clearly not.  508 
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   509 
Figure 9. Comparison of computed (Serre equations) and measured [48] wave profiles 510 
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   511 
Figure 10. Comparison of analytical solution [6], numerical solution of the shallow-water equations 512 
(SWE, ε = 0) and measured [48] wave profiles 513 



CASTRO-ORGAZ, O., and CHANSON, H. (2017). "Ritter’s Dry-bed Dam-break Flows: Positive and Negative Wave 
Dynamics." Environmental Fluid Mechanics, Vol. 17, No. 4, pp. 665–694 (DOI: 10.1007/s10652-017-9512-5) (ISSN 
1567-7419 [Print] 1573-1510 [Online]). {http://rdcu.be/tXIa} 
 

 20 

The Serre equations solver was run setting ε = 0 using identical physical and numerical conditions 514 
and the results are displayed in Fig. 10. This is the solution of a dynamic wave with friction, which 515 
is in excellent agreement with Ritter’s solution, but, as expected, deviates from physical data. 516 
Notably, none of the wave fronts are correctly predicted by Ritter's approach. In contrast, the Serre 517 
equations does a good work tracking the position of the dry and negative wave fronts for all T. 518 
Further, Serre equations correctly predict the shape of the rarefaction wave, implying negative free 519 
surface curvature, e.g. ∂2

h/∂x
2 < 0. Thus, the Serre equations produce an improved wave profile 520 

prediction as compared to Ritter's parabolic profile, including the tracking of the wave fronts. 521 
The celerity of the negative wave predicted by the Serre-Green-Naghdi equations is larger than the 522 
theoretical value (gho)1/2 predicted by the Saint-Venant equations during the initial instants. This is 523 
directly linked to the existence of non-zero vertical acceleration. At later times, however, the 524 
celerity of the negative wave decreases toward the asymptotic value predicted by the Saint-Venant 525 
equations. This was clearly shown in the recent experiments of Leng and Chanson [49] (Fig. 6 in 526 
this paper), as well in the earlier data of Lauber [10]. 527 

   528 
Figure 11. Comparison of computed (Serre equations) and measured [10] wave profiles  529 
 530 
The present results should be considered an evidence in favour of adopting the Serre equations in 531 
wave propagation problems frequently occurring in civil and environmental engineering. These 532 
equations are in fact widely used in coastal engineering and can be extended to other areas of water 533 
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research, as suggested here. The present results are not intended to diminish the importance of 534 
Ritter's analytical solution: it is a very important tool to check numerical solutions of Saint-Venant 535 
equations, and a master development for teaching purposes in courses of hydraulics and fluid 536 
mechanics. The original result of Ritter [6], given by Eqs. (3) and (4), is widely known in the 537 
literature. The result can be easily check by substitution in Eqs. (1) and (2), and details of the 538 
solution process using the method of characteristics can be found in Stoker [50], Jain [3] or 539 
Chanson [1]. However, it is less known that in the final part of his paper Ritter [6] acknowledged 540 
that his theoretical result was not in agreement with experiments. In fact, he made a sketch of the 541 
"real" wave profile similar to those presented with the results of Serre [24] equations in Fig. 9, 542 
implying a negative curvature, contrary to the parabolic profile (see Appendix II).  543 
A second set of simulations was considered for comparison purposes with the experimental data of 544 
Lauber [10]. While analyzing these experiments it was noted that the gate pull-up motion had a 545 
significant effect on the numerical simulations for this dataset. This fact was previously reported by 546 
Shigematsu et al. [13], whom conducted numerical simulations using a 2D RANS model, and found 547 
that the inclusion of the gate opening movement greatly improved the agreement of numerical 548 
computations and their own experimental observations. In his experimental set up, Lauber [10] 549 
stated that the upward gate motion was conducted with a vertical acceleration up to 4g. Using this 550 
acceleration, and neglecting resistance forces in the gate mechanism, the gate opening time can be 551 
easily determined to be tgate = [ho/(2g)]1/2. For Lauber's experiments ho = 0.3 m, resulting tgate ≈ 552 
0.13s, or Tgate ≈ 0.743. Clearly, this value cannot be neglected for simulations during the early 553 
stages of dam break flows, e.g. for T = 2.86. Our findings are in agreement with Shigematsu et al. 554 
[13], whom determined an empirical gate opening time law for their experiments, which is in fair 555 
agreement with the current estimation for tgate. Following Shigematsu et al. [13], an approximate 556 
method to account for the effect of the gate opening time on numerical simulations was devised 557 
here. The gate opening effect was approximately accounted for considering an instantaneous 558 
opening in the numerical model, but starting once the gate was fully removed for the channel. 559 
Therefore, a time-lag equal to tgate was introduced in the numerical simulations. This approximate 560 
method was found to produce a significant improvement in the agreement between numerical 561 
predictions and observations. The predicted wave profiles using 1300 cells and CFL = 0.1 is 562 
compared with observations in Fig. 11, resulting a good agreement. 563 
 564 

 565 
Figure 12. Comparison of computed wave fronts using Serre equations and Ritter [6] analytical 566 
solution with measured data [10] 567 
 568 
The prediction of the positive and negative wave fronts using the Serre equations is compared in 569 
Fig. 12 with measurements by Lauber [10], resulting a good agreement. The gate opening time was 570 
again considered as a lag-time for comparative purposes. The edge of the rarefaction wave was 571 
defined for practical purposes as the point where h = 0.995ho, given that the slope of the computed 572 
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wave tends asymptotically to zero near the negative front. Prediction of both fronts using Ritter's 573 
theory is also included in the same figure for reference. It can be observed that Ritter's theory 574 
overestimated the dry-front position, as previously described [10, 14, 17]. The main physical 575 
mechanism from which these discrepancies originate is the friction force at the bed. Computations 576 
of the dry-front using Saint-Venant equations produce an almost identical prediction (Fig. 13), 577 
confirming that vertical accelerations are not relevant there. The computed edge of the rarefaction 578 
wave using Saint-Venant equations is very close to Ritter's. It clearly indicates that friction effects 579 
are really negligible there, but vertical accelerations are very important, as confirmed by the good 580 
match found using Serre equations in Fig. 12. 581 
 582 

 583 
Figure 13. Comparison of computed wave fronts using Saint-Venant equations and Ritter [6] 584 
analytical solution with measured data [10] 585 
 586 
Finally, the prediction of the dry front using the analytical boundary-layer model [12, 14] is 587 
compared in Fig. 14 with experiments [10], resulting a good agreement. 588 
 589 

 590 
Figure 14. Comparison of computed dry fronts using the boundary-layer model [12, 14] and Ritter 591 
[6] analytical solution with measured data [10] 592 
 593 
Comparison of simulations using Saint-Venant equations and the Serre-Green-Nagdhi equations 594 
indicated that, for engineering purposes, vertical acceleration effects can be neglected for T > 40. A 595 
prominent example where this occurs was already presented in Fig. 4, where the experiments by 596 
Schoklitsch [21] are analyzed for t = 3.75 s (T = 43.17) and t = 9.4 s (T = 108.23). Therefore, long-597 
time simulations of dam break waves can be conducted based on the Saint-Venant equations, but for 598 
the initial stage of dam break. During the very initial instants of the dam break waves, vertical 599 
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accelerations might be as important as turbulence and bed friction, and cannot be ignored. It is of 600 
interest to remark that, in an earlier development by Pohle [51], a two-dimensional solution for 601 
Ritter's dam break problem, incorporating thus vertical accelerations, was obtained by formulating 602 
the Euler equations in a Lagrangian framework. Using series expansions of time for the particle 603 
displacements, and resorting to methods of conformal mapping, a parametric solution for the dam 604 
break curves was obtained. This solution is however limited to very small times, e.g. T < 0.7, and 605 
implies a pure vertical motion of the free surface points on the negative wave. Dressler [17] found 606 
that Pohle's solution was not in very good agreement with his experimental observations. In 607 
contrast, the approximate depth-averaged model used here based on the Serre-Green-Nagdhi 608 
equations can be applied for T > 0.7; it was found to be in good agreement with observations, and it 609 
implies only a moderate increase in numerical complexities, as compared to Saint-Venant based 610 
models. 611 
 612 
4 Conclusions 613 
 614 
In this work Ritter's dam-break flow over a dry-bed was revisited, and the following conclusions 615 
were obtained: 616 
 617 
Two accurate solutions of the viscous dam break wave propagating over a dry-bed were produced 618 
using the MUSCL-Hancock finite-volume method and the discontinuous Galerkin finite-element 619 
method. Both techniques produced results in excellent agreement. Using this reference numerical 620 
solution for the dynamic wave, the Whitham/Dressler/Chanson boundary-layer type conceptual 621 
model [11, 12, 14], based on a matching of Ritter's inviscid dynamic wave with a viscous diffusive 622 
wave, was established to be a good approximation. It confirms that it is a relevant generalization of 623 
Ritter's ideal wave structure. The prediction of the dry-bed front based on the Saint-Venant 624 
equations, which rely on the hydrostatic pressure distribution, was found to be good. 625 
 626 
The negative wave propagation was however not correctly predicted by the Saint-Venant equations 627 
during the initial stages of dam-break waves. Simulations conducted using the Serre-Green-Naghdi 628 
equations for fully non-linear and weakly dispersive water waves produces a wave structure in very 629 
good agreement with observations; the celerity of the negative wave was much faster than that 630 
indicated by Ritter's solution, during the initial instants. The position of the negative wave leading 631 
edge was accurately predicted, and the shape of the negative wave, which is not parabolic, was 632 
accurately reproduced. In contrast, neither Ritter's analytical solution, nor the numerical solution of 633 
Saint-Venant equations, were able to mimic the negative wave features, during the initial instants 634 
following a dam break. 635 
 636 
It is suggested based on the current results that the numerical solution of Saint-Venant equations, 637 
and the Whitham/Dressler/Chanson analytical model as a simplification, can produce a reasonable 638 
prediction of dam break waves if the positive wave is the main concern, or for long-time 639 
simulations. If both wave fronts need to be tracked then the Serre-Green-Naghdi equations produce 640 
results as good of that of Saint-Venant equations for the positive wave, plus an accurate negative 641 
wave not reproduced by the latter system. The positive wave front advancing over the initially dry 642 
land is governed by friction, whereas the propagation of the water drop upwards in the dam 643 
reservoir is controlled by a non-hydrostatic wave motion. 644 
 645 
Appendix I: Damping model for dispersive terms in Serre-Green-Naghdi equations 646 
 647 
Current parametrizations of wave breaking are based on the assumption that the energy dissipation 648 
is adequately accounted for by the Rankine-Hugoniot jump conditions of shocks [52, 53, 54]. 649 
Therefore, a Boussinesq+Saint Venant matching approach is adopted. Basically, the wave profile is 650 
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computed solving the Boussinesq-type equations and, after each time step, a wave breaking criteria 651 
is checked in the computational domain. In those cells marked as breaking, the dispersive terms are 652 
switched off (equivalent to setting ε = 0), and the SWE are solved there. Other wave-breaking 653 
models can be adopted, like the classical diffusive model extensively validated by Cienfuegos et al. 654 
[55] or the recent development by Tissier et al. [56]. The wave breaking model proposed by Hosoda 655 
and Tada [39] and Hosoda et al. [40], is, however, less known, despite its simplicity and good 656 
performance. The idea behind this parametrization is identical to that developed by Tonelli and Petti 657 
[41] in the sense that Boussinesq equations are “substituted” by the SWE at breaking cells. 658 
However, rather that producing a full (sharp) transition from Boussinesq to the SWE at breaking 659 
nodes, they proposed a gradual damping of the dispersive terms when the threshold criteria of wave 660 
breaking is exceeded. The method is as simple to implement as that of Tonelli and Petti [41], and 661 
permits a very stable behavior of the numerical computations. Below, the physical background of 662 
the method is explained. 663 
The idea is to attenuate the dispersive terms of the Serre-Green-Naghdi equations if the local free 664 
surface slope exceeds a threshold value. To produce a gradual damping of dispersive terms Hosoda 665 
and Tada [39] and Hosoda et al. [40] proposed an exponential attenuation given by 666 

  
exp       if 

1                                         else
cr cr

h h h h

x x x x



      

            



,   (48) 667 

 668 

 669 
Figure 15. (a) Solitary wave profile (b) evolution of damping factor in test of Fig. 9 670 
 671 
A calibration parameter ς is introduced, and (∂h/∂x)cr is the threshold value of the free surface slope 672 
above which wave breaking is initiated. This value was determined using the solitary wave as 673 
conceptual model, given that it is a particular solution of the Serre-Green-Naghdi equations. The 674 
solitary wave profile (Fig. 15a) is given by [24] 675 
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where h1 is the undisturbed water depth and F1 the corresponding Froude number. The question is 677 
then: What is the maximum value of the free surface slope in a solitary wave for incipient wave 678 
breaking? Successive differentiation of Eq. (49) produces 679 

         
2

2 2 2 2
2sech tanh , sech sech 2 tanh ,h h

B Ax Ax AB Ax Ax Ax
x x

       
 (50) 680 
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The maximum free surface slope occurs at the inflection point I in Fig. 15a. Thus, setting ∂2
h/∂x

2 = 683 
0 results in 684 
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 ,     (52) 685 

and, using this value of the x-coordinate, the free surface slope at the inflection point is 686 
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Based on undular bore experimental data of Favre waves, the limiting supercritical Froude number 688 
for wave breaking F1 = 1.25 was adopted [39, 40]. Thus, from Eq. (53) results 689 

     0.225
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h

x





.    (54) 690 

This slope is adopted as a threshold value above which wave breaking occurs due to the action of 691 
turbulence. 692 
To illustrate the performance of Eq. (48), the test case presented in Fig. 9 is reconsidered in Fig. 15, 693 
where ε = ε(x/ho) is plotted at T = 1.13 and 2.76. Note the low value of ε just after the dam break, 694 
given that the damping model is activated by the upstream vertical water depth just as soon as 695 
computations are initiated. Its action is gradually reduced in magnitude and spatial extension as the 696 
wave evolves, given the reduction of the free surface slopes. For the remaining computational 697 
snapshots presented in Fig. 9 (e.g. T = 3.88, 5.01 and 6.64) the damping model is never activated (ε 698 
= 1). 699 
 700 
Appendix II: Ritter's original work 701 
 702 
In this appendix we reprint two original figures from Ritter [6], given their interest for educational 703 
purposes. In Fig. 16 we observe the original parabolic profile sketched by Ritter. The quantity 704 
(ga)1/2 is denoted by Uo, and the celerity of the dry and backward fronts are clearly indicated. The 705 
initial water depth in the dam is a, and the critical water depth at the dam axis is (4/9)a. 706 
 707 

    708 
Figure 16 parabolic wave solution by Ritter [6] 709 
 710 
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Ritter [6] noted that his parabolic profile was not in agreement with observations, and sketched a 711 
more realistic shape for the dam break curve, where all the profile has negative curvatures, as seen 712 
in Fig. 17. 713 
 714 

    715 
Figure 17 parabolic wave solution and comparison with a more realistic shape for the dam break 716 
curve, after Ritter [6] 717 
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