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Project selection decisions are complex because they must balance not only financial returns, project risk,

and fit with strategy, but also competitive circumstances. A rival’s project development efforts provide two

pieces of information: a market rivalry signal, indicating potentially heightened competition in a market,

and a technological signal, indicating a possible solution to a problem in that market. We hypothesize that

these signals affect a firm’s likelihood of project selection in opposite directions, and that the timing of

the signals matters for selection. We examine the drug development pipelines of the top 15 pharmaceutical

companies from 1999–2016 to examine how rival projects drive the decision to progress a drug from pre-

clinical laboratory trials to clinical trials in humans. Early-stage rival projects provide a stronger market

rivalry signal, and they are associated with a decreased likelihood of the firm selecting its own project to

compete in the same market. Late-stage rival projects signal technological feasibility and are associated with

an increase in the likelihood of selection. We then exploit heterogeneity in market potential (i.e., disorder

prevalence/incidence) and a molecular compound’s technology (i.e., therapeutic modality) to independently

manipulate the salience of the two signals. Finally, we provide evidence on how selection based on rival

signals informs project success. Information from rival projects prompts the selection of more successful

drugs, but only after a threshold when sufficient uncertainty has been resolved.

Key words : project selection; new product development; spillovers; competition; R&D management;

pharmaceutical industry; empirical

1. Introduction

Effective research and development (R&D) is essential for the creation of new products

and greater overall firm competitiveness. However, improving R&D productivity requires

overcoming two key challenges: (i) consistently coming up with promising new ideas and

(ii) systematically selecting and supporting ideas that deliver value. While the generation

of new ideas is necessary for success and has attracted substantial attention (Osborn 1960,
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Stevens and Burley 1997, Girotra et al. 2010, Sommer et al. 2020), it is not sufficient. In

many industries, the question of how to effectively allocate scarce resources across different

projects has become a pressing concern and key challenge to achieving success (Kavadias

and Chao 2007, Ding et al. 2014).

Project selection decisions are challenging because of the uncertainty and complexity

inherent in making those decisions (Drakeman and Oraiopoulos 2020). Management often

needs to consider multiple dimensions, such as financial returns, project risk, and fit with

strategy, but also competitive circumstances, which is the focus of this paper. Resource

allocation decisions often must be made against a backdrop of fierce competition: rivals

continuously develop and introduce new product offerings, and technological and com-

petitive environments constantly evolve (Jain and Ramdas 2005, Chan et al. 2007). In

such environments, the investments of rivals may also reveal potentially useful information

(Griliches 1979, Jaffe 1989, Griliches 1992, Bloom et al. 2013). The firm may then use this

information to supplement its own knowledge and improve its decision-making.

In this paper, we ask: How do rival project decisions inform a firm’s own project selec-

tion? We theorize that rival projects provide the firm with two distinct types of information

signals: a market rivalry signal, indicating potentially heightened competition with subse-

quent rent effects, and a technological signal, indicating a possible solution to a problem

in that market. On the one hand, as rivals develop their own projects, there is a higher

likelihood that the firm will face strong market competition, and therefore lower rents, if

it pursues its own project in the same market. On the other hand, the firm may learn from

rival project developments and improve upon them, increasing its own project’s chance of

success. Therefore, the decision to allocate resources to a project ultimately requires the

firm to balance a negative, market rivalry signal with a positive, technological signal.

We assess the existence, strength, and implications of these two signals for project selec-

tion within the context of pharmaceutical R&D. In this industry, decision-makers face

the challenging task of selecting projects that exhibit highly uncertain payoffs and that

encompass all the complexities discussed earlier. Simultaneously, rivals make observable

project decisions and investments into treating the same disorders. The industry also offers

a distinct characterization of project selection decisions. Drug development involves pre-

clinical research and the highly regulated clinical trial phases. In the pre-clinical stage,
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firms explore the feasibility of a compound through a series of experiments that are ini-

tially lab-based (in vitro) and subsequently performed on living organisms (in vivo). After

pre-clinical testing, firms face the decision to either progress the compound to a sequence

of phases of clinical trials in humans (Phases I, II, and III), or cease further development.

The Phase I selection decision must balance economic considerations against the likeli-

hood of failure. Initiating Phase I trials requires fulfilling a long list of requirements set

by regulatory agencies, ranging from pre-clinical safety testing, to detailed clinical testing

plans, to detailed manufacturing rules to prevent impurities.1 Therefore, the transition to

human testing involves a significant investment not only in monetary terms, but also in

terms of launching a complex and highly regulated process. As such, projects selected for

Phase I must have cleared numerous pre-clinical hurdles and offer strong evidence about

their potential. This makes the Phase I decision an ideal setting for our study.

We test how rival signals affect the decision to select a project for Phase I trials by

tracking the drug development pipelines and decisions of the top 15 pharmaceutical com-

panies (by sales) from 1999–2016. We theorize and empirically demonstrate that rivals’

project choices play an important role in a firm’s Phase I selection decision. Project selec-

tion depends on the type and timing of the two contending information signals received

from these rival investments. Rival pre-clinical -stage projects provide weak technological

signals, in that they are relatively uninformative about a project’s feasibility in treating

a clinical indication. At that stage, very little of the technological uncertainty has been

resolved. Still, such early-stage investments indicate market entry intentions into a specific

therapeutic domain. We find that firms are less likely to send a project targeting the same

market as their rivals into clinical trials. Ceteris paribus, we estimate that a one-standard

deviation increase in the number of rival pre-clinical-stage projects is associated with an

18.3 percentage point (pp) decrease (95% confidence interval [CI]: 16.4–20.2pp) in the

probability of selection.

Rival clinical -stage projects provide more reliable information about technological feasi-

bility: they reveal potential approaches and mechanisms to treat a disorder. This informa-

tion enhances the expectations of a successful result and may overshadow worries about

heightened competitive intensity. Ceteris paribus, we find that a one-standard deviation

increase in the number of rival clinical-stage projects is associated with a 11.1pp increase

(95% CI: 8.9–13.3pp) in the probability of selection.
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Finally, we examine whether these signals also provide useful information, in that they

permit better selection decisions. Specifically, we analyze whether project choices that are

contingent on specific rival signals are more likely to receive regulatory approval. Condi-

tional on selection, we find that projects following earlier-stage rival signals do not exhibit

higher success rates. However, signals from rival projects that have surpassed a level of

uncertainty resolution (specifically, drugs that have passed Phase II trials) are associated

with significantly higher likelihood of success for the focal project. As such, we show that

one manner by which managers can directly impact the success of an R&D program is to

carefully assess and act on the different information signals they receive.

2. Literature Review

Our work draws on two literature streams: one on the relationship between competition

and innovation, and another that examines the project selection decision in the context of

the new product development process.

2.1. Competition and Innovation

Theoretical work has modeled how firms invest in R&D as they preempt and race each

other to be the first to introduce an innovation (Gilbert and Newbery 1982, Reinganum

1983, Harris and Vickers 1987). Yet, empirical support for theoretical predictions that

firms’ R&D strategies are reactions to rivals’ investments has been mixed. On the one

hand, Khanna (1995), Lerner (1997), Czarnitzki and Kraft (2004) find evidence of a “fol-

lowership” dynamic, whereby firms invest more in R&D and try to innovate more than

technological leaders. On the other hand, Cockburn and Henderson’s (1994) and Zizzo’s

(2002) findings do not broadly support predictions from the racing literature.

Interestingly, the above work generally does not account for the possibility that firms

learn from their rivals’ efforts. Returns to R&D and the knowledge generated by one firm

may spill over to another, essentially allowing the other firm to achieve results with less

effort or lower cost (Griliches 1979, Jaffe 1986, Griliches 1992). Indeed, the empirical liter-

ature generally sees spillovers as key, positive drivers of firm productivity (Cockburn and

Henderson 1994, Henderson and Cockburn 1996), the introduction of innovative products

(Leiponen and Helfat 2010), and firm financial performance (Gu 2016).

A more recent line of inquiry, however, shows that knowledge spillovers may also present

negative externalities on firm-level R&D investment and productivity. Furman et al. (2005)
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analyze worldwide journal publications by both public and private institutions at the level

of the firm-therapeutic area (TA). Their key finding is that patent output is positively

correlated with publicly authored work, but negatively correlated with private-sector work.

They ascribe this result to two possibilities: R&D and knowledge generation by the focal

firm (i) renders it more difficult for rivals to generate subsequent, novel discoveries and

(ii) signals future competition, reducing the attractiveness of pursuing further R&D in the

same TA.

Bloom et al. (2013) formalize this tension between productivity-increasing technological

spillovers and market rivalry spillovers. They develop firm level, patent- and industry-based

measures that identify the effects of technology and market rivalry spillovers and empiri-

cally estimate the effects of both on measures of firm performance, such as market value,

patent output, and productivity. They find that R&D by rivals in the same technology

space is associated with higher market value, patenting, and productivity, whereas rival

R&D in a similar product market space is associated with lower market value only.

We follow Furman et al. (2005) and Bloom et al.’s (2013) lead and recognize the impor-

tance of the tension between the two types of spillovers. However, our study deviates from

the prior work by studying informational spillovers at the granular, project level instead of

the aggregate, firm level. This allows us to make the following two contributions. First, we

are able to speak to the ability of spillovers to impact technological success, as measured

by an external performance threshold such as regulatory approval. This is because project-

level technological success involves a much more specific set of decisions than overall firm

performance. Therefore, our results expand our knowledge of R&D spillovers by shedding

light on how managers leverage technological and competitive information signals to drive

project decisions, and how this information affects project success.

Second, we uncover a temporal dimension to spillovers at the project level. Prior work,

such as Krieger (2021), has examined the pharmaceutical industry and has shown that

signals about rivals’ project failures influence the firm’s own termination decision, and that

market and technology overlap moderates this effect. We extend this work by accounting

explicitly for the timing of these signals (e.g., early vs. late; pre-clinical vs. Phase III). We

show that a signal’s role in project selection depends on when it was generated.

This temporal dimension is important because, as we also show, signal timing has impli-

cations for the eventual success of a project. As we highlight, it is those signals that are



Markou, Kavadias, and Oraiopoulos: Rival Signals and Project Selection
6

generated by late-stage rival projects that seem to correlate with a project’s technical suc-

cess. In other words, primarily late-stage signals facilitate learning and the resolution of

uncertainty. Early-stage signals have no effect on success, and they may even be misleading.

Therefore, whereas prior work can tell us the value of an extra R&D dollar, our analysis’s

focus on the timing of the signal highlights that it matters when that R&D dollar is spent.

2.2. Project Selection and NPD

How firms select projects is a fundamental question in the new product development (NPD)

and R&D management literatures (Krishnan and Ulrich 2001, Shane and Ulrich 2004,

Kornish and Hutchison-Krupat 2017, Kavadias and Hutchison-Krupat 2020, Kavadias and

Ulrich 2020). Research on this topic has examined, for example, how to direct R&D budgets

and how to allocate resources across multiple projects (Kavadias and Chao 2007, Chao

et al. 2014, Hutchison-Krupat and Kavadias 2014, Schlapp et al. 2015, Pennetier et al.

2019). Little work, however, has analyzed project selection given rival choices.

Ali et al. (1993) assess how competitive pressures affect project selection, and they iden-

tify conditions that render investments into highly innovative products optimal. They show

that similar time-to-market development capabilities across competitors lead to invest-

ments into novel technological domains. Bhaskaran and Ramachandran (2011) examine a

firm’s decision to invest in an incremental, technologically safe product or an advanced,

risky project. They show that, under a wide range of conditions, firms benefit by diversify-

ing efforts and pursuing products opposite to their competitors’ choices; moreover, product

investments may alter competitors’ product choices and deter them from pursuing a sim-

ilar product. Zschocke et al. (2014) show that market competition drives firms to direct

R&D budgets to incremental (i.e., close to past efforts) project improvements. Closer to

our work, Oraiopoulos and Kavadias (2014) model the tension between followership due

to technological learning, and diversification due to market competition. They show that

where a rival directs R&D efforts, and what information these efforts reveal, affect the

decision to undertake a project in a previously explored technological domain.

Overall, the vast majority of this literature has offered a theoretical treatment of com-

petition’s role in the project selection decision, but it does not empirically describe how

firms actually decide to direct project efforts. As such, one contribution of our paper is

to offer specific metrics that one can use to measure some of the key drivers of project

selection proposed by the prior theoretical models (e.g., signals, technological relatedness).
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Additionally, our work empirically validates the theoretical findings from Oraiopoulos and

Kavadias (2014) motivated by a microelectronics R&D setting: greater competition leads

to a diversification of R&D efforts, yet the possibility to effectively learn may induce firms

to follow each other into a technological domain. However, whereas they also propose that

learning may cause firms to diversify (due to the fact that future improvements may exhibit

only marginally better outcomes), we do not find such an occurrence. In the context of

pharmaceutical R&D, not only may learnings be harder to transfer across technological

domains, but such domains may also offer greater potential to capture value. We there-

fore demonstrate that theory motivated from a different setting, such as microelectronics,

might not necessarily apply to the biopharmaceutical context.

3. Theory & Hypothesis Development

In this section, we motivate hypotheses concerning how firms select projects. Complement-

ing the theoretical exposition below, we develop a simple analytical model of drug selection

and rival signals in Appendix E, which also supports the hypotheses articulated hereafter.

3.1. Selection in Drug Development

After discovering a compound and evaluating its properties through pre-clinical research,

pharmaceutical firms must decide whether to send the compound through to clinical trials

involving humans. These clinical trials test the safety and efficacy of the compound in

treating a disorder and are necessary before the drug may be approved to be marketed

and become available to patients.

The decision to select a compound for clinical trials is informed by both technological

and market considerations (Chan et al. 2007, Arora et al. 2009, Ding et al. 2014). Selecting

a compound is in part driven by the likelihood that it will be able to clear clinical trials and

ultimately receive regulatory approval. Therefore, a firm engages in internal research and

pre-clinical testing in order to uncover and learn about the various properties of a com-

pound. Pre-clinical trials ascribe some probability to a compound that it will successfully

target and treat a disorder. At the same time, the firm must weigh the potential revenue

of the project against potential development costs, and it will select the compound only if

its expected profitability exceeds some threshold (Arora et al. 2009).
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3.2. Technological and Market Rivalry Signals

Besides conducting scientific and market research, a firm may gain knowledge about its own

project’s potential from its rivals. In uncertain environments with incomplete information,

knowledge is heterogeneously dispersed. Rivals may therefore have additional (or superior)

knowledge regarding the potential of a specific technology or market. This knowledge is

reflected through the rivals’ development activities, which (in addition to the firm’s private

information) can be used to guide the firm’s own decision-making process.

Rival projects act as information signals that provide two insights (Bloom et al. 2013,

Furman et al. 2005): (i) a rival’s beliefs that they are able to develop a potential tech-

nological solution and (ii) a rival’s beliefs that a specific market offers sufficient rents to

be captured. With respect to the former, a rival development effort signals technological

feasibility. It is well established that knowledge spillovers play a significant role in diffusing

knowledge across firms in R&D-intensive industries (Jaffe 1986, Griliches 1992). In such

contexts, scientists generally have a well-informed view of the research being conducted by

rival firms and the wider scientific community (Henderson and Cockburn 1996, Cockburn

and Henderson 1998). Many firms draw on the same industry databases, and face-to-face

knowledge transfer can happen between individual scientists attending conferences or over

informal coffee meetings (Bloom et al. 2013).

In the pharmaceutical context, as a rival sends its drug candidate through the pro-

gressive phases of pre-clinical and clinical development, it indirectly communicates its

underlying knowledge about the compound’s potential to target and treat a particular dis-

order. A rival’s project development activity, therefore, generates a signal that manifests in

knowledge about a specific technological domain or molecular compound. The focal firm,

then, can account for the information from this signal when selecting which compounds to

develop, thus benefiting from the knowledge generated by its rival and better assessing its

own uncertainty about the technological potential of its drug. In many cases, the knowl-

edge gained from rivals’ R&D efforts is used to guide the development and manufacture

of follow-up compounds, leading to drugs that are often more efficacious (Ma and Zemmel

2002). This suggests positive returns to the industry from a productivity point of view,

and that such “positive” technological signals from rivals’ projects should be associated

with an increased likelihood to select a project in the same domain as a rival project.
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Yet, developing a new product also represents a significant commitment on the part of

a rival to enter a market (Ettlie et al. 1984, Semadeni and Anderson 2010). Rival develop-

ments in a market therefore signal market entry intentions. One feature of pharmaceutical

R&D is that the clinical indication defines the market. A drug indicated for a particular

disorder may only be approved for that same disorder, and manufacturers are strictly pro-

hibited from marketing the drug for non-approved indications or otherwise deviating from

the drug label or package insert. As such, a rival’s investment in a drug to treat a given

disorder signals a willingness to compete in that specific market for patients. Considerable

financial expenses and opportunity costs for time and capital further mean that a project

choice is a credible commitment to pursue a market (DiMasi et al. 2016). A rival’s project

investment decision therefore signals an increased likelihood of eventual product market

entry, manifesting in higher possible competitive intensity and less revenues in expectation.

In anticipation of potential downstream competition, rival choices may lead the firm to

diversify its own efforts to other markets (Oraiopoulos and Kavadias 2014). Such “nega-

tive” market rivalry signals should be associated with a decreased likelihood to select a

project in the same indication as a rival project.

3.3. Rival Project Stage and Signal Strength

Given the opposing theoretical arguments that stem from rival projects’ information sig-

nals, we hypothesize that which effect dominates depends on the strength of the signals. In

turn, the strength of either signal depends on the relative timing of the rival actions, vis-

à-vis the selection decision of a focal firm. Early-stage projects are mired by considerable

uncertainty and are akin to experimentation and the exploration of a domain (Thomke and

Kuemmerle 2002). As far as technological feasibility is concerned, early-stage rival projects

send uninformative, relatively weak technological signals. For example, pre-clinical results

are typically poor predictors of clinical success (Landis et al. 2012). Thus, the technological

knowledge that may be gained from a rival’s pre-clinical research project is minor.

However, early-stage rival projects signal credible market entry intentions, and the

potential for eventual, heightened product-market competition. Even though the techni-

cal success of an early-stage project may be uncertain, pre-clinical research is still cost-,

resource-, and time-expensive. Firms conduct pre-clinical research with the intention that

the compound will be developed and eventually succeed (LaMattina 2011), requiring fur-

ther investments in marketing channels, salesforce training, and developing other expensive
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downstream capabilities. Moreover, drug discovery and development is not a winner-take-

all race (Cockburn and Henderson 1994), and there are several instances where follower

drugs generate greater sales than the drugs of early movers (Ma and Zemmel 2002).2 Thus,

although early-stage rival projects still face an uncertain development path, they do send

salient market rivalry signals.

Hypothesis 1a Early-Stage Rival Project Signals. Early-stage rival project signals are

associated with a decreased likelihood of a firm selecting its own project targeting the same

indication.

In contrast to pre-clinical projects, rivals’ decisions to proceed with clinical trials signal

more information about the technological potential of these compounds. Success rates for

drugs in clinical trials are substantially higher than for those in the pre-clinical stage (Paul

et al. 2010). Having cleared the pre-clinical hurdle, some uncertainty has been resolved and

the compound has demonstrated reasonable promise. Compared to early-stage projects,

late-stage rival projects are more informative with regard to technological feasibility. Hence,

a firm should be more inclined to follow such rival project choices.

However, late-stage rival projects also signal competitive intentions. It is intuitive that

the market for patients with a given disorder is finite. Any two drugs that target the same

patient population will therefore face fierce competition. Once again, all else equal, the

negative, market rivalry signal from a rival project should decrease the likelihood that a

firm selects a project in the same domain.

Whether the technological signal or market rivalry signal from a late-stage rival project

dominates is not straightforward upfront. It is therefore uncertain whether late-stage rival

projects should be positively or negatively related to project selection. Rather than spec-

ulate on the direction of selection, we pose the following competing hypotheses.

Hypothesis 1b Late-Stage Rival Project Signals. Late-stage rival project signals are asso-

ciated with a decreased likelihood of a firm selecting its own project targeting the same

indication.

Hypothesis 1c Late-Stage Rival Project Signals. Late-stage rival project signals are asso-

ciated with an increased likelihood of a firm selecting its own project targeting the same

indication.
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To summarize, rival projects send both a technological signal and a market rivalry signal.

These signals have opposing effects on project selection, and the net direction of selection

ultimately depends on the relative strengths of these signals. Early-stage rival projects

send a technological signal that is weaker relative to the market rivalry signal, so we expect

firms to diversify their efforts away to other domains. Late-stage projects send both strong

market rivalry and technological signals: their effects on selection are, a priori, ambiguous.

3.4. Technological Relatedness and Technological Signals

The strength of the technological signal’s effect on selection depends on how relevant this

technological signal is for the firm’s own project (Bloom et al. 2013, Paci et al. 2014).

Technologies evolve and advance because scientists and engineers draw on and better

understand the bodies of knowledge and information underlying said technologies. Being

able to draw on scientific underpinnings is especially important in science-based industries

(Mansfield 1995, Fleming and Sorenson 2004).

In such contexts, scientists are better able to incorporate knowledge spillovers because

the projects on which they are working draw on similar technological and scientific prin-

ciples as their rivals’ projects (Oraiopoulos and Kavadias 2014). Firms operating in the

same technological landscape or developing projects that utilize similar technologies will be

familiar with and better able to draw on this knowledge. Indeed, knowledge spillovers (and

therefore gains in R&D productivity) are stronger among “technological neighbors” (Jaffe

1986), that is, firms that operate closer in a technological space and generate knowledge

and patents in related classes.

In short, technological relatedness will affect the technological component of the signals

received from rivals’ projects. We propose that as rivals progress more technologically

related projects through clinical development, the effect of the technological signal from

these projects on the likelihood of selection should increase.

Hypothesis 2 Technological Relatedness. The impact of the stage of a rival’s project on

the firm’s likelihood of selecting its own project is stronger when these projects are more

technologically related.

3.5. Market Potential and Market Rivalry Signals

At the same time, the effect of a market rivalry signal will depend on the competitive

structure of the downstream market being targeted (Hsieh and Vermeulen 2014). A criti-

cal determinant of the level of innovative activity is the potential of the targeted market
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(Schmookler 1966, Pakes and Schankerman 1984). A market with greater potential means

that there will be more demand to be fulfilled and, therefore, higher revenues can be real-

ized. Larger markets also allow firms to differentiate themselves better, thus reducing com-

petition intensity and increasing profits (Deephouse 1999). In contrast, projects launched

in low potential markets face greater competition and are less likely to recover their costs of

investment. Indeed, the degree of competition and market potential are significant drivers

of market entry (Martin et al. 1998, Acemoglu and Linn 2004).

Against this backdrop, we expect market potential to be a contingent factor in the

relationship between the market rivalry signal from a rival project and selection. In high-

potential markets, the size of the market is large enough to accommodate more than one

company. As such, market rivalry signals are less likely to deter a firm from entering the

market and seeking an alternative market. On the other hand, in regimes of low market

potential, the market rivalry signal becomes more salient since the pool of potential patients

is reduced. We expect that as market potential decreases, the tendency to diversify efforts

away to a different market will increase, and the likelihood of selection will decrease.

Hypothesis 3 Market Potential. The impact of the stage of a rival’s project on the firm’s

likelihood of selecting its own project is stronger in markets with low market potential.

4. Data and Econometric Specification

We describe here our data set and the specifications of the econometric models used to

test our hypotheses. A detailed description of our systematic approach to preparing the

database for the ensuing analysis is provided in Appendix C, along with a comparison of

several metrics from our data set to those from popular press and industry reports.

4.1. Data and Sample

Our study draws upon the Clarivate Analytics Cortellis database, which contains a near-

exhaustive amount of information for the entirety of the industry. We restrict our analysis

to the top 15 pharmaceutical companies by sales in 2016 (see Appendix C).

We begin by first identifying the drug-indication projects that the top 15 were working

on between 1999 and 2016. Prior to this time period, data quality is very poor: coverage

of the industry is very thin and biased toward drugs that were selected for clinical trials

and successfully launched. We select 1999 as the starting year to allow enough time for a

more representative sample to be formed. We discard projects which were in-licensed after
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Phase I (representing selection decisions of other firms), but retain in-licensed pre-clinical

projects. Of these remaining 10,281 projects, 1,240 projects were still ongoing in the pre-

clinical phase in 2016 (when our data collection ended) and are not considered in the

analysis. Among the rest, 4,981 projects were selected for Phase I and 4,060 projects were

terminated in the pre-clinical phase. Our working sample consists of the 9,041 projects

that were or were not selected for Phase I. Of the 4,981 projects that entered clinical trials,

1,545 were still ongoing, 3,096 failed in clinical trials, and 340 were approved.

There are three types of projects in our data: projects that were selected for clinical

trials, projects that were not selected, and projects that were ongoing at the end of our

data collection period. For the first two types, a selection decision was made that led to a

project being “selected in” or “selected out.”3 For the third type, we cannot measure the

number of rival projects at the time of selection since, by definition, the selection decision

has not happened yet. Selection is undefined for these projects, and they are not included

in our estimation sample. As such, each observation in our data set is a unique project

that is observed at one point in its development, when a selection decision was made.

4.2. Variable Definitions

This section presents definitions for the main variables in our analysis. Descriptive statistics

are presented in Table 1. Some variables have a lower number of observations due to timing

effects (Carryover, Strength, and SelectionRatio), because we observe success only if a

project has finished trials and either been launched or terminated (Success), or due to a

focus on the oncology TA (Incidence). More complete definitions for control variables are

presented in Appendix A, along with a correlation matrix.

4.2.1. Project Selection. We define selection by capturing whether the firm sent the

project to clinical trials. Our dependent variable Selected takes on a value of 1 if the focal

drug-indication project was selected to enter the Phase I Clinical stage or further; 0 if the

project was terminated before reaching Phase I trials.4

4.2.2. Signals from Rival Projects. Cortellis includes timestamps of when projects

enter (or not) clinical development and as they are eventually launched or development

ends. Although we cannot know exactly when a firm’s management team makes decisions,

we do know when projects entered and exited pre-clinical and clinical trials. We assume

that these timestamps correspond to decision points, and we use these to capture the
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Table 1 Descriptive Statistics

Variable Description n Mean SD 5% Median 95%

Selected Project selected (1) or not (0) 9,041 0.551 0.497 0 1 1
Success Project received approval (1) or not (0) 3,436 0.099 0.299 0 0 1
PreClinSignal # rival pre-clinical projects 9,041 21.243 43.468 0 4 150
TrialSignal # rival clinical projects 9,041 13.544 21.001 0 5 69
PreClinSignal Bio # rival pre-clinical, biologics 9,041 3.486 11.800 0 0 29
PreClinSignal NonBio # rival pre-clinical, non-biologics 9,041 17.757 33.661 0 4 117
TrialSignal Bio # rival clinical stage, biologics 9,041 2.383 6.083 0 0 16
TrialSignal NonBio # rival clinical stage, non-biologics 9,041 11.161 16.918 0 4 52
Biologic Project is biologic (1) or chemical (0) 9,041 0.232 0.422 0 0 1
Rare Project targets rare disease (1) or not (0) 9,041 0.067 0.250 0 0 1
Incidence Reverse ln of indication incidence (reverse coded) 1,537 -10.239 1.697 -13.064 -10.384 -7.374
Inlicensed Project was in-licensed (1) or not (0) 9,041 0.190 0.392 0 0 1
Acquired Project obtained from M&A (1) or not (0) 9,041 0.111 0.315 0 0 1
Multiple Launched for > 1 indication (1) or not (0) 9,041 0.062 0.241 0 0 1
Extension Extension/cocktail drugs (1) or not (0) 9,041 0.063 0.244 0 0 1
Carryover # successes in last 3 years in indication 8,193 0.176 0.645 0 0 1
stdRD R&D spend (standardized) 9,041 0.000 1.000 -1.353 -0.215 1.775
IndScope Indication scope 9,041 0.024 0.020 0.012 0.020 0.045
IndScale Indication scale 9,041 6.010 7.647 1 3 22
FirmScale Firm scale 9,041 286.894 145.683 57 269 553
Deals Yearly change in in-licensing deals 9,041 0.167 2.483 -3 0 4
Strength Pipeline strength 8,576 1.072 6.174 -7.603 0.949 13.801
SelectionRatio Proportion of projects selected each year 8,576 0.271 0.156 0.101 0.225 0.523
PriceShock Sharpest daily %-age drop in stock price 9,041 0.062 0.036 0.027 0.052 0.122

signals that the firm had at the time regarding rivals’ activities. PreClinSignal is defined

as the number of ongoing, rival pre-clinical projects targeting the same indication in the

same calendar year the selection decision is made. TrialSignal is defined as the number of

ongoing, rival projects in any phase of clinical trials targeting the same indication in the

same calendar year the selection decision is made. For each focal firm’s project, we capture

the number of concurrent rival pre-clinical or clinical projects, respectively.5

For comparison, we also define PreClinSignalTA and TrialSignalTA. These capture

signals at the higher, TA level of aggregation. We measure these variables similarly as

above, except we sum all signals from rival projects across all indications within the same

TA as the focal project. We thus compare effect sizes of signals on selection at different

levels of analysis. We expect indication-level effects to be stronger than TA-level ones.

4.2.3. Technological Relatedness and Market Potential. To test H2 and H3, we

require measures that manipulate the salience of the technological and market rivalry sig-

nals independently. If our measures simultaneously influence both signals, then there will

be confounding effects on the relationship between the two signals and selection.
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We exploit heterogeneity in drugs’ therapeutic modalities and in market potential driven

by population demographics. Our identifying assumption here is that the size of the patient

base suffering from a disorder is orthogonal to the technology used to treat that population

(Acemoglu and Linn 2004). In other words, we expect drugs’ scientific underpinnings to

be exogenous to patient demographics. We explain our measures in turn.

Technological Relatedness. At the highest level, therapeutics fall into two distinct cate-

gories: chemical drugs that are produced from chemical synthesis (also known as “small”

molecules in the industry) and biologics that are produced from living organisms (“large”

molecules). Chemical drugs and biologics differ in many ways, including their physical size

(biologics are orders of magnitude heavier), complexity and molecular structure (chem-

icals are relatively simple while biologics are typically complex proteins), and manufac-

ture (small molecule drugs are created through the synthesis of chemicals, whereas large

molecule drugs are protein-based and extracted from biological sources and/or produced by

biological processes). These two therapeutic modalities represent fundamentally different

approaches to developing drugs and treating disorders. This means that the technologi-

cal signal received from a rival project with a different modality should be markedly less

salient than a signal from a project with the same modality.

We first create the variable Biologic, which takes on value 1 if the focal project tech-

nology is coded as “Biological therapeutic” in Cortellis, and 0 if it is coded as “Small

molecule.” Yet, we are not concerned with whether biologic projects per se are more likely

to be selected than chemical drugs. Rather, we are interested in whether selection of a

biologic drug differs according to the (biologic vs. non-biologic) rival signals received. We

therefore decompose our rival signal measures PreClinSignal and TrialSignal into their

biologic and non-biologic constituents. We specify PreClinSignal Bio, TrialSignal Bio,

PreClinSignal NonBio, and TrialClinSignal NonBio to capture the pre-clinical and

clinical trial signals from biologic and non-biologic rival projects.6

Market Potential. We specify two variables to capture market potential. The first mea-

sure is based on whether a project is indicated for a rare disease. Rare diseases affect a small

enough portion of the population that it is unlikely that the costs of R&D and commer-

cialization will be recuperated.7 As such, rare diseases provide one clear measure of market

potential based on patient population. We construct the variable Rare by matching indi-

cation names in our data set to the directory of all rare diseases composed by Orphanet.8
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Rare dichotomizes indications into those with either high or low market potential. The

advantage of this variable is that it allows us to easily assign a measure of market potential

to every project in our data set. The drawback is that it is coarse due to its binary nature.

We deal with this by also measuring disease incidence: a continuous measure of the

number of new patients diagnosed with a disease. We focus on incidence rates for cancer

indications, as oncology drugs make up the largest TA in our data set and, importantly,

cancer statistics are rigorously tracked by the National Cancer Institute’s Surveillance,

Epidemiology, and End Results (SEER) Program. SEER collects and provides cancer data

and information from several cancer registries across the country. We obtain data on

cancer indication incidence rates through SEER*Stat and match indications in Cortellis

and SEER by hand, based on the indication name. We create the reverse-coded variable

Incidence Reverse by multiplying the ln-transformed incidence rates by -1. This mea-

sure is decreasing in market potential and is comparable with Rare. We estimate different

models with either variable to ensure that our results are not driven by sample size.

4.2.4. Controls. We provide here a brief exposition of our control variables. Table 1

and Appendix A provide further details and references.

We first control for several drug- and project-level factors that may be correlated with

selection. Inlicensed captures whether the drug was in-licensed (1) or originated in-house

(0), and Acquired captures whether a drug entered the development pipeline through an

M&A (1) or began development in-house (0). We also control for project “quality” through

the variables Multiple (whether a drug is able to successfully treat multiple indications)

and Extension (line extensions and “cocktail” combinations). Finally, as returns from

prior R&D investments may carry over to future projects and affect the selection decision,

we control for prior successes in developing an indication with the variable Carryover.

We also include several firm-level control variables. We control for a firm’s R&D expe-

ditures using stdRD (a standardized measure of R&D spend with mean 0 and standard

deviation 1). IndScope measures the level of scope across indications in a firm’s pipeline,

and IndScale and FirmScale capture indication- and firm-level economies of scale, respec-

tively. Deals proxies for the possibility of industry herding by capturing the amount of

deal-making activity surrounding an indication. As firms may be more likely to select

projects for development if their pipelines are thinning and they become more desperate,

Strength controls for the strength of a firm’s pipeline. SelectionRatio controls for the
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proportion of pre-clinical projects sent to clinical trials in a year: i.e., how “wide” each

firm’s gate between pre-clinical and clinical trials is. In addition to firm indicators, this

allows us to control for differing selection protocols among firms. Finally, unanticipated

“bad news” may also affect selection if withdrawals and failures lead to an acceleration of

other compounds into the pipeline. We rely on changes in market valuation to capture the

magnitude of such bad news (Girotra et al. 2007). PriceShock measures the most acute

day-on-day percentage drop in a firm’s stock price in a year. Larger values of PriceShock

correspond to larger drops in share price.

All our models also include a set of firm, year, and TA indicators (see Appendix D).

4.3. Model Specification

We specify binary choice models to estimate whether a project will be selected for clini-

cal trials. We explain the particular models we estimate to test each hypothesis in later

sections, but they are variants of the following probit model:

Selected∗j = α0+αjXj + ϵ1j (1)

Selectedj = 1[Selected∗j > 0]

For each project j, Selected∗ is a latent variable, X is the set of all variables and controls,

and ϵ1 ∼ N (0,1). Selected is the observed dichotomous variable that denotes whether a

project was selected for development, and 1 is the indicator function. Unless otherwise

noted, all models include robust standard errors clustered at the drug level.

5. Rival Signals and Project Selection

Before presenting our results, we note that all ensuing estimates (unless otherwise noted)

are average marginal effects.9 We interpret these as, ceteris paribus, the change in the

probability of selection from a one-unit increase in the value of a variable: e.g., the marginal

increase or decrease in the likelihood of selection stemming from one extra rival signal.

5.1. General Insights

Table 2 displays the estimates of our probit models testing Hypotheses 1a–1c. Models I–

II estimate signals from rival projects targeting the same indication as the focal project;

Models III–IV estimate signals from rival projects targeting all indications in the same TA.

Examining the control variables, we find that project-level (as opposed to firm-level)

characteristics are primarily the strongest predictors of project selection. The estimates in
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Table 2 Probit Models for Project Selection
Notes: The dependent variable is Selected. Reported estimates are average marginal effects. Robust standard errors clustered
by drug are in parentheses. ***p < 0.001; **p < 0.01; *p < 0.05; +p < 0.10

(I) (II) (III) (IV)
Indication-level Indication-level TA-level TA-level

PreClinSignal(TA) -0.0053*** -0.0042*** -0.0002 -0.0008**
(0.0002) (0.0002) (0.0002) (0.0003)

TrialSignal(TA) 0.0062*** 0.0053*** -0.0001 0.0001
(0.0006) (0.0005) (0.0001) (0.0001)

Biologic 0.0902*** 0.0957***
(0.0152) (0.0160)

Rare 0.0886*** 0.1143***
(0.0242) (0.0246)

Multiple 0.2735*** 0.2991***
(0.0269) (0.0256)

Extension 0.1586*** 0.1743***
(0.0241) (0.0253)

Inlicensed -0.0370* -0.0462**
(0.0160) (0.0169)

Acquired -0.1717*** -0.1819***
(0.0232) (0.0250)

Carryover 0.0190* 0.0559***
(0.0079) (0.0091)

stdRD -0.0268+ -0.0241+
(0.0138) (0.0145)

IndScope -0.0463 0.1987
(0.4856) (0.5295)

IndScale -0.0018 -0.0120***
(0.0011) (0.0008)

FirmScale 0.0002 0.0003*
(0.0001) (0.0002)

Deals 0.0004 -0.0027
(0.0020) (0.0020)

Strength -0.0017+ -0.0021*
(0.0010) (0.0011)

SelectionRatio 0.3684*** 0.4084***
(0.0511) (0.0539)

PriceShock 1.4306*** 1.5747***
(0.1807) (0.1888)

TA Indicators Yes Yes Yes Yes
Firm Indicators Yes Yes Yes Yes
Year Indicators Yes Yes Yes Yes
# Projects 9,041 8,024 9,041 8,024
Pseudo R2 0.199 0.257 0.104 0.206
Log-likelihood -4,980 -4,078 -5,576 -4,355

Model II suggest that projects from multi-indication compounds are approximately 27.4

percentage points (pp) more likely to be selected, extension-line projects are 15.9pp more

likely to be selected, and biologics are 9.0pp more likely to be selected for development.

In-licensed projects are around 3.7pp less likely to be sent to clinical trials. In other

words, although firms commit substantial effort to identify and bring promising, early-

stage compounds into the pipeline, these are less likely to be sent to trials than in-house

projects. This may be indicative of extra monetary and non-monetary costs associated

with in-licensed projects that render them less likely to be developed (Taneri and De Meyer

2017, Crama et al. 2017). Similarly, projects acquired through M&As are also less likely
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to be selected, perhaps because acquisitions in the industry are typically “targeted”: firms

acquire biotechs or other pharmaceuticals with an eye to bringing one or a few specific

compounds into the pipeline or portfolio, while suspending most other projects.

We find some evidence that firms with more late-stage projects and therefore stronger

pipelines are more selective (Strength < 0). Conversely, firms with weaker pipelines are

more likely to send a project to clinical trials. We also find that as firms “widen the gate”

between the pre-clinical and clinical phases, the likelihood of any individual project being

selected for clinical trials increases (SelectionRatio > 0). Finally, we document that more

acute drops in firm market value are associated with an increase in the likelihood that a

project is selected (PriceShock > 0).

5.2. Selection and Signals from Rival Projects

We now turn to our hypotheses regarding how early- and late-stage signals from rivals

inform the firm’s selection decision. We find strong support for Hypothesis 1a: early-stage

projects by rivals are negatively associated with selection (PreClinSignal < 0). Rival pre-

clinical projects signal an intention to enter a market, but they are relatively uninformative

signals about the technological potential of the drug. As such, the market rivalry signal

dominates the technological signal. In anticipation of future competition, the marginal rival

pre-clinical project increases the likelihood of project termination. This effect is also strong:

Model II estimates that a one-standard-deviation increase in the number of rival projects

in pre-clinical trials is associated with an 18.3pp decrease (95% confidence interval [CI]:

16.4–20.2pp) in the probability that the firm will select a project for the same indication.10

Hypotheses 1b and 1c posit that late-stage investments by rivals provide the firm with

both strong market rivalry and strong technological signals. Accordingly, the firm’s decision

to either follow its rivals or to avoid targeting the same domain depends on whether the

market rivalry signal or technological signal dominates. We find evidence for the latter

(H1c): signals from rivals’ late-stage projects are significantly, positively associated with

the likelihood of a firm sending its own project into clinical trials (TrialSignal > 0). A

one-standard-deviation increase in the number of rival projects in clinical trials increases

the probability of selection by 11.1pp (95% CI: 8.9–13.3pp).

In Models III and IV, we find much weaker evidence that signals matter at the overall

TA level. PreClinSignalTA is several times smaller in magnitude than PreClinSignal,
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and TrialSignalTA is non-significant. We conclude that signals are more salient at more

granular levels of a technological and competitive domain.

Altogether, the results suggest that firms are less likely to pursue projects in the same

indication the more early-stage signals they receive about their rivals initiating efforts

into those indications. In contrast, late-stage rival signals are associated with an increased

likelihood of selecting a project and following a rival into the domain.

5.2.1. Signals and Technological Relatedness. To test Hypothesis 2, we estimate:11

Selected∗ = β0+β1Biologic+ (2)

β2PreClinSignal Bio+β3(PreClinSignal Bio×Biologic)+

β4TrialSignal Bio+β5(TrialSignal Bio×Biologic)+

β6PreClinSignal NonBio+β7(PreClinSignal NonBio×Biologic)+

β8TrialSignal NonBio+β9(TrialSignal NonBio×Biologic)+

βX+ ϵ2

Selected= 1[Selected∗ > 0]

where X is the set of all controls and ϵ2 ∼N (0,1).

Through a series of interaction terms, Equation (2) estimates how signals from rival

(non-)biologic project affects selection when the firm’s own project is a (non-)biologic, that

is, when technologies are related or not. H2 posits that technological signals should be

more salient when the technologies of the firm’s and rivals’ projects are related. We expect

the technological signal’s effect on selection to be greater when a biologic project receives

late-stage biologic signals ((β4 + β5)> β4) and when a non-biologic project receives late-

stage non-biologic signals (β8 > (β8+β9)). Moreover, if early-stage rival projects are indeed

technologically uninformative (as posited in H1a), then the effects of pre-clinical signals

should be the same, regardless of similar or different technologies (β3 = 0 and β7 = 0).

In Table 3, we find that the interactions of PreClinSignal Bio × Biologic (β3) and

PreClinSignal NonBio×Biologic (β7) are not statistically different from zero. Regard-

less of whether focal and rival project technologies are related, the effects of early-stage

signals are the same. This is further evidence that pre-clinical projects provide little or no

information about technological viability.
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Table 3 Signals and Technological Relatedness
Notes: The dependent variable is Selected. Reported estimates are coefficients from a probit model. Robust standard errors
clustered by drug are in parentheses. ***p < 0.001; **p < 0.01; *p < 0.05; +p < 0.10

Coeff. from Eqn 2
Biologic β1 0.3684***

(0.0643)
PreClinSignal Bio β2 -0.0080*

(0.0032)
PreClinSignal Bio×Biologic β3 0.0014

(0.0073)
TrialSignal Bio β4 0.0135*

(0.0058)
TrialSignal Bio×Biologic β5 0.0371**

(0.0115)
PreClinSignal NonBio β6 -0.0168***

(0.0012)
PreClinSignal NonBio×Biologic β7 0.0033

(0.0026)
TrialSignal NonBio β8 0.0217***

(0.0022)
TrialSignal NonBio×Biologic β9 -0.0241***

(0.0045)
All Controls Yes
TA, Firm, Year Indicators Yes
# Projects 8,024
Pseudo R2 0.262
Log-likelihood -4,050

In support of H2, we find that both interactions on late-stage signals are statistically

significant. Clinical-phase signals from rival biologics are stronger when the firm’s own

project is a biologic (β5 > 0), and clinical-phase signals from rival non-biologics are stronger

when the firm’s own project is a non-biologic (β8 > (β8+β9)). Late-stage signals alter the

selection decision, and this depends on whether the underlying technologies are related.

Figure 1 visualizes these results and plots the marginal effect of a signal on the probability

of selection. The left chart plots pre-clinical and clinical biologic signals against the focal

project being a biologic or not. Technological relatedness does not influence selection when

rival pre-clinical efforts are undertaken; yet late-stage signals significantly affect selection.

Selection is more likely when firms receive late-stage signals from rival projects utilizing

the same technology (vs. a different technology). In the left chart, rival biologic projects

have a strong effect on the firm’s project if it is a biologic, but this effect is much weaker

when the firm’s own project is a non-biologic. Similarly, in the right chart, non-biologic

rival signals only have an effect on the focal project when it is also a non-biologic. In other

words, the pattern that emerges suggests that late-stage signals only affect those projects

that are using a related technology.
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Figure 1 Signals from Rival Biologic and Non-Biologic Projects

5.2.2. Signals and Market Potential. We test H3 by estimating the following model:

Selected∗ =γ0+ γ1PreClinSignal+ γ2TrialSignal+ γ3Market+

γ4 (PreClinSignal×Market)+ γ5 (TrialSignal×Market)+ (3)

γX+ ϵ3

Selected=1[Selected∗ > 0]

where X is a set of controls and ϵ3 ∼ N (0,1). In Equation (3), Market refers to either

variable Rare or Incidence Reverse. Table 4 displays the estimation results.

Model I in Table 4 first shows that rare diseases are more likely to be selected for clinical

trials. This may reflect the fact that institutions often provide incentives for drugmakers

to target rare diseases. In line with H3, we find that for projects targeting rare diseases,

signals from rival pre-clinical projects are associated with a lower likelihood of selection

(γ4 < 0). For smaller markets, the potential for greater competition leads to a greater

diversification effect away from that market. This is because the eventual possibility of

competition reduces the expected value of the focal project (see also Appendix E, where

our simple model provides additional intuition behind this result). Model II in Table 4
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Table 4 Signals and Market Potential
Notes: The dependent variable is Selected. Rare captures rare diseases, and Incidence Reverse is a reverse-coded measure of
indication incidence. Reported estimates are probit coefficients. Robust standard errors clustered by drug are in parentheses.
***p < 0.001; **p < 0.01; *p < 0.05; +p < 0.10

(I) (II)
Coeff. from Eqn 3

PreClinSignal γ1 -0.0146*** -0.8389***
(0.0009) (0.1180)

TrialSignal γ2 0.0181*** 0.0843**
(0.0019) (0.0280)

Rare γ3 0.6593*** 0.3508*
(0.1131) (0.1549)

PreClinSignal×Rare γ4 -0.2956***
(0.0501)

TrialSignal×Rare γ5 0.0014
(0.0128)

Incidence Reverse γ3 -0.0553
(0.0442)

PreClinSignal× Incidence Reverse γ4 -0.0597***
(0.0097)

TrialSignal× Incidence Reverse γ5 0.0056*
(0.0023)

All Controls Yes Yes
TA Indicators Yes No
Firm Indicators Yes Yes
Year Indicators Yes Yes
# Projects 8,024 1,424
Pseudo R2 0.263 0.215
Log-likelihood -4,047 -407.1

shows a similar pattern among cancer indications. Projects targeting indications with lower

incidence rates are less likely to be selected for clinical trials.

We do not document a consistent change in the effect of market potential on the rela-

tionship between late-stage signals and selection (γ5 = 0). This suggests that after a rival

has sent its project to clinical trials, the firm primarily pays attention to the technological

signal. This is because the marginal effect on the selection decision is driven by the learning

effect rather than the size of the market. Thus, although a late-stage rival project sends

both kinds of signals, the technological signal dominates for the project selection decision.

This is also shown in Figure 2, which plots the marginal effect of an extra rival project

signal on the probability of selection, depending on the potential of the target market. In

both plots, the effect of pre-clinical rival signals on selection are stronger (more negative)

in low-market-potential regimes than in high-market-potential regimes, supporting H3.

Conversely, late-stage signal effects do not differ by market potential.

5.2.3. Robustness. We perform a series of robustness checks and discuss the most

salient ones here. Readers are referred to Appendix B for a complete exposition.

Phase II Selection. Whereas Phase I is the first test in humans, Phase II is another

milestone in the drug development process as it establishes the efficacy of the compound.
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Figure 2 Rival Project Signals and Market Potential

We test whether the above analysis is robust to selection defined as entry into Phase II

trials and find that our results are largely unchanged to this alternative specification.

Multiple Selection Decisions. Drug development can be modeled as a process of multiple

stages and gates rather than a “one-shot” selection. We consider the “nestedness” of the

selection process by estimating a trivariate probit model with selection into Phases I and

II. The results are consistent with our main findings.

Endogeneity from Breakthrough Technologies. In many industries, the emergence of new,

breakthrough technologies may render older solutions obsolete, conceivably leading to a

simultaneous increase in new rival projects. In our context, this would mean that pre-

clinical projects would be endogenous to the emergence of a technology. Yet, although

there may indeed be industries whereby a new, superior technology renders an older one

obsolete, such dynamics do not accurately characterize the pharmaceutical industry (see

also Appendix B.8 for a more full explanation). Nevertheless, our results are robust to con-

trolling for drugs’ “Breakthrough Therapy” status as a proxy for technological superiority.

6. Extension: Signals and Project Success

Given that rival project signals affect project selection, we now ask: Are these rival project

signals meaningfully informative? In other words, do rival projects carry useful knowledge
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to lead to eventual regulatory approval? Over the last two decades, industry-wide R&D

expenses and regulatory stringency on the number of trials have increased, while the num-

bers of approved compounds have barely kept up. Therefore, understanding the drivers of

technical success and improving R&D productivity has been dubbed the industry’s “grand

challenge” (Paul et al. 2010).12

We investigate whether rival signals are associated with a higher likelihood of regulatory

approval. We create Success to capture whether a project received approval from a regula-

tory body. This variable is set to 1 if a project’s development status is “Launched;” and 0

if a project was “Discontinued,” “Divested,” “No Development Reported,” “Outlicensed,”

“Suspended,” or “Withdrawn,” denoting that the firm ceased developing the project.13

Our model for success takes the form

Success∗ = δ0+Wδ+ ϵ4 (4)

Success= 1[Success∗ > 0]

where Success∗ is a latent variable, ϵ4 ∼N (0,1), and W is a set of controls.

Estimating the drivers of project success is complicated by the fact that firms endoge-

nously decide which projects to pursue or abandon. We thus account for potential selec-

tion bias by estimating bivariate probit models with sample selection (Van de Ven and

Van Praag 1981). The “heckprobit” model simultaneously estimates probits of Equa-

tions (1) and (4) using maximum likelihood estimation. To improve identification, we

leverage two variables that plausibly satisfy criteria for instruments: SelectionRatio and

PriceShock (see Appendix A for variable definitions).14

SelectionRatio measures the proportion of a firm’s pre-clinical projects that are sent

to clinical trials in a given year, and it captures how “wide” each firm’s gate between

pre-clinical and clinical trials is. As a firm’s SelectionRatio increases, the likelihood of any

one project being selected increases, so we expect this variable to be strongly, positively

correlated with selection. One potential issue with this variable is that as internal produc-

tivity rates deteriorate and pipelines dry up, firms may deliberately relax their standards

for selecting compounds for development, thereby leading to a higher rate of selection of

“poor” projects. In this case, SelectionRatio would be negatively correlated with success.

To account for this and to be more confident that the selection ratio is not correlated with

success, we control for whether firms are “scraping the bottom of the barrel” in the pursuit
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of an approval. After controlling for pipeline strength (Strength), a wider funnel between

pre-clinical and clinical should not imply a lower selection threshold or the selection of

lower-quality drug candidates. Conditional on pipeline strength, we expect SelectionRatio

to be uncorrelated with the error term in Equation 4.

We also include PriceShock as an instrument. Significant drops in firms’ market values

should be strongly correlated with selection, but they should not affect a project’s eventual

success. Drops in market value in this industry are often driven by the announcement of

a late-stage clinical failure (see, e.g., Girotra et al. 2007), rejection of a promising drug by

a regulatory body, or expiration of a key patent. We expect PriceShock to be positively

correlated with a project’s likelihood of selection as the firm may attempt to replenish its

pipeline after a negative pipeline shock (Hermosilla 2020). However, we have no reason

to believe that such shocks correlate with a different project’s future success probability,

especially since we measure price shocks before projects have even entered clinical trials.

Before we present our results, we note a potential limitation of this approach. Barring

an exogenous shock such as an unanticipated regulatory change, any instrument’s validity

may be questioned. This is also true in our context, where selection and success are tightly

linked.15 To this extent, we have taken special care to explicitly control for as many con-

founding factors as possible and eliminate the possibility of a residual correlation between

ϵ4 and SelectionRatio or PriceShock.

Proceeding to the analysis, we recalculate late-stage rival signals to account for signals

from rival projects in Phase I, Phase II, Phase III, and Pre-registration, and we tabulate

estimates from our heckprobit models in Table 5. Model I evaluates signals at the fine-

grained indication level, whereas Model II evaluates signals at the broader TA level.

We first note that ρ14 is statistically significant in Model I, implying the existence of

some unobserved factors driving both selection into Phase I trials and regulatory approval,

and justifying the estimation of a heckprobit model. Moreover, we find that it is signals

at the narrow, indication-level that matter for selection and success. Signals from projects

within the TA are broadly non-significant or have weak effect sizes. Similar to Section 5.2,

this supports the idea that information from within the same scientific domain is useful.

The estimates from Model I are displayed in Figure 3. Once again, pre-clinical signals

are associated with a decreased likelihood of a project’s Phase I selection, and late-stage
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Table 5 Signals, Project Selection, and Success
Notes: Model I measures signals within the same indication as the focal project (e.g., PreClinSignal), and Model II within the
same TA (e.g., PreClinSignalTA). Reported estimates are average marginal effects. Robust standard errors clustered by drug
are in parentheses. ***p < 0.001; **p < 0.01; *p < 0.05; +p < 0.10

(I) (II)
Indication-Level Signals TA-Level Signals
Selected Success Selected Success

PreClinSignal(TA) -0.0042*** -0.0009* -0.0010*** -0.0001
(0.0003) (0.0004) (0.0003) (0.0002)

PISignal(TA) 0.0050*** -0.0025** -0.0001 0.0001
(0.0011) (0.0010) (0.0003) (0.0002)

PIISignal(TA) 0.0075*** -0.0010 0.0001 0.0001
(0.0012) (0.0008) (0.0002) (0.0002)

PIIISignal(TA) 0.0092** 0.0047** 0.0010+ 0.0002
(0.0032) (0.0018) (0.0006) (0.0004)

RegSignal(TA) 0.0016 0.0232** -0.0006 0.0009
(0.0211) (0.0086) (0.0011) (0.0006)

Strength -0.0012 -0.0000 -0.0014 0.0001
(0.0011) (0.0006) (0.0012) (0.0007)

SelectionRatio 0.3928*** 0.4288***
(0.0554) (0.0590)

PriceShock 1.5226*** 1.7246***
(0.1962) (0.2035)

ρ -0.593** -0.475*
Wald χ2(1) ρ= 0 10.71 6.55
All Controls Yes Yes
TA, Firm, Year Indicators Yes Yes
# Projects 6,506 3,040 6,506 3,040
Log-pseudolikelihood -3963.0 -4217.8

Figure 3 Project Selection and Success
Notes: Marginal effects from Models I and II in Table 5. Shaded areas are 95%

confidence bands around the point estimates.

rival signals are overall associated with an increased likelihood of selection. These results

corroborate those from Section 5.2.

Regarding success, we find that following rival project signals is not necessarily associated

with an increased likelihood of success, and we even find some evidence that following these

signals may be misleading. The estimates for PreClinSignal, PISignal, and PIISignal
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are negative, and the coefficient for Phase I signals is statistically significant. Information

from Phase II and earlier seems to be uninformative at best. Once rival projects have

successfully passed Phase II trials, however, information signals are increasingly valuable.

Conditional on selection, one extra Phase III signal is associated with a 0.47pp increase

(95% CI: 0.12pp–0.81pp) in the likelihood of success, and one extra signal from a rival

project that successfully completed Phase III is associated with a 2.32pp (95% CI: 0.63pp–

4.00pp) increase. Given that the average conditional probability of success in our data set

is 9.9 percent, in relative terms, these correspond to a 4.7 percent and 23.4 percent increase

in the probability of success, respectively.16 Signals from Phase III and later seem to be

useful and economically significant.

7. Conclusion

Rival project choices convey two opposing types of information: a technological signal,

and a market rivalry signal. We unpack how competitive product development efforts

affect not only the level of R&D investment and productivity, but also the direction of

innovation. We find that the development stage of a rival’s project plays a significant role

in the firm’s decision of where to allocate its product development resources. As our results

show, the potential for future market competition makes it more likely that a firm will

diversify development efforts away from a market. This diversification is more pronounced

in the absence of knowledge spillovers, or for smaller markets (e.g., rare diseases). However,

advanced rival efforts signal the feasibility of a potential solution, and they may reverse

project selection toward investment into a market.

Are the selection decisions that emerge from these signals justified? In other words, does

following the rival signals translate to a higher likelihood of regulatory approval? Only

in some cases can we record such an effect. Specifically, we document a threshold with

respect to the development stage at which the rival effort takes place: information from rival

projects that have successfully completed Phase II significantly improves the likelihood of

success for the focal firm’s project. Yet the information from rival projects still in Phase

II or prior is not associated with an increase in the focal project’s probability of approval.

In fact, following these signals may even adversely affect the likelihood of success.

The latter result indicates that firms may overestimate the information conveyed by

rival actions: while the information from rival projects in Phase I and II influences a
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firm’s selection decision, it proves irrelevant for the project’s success (see Figure 3). This

distinction between information signals on which firms act and those on which they should

act bears a direct managerial implication from our analysis.

Project selection decisions require senior executives to prioritize among and weigh mul-

tiple criteria in the presence of significant uncertainty. Thus, it is not surprising that their

decisions end up being influenced by all possible bits of information, including the head-

lines that a rival commits tens of millions for a Phase II clinical trial of a drug that targets

the same indication. Yet, according to our analysis such information should be weighted

less (or not at all) in their list of criteria. Firms should beware of introducing bias in

their process by reading too much into the information conveyed by their rivals’ advanced

projects (those in Phase I and II). The focal firm might have perfectly solid reasons to

select a given drug for further development, but signals from rivals should not be one of

them, at least until the rivals have successfully completed Phase II.

Our analysis also yields insights regarding the extent to which knowledge accumulation

in the pharmaceutical industry can improve the likelihood of success of a new product. As

discussed earlier, biopharmaceutical R&D is an environment wherein substantial knowledge

spillovers occur across rivals. Given the sheer volume of this knowledge, it is important for

executives to know when such information improves their chances of success. For example,

in estimating the likelihood of success for a given compound, firms often use industry

success rates at the level of a TA (DiMasi et al. 2010). Our analysis suggests that such

anchors are likely to be uninformative, unless they are at the indication level. We find that

signals from rival efforts carry informational value only when they concern projects that

target the same indication. Rival signals from projects targeting different indications, even

when these indications belong to the same TA, do not affect the chances of success of the

a firm’s project. Thus, when assessing how to factor in information from “comparable”

projects, senior executives should draw a clear distinction between projects that target the

same indication and those that do not.

Finally, our findings corroborate the narrow effectiveness of knowledge spillovers in the

drug development process, which also illustrates the highly uncertain and complex nature

of this process. A departure from the narrow boundary of a specific indication drastically

limits the predictive power gained from rival signals. A drug that is highly effective for

one disease can be completely ineffective for one that seems closely related. In such an
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environment, where building upon existing knowledge has been and will remain a key

driving force, the role of serendipity cannot be overemphasized. Simply put, despite the

monumental progress of scientific research in the past few decades, when it comes to

therapeutic pathways, the unknown parameters still vastly outnumber the known ones.

That is why, in their pursuit of drug discoveries, firms need to appropriately assess and

act upon the signals that carry informational value, while acknowledging that for many of

their development projects such information simply does not exist. We are hopeful that

our research study will help firms improve these challenging selection decisions.
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Endnotes
1For more details on the IND application process see: https://www.fda.gov/drugs/types-applications/inve

stigational-new-drug-ind-application, accessed May 1, 2021
2For example, in the market for type 2 diabetes, there have been 13 drugs launched since 2000 that achieved over

$1B in annual sales in 2020 alone. Six of these were biologics and seven were chemical formulations, highlighting

that there does not seem to be one superior or inferior technology; rather, there are multiple ways (some based on

chemicals and others on biologics) to arrive at a solution. (Source: Evaluate Pharma.)
3For a project that was not selected, our measures are not merely capturing the last observable point in time.

Rather, Cortellis notes that a particular project has ceased being further developed. Such projects are not lost due

to an inability to observe them or “follow up,” which would lead to right censoring. Rather, development has ended,

and these projects have been selected out.
4Given the high failure rates in the industry, pharmaceutical firms initiate many exploratory projects, well aware

that most will fail. As such, the drug development process can be described as a state-gate process—essentially, a

series of real options, where the firm may exercise the option to abandon a project at any stage. However, given the

substantial effort and investment required for initiating clinical trials , it is unlikely that a firm would initiate such a

process without strong hopes of seeing the project through. In other words, at the time of the selection decision, the

case for the project is made based on the assumption that the product will make it to the market (rather than being

terminated in future stages). In Appendix B.1, we relax this assumption and estimate a multi-stage model.
5Projects that are still ongoing at the end of 2016 are included in the calculation of PreClinSignal, since they

are ongoing projects when the focal firm is making its selection decisions.
6In other words, we specify that PreClinSignal = PreClinSignal Bio + PreClinSignal NonBio and

TrialSignal= TrialSignal Bio+TrialSignal NonBio.
7In 1999, the European Commission defined an orphan disease as one that affects no more than five people per

10,000. In the United States, the Rare Diseases Act of 2002 legally acknowledges rare diseases as those affecting

populations smaller than 200,000 individuals.
8Orphanet is a global network of resources and information on rare diseases coordinated by

the French National Institute of Health and Medical Research. (https://www.orpha.net/consor/cgi-

bin/Disease Search.php?lng=EN&search=Disease Search List; accessed Feb. 15, 2020).
9We report the Average Marginal Effects which estimate a marginal probability by using the observed values for

each observation (rather than the variable means). See Williams (2012).
10From Table 1, the standard deviation of PreClinSignal is 43.468. So, −0.0042× 43.468 =−0.183.
11We omit subscripting on project j for ease of exposition.
12Although various measures of R&D productivity exist (for example, dollars-per-drug or sales-over-R&D), one

oft-cited measure of productivity in this industry is the number of projects needed for one eventual success (Paul

et al. 2010, Cook et al. 2014). Our analysis of technical success and the likelihood of regulatory approval speaks to

this latter metric.
13In Appendix B.6, we test the robustness of our results by considering the cases where a project was outlicensed

but nevertheless successfully developed by the licensee.
14In Appendix B.3 we estimate additional models to show that the heckprobit estimation is not adversely affecting

our analysis.
15Even with a change in the regulatory landscape, it would be difficult to convince oneself that such a shock would

affect only selection, but not the process and criteria by which drugs are evaluated and approved (i.e., success).

Moreover, such external shocks would likely affect all firms and provide no/very little variation across or within firms.
160.0047/0.099× 100%= 4.7% and 0.0232/0.099× 100%= 23.4%.

https://www.fda.gov/drugs/types-applications/investigational-new-drug-ind-application
https://www.fda.gov/drugs/types-applications/investigational-new-drug-ind-application
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