
Auton Robot

DOI 10.1007/s10514-012-9293-0

River mapping from a flying robot: state estimation, river

detection, and obstacle mapping

Sebastian Scherer · Joern Rehder · Supreeth Achar ·

Hugh Cover · Andrew Chambers · Stephen Nuske ·

Sanjiv Singh

Received: 1 August 2011 / Accepted: 29 March 2012

© Springer Science+Business Media, LLC 2012

Abstract Accurately mapping the course and vegetation

along a river is challenging, since overhanging trees block

GPS at ground level and occlude the shore line when viewed

from higher altitudes. We present a multimodal perception

system for the active exploration and mapping of a river

from a small rotorcraft. We describe three key components

that use computer vision, laser scanning, inertial sensing and

intermittant GPS to estimate the motion of the rotorcraft, de-

tect the river without a prior map, and create a 3D map of the

riverine environment. Our hardware and software approach

is cognizant of the need to perform multi-kilometer missions

below tree level with size, weight and power constraints. We

present experimental results along a 2 km loop of river us-

ing a surrogate perception payload. Overall we can build an

S. Scherer (�) · S. Achar · H. Cover · A. Chambers · S. Nuske ·
S. Singh

Robotics Institute, Carnegie Mellon University, 5000 Forbes Ave,

Pittsburgh, PA 15213, USA

e-mail: basti@cmu.edu

S. Achar

e-mail: supreeth@cmu.edu

H. Cover

e-mail: hcover@cmu.edu

A. Chambers

e-mail: achambers@cmu.edu

S. Nuske

e-mail: nuske@cmu.edu

S. Singh

e-mail: ssingh@cmu.edu

J. Rehder

Institute of Control Systems, Hamburg University of Technology,

Eissendorfer Strasse 40, 21073 Hamburg, Germany

e-mail: joern.rehder@tuhh.de

accurate 3D obstacle map and a 2D map of the river course

and width from light onboard sensing.

Keywords 3D obstacle mapping · Visual localization ·
Micro aerial vehicles · Self supervised learning · 3D ladar

scanning

Notation

sk a vehicle state at time tk
xi a single measurement collected with one

of the sensors

m the total number of vehicle states

considered in the optimization

n the total number of measurements

acquired with a set of different sensors

that are considered in the optimization

p(xi, s1, . . . , sm) a probability density function (PDF)

describing the distribution of the

measurements xi

hi(s1, . . . , sm) a function modeling the sensor that

provided measurement xi based on the

vehicle states s1, . . . , sm.

1 Introduction

We are developing perception and planning algorithms to

be used by a low-flying micro air vehicle (MAV) to au-

tonomously explore rivers; mapping their width and the sur-

rounding canopy. In some cases, the canopy can be so thick

and high covering a river that it blocks GPS signals and the

problem becomes one of simultaneous localization and map-

ping in an unstructured three-dimensional environment. The

localization and mapping problem is complicated because

in our mission the vehicle will fly one-way up the river and

mailto:basti@cmu.edu
mailto:supreeth@cmu.edu
mailto:hcover@cmu.edu
mailto:achambers@cmu.edu
mailto:nuske@cmu.edu
mailto:ssingh@cmu.edu
mailto:joern.rehder@tuhh.de

Auton Robot

Fig. 1 A typical riverine environment that we expect to map. A small

rotorcraft can fly above the shallow, fast-moving water and yet remain

below the thick canopy to navigate and map the river. The foliage along

the banks is dense enough to block or seriously degrade GPS signals

then return quickly at high altitude. Figure 1 shows a typical

riverine environment. Exploration from a flying vehicle is at-

tractive because it extends the sensing horizon and removes

complications of navigating in shallow water and aquatic

vegetation. However, a flying solution also adds constraints

on the size, weight and power available for perception. This

is a significant constraint given that the multi-kilometer mis-

sions will force all the sensing/computation to be conducted

onboard. Given the size of rotorcraft that could reasonably

fly in environments with thick canopy, it will be necessary

to keep all the sensing and computation components to less

than one kilogram.

These constraints on payload and the inability to rely on

GPS have significant implications for our approach. First,

we will need to depend on perception to produce a high

resolution 6 degree of freedom (DOF) pose estimate that

is much more stable than can be produced by simply inte-

grating inertial sensors. Second, any active imaging, such as

from laser scanning, will be required to be very lightweight

and low power and hence will be short range. Third, predict-

ing the river’s course and following it without a prior map

will require a perception system that looks significantly fur-

ther than could be sensed through laser ranging.

In summary we derive the following requirements to nav-

igate autonomously:

1. a locally consistent state estimation system,

2. the ability to sense and avoid obstacles, and,

3. a direction to follow the course of the river.

After navigating the river the returned map requires:

1. a global reference frame,

2. the course of the river,

3. the width of the river, and

4. the height of vegetation along the shore.

In this paper we describe our approach for mapping on a mi-

cro aerial vehicle in four stages: The first is a graph-based

optimization for state estimation of the vehicle’s motion in

6DOF. Using both relative and global constraints from vi-

sual odometry, inertial sensing, and sparse GPS, we demon-

strate its ability to globally estimate the vehicle’s state while

maintaining an accuracy that allows for precise local map-

ping. The second is a long range color vision system that

uses a forward pointing color camera to automatically find

the river even with significant variation in the appearance

of the river. We solve this problem with a self-supervised

method that continually learns to segment images based only

on an estimate of the horizon (from inertial sensing) and

some simple heuristics that describe riverine environments.

The third is an efficient method for creating obstacle maps

for motion planning in 3D that are high resolution and can

be scrolled over distances of multiple kilometers efficiently.

The fourth contribution is a short range, laser-ranging based

system tasked with obstacle detection and the creation of a

metric, three-dimensional map.

Parts of our system were first shown in Chambers et al.

(2011) and Achar et al. (2011). Since then our approaches

have been refined to reflect our latest results. In state es-

timation we have improved our method, describe in de-

tail how we achieve accuracy for loop closure and reduce

computation with node merging. The river detection algo-

rithm includes more analysis, a sun reflection detection, and

a detailed description of artificial horizon line estimation.

We have added a section on an improved distance trans-

form algorithms and a comparison with other state of the

art aproaches.

1.1 Related work

Previous work in autonomous river mapping has utilized

small boats (Leedekerken et al. 2010) or higher altitude,

fixed wing UAVs (Rathinam et al. 2007). While these plat-

forms could be more practical in simple riverine environ-

ments, we aim to develop a platform that can perform in

the most difficult situations such as rapidly flowing water,

obstructed waterways, or dense forest canopies. Preliminary

work in river mapping on small rotorcraft using passive vi-

sion and ultrasonic ranging (for elevation estimation) has

been reported over short distances (Yang et al. 2011). Our

work is similarly motivated but we explicitly consider sub-

stantially longer missions in which it is important to not only

map the extent of the river but also to map the vegetation

along the shore line and avoid obstacles that might appear in

the middle of the river.

Obstacle avoidance is a necessary capability to operate

close to the trees present at low altitude. Hrabar and Gau-

rav (2009) performed experiments using optical flow for ob-

stacle avoidance, however additionally a stereo camera was

used to prevent collisions from straight ahead zero-flow re-

gions. Stereo image processing with evidence grid based fil-

tering was also used by Andert et al. (2010), Andert and

Auton Robot

Goormann (2007) to create a map based on stereo imagery

that avoided obstacles reactively in simulation. Viquerat et

al. (2007) presented a reactive approach to avoid obstacles

using Doppler radar. Grzonka et al. (2009) presented a quad-

rotor that is capable of localization and simultaneous local-

ization and mapping (SLAM). Mapping with a monocular

camera was shown in Weiss et al. (2011) and a line laser in

Shen and Kumar (2011).

The four main focus areas of this paper are position esti-

mation, river detection, mapping, and obstacle detection for

a lightweight flying vehicle. Next we discuss related work

in each of these areas:

State estimation using a suite of heterogeneous sensors

constitutes a well-studied problem in robotics. In the past,

recursive filters have been successfully demonstrated for a

variety of applications (e.g. Reid et al. 2007; Eustice et al.

2005). In our application however, we expect the state to

change significantly whenever sparse GPS measurements

become available, which renders approaches that linearize

only once not well suited. Furthermore, recent research by

Strasdat et al. (2010) suggests that recursive filtering per-

forms inferiorly compared to optimization approaches for

most problems.

We treat the state estimation as a non linear optimization

problem, using a graph to represent the interdependence of

vehicle states and measurements. In this sense, our approach

covers a sub-class of problems that are addressed by g2o

in Kuemmerle et al. (2011). In contrast to this work how-

ever, we employ an on-line graph reduction scheme simi-

lar to Folkesson and Christensen (2007) and Konolige and

Agrawal (2008) which enables real-time throughput for a

sliding window of vehicle states spanning multiple min-

utes. The estimation is performed using a sparse optimiza-

tion framework by Lourakis (2010) which itself shares sim-

ilarities with g2o and provides interfaces to a similar set of

sparse solvers.

In the second area, our system uses a visual river segmen-

tation algorithm to detect the extent of the river for mapping

and long-range guidance. Most previous work on detecting

water in images has been focused on detecting water haz-

ards like puddles using color, texture and stereo disparity

cues for autonomous ground vehicles (Rankin et al. 2004;

Rankin and Matthies 2010). Our solution automatically

learns models of river and shore appearance for segmenta-

tion by exploiting the structure of riverine environments in a

scheme that shares some similarities to self supervised road

detection (Dahlkamp et al. 2006).

In the third area of 3D mapping, a probabilistic map sim-

ilar to Martin and Moravec (1996) is kept to filter the sensor

data and to compute the likelihood of occupancy. For mo-

tion planning we require an obstacle expansion that is typi-

cally calculated by searching for the closest obstacle within

a desired radius. However, aerial vehicles must stay far away

from obstacles and therefore want a large obstacle expan-

sion. The obstacle expansion is related to the distance trans-

form and Meijster et al. (2000) presented an efficient algo-

rithm to globally calculate the distance transform. Kalra et

al. (2006) showed an algorithm to incrementally construct

Vornonoi diagrams. We show an efficient algorithm similar

to D* Lite (Koenig and Likhachev 2002) that updates the

distance transform up to a limit incrementally. We expand

on our previous work (Scherer et al. 2009) and incorporate

some of the changes of Lau et al. (2010).

In the fourth area of obstacle detection and 3D mapping

with an articulated 2D lidar, researchers have investigated

various mounting and articulation schemes to focus the lidar

scan pattern in specific regions of interest (Wulf and Wagner

2003; Holz et al. 2010). Typically, only a qualitative com-

parison of different scan patterns is offered. However, Desai

and Huber (2009) provide a objective, quantitative method

for choosing a ladar mounting and articulation pattern by

measuring density and uniformity of sensor measurements

in simulation. An open area of research is to compare ob-

stacle detection probability for small obstacles for different

laser scanning patterns. This is particularly important for mi-

cro aerial vehicles (MAVs) since a collision with any size

obstacle can potentially damage and destroy the vehicle. We

analyze our 3D scan pattern to find the probability of detect-

ing small obstacles in the path of the rotorcraft and we use

this information to dictate maximum safe vehicle velocities.

1.2 Contributions

In summary, the contributions of this paper are

– an online state estimation system that combines visual

odometry and inertial measurements with intermittent

GPS information,

– a self supervised vision based river detector that can the

handle large intra- and inter-scene variations in water sur-

face appearance commonly observed in riverine environ-

ments,

– a scrolling incremental distance transform algorithm for

efficient local obstacle cost calculation used in planning,

and

– a novel scanning ladar configuration and analysis for ob-

stacle detection and mapping.

2 Approach

Our approach to solving the river mapping problem is dic-

tated by the dominate perception challenges of the applica-

tion domain. Challenges include state estimation, navigating

the course of the river, obstacle detection, and measuring the

river’s width and the clearance and structure of the canopy

above the water.

Auton Robot

Fig. 2 The perception architecture. The sensor inputs for perception are a stereo camera pair, a 3D scanning ladar, and GPS/INS. The inputs are

used to estimate the vehicle’s state, detect rivers, and map obstacles

To meet the perception challenges we must combine sev-

eral sensors: GPS, IMU, stereo camera pair and lidar. We

must use light-weight and low fidelity sensing because the

payload is limited. No single sensor is reliable on its own.

We draw on the complementary characteristics of the sensor

suite to provide the capabilities for our rotorcraft to execute

a river mapping mission. For example, cameras are good at

estimating motion, however not reliable enough to detect ob-

stacles. Laser scanners on the other hand can detect obsta-

cles well, but are difficult to use for localization or detecting

the river. Our overall perception architecture that summa-

rizes the algorithms developed and how they fit together is

shown in Fig. 2.

For state estimation, described in Sect. 2.1, the GPS

is low accuracy and has intermittent coverage, the stereo-

camera can be used for precise relative motion estimates,

but integrating the estimates gives a solution that drifts un-

boundedly, and likewise an IMU produces unbounded po-

sition drift, but can be used over a short period to correct

small error and can be used to bound pitch and roll. Our

approach fuses GPS, IMU and visual odometry within a ro-

bust framework that can seamlessly handle the dropouts and

the various frequencies in the sensor measurements and pro-

vide a solution in dense, occluded, natural and dynamic ter-

rain, comparable in relative accuracy to a high-end, heavy,

GPS/INS unit operating in wide-open environments.

For predicting the course of the river, Sect. 2.2, we need a

long range sensor, which rules out a lightweight short range

laser scanner and, therefore, we use a computer vision solu-

tion based on a color camera to detect the extent of the river

and to choose a suitable course to follow.

Our approach for obstacle and environment mapping is

presented in Sect. 2.3. The approach uses a scrolling 3D ev-

idence grid to efficiently update the distance to the closest

obstacle. This distance or cost is important for motion plan-

ning since it allows us to stay away from obstacles if possi-

ble and get close if necessary.

The final part of the approach, described in Sect. 2.4,

is the 3D laser scanner for obstacle avoidance and canopy

mapping. We use a lightweight laser scanner that when sta-

tionary provides a single plane of range information, which

we actuate in a novel configuration that is spinning and tilted

off-axis to give a 360 degree view around the vehicle (albeit

with small cone-shaped blind-spots directly above and be-

low the vehicle). We explain key details such as analyzing

the probability of detecting small obstacles at various veloc-

ities.

2.1 State estimation

Knowledge of the position and orientation of a mobile robot

is essential for a variety of applications such as path plan-

ning and mapping. To autonomously follow a river and

avoid obstacles, we need information about the state to back-

project laser scans and river detection results into locally

accurate maps, while maintaining a consistent estimate of

the position and orientation in a global coordinate frame.

While visual odometry and inertial measurements can be

employed to accurately estimate the change in the vehicle

state, they are prone to drift, resulting in unbounded errors.

On the other hand, GPS provides an estimate of the position

in a global coordinate frame with a bounded error. Unfor-

tunately, riverine environments will seriously degrade any

GPS signal, resulting in intermittent availability of global

position information. In fact, we expect GPS to fail for pe-

riods of several minutes. During these periods, the vehicle

state will drift, which will result in a potentially significant

displacement in the estimated position from the global posi-

tion measurement when the GPS signal is regained.

To summarize, we require our state estimation

– to fully exploit the information provided by intermittent

GPS readings,

– to be able to deal with significant changes in the state in a

global coordinate frame,

– to avoid discontinuities in the vehicle path and resulting

inconsistencies in the map, and

– to provide state estimates with real-time throughput.

Auton Robot

In order to meet these requirements, we employ an ap-

proach that treats state estimation as a nonlinear optimiza-

tion problem over a history of states and measurements

with a graphical representation. Our approach is most sim-

ilar to Folkesson and Christensen (2007), but in contrast to

that work which uses a Gauss-Seidel type relaxation, our

optimization employs the Levenberg-Marquardt algorithm

(Marquardt 1963) and changes multiple states per update

step.

Given a set of measurements, we determine the optimal

set of vehicle states as the one for which the given set of

measurements were most likely to occur.

The probability of making a single measurement xi for a

given set of vehicle states S = [s1, . . . , sm] is given by the

conditional probability p(xi | s1, . . . , sm).

As the measurements are assumed to be conditionally in-

dependent given the states, a set of measurements taken at

different times results in the overall conditional probability

p(x1, . . . , xn | s1, . . . , sm) ∝
n

∏

i=1

p(xi | s1, . . . , sm) (1)

Then, the optimal set of vehicle states [s1, . . . , sm] is the one

which maximizes the overall probability

[s1, . . . , sm] = arg max
s

(

p(x1, . . . , xn | s1, . . . , sm)
)

(2)

Rather than finding the maximum of this distribution, it is

more common to minimize the negative logarithm of the

likelihood function.

[s1, . . . , sm] = arg min
s

(

− log
(

p(x1, . . . , xn | s1, . . . , sm)
))

= arg min
s

(

−
n

∑

i=1

log
(

p(xi | s1, . . . , sm)
)

)

(3)

In the following we will assume that the measurement error

is zero-mean Gaussian distributed. This is not a necessary

assumption and in fact other probability distributions may

be utilized in a graph-based approach. However, with this

assumption, it is easier to motivate the problem as a nonlin-

ear least square optimization, and it is a valid approximation

for many real world applications.

Let νi be a Gaussian distributed random vector with zero

mean and covariance matrix Ci , then a measurement is mod-

eled as xi = hi(ŝ1, . . . , ˆsm) + νi .

Minimizing the negative logarithm of the correspond-

ing probability desity function leads to the nonlinear least

square problem

[s1, . . . , sm]

= arg min
s

(

n
∑

i=1

1

2

(

hi(S) − xi

)T
Ci

−1
(

hi(S) − xi

)

)

= arg min
s

(

n
∑

i=1

∥

∥Qi

(

hi(s1, . . . , sm) − xi

)∥

∥

2

)

(4)

where Qi is a symmetric, positive definite matrix for

which Ci
−1 = Qi

T Qi . Thus, each measurement provides

a weighted displacement of the modeled measurement

hi(s1, . . . , sm) to the measurement xi that the sensor pro-

vided.

2.1.1 Graph-based representation of the problem

The problem of estimating the vehicle state in an optimal

fashion can be modeled as a graph of nodes that are con-

nected by edges. In this model, the state sk of the vehicle at

a discrete point in time tk is represented by a node. An edge

in the graph respresents a constraint between states induced

by a sensor reading xi .

In general, sensor readings can be classified based on

whether they measure a relative change in the state and thus

a local measurement or whether they measure the state in a

global coordinate frame and hence only depend on the ve-

hicle state at a single point in time. Visual odometry is an

example of a local measurement, as it measures a relative

transformation between successive states. On the other hand,

a GPS measurement provides information about a single ve-

hicle state in a global coordinate frame. In order to represent

both classes of sensor measurements in a unified way, we

introduced a fictitious zero state s∗
0 at the origin of the coor-

dinate frame as suggested by Konolige (2004). In our current

implementation, all readings of the onboard sensors can be

modeled as functions of exactly two states, either succes-

sive ones xi = hi(sk−1, sk) in case of visual odometry and

integrated gyroscope readings or as dependent on one vehi-

cle state and the zero state xi = hi(s
∗
0 , sk) for global mea-

surements. As before, we assume measurement errors to be

Gaussian distributed with zero mean.

In this sense, a node is memory that stores state infor-

mation, while an edge is the realization of a cost function

f(sl, sk, xi) = Qi(hi(sl, sk) − xi).

Although the approach was motivated as a Maximum

Likelihood Estimation in Sect. 2.1, one may think of the

edges in the graph as nonlinear springs that apply forces

to the nodes (Folkesson and Christensen 2007). Solving the

nonlinear least square problem may in this sense be thought

of as finding a state of the system where the overall energy

in the system is minimal.

2.1.2 State parametrization and sensor models

We parametrize the state as

s = [Ψ, t]T = [φ, θ,ψ, tx, ty, tz]T (5)

Auton Robot

where Ψ = [φ, θ,ψ]T denotes the orientation in Euler an-

gles, and t = [tx, ty, tz]T denotes the position in the global

coordinate frame defined by GPS. Euler angles have the ad-

vantage of constituting a minimal parametrization of the ori-

entation. Thus, they have a natural representation of the co-

variance as 3 × 3 matrix. On the other hand, Euler angles

suffer from singularities. Through an appropriate choice of

Euler angle conventions and vehicle coordinate frame in our

implementation, these singularities coincide with kinemati-

cally infeasible orientations of the rotorcraft in normal oper-

ation.

The state is estimated based on sensor inputs from stereo

visual odometry, integrated gyroscope readings, GPS loca-

tion measurements, and inclination sensing from accelerom-

eters.

In the following, function R(Ψ) will denote a R
3 �→

R
3×3 mapping of Euler angles Ψ to a rotation matrix R and

function R−1(R) the inverse mapping from a rotation ma-

trix R to Euler angles. The weight matrices Q, employed

in each sensor constraint function, depend on the estimated

measurement covariances of each sensor as described in

Sect. 2.1. For simplicity, we assume that the coordinate sys-

tems of all sensors coincide with the vehicle coordinate

frame. In our implementation, we have taken close care to

accurately calibrate for the 6 degrees of freedom (DOF)

transformations between the different sensors.

We employ the stereo visual odometry approach by

Geiger et al. (2011) which provides a measurement of the

relative 6 DOF transformation x = [Ψvo, tvo]T that the ve-

hicle underwent from state si to state sj along with an es-

timate Cvo of the uncertainty of the transformation. With

C−1 = QT
voQvo, the visual odometry constraint is defined

as

fvo

(

si, sj , [Ψvo, tvo]
)

= Qvo

[

R−1(R(Ψi)
T R(Ψj)) − Ψvo

R(Ψi)
T(tj − ti) − tvo

]

(6)

Note that state nodes are appended to the graph at the

rate of the visual odometry subsystem and that the 6 DOF

transformation is used to propagate the most recent state to

obtain an initial estimate for the newly added state.

Gyroscope readings Ψgyro are integrated according to

Bryson and Sukkarieh (2007) and constrain the relative ori-

entation of successive vehicle states

fgyro(si, sj ,Ψgyro) = Qgyro

[

R
−1

(

R(Ψi)
T

R(Ψj)
)

−Ψgyro

]

(7)

Using the fictitious zero state s∗
0 , location measurements

tgps obtained with the GPS receiver can be expressed simi-

larly as dependent on two states:

fgps

(

s∗
0 , sj , tgps

)

= Qgps

[

R
(

Ψ ∗
0

)T(

tj − t∗0
)

− tgps

]

(8)

Fig. 3 A graphical representation of the vehicle state estimation prob-

lem. Nodes represent the vehicle state at different times tk while edges

corresponds to constraints on these states introduced by measure-

ments xi . Odometry measurements result in constraints on successive

states, while intermittent global measurements anchor the state to a fic-

titious zero state s∗
0 . The graph is sparsely interconnected, as each node

is only constrained by measurements depending on a limited number

of other nodes in the graph

Using accelerometers as an inclinometer as proposed by

Konolige and Agrawal (2008), the orientation of the vehicle

in the global coordinate frame can be constrained in 2 DOF.

With the gravity vector g and accelerometer measurement

ag , the resulting constraint is expressed as

fg
(

s∗
0 , sj , ag

)

= Qg

[

R(Ψj)
T

R
(

Ψ ∗
0

)

g − ag

]

(9)

Since Qg has to account for measurement noise of the ac-

celerometers and for accelerations of the aerial platform in

flight as well, it was chosen to be sufficiently large in our

implementation.

2.1.3 Sparse optimization

In our graph-based framework, the state of the system can be

determined by collecting the information of all nodes, each

of which holds a single vehicle state sk . The state of the over-

all system is S = [s1, . . . , sm]T. The energy of the system

may be obtained by collecting the energy terms of all edges

E = [f1, . . . , fn]T. In order to move the system to a state with

a lower overall energy, we employ the Levenberg-Marquardt

algorithm (Marquardt 1963), using an optimized, publicly

available implementation (Lourakis 2010). With the Jaco-

bian JE = δE/δS, the augmented normal equation is given

by

(

JE
TJE + λI

)

	S = −JE
TS (10)

where I is the identity matrix and λ is a damping parameter

that is appropriately chosen so that the resulting matrix is

always positive definite. As a result, the energy function is

linearized around the current system state in every update

step, thus making the solution exact and the framework able

to deal with highly nonlinear constraints.

As depicted in Fig. 3, the local nature of most state mea-

surements results in a sparsely interconnected graph struc-

ture, which directly corresponds to a sparsity pattern in the

normal equation. The structure of the normal euqatio is pre-

dominantly block diagonal with additional non-zero entries

in rows and columns corresponding to the fictitious zero

Auton Robot

state. This structure ensures that the normal equation is well

conditioned in most cases and allows for the application of

sparse solvers, reducing the complexity of solving the sys-

tem to a fraction of the complexity as compared with a dense

system. Nevertheless, there is an upper bound to the number

of past states that can be incorporated into the optimization

while meeting the requirement for real-time throughput of

the state estimation. Real-time throughput can be guaranteed

by performing the optimization over a sliding window of the

most recent states and their attached constraints, rather than

the entire graph. This technique essentially keeps all past

states prior to the sliding window constant, anchoring the

global position and orientation of the more recent states by

their connecting constraints.

2.1.4 Graph reduction

Inertial measurements only constrain the global orientation

of the vehicle in 2 DOF, while global heading is not observ-

able solely based on these measurements. In our implemen-

tation, heading is inferred from multiple GPS measurements

which is applicable only if multiple GPS measurements are

incorporated into the sliding window of adjustable states.

Hence, the frequency at which GPS readings are available

determines the size of the sliding window.

In order to extend the time frame spanned by the sliding

window and thus relax the requirements for GPS availabil-

ity, the state estimation includes a graph reduction scheme,

similar to Konolige and Agrawal (2008) and Folkesson and

Christensen (2007). We apply the following steps in order to

marginalize a single state node sx from the graph . . . (also

see Rehder et al. 2012)

1. Solve the optimization problem for the sub-graph of

nodes and edges directly connected to sx . Determine the

overall state S of the sub-system as well as its approxi-

mated Hessian H = J T
EJE at the state of minimal energy.

2. Using the Schur complement (Konolige and Agrawal

2008), marginalize the rows and columns corresponding

to state sx from S and H . Select a vehicle state node from

the sub-graph as root node and transform state S and Hes-

sian H into the coordinate system of this state.

3. Render node sx and all directly attached constraints in-

active and introduce a new edge that constrains the re-

maining states in the sub-system where the transforma-

tion of the connected nodes into the coordinate system of

the root node constitutes the sensor modeling function h

and the transformed optimal transformations S constitute

the measurement x with H = QTQ.

The state estimation repeatedly marginalizes every other

node from the sliding window until about 60 consecutive

vehicle states have been removed. The number of consecu-

tively marginalized states was derived empirically as a trade

off between accuracy and the requirement to represent a time

frame of sufficient extent to incorporate multiple sparse GPS

readings. For stability, it does not marginalize nodes belong-

ing to a small set of the most recently added nodes or vehi-

cle states for which GPS measurements are available. As all

states are used to back-project laser scans and river segmen-

tation results into a global map, marginalized nodes are not

discarded but rather attached to remaining active nodes by

a constant 6 DOF transformation, thus successively forming

sub-maps of rigidly connected states that are transformed

according to the state of the attached active node.

2.2 Visual river detection and mapping

To explore the river, the rotorcraft needs some mechanism

for determing the river’s course so that it can move in

the correct direction. Also, river width measurements are

needed to build the river map. One approach would be to

use the onboard laser sensor, but it has an effective range

of around 10 to 15 meters which is sufficient for obsta-

cle avoidance but not always enough for keeping the river

banks in view or estimating the course of the river. Our so-

lution segments color images from an onboard camera to

find the extent of the river from the current viewpoint of the

rotorcraft. Using knowledge of the vehicle’s orientation and

height above the river provided by the state filter, the extent

of the river in the image can be projected into a local coor-

dinate frame. This forms a local map of the river for guiding

the rotorcraft along the river’s course. Pose estimates gener-

ated by the visual odometry system are used to register these

local maps to each other and by fusing many such local maps

over time a complete river map is built.

2.2.1 Challenges

The main challenge in detecting the extent of the river in im-

ages taken from the rotorcraft is the variability in water’s ap-

pearance. From satellite imagery or the viewpoint of a high

flying aircraft, waterbodies reflect the sky which makes them

fairly homogeneous in appearance and easy to segment. The

situation is different for a low flying air vehicle. The wa-

ter has reflections from the foliage and other structures on

the bank; reflections from the sky and dark regions in the

shadows of foliage. In addition, ripples in the water create

variations in texture. As a result, the river appears to be

highly inhomogeneous from the rotorcraft’s point of view.

This variability in river appearance in an image is illustrated

in Fig. 4.

In addition, the appearance of the water’s surface can

vary greatly between riverine environments and even within

the same environment as conditions change. Figure 5 shows

three images taken from the same location on a river at dif-

ferent times of day and year. This high degree of variability

Auton Robot

makes it difficult to use a supervised learning approach to

build a single model for water appearance or a single classi-

fier that will work robustly in different environments under

varying conditions.

2.2.2 Self supervised river detection

We exploit scene structure to build a self supervised system

that learns and constantly updates a function for discriminat-

ing between river and non-river regions. The algorithm uti-

lizes artificial horizon line information provided by the on-

board IMU to automatically generate training data and up-

date the classifier at every frame. We assume that the river

lies on or below the ground plane (this is true except for

places with a significant upward slope like waterfalls and

rapids) which means that everything appearing above the ar-

tificial horizon line must be part of the non-river area in the

image.

We then assume that areas below the horizon line that

are similar in appearance to the above horizon region are

unlikely to be part of the river and that areas below the hori-

zon line that look dissimilar to the above horizon region are

likely to be part of the river. By looking for areas below the

horizon most dissimilar to those above, candidate river re-

gions are found which are used for training as examples of

the river class. Everything appearing above the horizon line

is used to generate training examples for the non-river class.

Fig. 4 An example image illustrating the variation of river appearance

within a single image

Thus training examples are automatically selected at every

frame to train a classifier to segment the image into river and

non-river regions.

Feature extraction The input image from the camera is di-

vided into 5 × 5 pixel patches with a regular grid and a fea-

ture descriptor (X ∈ R
n) is calculated for each patch. This

feature descriptor contains information about the patch’s

appearance and position in the image. The motivation be-

hind computing the features over patches instead of indi-

vidual pixels is to reduce computational requirements. By

varying grid size, segmentation resolution can be traded off

against speed. The most commonly used attributes for visual

scene analysis tasks are color, texture, perspective informa-

tion (parallel lines, vanishing points etc.) and image posi-

tion. Position in an image provides a strong prior, the higher

up in an image a region is the less likely it is to be part of the

river and depending on the orientation of the camera with

respect to the river, regions appearing away from the center

towards the sides of the images could be less likely to be part

of the river. Straight lines are largely absent in natural scenes

so the feature descriptor we use does not include perspective

cues.

The color descriptor part of the feature vector contains

6 elements, the color information encoded in the RGB and

Lab colorspaces. The texture descriptor used is the response

to the Laws’ Masks (Laws 1980) over 4 different scales on

the 3 channels of the Lab image. We used eight of the nine

3×3 Laws’ Masks leaving out the mask that performs low

pass filtering, so the resulting texture descriptor had length

4 × 3 × 8 = 96. To compute the response to a filter over a

patch we use the L1 norm of the filter response of all the

pixels in the patch. While chosing the texture descriptor we

evaluated a number of different options including the SIFT-

like DAISY descriptor. We found that for our application,

different texture descriptors all performed roughly the same

so we chose the Law’s Masks because they were the compu-

tationally efficient. Details of our feature evaluation experi-

ments can be found in Achar et al. (2011). The position of a

patch in the image is described using 3 numbers, the signed

perpendicular distance (in pixels) of the patch from the hori-

Fig. 5 Three images taken at the same spot on the Allegheny River at different times. Variations in lighting, water surface ripples and surrounding

foliage cause large changes in the river’s appearance

Auton Robot

Fig. 6 Steps in the river detection algorithm (Color figure online)

zon line and the distance in pixels of the patch to the left and

to the right of the image center.

Sky detection As a preprocessing step, we first segment out

the sky and ignore it during all further computations. This is

done because sky tends to be washed out and can thus be

easily confused with shiny, mirror like parts of the water’s

surface. Also, removing the sky region saves computational

effort in future steps.

A linear support vector machine trained over a set of la-

beled images is used to detect the sky region in each image.

Sky regions in images have a number of characteristics; they

appear high up in the image, they tend to be bright or washed

out, they have little texture and are generally either blue in

hue or unsaturated. The sky is relatively easy to segment out

with a globally trained classifier as its appearance is not as

variable as that of the river. Figure 6(b) shows an example of

sky detection. The remainder of the image needs to be clas-

sified as either being part of the river or part of the shore.

The next step is to find the position of the artificial hori-

zon line in the image. For an air vehicle flying at low alti-

tudes, the onboard inertial sensors provide all the informa-

tion needed to calculate the position of the horizon line in an

image from a calibrated camera as the horizon line depends

only on the camera orientation with respect to the gravity

vector. The horizon line in 3D world space is the line at in-

finity on the ground plane in front of the camera. This line

can be projected into the image using the camera projection

equation to find the horizon line in the image.

Let the rotation of the camera be represented by the 3×3

matrix R where R is calculated with respect to a reference

frame where the y axis of the camera is aligned with the

gravity vector. Also, we use ri to denote the ith column

of R. The horizon line in 3D world space consists of all

points on the ground plane (points for which y = 0) that

are at an infinite distance along the camera’s z axis (the

forward direction). Thus, the horizon line in world space

is the set of (homogenous) points P∞ = [x 0 1 0]T where

x ∈ R. These points can be projected into the image as

p∞ = K[R | 03×1]P∞ where p∞ is the homogenous image

coordinate of the horizon point P∞ and K is the camera’s

intrisic calibration matrix. It can be shown that the points

p∞ satisfy the line equation lT p∞ = 0 where

l = Kr1 × Kr3 (11)

The horizon computation assumes that the region the ro-

torcraft is operating in is locally flat and so the river lies on

the plane perpendicular to the gravity vector. In practice, our

algorithm is robust to small inaccuracies in the estimate of

the horizon line position and can be calculated simply from

the IMU or using the state estimator output.

Appearance modeling The goal of appearance modeling

is to assign to each patch a probability of being part of the

river (R) or being part of the shore (¬R) on the basis of the

feature vector (X) that describes it. This probability is then

used to find candidate river patches (patches that have a high

probability of belonging to the river).

Appearance modeling depends on being able to create

a generative model of appearance from a set of observed

samples. A number of methods exist for estimating a joint

probability distribution P(X) over a set of d variables X =
{x1, x2, x3, . . . , xd} from a set of l samples {X1,X2, . . . ,Xl}

Auton Robot

drawn independently from the underlying distribution. We

chose to use a Chow Liu tree (Chow and Liu 1968). A Chow

Liu tree approximates the joint probability distribution of a

set of random variables (often discrete variables) by factor-

izing it into a product of second order distributions. It repre-

sents a significant improvement over a Naïve Bayes model

as it allows for first order dependencies between variables.

A Chow Liu tree is optimal in the sense that it is the distri-

bution of its class that minimizes the KL divergence to the

real joint probability distribution.

We wish to assign to each patch a probability of being

part of the river (R) or being part of the shore (¬R) on the

basis of the feature vector (X) that describes it. By Bayes’

Rule we have

P(¬R | X) = P(X | ¬R)P (¬R)

P (X)
(12)

Since the labels (R and ¬R) are the hidden quantities that

are to be determined it is not possible to estimate P(X | ¬R)

directly. A new boolean variable H is defined which is true

for regions below the horizon and false for regions above the

horizon. Unlike R, the value of H for each position in the

image is known because the equation of the horizon line is

known. As mentioned earlier, it has been assumed that the

appearance of the shore regions above the horizon is repre-

sentative of the entire shore region in the image, this implies

that P(X | ¬R) ≈ P(X | ¬H) which gives

P(¬R | X) ≈ P(X | ¬H)P (¬R)

P (X)
(13)

= P(X | ¬H)P (¬R)

P (X | ¬H)P (¬H) + P(X | H)P (H)
(14)

It now remains to form generative appearance models

P(X | ¬H) and P(X | H). These appearance distributions

P(X | ¬H) and P(X | H) are modeled using Chow Liu

trees. The feature vector X contains color, texture and image

position information and has high dimensionality as it con-

tains many texture filter responses. We create an abridged

feature vector X̂ ∈ R
d for the Chow Liu modelling where the

texture descriptor subvector is replaced by its L2 norm be-

cause using the unabridged feature vector would slow down

computation. Additionally, X̂ does not include image posi-

tion. Since we are modeling only appearance, including po-

sition information in X̂ would introduce an undesirable bias.

The complete unabridged feature vector is used in the later

stage of the algorithm for the linear support vector machine

where computation is less of an issue and the position infor-

mation would not create a bias.

Although a Chow Liu tree can be used in a continuous do-

main, we discretize the feature vectors X̂ ∈ R
d for each im-

age patch into a new feature vector X̃ ∈ S
d where each fea-

ture in X̃ is assigned to 1 of 16 levels (S = {0,1,2, . . . ,15})

using equally sized bins that span the range of values taken

by that feature. This discretization provides a simple solu-

tion to representing non Gaussian, multimodal distributions

of features. Each discretized feature vector X̃ contains the

R, G, B, L, a and b channels of the associated patch along

with the patch’s texture.

Two trees are built, one using the feature vectors of

patches above the horizon (X̃ /∈ H) to model P(X | ¬H)

and another using the feature vectors of below horizon

patches (X̃ ∈ H) to model P(X | H). The feature occu-

rance and co occurance probabilities needed to build the

trees are estimated directly from the available image data

by counting, with pseudocounts added to prevent probabil-

ities of 0 and 1. These trees are used in (13) to calculate

P(¬R | X) for each patch in an image. An example is shown

in Fig. 6(c), the regions considered to have a high probability

of being part of the river are in cold colors and regions with a

high probability of being part of the shore (high P(¬R | X)

are in warm colors.

Finding reflections Reflections are a useful cue for deter-

mining the extent of the river. If an object and its reflection

can be found it is fairly safe to assume that the reflection was

from the water’s surface. We look for reflections of salient

points (Harris and Stephens 1988) that occur above the hori-

zon line. We treat the water surface as part of a plane of

known orientation and distance from the camera. With this

information it is easy to use the geometry of reflections to

find a small region under the horizon where each salient

point’s reflection (if present) should occur. We search this

region for patches that are similar to a vertically mirrored

version of the patch centered around the point being consid-

ered. The similarity measure used is normalized cross cor-

relation. Pairs of patches that get similarity scores above

a threshold are marked as object-reflection pairs. Patches

surrounding the reflection are added to the support vector

machine’s training data as examples of river patches. Fig-

ure 6(d) shows the reflections that were detected in an image

(the highlighted areas below the horizon).

Finding novel regions When new appearance models for

the river and non-river regions are built from scratch for ev-

ery new frame, the algorithm is unable to handle novel ob-

jects like piers or boats that appear below the horizon be-

cause of the assumption that the above horizon part of the

image is representative of the entire non-river region. To

solve this problem we maintain two appearance models for

the river, one built as before from just the current frame,

Pcur and another built from patches sampled from the river

region segmented out in previously images Pold . Patches are

sampled selectively from previous frames to build Pold , with

patches from older images being less likely to be used than

patches from more recently seen images. The probability of

Auton Robot

a patch from the kth frame before the current frame being

sampled for Pold is λk where λ < 1 is a rate of decay param-

eter. We define a heuristic measure of novelty η(X) for each

patch whose value is given by

η(X) = log
Pcur(X)

Pold(X)
(15)

η(X) is a measure of how well a patch fits with the

appearance model of the river built over previous images.

Patches with a high value of η(X) are different in appear-

ance from the river and are likely to be part of the bank or an

object in the water. We threshold η(X) to select high novelty

patches below the horizon which are added to the set of neg-

ative training examples in the SVM classifier. Figure 6(d)

shows the novel patches (marked in purple) that the algo-

rithm found in an image.

Classifier training For each patch, the probability of be-

ing part of the shore region P(¬R | X) is calculated using

(13). The patches that are least likely to be on the shore

(P(¬R | X) < θ) are used as candidate river patches. Using

a low value for θ reduces the chance that shore patches are

accidentally used as candidate river patches, but if θ is set

too low then the selected region will be too small to provide

a good representation of the river region. In our experiments,

θ was set to 0.01. Patches where reflections were found are

also added to the set of river training examples. The train-

ing examples used for the shore class are the patches that

are considered to be novel and all the non-sky patches that

appear above the horizon line. These training examples are

used to train a two class (river/shore) linear support vector

machine.

The SVM uses the unabridged, continuous valued feature

vectors X, including image position and the complete tex-

ture descriptor. The support vector machine is trained using

an online stochastic gradient descent method. Since we are

learning a new classifier for each new frame, while the ap-

pearance of the river is likely to remain fairly constant over

short periods of time, the SVM training updates the SVM

model learnt on the previous frame. This reduces the num-

ber of gradient descent iterations needed to train the clas-

sifier for each new frame. Figure 6(d) shows the river and

shore training examples picked by the algorithm in an im-

age. Candidate river patches (patches for which P(¬R | X)

was below the threshold θ) are in red, the highlighted re-

gions are places where reflections were detected. The green

patches are the patches selected as shore training examples

because they lie above the horizon and the patches in purple

were selected as shore training examples because they are

sufficiently novel in appearance.

Using the output of the Chow Liu tree directly to classify

the scene (say by thresholding P(¬R | X) at 0.5) does not

work well. There are many image regions that would be mis-

labelled by the Chow Liu tree, the SVM introduces a height

prior and has access to a more discriminative (but longer)

feature descriptor which enables it to classify ambiguous re-

gions better.

Detecting water The learnt SVM is a vector of weights

w ∈ R. This SVM is used to assign a label yi that could ei-

ther be ‘river’ or ‘shore’ to each patch xi . One way to clas-

sify patches would be to consider each patch in isolation and

assign it to the river class if its dot product with the weight

vector is positive and assign it to the non river class other-

wise.

yi =
{

+1 if w · xi > 0

−1 if w · xi ≤ 0
(16)

This approach disregards the spatial distribution of la-

bels. Neighboring patches are likely to share the same label,

this fact can not be exploited if a hard assignment of labels

is made to patches individually. Instead, a soft assignment

of labels is made (yi ∈ (0,+1))

yi = 0.5 + 1

π
arctan(kw · x) (17)

The effect of the soft assignment is that patches closer

to the SVM decision boundary are labeled with less confi-

dence than points with larger margins. These label assign-

ments are used to construct a Markov Random Field (Li

1994). The MRF structure chosen is a regular lattice with

each patch forming a node connected to its 4 neighbors. The

soft assignments yi made by the support vector machine are

used as measurements and a Gauss-Markov energy model is

applied to find the most likely continuous label li for each

patch. This goal is equivalent to finding the labeling L that

minimizes the energy U(L)

U(L) = α
∑

(i,j)∈E

(

li − lj
)2 +

∑

i∈V

(

yi − li
)2

(18)

where a node pair (i, j) is in E if they are neighbors, V is the

set of all nodes and α is a parameter that controls the amount

of spatial smoothing performed by the MRF. This energy

function U(L) can be minimized efficiently in one step as it

is equivalent to a system of linear equations. An example of

the values assigned by the MRF is in Fig. 6(e). Values of l

closer to one (river areas) are in shades of blue and patches

with low l values (shore region) are in red. Figure 6(f) shows

the final output of the segmentation algorithm formed by

thresholding Fig. 6(e) at zero.

2.2.3 2D river mapping

We build a 2D map of the river by registering the outputs

of the self-supervised river detector into a global frame us-

ing vehicle pose estimates from the state filter. The output

Auton Robot

Fig. 7 Local 2D River Mapping: (a) Image with the detected extent

of the river (thresholded at Priver = 0.5) overlaid in red. (b) The same

detected extent of the river projected into a top down view. Blue regions

are part of the river and red regions are the shore. The surrounding

green area is unobserved in this image as it lies outside the viewing

frustum (Color figure online)

of the river detector is used as an estimate of the probabil-

ity of each point in the image being part of the river. Since

the river surface is assumed to lie on the ground plane, the

probabilistic labeling from the vehicle’s viewpoint can be

projected into a top down view using knowledge of the ve-

hicle orientation and height provided by the state filter. Each

of these top down views is a local, vehicle centered map of

a small section of the river (Fig 7(b)). These local maps are

registered globally with position information from the state

filter and fused into a global map of the river using occu-

pancy grid mapping, see Fig. 19(b).

2.3 Obstacle mapping

We keep a three dimensional representation of the world

to allow for obstacle avoidance and motion planing. The

3D evidence grid expresses the belief that a volume of

space is occupied and represents relevant obstacle occu-

pancy (Martin and Moravec 1996). An evidence grid can be

updated in realtime and can incorporate sensor uncertainty.

It is arranged as a regular grid of voxels that store the log-

likelihood ratio of the voxel being occupied. The raw range

sensor data from the ladar is transformed to an occupancy

probability and the result is mapped into an evidence grid us-

ing position and orientation information from the state filter.

The method used to update the evidence grid can be found

in Scherer et al. (2008).

2.3.1 Distance transform

In addition to the evidence grid, a key element required for

motion planning and obstacle avoidance on the rotorcraft is

a cost map based on the 3D evidence grid information. The

dominant factor for the cost of occupying a location is the

distance to the closest obstacle. For this reason we use a dis-

tance transform based on the evidence grid that stores the

distance to the closest obstacle at each grid cell. An effi-

cient non-incremental linear time algorithm to calculate the

distance transform was proposed by Meijster et al. (2000).

While efficient if the environment does not change, it has

been shown in Scherer et al. (2009) that repeatedly recom-

puting the result for changing obstacles takes too long to be

useful for navigation on a large grid.

A simple incremental approach is to update the grid with

a mask of the distances to the obstacles. Every time an ob-

stacle is added, a convolution of the surrounding area is per-

formed to check if any of the distances are larger than the

distance in the mask. In the case of obstacle removal, cells

in the mask are set to infinity and a region of two times the

size of the mask is scanned for existing obstacles that are

re-added. While better than recomputing the entire distance

transform when new information is received, this algorithm

has to check many cells that are already correct especially if

multiple obstacles close to each other are modified.

An efficient incremental algorithm was proposed in

Scherer et al. (2009) based on the propagation of wavefronts

outwards from added or removed obstacles to modify only

cells that need updating. This algorithm was improved in

Lau et al. (2010) to reduce duplicated work at the wavefronts

and reduce the storage required at each cell. Our algorithm

is a modified version of the Lau algorithm, which fixes a bug

and further improves the algorithm by removing duplicated

cell processing at the wavefronts and reducing the storage

required at each cell. The bug (lines 17–20 of Algorithm 1

in Lau et al. 2010) causes some cells to be given the wrong

priority in the queue because they have their distance reset

to maximum before being added to the queue with the max-

imum distance, rather than the existing distance, used as the

priority.

The input to the distance transform update algorithm is

a list of grid cells that have been changed by either adding

or removing an obstacle. Distances are stored as square Eu-

clidean distances to allow for the use of compact fixed point

numbers and to remove an expensive square root operation

when calculating the distance. The expansion is limited to

a maximum distance of d2
max to limit the number of cells

that must be modified when obstacles are added or removed.

Cells further than the maximum distance from an obstacle

are not modified, however all cells are initialized with a dis-

tance of d2
max . The method is based on the propagation of

wavefronts with the cells in the wavefront kept in a prior-

ity queue. Each cell s is a structure that contains the dis-

tance to the closest obstacle, dists , an in-queue flag indicat-

ing whether it is on the queue, inQs , and a reference to the

position of the closest obstacle, obsts . The in-queue flag is

always set immediately prior to adding the cell to the queue

and cleared when the cell is dequeued. The obstacle refer-

ence can be a pointer to the cell which is the closest obstacle,

however a more compact method is described below. The

cells are initialized to have the maximum distance, d2
max ,

and a null obstacle reference. Figure 8 contains all the func-

tions used by the Euclidean distance transform algorithm,

with the priority queue or Open list being referred to as O in

the algorithm.

Auton Robot

INITIALIZE()

1 O ← ∅
2 foreach cell s

3 dists ← d2
max

4 obsts ← ∅
5 inQs ← false

UPDATEDISTANCES(O)

1 while O �= ∅
2 s ← POP(O)

3 if dists = d2
max

4 RAISE(s)

5 else

6 LOWER(S)

SETOBSTACLE(s)

1 if dists �= 0

2 dists ← 0

3 obsts ← s

4 inQs ← true

5 INSERT(O, s,0)

REMOVEOBSTACLE(s)

1 if dists = 0

2 dists ← d2
max

3 obsts ← ∅
4 inQs ← true

5 INSERT(O, s,0)

ISVALID(s)

1 if dists = 0ordistobsts = 0

2 return true

3 else

4 return false

LOWER(s)

1 foreach n ∈ Adj (s)

2 d ← DISTANCE(n, s)

3 if distn > d

4 distn ← d

5 obstn ← obsts
6 if ¬inQn

7 inQn ← true

8 INSERT(O,n, d2
max + d)

9 inQs ← false

DISTANCE(n, s)

1 v ← posn − posobsts

2 return v · v

RAISE(s)

1 foreach n ∈ Adj (s)

2 if ¬inQn

3 if ISVALID(n)

4 inQn ← true

5 INSERT(O,n, d2
max + distn)

6 if distn �= d2
max

7 obstn ← ∅
8 inQn ← true

9 INSERT(O,n,distn)

10 distn ← d2
max

11 inQs ← false

Fig. 8 Distance transform algorithm

There are two types of processes that can be called when

a cell is dequeued, LOWER or RAISE. The LOWER pro-

cess propagates out new lower distances from a new obsta-

cle or valid cell. A valid cell is one that references an ob-

stacle that has not been removed. The RAISE process prop-

agates out cleared distances when an obstacle is removed.

The differences between our algorithm and the Lau algo-

rithm are the use of the in-queue flag to prevent duplication

of the wavefront during raise and lower propagations and

the use of wave sequencing. When a valid cell is added to

the queue, it is given a key of d2 + d2
max , where d2 is the

cell’s square distance at the time of adding. When a non-

valid cell is added to the queue, it is given a key equal to

the square distance it had before it was cleared. This means

that keys of cells added to the queue are always proportional

to the distance from the origin of the current wave ensuring

a uniformly expanding wavefront. The extra d2
max term for

valid cells ensures they always have a larger key than non-

valid cells resulting in wave sequencing, i.e. a full raise wave

is completed before continuing the propagation of a lower

wave. This has no impact when obstacles are being added,

however when obstacles are removed, a raise wave is prop-

agated outwards until all the nearby invalid cells have been

cleared and all nearby valid cells have been found. Only then

is a lower wave propagated from the valid cells to give the

cleared cells new distances. The Lau algorithm adds both

cleared and valid cells with a key equal to the distance from

the relevant wave’s origin such that the two waves, raise and

lower, run simultaneously. In many situations this leads to

cells being added to the queue multiple times creating extra

work. Figure 9 shows a raise wavefront completing before a

subsequent lower wave is propagated.

As a consequence of the sequenced waves, the order in

which obstacles are added or removed makes a difference.

If all the updates, adds and removes, are processed together

the removed obstacles will be processed first because of the

Fig. 9 Obstacle Removal: A raise wavefront propagates outwards

clearing invalid cells and finding a surface of valid cells due to nearby

obstacles. When all the invalid cells have been cleared a lower wave-

front propagates out from the surface of valid cells and terminates when

the maximum distance is reached

higher priority given to raise waves. In many situations this

results in some cells being needlessly cleared and then later

given a new distance by a new obstacle in the same update.

By adding all the new obstacles and running a full update

before removing any obstacles, many of those cells can be

preemptively given a new distance without being modified

twice. When the obstacles are removed, the raise wave will

Auton Robot

not have to propagate as far because it will terminate at the

now valid cells created by the new obstacles.

Each cell must store a reference to its closest obstacle;

the simplest way to do this is to store a pointer to the obsta-

cle cell. Pointers can be large especially on 64-bit systems

which when multiplied by the number of cells in a large grid

can greatly increase memory requirements. The storage re-

quired can be reduced by replacing both the pointer and dis-

tance stored in each cell with an index into a pre-computed

array of possible obstacle offsets and distances. This method

leverages the fact that the distance to the closest obstacle

will be at most dmax and is a trade off between the reduced

memory used by each cell and the memory used to store

the pre-computed look-up table. In most cases the savings at

each cell, which are multiplied across the entire grid, will far

outweigh the space required to store the look-up table. For

example a 1000 × 1000 × 200 grid would require 2000 MB

of memory if a pointer is used, and only 800 MB if an index

is used. The look-up table for a fairly large, 50 cell, distance

expansion only requires an additional 5 MB.

2.3.2 Map scrolling

The area traversed by an aerial vehicle can be very large,

in particular the rivers we explore with the rotorcraft can be

many kilometers long. Covering the entire area with a single

grid would require a prohibitively large number of cells. The

map scrolling algorithm moves the distance transform as the

vehicle moves such that obstacle information is always de-

fined in the region around the vehicle but the active memory

required remains constant. The terminology used during a

scroll event can be seen in Fig. 10.

When a scroll of the distance map is triggered, a new

volume in the direction of travel must be represented. This

is done by clearing the vacated volume behind the new grid

position and reallocating its memory. To minimize the work

required, cells in the existing volume that remain unchanged

are not copied or moved. As a result the physical position

of cells does not map directly to their position in memory.

A memory mapping function takes the position in the grid

of a cell (x, y, z), and how much the grid has scrolled along

each dimension (sx, sy, sz). The output is an index indicat-

ing where the cell is stored in memory. The scroll parame-

ters keep track of the current wrap around of the grid rather

than store the absolute offset from the starting position. This

ensures that the scroll parameters stay small, taking values

from 0 to the grid’s size in each dimension, without limiting

how far the grid can scroll. The memory mapping function

first undoes the wrap around of the grid in each dimension

giving the cell’s memory space coordinates, i.e. the 3D posi-

tion the cell would have in an unscrolled grid. Equation (19)

shows how a cell’s memory space x-coordinate is found us-

ing the x-component of its position in the grid, x, the current

Fig. 10 Scroll Event: The grid has 3 obstacles. It is scrolled to the

right creating errors at the trailing and leading edges. A raise wave

is triggered at invalid cells on the trailing edge and a lower wave is

triggered at valid cells on the leading edge. The wavefronts propagate

out fixing the errors

wraparound in the x-direction, sx and the size of the grid

along the x-direction, dx . An equivalent equation is used for

the y and z components. Equation (20) shows how the mem-

ory index is found from the memory space coordinates of a

cell and the dimensions of the grid.

mx = x + sx +
⌊

x + sx

dx

⌋

dx (19)

i = mxdydz + mydz + mz (20)

As a result of scrolling, cells can become inconsistent at

the trailing and leading edges. Errors occur at the trailing

edge if there is an obstacle in the vacated volume and cells

continue to point to it. When the vacated volume is cleared

and the memory reallocated these cells will end up pointing

to an unrelated cell on the other side of the map causing se-

rious problems. These inconsistent cells need to be cleared

Auton Robot

or changed to point to a different obstacle that is inside the

new grid boundaries. Errors occur at the leading edge when

an obstacle inside the existing volume is near the leading

edge and there are newly added cells on the other side of the

edge that should have a lower distance. Both these errors are

present in Fig. 10. After clearing the cells in the vacated vol-

ume and reassigning their memory, the errors are corrected

by clearing and triggering a raise wave at any cells on the

trailing edge that are not valid and a lower wave at any cells

on the leading edge that are valid. The waves are triggered

by adding the cells to the priority queue and running an up-

date as described in Sect. 2.3.1. These waves will proceed

as normal, clearing any non-valid cells then propagating out

new lower distances to cells that need them.

As the vehicle moves, scroll events need to be triggered

so that the distance map can keep up. When a scroll is trig-

gered the grid is moved so that the vehicle is in the center of

the grid. Deciding when to scroll the map is dependent on a

number of considerations. The first is that all new sensor in-

formation should always be captured. To fulfill this require-

ment the grid must scroll before the vehicle gets closer than

its maximum sensor range to an edge of the grid. The sec-

ond consideration is that the amortized work required (the

total time spent performing scrolling operations) should be

minimized while the latency should be maximized. Latency

is dependent on the per event work required, and is impor-

tant because the distance transform can not be updated with

new sensor information while it is being scrolled. The work

performed during a scroll event primarily involves clearing

the cells in the vacated volume and correcting the inconsis-

tencies at the trailing and leading edges. Frequent scrolling

means that the edges have to be corrected more often but

there are less cells to be cleared at each event. The last con-

sideration is which dimensions the grid should scroll along.

The size of the trailing and leading edges, surfaces in 3D,

is greatly increased if the grid is scrolled in multiple di-

rections. This creates extra work to ensure the distances are

consistent along these edges. For this reason the scroll trig-

ger is checked separately along each dimension and the grid

is only centered around the vehicle in the dimension of the

trigger. This reduces the per scroll work load because each

dimension is usually scrolled separately, although they could

occur simultaneously, and only when a scroll is actually re-

quired along that dimension. For example our aerial vehi-

cle does not change its altitude enough to require the grid

to scroll in the vertical direction. Checking the dimensions

separately stops small unnecessary grid movements in the

vertical direction because of scrolls triggered at the horizon-

tal edges.

bx < αhrh (21)

The trigger for the x-direction is shown in Eq. (21) where

bx is the distance to the closest boundary along the x-axis,

rh is the maximum horizontal sensor range and αh is a tun-

able parameter. The horizontal parameters are shared by the

triggers along the x and y-axis, the z-axis trigger uses sep-

arate parameters. Changing the value of α affects how of-

ten the grid is scrolled. The value of α can vary from 1,

which means the grid will not scroll until the maximum sen-

sor range is at the boundary, to half the grid size along the

relevant axis, which means the grid will scroll every time

the vehicle moves. Setting α is a trade off between total

scrolling work done over time and work required per scroll

event.

2.4 3D Ladar scanner

The rotorcraft must be able to operate in the space between

the water’s surface and the tree canopy. In this cluttered

space, a reliable short range perception system is necessary

for obstacle avoidance and mapping. To measure 3D infor-

mation about the environment, we use an off-axis rotating

2D laser line scanner. As seen in Fig. 11(a), a Hokuyo UTM-

30LX is mounted with the scan plane tilted at 45◦ with re-

spect to a sweep motor axis.

Other ladar mounting and actuation configurations such

as nodding, spinning on-axis, or roundly swinging (Mat-

sumoto and Yuta 2010), did not provide the same scan den-

sity or sensing field of view. Our configuration has the ad-

vantage of equal detection of horizontal and vertical obsta-

cles with a full 360◦ field of view, which matches the om-

nidirectional mobility of the rotorcraft. Figure 11 shows the

hatched scan pattern sensed by the spinning scanner. This

scan pattern detects thin horizontal and vertical obstacles

equally well as opposed to a nodding laser, which has dif-

ficulty detecting thin horizontal obstacles or a vertically-

mounted on-axis spinning laser, which has difficulty de-

tecting thin vertical obstacles. In a natural river environ-

ment, thin horizontal and vertical tree branches should be

expected and can be reliably sensed with our configura-

tion.

2.4.1 Registration

To register ranged data points Pr from the laser into a

non-spinning base frame Pb , we apply a series of 4 × 4

homogeneous coordinate transformations to each ranged

point.

Pb = TwTmTsPr (22)

Pr : Ranged point in the coordinate frame of the ladar opti-

cal receiver.

Ts : Time dependent transform around a single axis of ro-

tation, which expresses the orientation of the rotating

mirror within the laser scanner.

Auton Robot

Fig. 11 Laser scan pattern when the scan plane is tilted at 45◦ to the sweep motor axis. The horizontal magenta line segment in (c) shows the

widest unseen visual angle at the hatched diagonals (Color figure online)

Tm: Full 6 DOF transformation, which remains constant

and represents the mounting configuration of the scan-

ner on the sweep axis mount. This transform takes into

account the tilt of the laser scan plane, the translation

between sweep axis of rotation and the laser receiver,

and any mechanical misalignment and can be found us-

ing a nonlinear optimization similar to Fairfield (2009)

or Harrison and Newman (2008).

Tw: Time dependent transform around a single axis of ro-

tation to account for the rotation of the laser module

around the sweep motor axis. This angle is calculated

by assuming a constant sweep motor speed and inter-

polating the angle given by the motor encoder at the

beginning and end of each line scan.

Pb: Position of the 3D point in the non-spinning base frame

of the system. The origin of the base frame contains the

sweep motor axis.

2.4.2 Obstacle detection confidence

We developed a model of the laser’s obstacle detection per-

formance to provide a confidence measure for the detection

of variously sized obstacles at different vehicle velocities.

Obstacles are modeled as thin, floating objects to account for

a worst case senario such as a hanging vine or thin branch.

The magenta line in Fig. 11(c) represents a horizontal obsta-

cle. In our model, obstacles are defined only by their length,

which is valid for the small tree branches that will pose sig-

nificant danger to the rotorcraft above the river. We make

two important assumptions: (1) if a scan line falls on the

object, the object will be detected (i.e., the scan is dense)

and (2) the rotation of the hatched scan pattern varies ran-

domly from sweep to sweep. This random rotation variation

could come from external perturbations in the vehicle’s yaw

or could be manually introduced by adding an angular off-

set to the motor for each sweep. The unseen angle between

scans after one sweep is:

θu =
√

2
2πλw

λs

(23)

where λw is the sweep rate of the motor and λs is the line

scan rate of the ladar. The factor of
√

2 expresses the greatest

unseen angle, which is at the diagonal of the square in the

hatched scan pattern. The visual angle θo of an obstacle with

length l at a distance r is expressed as:

θo = 2 arctan

(

l

2r

)

(24)

The probability of detection after one sweep is simply the

ratio of the obstacle’s visual angle to the unseen angle, with

a maximum probability of one. Here we consider a static

obstacle directly in the path of the vehicle moving at velocity

v from an initial starting distance D0. The distance r and

thus the visual angle will be reduced for each new sweep.

The probability of an observation after k sweeps is

pk(obs) = 1 −
(

1 − min

(

θo(r)

θu

,1

))k

(25)

r = D0 − (i − 1)v

λw

(26)

where the object’s visual angle θo depends on r .

For a desired observation confidence, safe maximum ve-

locities are found which satisfy the following equation with

a fixed C-Space expansion LC , reaction time ta , and maxi-

mum vehicle acceleration a:

D0 − LC ≥
(

k

λw

+ ta

)

v + v2

a
(27)

The inequality states that the rotorcraft must observe the

obstacle, react, and come to a stop in a distance equal to

or less than the maximum laser range minus the C-Space

expansion. Figure 12 plots safe rotorcraft velocities versus

Auton Robot

Fig. 12 Worst case analysis of maximum safe velocity for varying

obstacle lengths. Maximum velocities increase in discrete steps since

we require that a full sweep must be completed before an obstacle can

be detected (Color figure online)

obstacle length from 0.1 m to 1 m for three different maxi-

mum laser ranges. We have found that the effective range of

the Hokuyo laser scanner can be as low as 10 m or 15 m in

bright, outdoor conditions. In this figure, obstacle detection

confidence set to 95 %, C-Space expansion is 0.5 m, reac-

tion time is 0.1 s, maximum acceleration is 5 m/s2, scan rate

is 40 Hz and sweep rate is 1 Hz. A velocity is considered

safe if the rotorcraft can detect the obstacle and come to a

stop before violating the C-Space expansion. Maximum ve-

locities increase in discrete steps since we require that a full

sweep be completed before an obstacle can be detected.

3 Results

We evaluate our results based on the ability of our sensing

and perception algorithms to enable river navigation while

avoiding obstacles and generating an accurate map of the

river’s course, width, and canopy height. Section 3.1 de-

scribes the sensor suite, datasets, and computing hardware

and Sect. 3.2 details results from the state estimation system.

Visual river detection in Sect. 3.3 shows mapping results for

the course and width of the river as well as a direction of

travel for the vehicle. We finish with ladar based evidence

grid mapping in Sect. 3.4 and show final integrated mapping

results for canopy height and shoreline structure in Sect. 3.5.

Finally, Sect. 3.6 reveals various insights into our system

and analyzes our criteria for success.

3.1 Experimental setup

Sensor data to validate our system was collected on a stretch

of the Allegheney river, Pennsylvania, USA, in a narrow

Fig. 13 Surrogate data collection system at the test site on the Al-

legheney river. Here we see the GPS, IMU, ladar and stereo cam-

era pairs (one temporary COTS unit and the other a lightweight in–

house device). There is also a high-end, heavy GPS unit that we use to

groundtruth the experiment

passage created by an elongated island named Washing-

ton’s Landing. This river passage is approximately 30 me-

ters wide, with several car and railway bridges crossing over-

head, and on either side of the passage there are tall trees and

a steep embankment—all acting to create intermittent GPS

coverage. To evaluate the river detection algorithm under

varying conditions, we conducted additional testing across

four datasets captured at different times of the day and year

on two different rivers in southwest Pennsylvania; the Al-

legheney river and the Youghiogheny river.

3.1.1 Sensing hardware

For the complete system test, we deployed our sensor suite

on a surrogate data collection platform, seen in Fig. 13. We

have a flight ready version using the same sensors and em-

bedded computing, as describe below, but at present we have

not flown on a river because of the inherent risks involved

with autonomous flight over a body of water. We have con-

ducted flight tests on land as shown in Haines (2011).

The surrogate platform is substantially over the 1 kg pay-

load of the rotorcraft. However, the excess weight comes

from test computing and test mounts—whereas individually,

the sensors, lightweight rotorcraft mounts, and embedded

computing are within the total weight budget. Also seen in

Fig. 13 is the high-accuracy L1/L2 GPS unit used for posi-

tion information ground truth.

3.1.2 Embeded computing

The entire system runs at real-time on-board our rotorcraft,

using an embedded Intel Core 2 Duo 1.86 GHz processor in

the COM Express form factor with a custom designed car-

rier board based on the open-source PIXHAWK pxCOMex

(Meier et al. 2011). To reduce the computational load on

Auton Robot

Fig. 14 Estimated path demonstrating the state estimation perfor-

mance for different levels of GPS availability, overlaid onto an aerial

map and a highly accurate L1/L2 GPS reference path. The path de-

picted in (a) was generated using 194 L1 GPS measurements. The

estimations shown in (b) and (c) incorporated 6 and 2 global position

measurements, corresponding to a rate of about a single GPS reading

every 90 seconds and 270 seconds respectively (Color figure online)

the main embedded processor, we compute feature detec-

tion and matching for visual odometry using a small array of

digital signal processors connected via USB (Haines 2011).

3.2 Vehicle state estimation

Figure 14 depicts the estimated vehicle positions for differ-

ent levels of GPS availability and is overlaid onto an aerial

map of the river. For ground truth, we acquired position in-

formation with a high accuracy L1/L2 GPS post-processed

with RTKLIB (Takasu et al. 2007), which is shown in green.

The sequence spans about 2 km and roughly 10,000 video

frames. Figure 14(a) depicts results for a state estimation

that incorporated measurements of a consumer-grade GPS

receiver at a rate of roughly 0.3 Hz. As seen in Fig. 14(a)

the estimated vehicle path closely resemble the ground truth

path, despite employing a significantly lighter and less ac-

curate GPS receiver. Figure 14(b) displays the same dataset,

but GPS availability was synthetically degraded to 6 mea-

surements over the entire course of the experiment. To sim-

ulate extensive GPS dropouts, we evenly subdivided the tra-

verse into six segments and randomly sampled a single GPS

reading from each segment. These GPS measurements are

marked as red crosses in the figure. Even though GPS read-

ings were incorporated only six times over 2 km, the result-

ing path is comparable to the results demonstrated with 194

GPS measurements in Fig. 14(a). This similar performance

demonstrates that the state estimation system is able deal

with seriously limited GPS coverage. Figure 14(c) depicts

an estimation for the minimal case for which global head-

ing is observable. The state estimation proves capable of

inferring global position and heading up to reasonable ac-

curacy, although the divergence of the estimated path from

ground truth is more apparent. In the experiments shown in

Fig. 14(b) and Fig. 14(c), the graph reduction scheme sim-

plified the graph of initially 10,000 stereo pairs to roughly

170 active state nodes and solved the resulting reduced sys-

tem in about 300 ms on our computer hardware.

3.3 River detection

We tested the river detection algorithm on four datasets cap-

tured on different rivers under varying conditions. Three

of the datasets were collected on the Allegheny River near

Herr’s Island in Pittsburgh, PA. The first (Allegheny Day)

was collected on a summer afternoon, the second (Allegheny

Dusk) was captured near dusk, and the third (Allegheny Fall)

was collected in autumn around noon. The forth dataset was

collected at Perryopolis, PA on the Youghiogheny River. The

Youghiogheny dataset was collected around noon during the

summer. Each dataset contains 120 to 150 images captured

from a small motorboat.

All the images in these datasets were manually seg-

mented into three labels (river, shore and sky) to provide

ground truth for performance evaluation. Since our algo-

rithm generates only two labels and differentiating between

the shore region and the sky is not our goal, we treat them as

a single class for the purpose of evaluating performance. The

performance metric we used is the mean error rate, which is

the percentage of pixels misclassified by the algorithm com-

pared to the ground truth labeling. This includes both river

pixels misclassified as shore and shore pixels misclassified

as river.

We compare our self supervised approach to a fully su-

pervised alternative.

Auton Robot

Table 1 Supervised Segmentation Performance: Mean Error Rate

(percent). Each row corresponds to a test dataset and each column cor-

responds to a training dataset. A supervised approach to river segmen-

tation performs well when trained and tested on the same environment,

but often suffers significant performance degradation when run on an

environment different from the one it was trained on

Dataset Allegheny day Allegheny dusk Allegheny fall Yough All but self All

Allegheny day 2.54 5.60 4.97 4.19 4.19 3.48

Allegheny dusk 7.95 2.32 12.51 8.48 7.93 3.71

Allegheny fall 10.04 5.42 2.64 7.51 10.33 4.14

Yough 4.12 4.36 6.24 2.59 4.62 3.44

3.3.1 Fully supervised river detection

As a point of comparison against our self supervised clas-

sifier, we evaluate the ability of a fully supervised classi-

fier to generalize to images from previously unseen envi-

ronments. The fully supervised classifier evaluated was a

linear SVM with identical input features to the self super-

vised algorithm. From each dataset, a third of the images

were picked at random as training examples and the remain-

ing images were used as test data. Each dataset was then

classified using six different supervised classifiers. The first

four were trained on the training data from each of the four

datasets. The fifth classifier (All but Self) was trained us-

ing the training images from the datasets other than the test

dataset and the sixth classifier (All) was trained on all the

training data across datasets. The error rates for these clas-

sifiers were averaged over 10 trials and are tabulated in Ta-

ble 1. The supervised approach works well when used on

datasets seen during training (the diagonal entries and the

‘all’ column in Table 1) but performance degrades when run

on new datasets that were not seen while training (off diag-

onal entries and the ‘All but Self’ column in the table). This

suggests that a supervised approach does not generalize well

to new environments. Similar lack of generalizability to new

datasets has been observed in many vision tasks as reported

by Torralba and Efros (2011). It should be noted that when

one third of the images from a dataset are used for train-

ing, every test image from the same dataset has a number

of very similar images in the training data. This means that

the supervised classifier does not have to generalize much to

perform well when the training data contains images from

the same dataset as the test data.

We also investigated the effect of changing the fraction

of data used for training on the performance of the fully su-

pervised algorithm. We repeated the same experiment with

varying splits between the amount of data used for training

and testing. The change in classifier error rates when using

training data from the Allegheny Day sequence are shown

in Fig. 15. When as little as one tenth of the images are used

for training, the classifier performance saturates and adding

new training data has little effect on performance. These re-

sults suggest that in the feature space being used, it is dif-

ficult to find a single, static linear decision boundary that

Fig. 15 Effect of Increasing Training Data: Varying amounts of data

from the Allegheny Day dataset were used to train a supervised river

segmentation. As the fraction of training data is increased, the perfor-

mance of the fully supervised algorithm saturates very quickly on all

the test datasets (Color figure online)

can separate river and non-river regions well across datasets

and generalize well to unseen data. A more complex, non

linear decision boundary learnt using a more complex algo-

rithm (such as a kernelized SVM) may be able to deliniate

the classes adequately but would be difficult to use in real

time. This motivated our decision to learn dynamic, linear

decision boundary that changes over time to adapt to varia-

tions in appearance of the river and its surroundings.

3.3.2 Self supervised river detection

The performance of the self supervised algorithm described

in Sect. 2.2 was evaluated on the four datasets. Error rates

are shown in Table 2. On all four datasets the self super-

vised algorithm outperformed a supervised classifier that did

not see images from the test sequence during training. Even

when the supervised classifier was trained on a subset of

images from the dataset it was tested on, it did not perform

significantly better than the self supervised algorithm. This

is significant considering how the self supervised algorithm

has no off-line training phase and does not depend on a set

Auton Robot

Table 2 Self supervised segmentation performance

Dataset Mean error rate

Allegheny day 2.75 %

Allegheny dusk 4.15 %

Allegheny fall 2.73 %

Youghiogheny 3.22 %

Table 3 The mean error rate of various modified versions of the self

supervised algorithm

Dataset Chow Liu

tree only

Perfect

training

Full

algorithm

Allegheny day 4.72 % 2.73 % 2.75 %

Allegheny dusk 8.14 % 4.09 % 4.15 %

Allegheny fall 3.82 % 2.68 % 2.73 %

Youghiogheny 3.24 % 3.23 % 3.22 %

of images with manually annotated groundtruth. Our belief

for the performance improvement is due to the ability of

our self supervised system to react almost instantly to the

present point in the sequence, whereas the fully supervised

classifier tries to learn a single appearance model of the river

for the entire sequence.

To provide a deeper understanding of the self supervised

algorithm and which steps are the most crucial to its work-

ing, we evaluated the performance of a few modified ver-

sions of the algorithm. One interesting question is: how im-

portant is it to learn a discriminative SVM classifier on top

of the self supervised appearance modeling? The appearance

modeling uses Chow Liu trees to calculate the probability of

each image patch being a part of the river or the shore. In our

algorithm, these probabilities are used to select patches for

training a river/shore classifier. This SVM step can be omit-

ted and the appearance modeling output can be used directly

by labeling all pixels that have a P(R | X) value of more

than 0.5 as part of the river. The performance of the result-

ing classifier is shown in the ‘Chow Liu Tree Only’ column

of Table 3. It can be seen that for most of the datasets, a

steep reduction in performance occurs. This indicates that

using a discriminative classification step which can exploit

a richer feature descriptor and image position information is

important to getting good performance.

Another point of interest is investigating how mistakes

made at the self supervision step effect performance. Patches

with very high values of P(R | X) are marked as river train-

ing examples and patches with very low values are used as

shore class examples. But it is possible that some of these

automatically selected training samples will have incorrectly

inferred labels. If these labels inferred from P(R | X) are re-

placed with groundtruth labels and the rest of the algorithm

is unchanged, we observed that there is very little change

in the overall performance (the ‘Perfect Training’ column in

Table 3). This indicates that there are few mislabeled patches

in the automatically selected training sets to begin with and

that the SVM is able to generalize over them. Table 3 repeats

the performance of the actual self supervised algorithm un-

der the ‘Full Algorithm’ column for comparison.

3.4 Obstacle mapping

We tested the obstacle mapping algorithms on the river

dataset described above. We assume the vehicle will be pri-

marily traveling horizontally, and therefore the grid and dis-

tance transform’s dimensions were 6 times the nominal ladar

range in the horizontal directions and 2 times in the vertical

direction. With a nominal sensor range of 30 meters and a

cell size of 0.5 meters this meant a 360 × 360 × 120 cell

grid that required significant grid scrolling over the length

of the dataset. Figure 16 shows a visualization of the occu-

pancy grid and distance transform. The occupancy grid dis-

play shows only cells with an occupancy likelihood above

50 %. The distance transform display is only a 2D slice of

the full 3D transform.

Table 4 shows the time taken to update the distance trans-

form with an expansion of 20 cells (10 meters) and update

frequency of 5 Hz, averaged over the length of the dataset.

The simple mask algorithm is shown to be relatively slow.

Our improvements show a small reduction in average update

time compared to the Lau algorithm with the bug removed

(see Sect. 2.3.1). This dataset had well registered laser data

and a static environment resulting in very few obstacle cell

removals, roughly 1 removal per update on average. As our

key improvements are for obstacle removal we expect that in

environments where more occupied cells must be removed

(for example obscurants or dynamic environments) our al-

gorithm would show further speed gains. Table 4 also shows

that our algorithm visits fewer cells, adds fewer cells to the

priority queue, and removes the need to modify the queue.

Table 5 shows the memory usage of the distance transform

algorithms. The Lau algorithm uses at minimum 10 bytes

per cell, 2 for distance and 8 for a pointer (an additional

queue index may also be required to allow for queue modi-

fications). Our algorithm uses only 4 bytes by replacing the

obstacle pointer and distance with an index into a lookup

table (no queue index is required). The use of scrolling sig-

nificantly reduces the memory required to cover the length

of the dataset.

The key parameter affecting the scrolling algorithm is α,

which determines how often the grid is scrolled. Figure 17

shows the average time required per scroll event and the total

time taken over the entire dataset doing scroll operations for

different values of α. An α value of 1 means that the scroll is

performed as late as possible and a value of 3, for this grid,

means scrolls are carried out at every cycle. As the scroll

Auton Robot

Fig. 16 Visualization of the evidence grid and distance transform. The

grid visualization (left) shows the test rig passing under a bridge and

only displays cells considered occupied. The green line in the back-

ground indicates the current edge of the scrolling grid map. The dis-

tance transform visualization (right) shows a 2D slice from a high

viewpoint. Green indicates an obstacle, distance is mapped from red

(low distance) to blue (high distance), cells with maximum distance

are not shown. The slice is taken just above water level, the two lines

of obstacles (green) are the river banks. Some areas are red with no

visible obstacle because the obstacle is out of plane, e.g. the two bars

of light red across the river at the top of the image are bridges (Color

figure online)

Table 4 Average time, number of cells visited, and number of addi-

tions & modifications to the priority queue taken to update the distance

transform. Each update requires the addition or removal of a different

number of occupied cells, the averages and standard deviation is cal-

culated per update. The max time reflects the time taken on the update

with the most work to be done, for this dataset

Algorithm Average

time (s)

Standard

deviation (s)

Max time (s) Average cell

visits

Average queue

additions

Average queue

modifications

Simple mask 0.2960 1.2349 13.2203 39516000 no queue no queue

Lau et al. (2010) 0.0213 0.0150 0.1333 303017 11693 772

Our algorithm 0.0200 0.0144 0.1319 283552 10928 0

Table 5 Approx. memory required to store the distance transform.

The memory requirement for the lookup table component of our algo-

rithm is displayed in parentheses. The memory required without map

scrolling is calculated for a grid covering the entire mission area

Algorithm Memory (Mbytes) Memory, no scrolling

(Mbytes)

Simple mask 31 960

Lau et al. (2010) 156 4800

Current algorithm 62 + (0.5) 1920 + (0.5)

frequency increases the per scroll time required decreases

linearly however the total work required starts to increase

rapidly.

3.5 Integrated mapping

Here we present a visual verification of the maps gener-

ated by our system against globally registered satellite im-

ages. Figure 18 shows examples of the 3D reconstruction

built from the back projected ladar as the vehicle moves

through the environment. Each laser scan is globally regis-

tered and placed into a world map by using the graph-based

state estimate system. Since the laser scans occur at a higher

Fig. 17 Time required to scroll the grid as α, a parameter controlling

how often the grid is scrolled, is varied. Average time is calculated per

scroll event, total time is measured over the entire dataset. An α value

of 1 means scrolls are performed as late as possible, a value of 3 means

they are performed every update cycle (Color figure online)

frequency than the state estimates, an intermediate state is

found by interpolating between neighboring state estimates.

The state estimate is locally smooth and accurate enough to

generate clean 3D reconstructions. The terrain mesh seen in

Auton Robot

Fig. 18 Examples of the 3D

point cloud maps. The images

on the left show the raw image

from the camera. On the right

one can see the reconstructed

point cloud generated from our

laser range scans registered by

our state estimate. The 3D point

cloud is rendered within a

visualization of an aerial image

overlaid on terrain elevation

data. The visualization is

rendered from a virtual camera

approximately at the location

where the raw image was

captured. The point cloud is

colored by height of the point,

ranging from red points that are

low to blue points that are high

the reconstruction is build from elevation data and orthoim-

agery provided by USGS.1 The point cloud produces a mea-

surement of the river canopy height and a dense structure

of the shoreline. The complete point cloud map generated

from the 2 km traverse along the river channel can be seen

in Fig. 19(a) as a top-down view overlaid on a satellite im-

age.

The map in Fig. 19(b) is generated from the visual river

classification algorithm described in Sect. 2.2 and is a 2D

representation of the river course and width. The map is cre-

ated by integrating the classified images at 2 Hz into an evi-

dence grid in a global coordinate frame.

3.6 Discussion

Here we discuss some insights into our results and finish

with an overall assessment of our system in the context of

criteria necessary to enable autonomous river mapping.

Firstly when analyzing the state estimation system, an

ongoing issue that we are dealing with is a bias towards un-

derestimating distance-traveled in the visual odometry sys-

tem. This is observable in Figs. 14(a) and 14(b), where the

estimated trajectory clearly falls short at both ends of the

loop in the river. The underestimation bias is caused by the

1http://seamless.usgs.gov/.

large distance to the features on the river rank detected in

the stereo camera; more details on this issue are presented

in Rehder et al. (2012). The impact of the underestimation

on the resulting maps can be seen in Fig. 19(a) where we

see errors introduced causing ghosting effect of the bridges.

The bridges are seen twice by the laser scanner, once on the

traverse upstream and once on the downstream traverse, due

to the underestimation problem in the visual odometry de-

scribed above.

Figure 19(b) shows the 2D river map, which was gen-

erated by integrating classified images with limited effective

range. The effective range depends on the height of the cam-

era above the water surface, which determines the angle of

the projection of the images onto the evidence grid. Here the

data was collected approximately 2.5 m from the water sur-

face and the current reliable maximum range for integrating

the classification results into the map is about 30 m. Both

river banks are not within range at the same time, which

requires a traverse along one bank and return traverse along

the other bank. The effective range will improve as our flight

altitude increases from the current 2 m to about 6–8 m. At

this height the projection of the image into the map will be

at a less oblique angle and more reliable at a longer range.

Now we describe and discuss our criteria of success in

two ways; first is the ability of our sensing and perception

algorithms to automatically navigate the river and second is

http://seamless.usgs.gov/

Auton Robot

Fig. 19 River maps generated from a 2 km traverse. Left, the 3D point

cloud rendered on top of a satellite image of the river. The point cloud

is colored by height of the point, ranging from red points that are low,

to high points that are colored magenta. Right, the 2D map of the river

course and width generated from the self-supervised river classification

algorithm Sect. 2.2. The classification algorithm generates an evidence

grid in world coordinates colored as high probability of river (blue) and

low probability of river (red) (Color figure online)

the capability to generate a map of the river course, width,

and canopy height.

To autonomously navigate we need the following: an ac-

curate state estimation for vehicle control, a heading to fol-

low the river, and a reliable method to sense obstacles. We

have a demonstrated a real-time system for state estimation,

which is locally consistent and globally accurate. The out-

put of the river detection system gives a direction to travel

in to follow the river course. Finally, we have demonstrated

real-time algorithms adequate in both execution time and

in memory required to generate an obstacle cost map from

laser scanner. Considering all of the above we regard our

system design as suitable for autonomous navigation of a

river.

Now we analyze our design for ability to generate ap-

propriate river maps. The 3D river map seen in Fig. 19(a)

illustrates that despite sparse GPS data, it is still possible

to create a globally registered 3D map of the environment

and in particular the canopy height as seen in Fig. 18. Look-

ing at the 2D river map presented in Fig. 19(b), we see fur-

ther proof for the success of the river classification algorithm

and, importantly, that it is able to generate a map of the river

course and width.

4 Conclusions

We have described a lightweight perception system for au-

tonomously navigating and mapping a river from a low-

flying rotorcraft.

The system incorporates a global state estimation sys-

tem that is both locally consistent—necessary for vehicle

control—and globally referenced—a requirement for the re-

sulting river maps. The state estimation combines visual

odometry, inertial measurement, and sparse GPS readings

in a graph-optimization algorithm.

Auton Robot

A self-supervised visual river classification algorithm is

developed to determine the direction to travel along the river

and also for mapping river course and width (2D map).

A unique, lightweight, off-axis, spinning laser scanner is

used for sensing obstacles and mapping the river bank struc-

ture and canopy height. The laser scans are efficiently pro-

cessed to compute the obstacle map and distance transform

necessary to avoid obstacles in real-time. An analysis is pre-

sented of the laser scanner to compute the maximum safe

velocities for the rotorcraft to guarantee obstacle avoidance.

The experimental results over a 2 km traverse along a

river show that mapping the river course, width, and canopy

height are all feasible from lightweight sensors that are

available on a micro aerial vehicle.

In future work, we will evaluate our system on differ-

ent rivers, with even more degraded GPS coverage, and over

longer distances on the order of 10 km. We seek to im-

prove the state estimation accuracy and latency, to demon-

strate high performance vehicle control and completely au-

tonomous flight for sustained periods, and finally to demon-

strate aggressive maneuvers around complex obstacles such

as tree vines. We also want to investigate the possibility of

perceiving the river flow rate from the rotorcraft.

Acknowledgements The authors gratefully acknowledge Lyle Cham-

berlain, and Justin Haines for their feedback and help with hardware.

The work described in this paper is funded by the Office of Naval

Research under grant number N00014-10-1-0715.

References

Achar, S., Sankaran, B., Nuske, S., Scherer, S., & Singh, S. (2011).

Self-supervised segmentation of river scenes. In Proceedings in-

ternational conference on robotics and automation (ICRA).

Andert, F., & Goormann, L. (2007). Combined grid and feature-based

occupancy map building in large outdoor environments. In Pro-

ceedings of the IEEE/RSJ international conference on intelligent

robots and systems (pp. 2065–2070).

Andert, F., Adolf, F. M., Goormann, L., & Dittrich, J. S. (2010). Au-

tonomous vision-based helicopter flights through obstacle gates.

Journal of Intelligent & Robotic Systems, 57(1–4), 259–280.

Bryson, M., & Sukkarieh, S. (2007). Building a robust implementa-

tion of bearing-only inertial SLAM for a UAV. Journal of Field

Robotics, 24(1–2), 113–143.

Chambers, A., Achar, S., Nuske, S., Rehder, J., Kitt, B., Chamberlain,

L., Haines, J., Scherer, S., & Singh, S. (2011). Perception for a

river mapping robot. In Proceedings of the 2011 IEEE/RSJ inter-

national conference on intelligent robots and systems (IROS’11).

Chow, C., & Liu, C. (1968). Approximating discrete probability distri-

butions with dependence trees. IEEE Transactions on Information

Theory, 14(3), 462–467.

Dahlkamp, H., Kaehler, A., Stavens, D., Thrun, S., & Bradski, G.

(2006). Self-supervised monocular road detection in desert ter-

rain. In Robotics science and systems conference (RSS’06).

Reid, I., Davison, A., Molton, N., & Stasse, O. (2007). Monoslam: real-

time single camera slam. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 29(6), 1052–1067.

Desai, A., & Huber, D. (2009). Objective evaluation of scanning

ladar configurations for mobile robots. In Proceedings of the

IEEE/RSJ international conference on intelligent robots and sys-

tems (IROS).

Eustice, R., Singh, H., & Leonard, J. (2005). Exactly sparse delayed-

state filters. In Proceedings of the IEEE international conference

on robotics and automation, ICRA 2005 (pp. 2417–2424). New

York: IEEE Press.

Fairfield, N. (2009). Localization, mapping, and planning in 3D envi-

ronments. Ph.D. Thesis, Robotics Institute, Carnegie Mellon Uni-

versity, Pittsburgh, PA.

Folkesson, J., & Christensen, H. I. (2007). Graphical SLAM for out-

door applications. Journal of Field Robotics, 24(1–2), 51–70.

Geiger, A., Ziegler, J., & Stiller, C. (2011). StereoScan: dense 3D re-

construction in real-time. In IEEE intelligent vehicles symposium,

Baden-Baden, Germany.

Grzonka, S., Grisetti, G., & Burgard, W. (2009). Towards a navigation

system for autonomous indoor flying. In IEEE international con-

ference on robotics and automation, ICRA’09 (pp. 2878–2883).

New York: IEEE Press.

Haines, J. (2011). Vision-based control of an aerial vehicle. Master’s

thesis, Carnegie Mellon University.

Harris, C., & Stephens, M. (1988). A combined corner and edge detec-

tor. In Alvey vision conference, Manchester, UK (vol. 15, p. 50).

Harrison, A., & Newman, P. (2008). High quality 3D laser ranging

under general vehicle motion. In Proc. IEEE international confer-

ence on robotics and automation, ICRA’08, Pasadena, California.

Holz, D., Droeschel, D., Behnke, S., May, S., & Surmann, H. (2010).

Fast 3D perception for collision avoidance and SLAM in domestic

environments. In A. Barrera (Ed.), Mobile robots navigation (pp.

53–84). Vienna: IN-TECH Education and Publishing.

Hrabar, S., & Gaurav, S. (2009). Vision-based navigation through ur-

ban canyons. Journal of Field Robotics, 26(5), 431–452.

Kalra, N., Ferguson, D., & Stentz, A. (2006). Incremental reconstruc-

tion of generalized Voronoi diagrams on grids. In Proc. of the in-

ternational conference on intelligent autonomous systems.

Koenig, S., & Likhachev, M. (2002). D* Lite. In Eighteenth national

conference on artificial intelligence.

Konolige, K. (2004). Large-scale map-making. In: Proceedings of

the national conferences on artifical intelligence (pp. 457–463).

Menlo Park/London:AAAI Press/MIT Press

Konolige, K., & Agrawal, M. (2008). Frameslam: from bundle adjust-

ment to real-time visual mapping. IEEE Transactions on Robotics

and Automation, 24(5), 1066–1077.

Kuemmerle, R., Grisetti, G., Strasdat, H., Konolige, K., & Burgard, W.

(2011). g2o: a general framework for graph. Optimization Journal

of Autonomous Robots, 30(1), 25–39.

Lau, B., Sprunk, C., & Burgard, W. (2010). Improved updating of Eu-

clidean distance maps and Voronoi diagrams. In IEEE/RSJ inter-

national conference on intelligent robots and systems, IROS, 2010

(pp. 281–286).

Laws, K. (1980). Rapid texture identification. In: SPIE (pp. 376–380).

Leedekerken, J., Fallon, M., & Leonard, J. (2010). Mapping complex

marine environments with autonomous surface craft. In 12th In-

ternational symposium on experimental robotics

Li, S. Z. (1994). A Markov random field model for object matching un-

der contextual constraints. In Proceedings of IEEE computer so-

ciety conference on computer vision and pattern recognition (pp.

866–869).

Lourakis, M. (2010). Sparse non-linear least squares optimization for

geometric vision. Computer Vision–ECCV, 2010, 43–56.

Marquardt, D. (1963). An algorithm for least-squares estimation of

nonlinear parameters. Journal of the Society for Industrial and

Applied Mathematics, 11(2), 431–441.

Auton Robot

Martin, M. C., & Moravec, H. (1996). Robot evidence grids. Tech.

Rep. CMU-RI-TR-96-06, The Robotics Institute, Carnegie Mel-

lon, Pittsburgh, PA.

Matsumoto, M., & Yuta, S. (2010). 3D laser range sensor module with

roundly swinging mechanism for fast and wide view range image.

In IEEE conference on multisensor fusion and integration for in-

telligent systems, MFI, 2010 (pp. 156–161).

Meier, L., Tanskanen, P., Fraundorfer, F., & Pollefeys, M. (2011). PIX-

HAWK: a system for autonomous flight using onboard computer

vision. In IEEE international conference on robotics and automa-

tion, ICRA, 2011 (pp. 2992–2997). New York: IEEE Press.

Meijster, A., Roerdink, J., & Hesselink, W. (2000). A general algorithm

for computing distance transforms in linear time. In Mathematical

morphology and its applications to image and signal processing

(pp. 331–340).

Rankin, A., & Matthies, L. (2010). Daytime water detection based on

color variation. In IEEE intl. conf. on intelligent robots and sys-

tems, IROS’10.

Rankin, A., Matthies, L., & Huertas, A. (2004). Daytime water detec-

tion by fusing multiple cues for autonomous off-road navigation.

In 24th Army science conference, ASC’04.

Rathinam, S., Almeida, P., Kim, Z., Jackson, S., Tinka, A., Grossman,

W., & Sengupta, R. (2007). Autonomous searching and tracking

of a river using an UAV. In American control conference, ACC’07

(pp. 359–364).

Rehder, J., Gupta, K., Nuske, S., & Singh, S. (2012). Global pose es-

timation with limited GPS and long range visual odometry. In

IEEE international conference on robotics and automation, ICRA,

2012. New York: IEEE Press.

Scherer, S., Singh, S., Chamberlain, L., & Elgersma, M. (2008). Flying

fast and low among obstacles: methodology and experiments. The

International Journal of Robotics Research, 27(5), 549–574.

Scherer, S., Ferguson, D., & Singh, S. (2009). Efficient C-space and

cost function updates in 3D for unmanned aerial vehicles. In IEEE

international conference on robotics and automation, ICRA’09

(pp. 2049–2054). New York: IEEE Press.

Shen, S., & Kumar, Michael N. V (2011). Autonomous multi-floor

indoor navigation with a computationally constrained MAV. In

IEEE international conference on robotics and automation, ICRA,

2011 (pp. 20–25).

Strasdat, H., Montiel, J., & Davison, A. (2010). Real-time monocular

SLAM: why filter. In IEEE international conference on robotics

and automation, ICRA, 2010 (pp. 2657–2664). New York: IEEE

Press.

Takasu, T., Kubo, N., & Yasuda, A. (2007). Development, evaluation

and application of RTKLIB: a program library for RTK-GPS. In

GPS/GNSS symposium.

Torralba, A., & Efros, A. A. (2011). Unbiased look at dataset bias. In

CVPR (pp. 1521–1528).

Viquerat, A., Blackhall, L., Reid, A., & Sukkarieh, S. (2007). Reactive

collision avoidance for unmanned aerial vehicles using Doppler

radar. In Proceedings of the international conference on field and

service robotics.

Weiss, S., Achtelik, M., Kneip, L., Scaramuzza, D., & Siegwart, R.

(2011). Intuitive 3D maps for MAV terrain exploration and ob-

stacle avoidance. Journal of Intelligent & Robotic Systems, 61,

473–493.

Wulf, O., & Wagner, B. (2003). Fast 3D scanning methods for laser

measurement systems. In International conference on control sys-

tems and computer science, CSCS14 (pp. 2–5).

Yang, J., Rao, D., Chung, S., & Hutchinson, S. (2011). Monocular

vision based navigation in GPS-denied riverine environments.

In Proceedings of the AIAA Infotech@Aerospace conference, St.

Louis, MO.

Sebastian Scherer is a Systems

Scientist at the Robotics Institute

(RI) at Carnegie Mellon Univer-

sity (CMU). His research focuses

on enabling unmanned rotorcraft to

operate at low altitude in cluttered

environments. He has developed a

number of intelligent autonomous

rotorcraft. Dr. Scherer received his

B.S. in Computer Science, M.S. and

Ph.D. in Robotics from CMU in

2004, 2007, and 2010.

Joern Rehder is a Masters (Diplom)

student in Electrical Engineering at

the Hamburg University of Technol-

ogy, Germany. He is currently with

the Robotics Institute at Carnegie

Mellon University and has been a

visiting scholar at the University of

California, Berkeley in 2007/2008.

His research interests include com-

puter vision and SLAM.

Supreeth Achar is currently a re-

search programmer at the Robotics

Institute in Carnegie Mellon Univer-

sity working in the Field Robotics

Center. He received a M.S. in robot-

ics from Carnegie Mellon Univer-

sity in 2010. He is interested in us-

ing computer vision and machine

learning techniques to build mobile

robots that can figure out where they

are, where they need to go and how

to get there.

Hugh Cover is a Masters student

at the Robotics Institute (RI) at

Carnegie Mellon University (CMU).

His research interests include map-

ping and motion planning for au-

tonomous air vehicles. He received

his B.E. in Mechatronic Engineering

from the University of New South

Wales, Australia (UNSW) in 2009.

Auton Robot

Andrew Chambers is a master’s

student at Carnegie Mellon Univer-

sity’s Robotic Institute. He obtained

his B.S. in Electrical Engineering

from the University of Southern

California. His research interests

include perception and control for

UAVs.

Stephen Nuske is a Project Sci-

entist at the Robotics Institute,

Carnegie Mellon University since

2010. Before that he was a Post-

Doc at the Robotics Institute from

2008–2010. He received a Ph.D. and

a Bachelor of Software Engineering

from the Universtiy of Queensland,

conducting much of the doctoral re-

search at the Autonomous Systems

Laboratory at the Commonweath

Scientific and Industry Research Or-

ganization in Queensland, Australia.

He spent three months as a visiting

scholar at the eMotion lab at INRIA,

Grenoble, France. His research is in computer vision systems applied

to outdoor robotics applications such as heavy industry, surveillance

and agriculture.

Sanjiv Singh is a Research Pro-

fessor at the Robotics Institute,

Carnegie Mellon University. His re-

cent work has two main themes:

perception in natural environments

and multi-agent coordination. He

has led projects in both ground and

air vehicles operating in unknown

or partially known environments,

in applications such as mining,

agriculture, emergency response,

surveillance and exploration. He is

also actively involved in the au-

tomation of complex tasks, such as

the assembly of large space struc-

tures, that cannot be addressed by single agents and must necessarily

be performed by teams. Prof. Singh received his B.S. in Computer

Science from the University of Denver (1983), M.S. in Electrical En-

gineering from Lehigh University (1985) and a Ph.D. in Robotics from

Carnegie Mellon (1995). He is the founder and Editor-in-Chief of the

Journal of Field Robotics.

	River mapping from a flying robot: state estimation, river detection, and obstacle mapping
	Abstract
	Introduction
	Related work
	Contributions

	Approach
	State estimation
	Graph-based representation of the problem
	State parametrization and sensor models
	Sparse optimization
	Graph reduction

	Visual river detection and mapping
	Challenges
	Self supervised river detection
	Feature extraction
	Sky detection
	Appearance modeling
	Finding reflections
	Finding novel regions
	Classifier training
	Detecting water

	2D river mapping

	Obstacle mapping
	Distance transform
	Map scrolling

	3D Ladar scanner
	Registration
	Obstacle detection confidence

	Results
	Experimental setup
	Sensing hardware
	Embeded computing

	Vehicle state estimation
	River detection
	Fully supervised river detection
	Self supervised river detection

	Obstacle mapping
	Integrated mapping
	Discussion

	Conclusions
	Acknowledgements
	References

