Canadian Journal of Fisheries and Aquatic Sciences

Riverscape recruitment: a conceptual synthesis of drivers of fish recruitment in rivers

$\begin{array}{|r|l|}\hline \text { Journal: } & \text { Canadian Journal of Fisheries and Aquatic Sciences } \\ \hline \text { Manuscript ID } & \text { cjfas-2018-0138.R2 } \\ \hline \text { Danuscript Type: } & \text { Article } \\ \hline \text { Author: }\end{array}$ 21-Mar-2019 $\left.\quad \begin{array}{l}\text { Complete List of Authors: }\end{array} \begin{array}{l}\text { Humphries, Paul; Charles Sturt University, Institute for Land, Water and } \\ \text { Society } \\ \text { King, Alison; Charles Darwin University, } \\ \text { McCasker, Nicole; Charles Sturt University, Institute of Land, Water and } \\ \text { Society } \\ \text { Kopf, R.; Charles Sturt University } \\ \text { Stoffels, Rick; CSIRO } \\ \text { Zampatti, Brenton P.; South Australian Research and Development } \\ \text { Institute } \\ \text { Price, Amina; La Trobe University, School of Life Sciences }\end{array}\right]$

Riverscape recruitment: a conceptual synthesis of drivers of fish recruitment in rivers

Paul Humphries, Alison King, Nicole McCasker, R. Keller Kopf, Rick Stoffels, Brenton Zampatti, and Amina Price

Abstract

Most fish recruitment models consider only one or a few drivers in isolation, rarely include species' traits and have limited relevance to riverine environments. Despite their diversity, riverine fishes share sufficient characteristics that should enable predictions of recruitment. Here we synthesize the essential components of fish recruitment hypotheses and the key features of rivers to develop a model that predicts relative recruitment strength, for all fishes, in rivers under all flow conditions. The model proposes that: interactions between flow and physical complexity will create locations in rivers, at meso-scales, where energy and nutrients are enriched, the resultant production of small prey concentrated, and prey and fish larvae located (through dispersal or retention) so that the larvae can feed, grow and recruit. Our synthesis provides a rationale for how flow and physical complexity affect fish recruitment, and provides a conceptual basis to better conserve and manage riverine fishes globally.

Paul Humphries ${ }^{1}$, Nicole McCasker and R. Keller Kopf. Institute for Land Water \& Society, Charles Sturt University, Albury, NSW 2640, Australia.

Alison King. Research Institute for the Environment and Livelihoods, School of Environment, Charles Darwin University, Darwin, NT 0909, Australia.

Rick Stoffels. CSIRO, PO Box 821, Wodonga, VIC 3689, Australia. Present address: NIWA, PO Box 8602, Riccarton, Christchurch 8440, New Zealand Brenton Zampatti. Inland Waters and Catchment Ecology Program, South Australian Research and Development Institute (SARDI), Aquatic Sciences, Post Office Box 120, Henley Beach, SA 5022, Australia

Amina Price. School of Life Sciences, La Trobe University, PO Box 821, Wodonga, VIC 3689, Australia ${ }^{1}$ Corresponding author (e-mail: phumphries@csu.edu.au).

Introduction

Understanding what drives fluctuations in the sizes of fish populations has been one of the dominant pursuits of fisheries scientists for more than a century (Hjort 1914; Houde and Hoyt 1987; Matthews 1998). This is largely because of the desire to manage stocks for sustainable commercial and recreational harvesting in highly variable, unpredictable and complex environments (Lewin et al. 2006; Ricker 1954). Despite some progress, the general consensus is that this goal has not been realized, and most exploited marine fish stocks are degraded and sustainable fisheries overall are still remarkably rare (Caddy and Seijo 2005). The status of non-exploited fishes is no less dire (Hilborn et al. 2003; Jelks 2008). Knowledge of fish population dynamics in freshwaters generally lags far behind that in marine environments (Schlosser and Angermeier 1995; Ziv et al. 2012; Lintermans 2013; Cohen et al. 2016; McIntyre et al. 2016); the exeception being recreational freshwater sport fisheries (Lewin et al. 2006).

The increasing imperilment of freshwater fishes worldwide (Jelks 2008; Froese and Pauly 2018) emphasizes the need for understanding the fundamental processes influencing the size and composition of fish populations. Knowledge of what drives fish recruitment is a key piece of the population dynamics puzzle, but is poorly understood (Chambers and Trippel 2012). Recruitment can be broadly defined as the number of individuals entering the population at some well-defined ageor stage-class in any given year (e.g. Caley et al. 1996; Maceina \& Pereira 2007; King et al. 2013). We define recruitment as the number of $0+$ individuals entering the population each year, as measured at a time following hatching, such that individuals have passed through the period when the majority of larval mortality has occurred (see King et al. 2013). This definition applies well to fishes of contrasting life histories and is quantitative.

It is axiomatic that recruitment is higher when the early life stages of a fish coincide with conditions favorable for survival (Houde and Hoyt 1987; Houde 1989a; Cushing 1990). However, what constitutes favorable recruitment conditions is the subject of much debate (see Chambers and

Trippel 2012; King et al. 2013). The huge diversity of fish traits (e.g. morphology, life history, physiology, behavior) also makes generalizations concerning recruitment problematic (Winemiller and Rose 1993; Wootton 1998). Despite this diversity of traits and environments in which fishes live, the majority of fishes share enough characteristics to suggest the potential for some common drivers that influence recruitment strength (Chambers and Trippel 2012). The profusion of fish recruitment hypotheses and models and the doggedness of fisheries scientists are testament to this potential (Table 1).

For a young fish to develop, survive and therefore recruit successfully, it has to be located in an area of suitable water quality, find enough food of the appropriate size and type that meets its nutritional requirements and avoid being eaten. Importantly, the traits of the progeny of different species (e.g. egg and larval size, number and dispersal capability) will influence interactions with these drivers (Winemiller and Rose 1993). Most recruitment hypotheses have their origins in marine systems (Table 1, Chambers and Trippel 2012), however, and because many marine bony fishes are broadcast spawning, 'periodic' species, (sensu Winemiller and Rose 1992), comparative studies of recruitment drivers of species of different life history strategies are relatively rare (Winemiller 2005).

The physical, chemical and biological characteristics of rivers are quite unlike those of marine ecosystems, and furthermore, riverine fishes from all life history strategies (opportunistic, periodic and equilibrium) are common (Winemiller 1989; Winemiller and Rose 1992; Humphries et al. 1999; Mims and Olden 2012). Thus, even though the same requirements of all young fish have to be met for them to recruit, the manner in which riverine fish accomplish this is necessarily ecosystem- and life history strategy-dependent (see Hoagstrom and Turner 2015). Several fish recruitment hypotheses, mostly from marine environments, have attempted to explain how young riverine fish coincide with appropriate conditions for recruitment in space and time (Humphries et al. 1999; Humphries et al. 2013; Hoagstrom and Turner 2015). These hypotheses, however, tend to be limited geographically, climatically or phylogenetically: to date, there has been no integrated
model that predicts recruitment for all types of fishes, in rivers under all flow conditions. Furthermore, despite the contribution that River ecosystem concepts have played in shaping our current understanding of riverine patterns and processes (Vannote et al. 1980; Poff et al. 1997; Junk et al. 1989; Walker et al. 1995), they are rarely invoked when attempts have been made to understand recruitment processes in riverine fish (but see Zeug and Winemiller 2008; Falke et al. 2010).

We propose that to understand the drivers of fish recruitment in rivers, we need to consider how species traits during the early life stage interact with the physical, chemical and biological features of rivers, and how these in turn are affected by flow and climate. We develop the Riverscape Recruitment Synthesis Model (RRSM) to describe how flow and physical complexity of rivers affect fish recruitment, and to provide a conceptual basis to generate predictions relevant and useful for management and research. This paper aims to:

1) Assess which existing fish recruitment hypotheses are most relevant to riverine fishes;
2) Determine how flow mediates macro- and meso-scale processes in rivers that are relevant to fish recruitment;
3) Describe how life history and other species traits influence interactions of species with riverine patterns and processes relevant to recruitment, such as temperature, feeding and predation;
4) Describe how processes associated with the Fundamental Triad (Bakun 1998) - the recruitment model that we consider best encapsulates the spatial and temporal factors responsible for fish recruitment - likely operate in rivers; and
5) Propose the RRSM that conceptualizes our understanding of what drives recruitment in rivers

Fish recruitment hypotheses

Fish recruitment hypotheses can be broadly grouped as those that: (i) are associated with matching fish larvae with a suitable prey environment, (ii) emphasize growth-mediated predator avoidance, or (iii) highlight the importance of movement to, or retention in, nursery areas (see Table 1 and references therein). Most hypotheses assume high densities of appropriately-sized prey as being a necessary requirement for successful recruitment, and some suggest that high levels of predation can be avoided by growing fast (e.g. 'bigger is better'), or by dispersing to relatively benign nursery areas ('coast conveyer-belt'). Recruitment hypotheses can also be grouped as those suggesting the interaction between larvae and environmental factors (largely food and predators) are spatially-related (e.g. 'plankton contact') or those that are temporally-related (e.g. 'window-ofopportunity'). Most food- and predator-related hypotheses consider temporal coincidence of larvae with prey. A more limited sub-set of hypotheses (e.g. 'aberrant drift') consider spatial coincidence of larvae with prey; with movement a central theme in several of these.

We contend that Bakun's Fundamental Triad hypothesis (Bakun 1996, 1998, 2010) is the most comprehensive in both its inclusion of several drivers (food, predator-avoidance, movement/retention) thought to influence recruitment variability, and that it considers the influence of these drivers spatially and temporally across different environments. The Fundamental Triad arose in an attempt to describe the drivers of recruitment for broadcast-spawning pelagic marine fishes (Bakun 1996, 1998, 2010). It incorporates three physical processes that are likely to enhance recruitment: nutrient enrichment, food concentration, and processes that result in larvae and their food being retained in, or moved to, suitable habitat. It also connects these processes to
their sources and at the scales at which they operate. For example, macro-scale patterns (e.g. climate) influence the overall amounts of available energy (i.e. carbon) and nutrients (e.g. nitrogen and phosphorus) while, meso-scale patterns (e.g. water movement) influence where energy and nutrients are incorporated into primary and secondary production, and in turn how this translates into food for young fish. Hoagstrom and Turner (2015) extended the concept into freshwaters, illustrating the potential relevance of the Fundamental Triad for braided lowland rivers of the North American Great Plains, where broadcast-spawning fishes breed during floods, and recruitment is enhanced through the nutrient enrichment and concentration, and propagule retention, that occur associated with flood recession and slackwater habitats. Indeed, we propose that, with some modifications, Bakun's Fundamental Triad can be further developed into a more generic riverine fish recruitment model suitable for most river types and flow conditions (termed the 'Riverscape Recruitment Synthesis Model' [RRSM], see below). But first, we explore the macro-scale patterns that drive production in rivers, the meso-scale patterns in rivers that provide the template on which fish recruitment acts, and the overriding role of flow in linking these two. We also consider other key drivers of fish recruitment in rivers that are rarely incorporated into previous models (species traits, temperature, nutrient and food retention and dispersal), before presenting the new model.

Flow-mediated macro- and meso-scale patterns and fish recruitment in rivers

Macro-scale patterns. Rivers comprise a dendritic network of channels connected by downstream flow, which in some rivers connect to a much larger floodplain during flooding. Climate and geology largely govern the predictability, variation, and shape of the flow regimes (Figure 1). Flow in turn influences the physical (e.g. temperature) and chemical (e.g. salinity) characteristics of rivers, the sources, storage, transformation and transport of energy and nutrients, and the transport of sediment, amongst other processes (Vannote et al. 1980; Junk et al. 1989; Walker et al. 1995; Thorp et al. 2008; Humphries et al. 2014). At macro-scales (i.e. within a river catchment), carbon
(energy) and nutrient inputs are majorly influenced by flow and can be derived from headwaters (Vannote et al. 1980), the floodplain (Junk et al. 1989) or locally within the river channel (Thorp and Delong 1994), as a result of natural or anthropogenic processes (Kobayashi et al. 2009; Binckley et al. 2010; Hale et al. 2015). Regardless of the source of carbon, it is the magnitude, duration and recurrence interval of flow events and the overall flow regime - interacting with the geology and geomorphology of rivers - that determine the magnitude, timing and location of energy and nutrient inputs (Humphries et al. 2014). These basal resources drive primary and secondary production, and ultimately, fish recruitment.

Figure 1 here

Interactions between macro-scale and meso-scale patterns. Flow regimes and flow events may be conceived as waves progressing from upstream to downstream, which interact with geomorphic, and other types of structure in rivers to create a diversity of flow-retention zones (such as eddies, slackwaters and confluences, Figure 1), influencing the transport and retention of energy and nutrients in rivers derived at macro-spatial scales (Thorp et al. 2008; Humphries et al. 2014). For example, at the extreme trough of a wave, when a river ceases to flow: there is very limited transport, resulting in high retention of energy and nutrients along small scales within the river; the vast majority of energy inputs and production occur locally; and flow-retention zones are in effect disconnected lentic pools. At the other extreme, at the crest of a wave, during overbank flooding: there tends to be substantial transport of energy and nutrients longitudinally and laterally; for those rivers with substantial floodplains, flooding has a major input to river ecosystem metabolism; and there is typically a diversity and large extent of floodplain flow-retention zones. For these rivers, during and post-flooding, the floodplain will act as the zone of greatest retention. At intermediate positions on the river wave (e.g. within channel flows), longitudinal transport will tend to predominate over lateral transport of energy and nutrients, and there will be an intermediate diversity of flow-retention zones.

It is these flow-retention zones - whose type, features and spatial location and distribution will change as flow changes - that we propose are equivalent to Bakun's meso-scale ($1-100 \mathrm{~m}^{2}$) habitats within which recruitment processes of many riverine fishes takes place. They are therefore a key component in our RRSM.

Meso-scale patterns. Larval fish interact with their prey, predators and the physico-chemical characteristics of their environment at the meso-scale (Figure 1; Winemiller and Rose 1993; Schiemer et al. 2001; Fausch et al. 2002; King 2004b; Bakun 2010). This is unsurprisingly, also the scale in rivers at which nutrients, algae and zooplankton production are related (Reynolds and Descey 1996; Reynolds 2000; Ning et al. 2010). The more physically complex (structural [e.g. woody debris, vegetation], geomorphic and hydraulic) a reach (O'Neill and Thorp 2011), the longer the water residence time, and the more eddies, dead zones and slackwaters that exist (Reynolds 2000, Schiemer et al. 2001; Vietz et al. 2013). This, in turn leads to greater accumulation of inorganic and organic matter (Pringle et al. 1988; Sheldon and Thoms 2006), storage and transformation of nutrients (Newbold 1992; Hein et al. 2005). It also leads to greater production of phytoplankton and zooplankton (Reckendorfer et al. 1999; Reynolds 2000) and finally resulting in an increased potential for young fish to find enough food. Zones of high water residence time, also allow relatively poorlyswimming young fish an opportunity to be retained in this relatively benign rearing environment or find faster currents for dispersal, if avoiding predators is necessary (Humphries et al. 1999; Schiemer et al. 2001; Schludermann et al. 2012; Lechner et al. 2013; Lechner et al. 2017). Further discussion of the role of physical complexity in retaining nutrients, and other basal resources, phytoplankton and algae, the prey of fish larvae, and the fish larvae themselves is presented below.

These high retention zones are fundamental to the survival of those larval fish that have little yolk reserve at hatch, and must begin feeding exogenously within hours-days (Figure 2, Table 2; Schiemer et al. 2001). High concentrations of prey may be less important for others that have large stores of yolk at hatch, thereby having their own intrinsic source of nutrient enrichment (Winemiller
and Rose 1993; King 2005; Kaminskas and Humphries 2009), and therefore effectively bypass the larval stage (sensu Balon 1999). Thus, because fishes differ enormously in their life history and other species traits, the nature of, and requirements associated with, enrichment, concentration and retention/dispersal processes will vary among species. To appreciate the implications of this for recruitment, we need to take a short detour and consider patterns in life history and other species traits.

Figure 2 here

Species traits and recruitment

Winemiller and Rose (1992) developed a triangular life history model, elaborating on Pianka's r - and K-selection continuum (Pianka 1970), that seeks to explain how traits, such as longevity, age at maturity, fecundity and size of offspring, interact with environmental conditions to ensure the best chance for the survival of young. This model applies widely to marine and freshwater fishes (Winemiller 1989; Humphries et al. 1999; Winemiller 2005; King et al. 2013; Mims and Olden 2013). Winemiller and Rose's model proposes three conceptual endpoints or groups of fishes: opportunistic, periodic and equilibrium (Table 2). The larvae of opportunistic and periodic species typically have small amounts of yolk (consumed within hours-days) are small, undeveloped and tend to swim poorly when first feeding exogenously (Wolter and Arlinghaus 2004; Kopf et al. 2014). For example, the early-stage 5-6 mm larvae of silver perch, Bidyanus bidyanus, a periodic species, have critical swimming speeds less than $2 \mathrm{~cm} \mathrm{~s}^{-1}$ when they first start feeding at only 1-2 days-old (Kopf et al. 2014). Larvae of opportunistic species (e.g. Australian smelt, Retropinna semoni, and Murray River rainbowfish, Melanotaenia fluviatilis), often occupy shallow habitats (King 2004b), and rely on dense zooplankton or meiofauna (e.g. rotifers, micro-crustaceans) to get them through the transition phase from endogenous to exogenous feeding (King 2005; McCasker 2009). Larvae of periodic species, such as golden perch, Macquaria ambigua, feed on tiny zooplankton prey (e.g. planktonic rotifers and micro-crustaceans), because they are themselves planktonic and are
broadcast into the water column, typically in one batch (Arumugam and Geddes 1987). By contrast, the larvae of equilibrium species typically have large amounts of yolk, which they consume over many days, and are large, well-developed and swim well when first feeding exogenously. The larvae of Murray cod, Maccullochella peelii, for example, are 8-10 mm and typically 7-10 days-old when first feeding (Kaminskas and Humphries 2009) and have critical swimming speeds at this time of 15$30 \mathrm{~cm} \mathrm{~s}^{-1}$ (Kopf et al. 2014). First-feeding equilibrium species typically feed on larger meiofauna and early instars of insects, such as benthic cladocerans and chironomids (King 2005; Kaminskas and Humphries 2009; Sauvanet et al. 2013).

Table 2 here

For the early life stages of fishes in rivers, movement and the capacity to disperse cannot be divorced from their life history and other species traits. This is because traits, such as development of fins, body size and the amount of yolk, will affect the capacity of a species to move to, and/or maintain its position in, a preferred location (Kopf et al. 2014), and to find food that may be patchily distributed (Winemiller and Rose 1993; Nishimura and Hoshino 2009; Jorgensen et al. 2014). There is also variation within life history strategies in the amount and type of movement of the early life stages (Wolter and Arlinghaus 2003). Most broadcast spawners are periodic species (Winemiller and Rose 1992), and so drift of eggs and larvae of these species in river currents is the norm (Lechner et al. 2016). But the larvae of only a subset of opportunistic and equilibrium species drift (Humphries and King 2004; Lechner et al. 2016). This, together with the importance of dispersal and retention processes as part of the Fundamental Triad, means that our RRSM needs to include an axis of life history strategy, but also of movement and dispersal during early life.

Temperature

Temperature can have a strong influence on all processes affecting the dynamics of fish populations, but it exerts a particularly strong effect on recruitment. The breadth of a fish species' fundamental thermal niche (sensu Allen-Ankins and Stoffels 2017) is generally narrower during early life history than at the juvenile stage and early adulthood (Fuiman and Werner 2002; Portner and Farrell 2008). Furthermore, the relatively poor swimming capacity of larval fish leaves them less able to regulate body temperatures through active selection of thermal habitats (Wolter and Arlinghaus 2004). Indeed, of all physical variables, temperature is thought to have the greatest effect on survival of the early life stages of fishes (Houde 1989). There exists significant interspecific variation in the fundamental thermal niche of riverine fishes within the same assemblage, including the larval stages of those fishes. For example, the eggs, alevins, parr and smolt of arctic charr (Salvelinus alpinus) have both a narrower and 'cooler' thermal niche than that of the brown trout, Salmo trutta (Elliott and Elliott 2010; Turschwell et al. 2017). Within the Danube River, the fundamental thermal niches for embryogenesis and larval development differ among brown trout, nase (Chondrostoma nasus) and roach (Rutilus rutilus), resulting in them recruiting in river segments with different thermal regimes (Schiemer et al. 2004). It follows, therefore, that spatial and temporal variation in the thermal properties of the riverscape will likely have an effect on (a) intraspecific recruitment, hence population dynamics, and (b) determining interspecific variation in recruitment, hence dynamics at the community level.

The temperature of aquatic habitat varies at multiple spatial and temporal scales in riverscapes (Caissie 2006). Variation in geomorphology, topography, solar radiation, streambed composition, groundwater exchange and hydraulics - among other factors - causes spatial heterogeneity in temperature along both the lateral and longitudinal dimensions of the riverscape. Laterally, thermal regimes of habitats vary among the lotic (flowing channels) and lentic (e.g. oxbow lakes) habitats of the riverscape (Tonolla et al. 2010); among lentic waterbodies on a floodplain (Tonolla et al. 2010; Stoffels et al. 2017); and among habitats within the channel itself, even on a scale of metres (Wawrzyniak et al. 2013; Dugdale et al. 2015; Baldock et al. 2016). Longitudinally,
strong thermal gradients occur on a scale of kilometres within rivers (Caissie 2006; Fullerton et al. 2015; Stoffels et al. 2016; Allen-Ankins and Stoffels 2017). At yet larger spatial scales, variation in geomorphology, orientation - hence solar radiation - and the influence of snowmelt and groundwater generates spatial heterogeneity in thermal regimes across rivers within catchments (Lisi et al. 2015; Snyder et al. 2015; Eschbach et al. 2017). Variation in climatic conditions among seasons and years also generates temporal variation in the thermal states of aquatic habitats (Caissie 2006; Vatland et al. 2015). Temporal variation in river flows within and across years further alters the thermal properties of the riverscape. Temporal changes in flow can cause changes in hydrological connectivity, as well as the thermal mass of the waterbodies in, and hydraulics of, the riverscape, which in turn alters the thermal dynamics of that riverscape (Caissie 2006; van Vliet et al. 2011).

Thus the riverscape is a dynamic mosaic of thermal habitats, which should interact with the narrow, species-specific thermal niches of larval fish to influence spatial and temporal variation in recruitment. It follows that any conceptual synthesis of riverine fish recruitment must include the effects of temperature.

Enrichment, concentration and retention processes in rivers

Bakun's Fundamental Triad identifies three physical processes that are likely to enhance recruitment: nutrient enrichment, nutrient and food concentration, and processes that result in larvae and their food being retained in, or dispersed to, the same location (Bakun 1996, 1998, 2010). The concept and related processes were developed for fishes in the marine environment, however, below we describe how, when and where these processes may be applicable to the riverine environment, for inclusion in the RRSM.

Nutrient enrichment. Potential sources of nutrient enrichment in rivers are unlike those in marine systems, and include: flood-induced releases of soil nutrients (Baldwin and Mitchell 2000) and vegetation decomposition (Naiman and and Decamps 1997; Watkins et al. 2011), runoff from snowmelt (Townsendsmall et al. 2011), seasonal litter-fall (Vannote et al. 1980), deposition of fish carcasses (Johnston et al. 2004; Verspoor et al. 2011; Swain and Reynolds 2015), mass-spawning of vertebrate and invertebrate eggs (Näslund et al. 2015), terrestrial runoff (Hale et al. 2015), pointsource nutrient-enriched wastewater effluent (Aratani et al. 2007) and groundwater intrusions (Briody et al. 2016; Table 2; Figure 2). For opportunistic and periodic species that are small and need to feed soon after hatch, these sources of enrichment would provide enhanced primary production which would in turn enhance the production of benthic and pelagic zooplankton (e.g. rotifers, copepods, cladocerans), their principal food (King 2005; Pease et al. 2006; Nunn et al. 2007). For equilibrium species, we contend that the nutrient enrichment process has largely been supplied to the young fish by their mother through the provision of a relatively large yolk sac. Of course, if the yolk is consumed before reaching the juvenile stage, then the same potential sources of nutrient enrichment, mentioned above, may also be important for equilibrium species.

Concentration. Nutrient and larval fish food concentration can occur in a range of riverine meso-scale hydrogeomorphic patches and also as yolk for some species (Figure 2, Table 2), but life history strategy will influence the significance of each of these as a potential site of concentration. For opportunistic fish species, that may spawn over extended periods, and that need to find dense aggregations of small prey in which to start feeding in the first few days of life, some of the most significant sites for nursery rearing or recruitment include: summer slackwaters, hyporheic or groundwater upwellings (Humphries et al. 1999; King 2004a; Thorp et al. 2006), retentive midchannel (Reynolds and Descey 1996) or edge habitats (Schiemer et al. 2001), especially when associated with eddies, floodplain habitats, such as disconnected oxbow lakes (Zeug and Winemiller 2008), and isolated in-channel water holes (Kerezsy et al. 2011). All these habitats occur where currents are slowed or still, living and non-living organic material is deposited, and water
temperatures are warm. For periodic species, which typically spawn over a shorter period than opportunistic species, and often in response to rises in flow (King et al. 2003; Hoagstrom and Turner 2015), floodplains and off-channel habitats are probably the most likely locations for successful rearing, due to the higher concentrations of nutrients and food in these habitats (Lake 1967; Winemiller and Jepsen 1998; De Lima and Araujo-Lima 2004; Feyrer et al. 2006). But this would depend on the longevity of both water in floodplain habitats and connection (or re-connection) with the main river channel, to facilitate later dispersal. Slackwaters may also concentrate prey and provide good conditions for feeding, growth and survival for periodic species in specific situations, such as following flood recession (Hoagstrom and Turner 2015). Although larvae of both life history strategies need small prey, opportunistic species tend to disperse more actively over short distances to find food, whereas periodic species typically disperse more passively in the drift (Humphries et al. 1999; Kopf et al. 2014). Based on Winemiller and Rose's (1993) model, largely passive-dispersing tiny larvae of periodic species would require relatively denser and larger patches of food than opportunistic species for successful feeding. As suggested above, recently inundated floodplains, even when food is patchily distributed, would meet this requirement in many cases. For equilibrium species, their mothers have largely performed the concentration process for them: relatively large yolk reserves, which are typical of such species, may be able to sustain fish for many days after hatch. It will only be once the yolk is used up that suitable concentrations of prey will be required. But by then, many of the food-related challenges associated with recruitment have been overcome, and the comparatively large juveniles, with wide mouth gapes, have access to a large range of invertebrates as prey (King 2005; Kaminskas and Humphries 2009). For these species, mortality may be highest at the juvenile stage, when other demands, such as finding a territory, competition for resources and predator avoidance become critical (Houde 1994).

Retention/dispersal. Fish larvae being retained in, or dispersing to, prey-rich, meso-scale areas, are also likely to be critical for successful recruitment in rivers (Figure 2, Table 2). Poorswimming fish larvae and their zooplankton prey will be affected by similar physical forces in rivers
as they are in oceans. More specifically, the more retentive a river reach (defined as approximately two meander bends or about 20 times the width of the channel [Gordon et al. 2004]), the greater the opportunity for zooplankton prey to feed, grow and reproduce and the greater the opportunity for young fish to feed on this concentration of prey (Reynolds et al. 1991; Humphries et al. 1999; Reckendorfer et al. 1999; Schiemer et al. 2001). If food is concentrated where fish hatch, then, all other things being equal, there will be an advantage in those young fish being retained locally (King 2004a, b); this would be especially advantageous for opportunistic species. Alternatively, if food is concentrated at some distance from where fish hatch, there will be an advantage in dispersing to these more prey-rich locations and remaining there (Zeug and Winemiller 2008); this would be especially advantageous for periodic species. This does not mean that all types of highly retentive reaches are conducive for recruitment (Mallen-Cooper and Zampatti 2018): weir pools, for example, create other problems, such as a uniformity of depth and velocity, while also providing good conditions for the predators of young fish (Bice et al. 2017). In free-flowing rivers, retentiveness of reaches is a function of the interaction between discharge and physical complexity and is relevant to all river types (Reynolds et al. 1991; Reckendorfer et al. 1999; Schiemer et al. 2001; Vietz et al. 2013). For example, a river with multiple channels may have high overall physical complexity during moderate - high within channel flows, because the multiple channels create a diversity of hydraulic and structural conditions. But this may be lost when the river recedes to only one channel as flows decline. Determining the relationship between discharge and physical complexity of a reach is critical in an assessment of reach retentiveness. This relationship will also affect the extent and behaviour of hyporheic zones, and so nutrient concentration and transformation. As a consequence of this retentiveness, the more physically complex a reach is, the greater the hydraulic diversity, instream production, retardation and accumulation of organic and inorganic particles, enrichment and concentration of nutrients, and the shorter the nutrient spiral length, all which contribute to enhanced conditions for fish recruitment (Pringle et al. 1988; Reynolds et al. 1991; Newbold 1992; Vranovsky 1995; King 2004b; Sheldon and Thoms 2006). If the larvae of opportunistic species are
retained in summer slackwaters and the larvae of periodic species can disperse on to floodplains, where high concentrations of prey and slow or still currents occur, little energy needs to be expended to maintain position and find food. For equilibrium species that have a high concentration of food already available as yolk that will last for many days, dispersing downstream or upstream to suitable juvenile rearing habitats, while avoiding concentrations of conspecifics and predators, may instead, be paramount.

We predict that the influence of physical complexity on the three processes of enrichment, concentration and retention in rivers is likely to be least at extreme low and high flows, and greatest at intermediate flows. At extreme low flows, and cease-to-flow conditions, regardless of the physical complexity, nutrient enrichment and concentration of potential prey can be enhanced through shrinking water volumes (Ning et al. 2010). During flooding, when water moves out on to previously dry floodplain, nutrient enrichment and concentration processes can be enhanced through breakdown of vegetation and ponding, regardless of physical complexity (Naiman and Decamps 1997; Watkins et al. 2011). At intermediate flows in a free-flowing river, the greatest contrast in retentiveness would likely be between physically complex and simple reaches. Conditions comprising a diversity of hydraulic habitat, high nutrient enrichment and concentration, high retention of prey and fish larvae, are ideal conditions for fish recruitment, assuming predator density does not overwhelm everything else.

The Fundamental Triad (Bakun 2010) does not directly address the effects of predation on fish recruitment, although there is much literature to suggest predation is a significant factor (see Houde 2009). It does, however, add a caveat or 'loophole strategy', which allows for good recruitment under relatively poor feeding conditions if predators are few or absent; or alternatively, allows for poor recruitment under good feeding conditions if predators are abundant (also see Gido and Propst 2012). We therefore recognise the need to include predation as a factor in our RRSM.

The Riverscape Recruitment Synthesis Model

We have synthesized previous thinking about fish recruitment drivers (largely from marine systems), riverine productivity and riverscape scaling considerations, and concepts related to life history and other species traits for fish, and developed the Riverscape Recruitment Synthesis Model (RRSM). The RRSM can be used to predict relative recruitment strength under various conditions for fish from the three life history strategies (Figure 3, reading horizontally through the model). Climate and flow are assumed to be the most influential drivers of many of the processes that lead to fish recruitment; leading the RRSM to describe how, where and when these processes might take place in riverscapes and how the different species traits (particularly life history) interact with these processes to predict recruitment strength through the flow wave (reading vertically in the model). The main hypothesis of the RSSM proposes that: interactions between flow and physical complexity will create locations in rivers, at meso-scales, where energy and nutrients are enriched, the resultant production of small prey concentrated, and prey and fish larvae located (either through dispersal or retention) so that the larvae can feed, grow and recruit.

The RRSM includes as predictors of relative recruitment strength: a) flow-related amount and sources of energy; b) processes associated with the Fundamental Triad and how they are influenced by flow and physical complexity; c) flow-related movement and dispersal of the young stages of fish from different life history strategies; and d) temperature, food and predation (Figure 3). Predictions are made for equilibrium, periodic and opportunistic life history strategies. Descriptions of the inputs are brief, as they have previously been discussed.

The model includes:
a) Amount and sources of energy (Figure 3a). As discharge increases from base levels to overbank flooding, sources and amounts of energy inputs to rivers are likely to change: at low flow, sources may be local, whereas as discharge increases, sources of energy from upstream and from lowlying floodplain habitats, such as benches and anabranches, may increase in importance (see

Humphries et al. 2014). As discharge increases, the amount of energy in perennial river systems increases, as a greater area of a river is inundated and so more carbon becomes available, and more material is transported longitudinally through the system (Vannote et al. 1980; Junk et al. 1989). Once discharge is overbank, the floodplain proper will contribute a large percentage of the energy into rivers (Junk et al. 1989). In ephemeral systems, the amount of energy may be high at low discharge, moderate at moderate discharge and high again at high discharge, depending on antecedent conditions, sources of carbon, and the amount of shading and turbidity (Pringle et al. 1988).
b) The Fundamental Triad processes and physical complexity (Figure 3b). Nutrient enrichment, concentration of nutrients and the prey of larval fish, and the retention of same will vary with flow and reach physical complexity: being greatest at low and flood flows and intermediate at within-channel discharge. Reach physical complexity will mediate the effects of discharge on these processes, because it has a substantial influence on hydraulics, instream production, retardation of organic and inorganic particles and nutrient spiral length.
c) Movement/dispersal (Figure 3c). For some riverine fishes, adults move to locations conducive to the rearing of their young (De Lima and Araujo-Lima 2004), whereas for others, adults spawn in one location and the eggs and/or larvae disperse, presumably to increase their chances of encountering good conditions for recruitment (Lechner et al. 2016). Both types of movement will be mediated by flow: low flow limits dispersal for species of all life history strategies, whereas high flows and flooding provides the opportunity for larger-scale dispersal. The scale of movement will thus be influenced by the life history and life stage of the species, but also by how that movement is facilitated or impeded by the prevailing hydrologic environment (Lechner et al. 2017).
d) Temperature, food and predation (Figure 3d). Ideal recruitment conditions should occur when temperatures are optimal for egg and larval development and growth, food is abundant and predation is low. Because of the size, ability to move and how much parental care they receive,
the relative importance of biotic and abiotic factors in influencing recruitment of species from the three life history strategies will differ. Thus, we give separate predictions of recruitment strength based on hypothesized temperature, food and predation conditions for each life history strategy. The types and densities of food available, will also be influenced by temperature and flow (Ning et al. 2010). We also differentiate between reaches with low and high physical complexity because of the substantial influence we suggest that this has on the Fundamental Triad processes.
e) Relative recruitment strength (Figure 3e). Using our understanding of the key processes influencing recruitment during different river flow conditions, we make predictions of the relative recruitment strength of fish species from the three life-history strategies under three broad flows and for reaches with low (solid color fish) and high (hatched fish) physical complexity.

Our model predictions assume that:
i. at extreme low flows and extreme high flows, physical complexity will have little effect on the components of the Fundamental Triad, although available energy would likely be lower in reaches with low complexity, because of less potential decomposable material and less surface area for primary and secondary production;
ii. at low flows, dispersal is limited, whereas dispersal becomes increasingly easier as flows increase;
iii. recruitment strength is maximized when temperature is optimal for a particular species for the eggs and larvae to grow and develop;
iv. recruitment strength is maximized when larvae coincide in time and space with high food density and low predator density;
v. based on the definitions of opportunistic, periodic and equilibrium end-point life history strategies, we assume that populations of opportunistic and periodic species will vary annually more than equilibrium species, and that populations of the first two will rarely be
limited by the carrying capacity of the environment, whereas populations of the last will be limited by, and often at, the carrying capacity of the environment (Winemiller 2005).

Figure 3 here

The RRSM allows the relative recruitment strength of fish species of the three life history strategies to be predicted, regardless of climate and river type (e.g. temperate stochastic, temperate seasonal, tropical seasonal, arid stochastic), although how low flows or flooding are coupled with temperatures conducive for enhanced productivity needs to be taken into account (Winemiller 2004). Antecedent conditions of flow and climate are also known to influence fish recruitment strength (Stewart-Koster et al. 2011; Balcombe et al. 2012; Beesley et al. 2014), but are not explicitly included in the RRSM. We acknowledge that longer-term flow and more general climatic conditions, such as multi-year drought, are likely to be important influences on recruitment dynamics, but this level of complexity is beyond the scope of the current model and should be developed as the model is tested and refined. Nevertheless, we propose that the RRSM predictions are generalizable, because they are based on processes and conditions associated with levels of flow (and interactions with physical complexity of the river), and do not relate to particular flow regimes, or return times of floods or low flows. Reliance or focus on flow regime has, in our opinion, allowed development of ecological concepts in rivers (e.g. Vannote et al. 1980; Junk et al. 1989), but also ultimately limited their generalizability. This is discussed further below in relation to predictions with the three broadflow levels considered in the RRSM.

Low flow predictions (lower arrow, Figure 3): In Mediterranean and wet-dry tropical and arid-zone rivers, low-flow conditions are typically coupled with warmer temperatures conducive for food production and optimal fish growth (Humphries et al. 1999; Balcombe et al. 2012; King et al. 2015). Irrespective of physical complexity of reaches, the amount of available energy to fuel production is likely to be high during low flows, as nutrients are being concentrated by shrinking
habitats. This will result in enhanced growth rates of planktonic algae, and in turn rapid growth and turnover of zooplankton and so increasing concentration of food for fish larvae. Low flows and the abundance of shallow slackwaters, isolated water holes and highly retentive habitats more generally, will mean that the movement of larger fish will be more restricted than under higher flow conditions, but concentration of all organisms will increase as rivers contract, and so predation should be moderate - high. Under these conditions, we predict that recruitment strength of equilibrium and opportunistic species would be moderate because many of the conditions (i.e. optimal temperatures, high food) are conducive for larval survival (Figure 3e). Predation intensity should, however, be lower for equilibrium species, as parental care should provide a degree of protection. The presence of predators at moderate - high densities, density-dependent competition or water quality issues other than temperature would reduce survival. Structural refuge from predation may also influence recruitment strength during low-flow conditions. Under the same conditions, we predict that recruitment strength of periodic species would be zero - low, because: in many cases, these species will not breed under such conditions (e.g. King et al. 2009, 2010; Zampatti and Leigh 2013); but if fish do breed, the lentic or low-flow conditions would mean that eggs and larvae, which normally disperse either wholly or largely passively, would tend to remain mostly near where they were spawned and so likely end up in a narrower range of habitats than if dispersed widely. Combining this with a poor swimming ability and small size - and therefore a need to find lots of food quickly - may create conditions that make survival extremely uncertain for the larvae of periodic species. For all life history strategies, the ability to disperse to new locations, will be limited (Figure 3c).

Intermediate flow predictions (middle arrow, Figure 3): Under intermediate, within channel flows, quite different conditions for recruitment strength are likely to prevail in river reaches with low versus high physical complexity (Figure 3b). The coupling (e.g. tropical rivers) or otherwise (e.g. Mediterranean rivers) of intermediate flows with warm temperatures will likely be an important factor driving relative recruitment strength among the three exemplar river types. In all river types,
reaches with low complexity and therefore low retentive capacity may have high energy and nutrient loads, but there would be few places where enrichment can take place naturally, except perhaps during initial rises in flow. The poor retention of water, energy and nutrients would also translate to poor production, growth and retention of fish larvae and their food. Under these conditions, we predict that there would be relatively poor recruitment for periodic and opportunistic species (Figure 3e). However, those equilibrium species that have parental care, and those with larvae that are relatively large and swim well, may be buffered against the overall relatively poor conditions, and so may experience moderate recruitment.

In contrast, in reaches with high complexity, recruitment strength should be proportionally greater than in structurally simple reaches for fish of all life history strategies. This is because greater complexity should: increase the potential for nutrient enrichment through downstream transport of nutrients from areas higher in the catchment, runoff from previously dry areas, and increased upwellings of groundwater and hyporheic water; and equally, if not more importantly, create a greater number and diversity of hydrogeomoprhic zones (e.g. slackwaters, eddies and dead zones), that would act as sites of concentration and retention of water, nutrients, fish larvae and their food. Of the three life history strategies, recruitment should be lowest for periodic species at intermediate flows, because, although they may spawn during these conditions, unless there are downstream lentic areas where small, poorly swimming larvae passively find dense aggregations of appropriatelysized prey, the likelihood is that mortality will be very high. In the case of intermediate flows, opportunities for predators to move will be greater, and so predation may play a significant role in affecting relative recruitment strength. But, such conditions also provide the potential for dispersal of actively-swimming larval fish to avoid predators and competitors and to recruit to alternative locations (Figure 3c). Recruitment conditions at intermediate flows for the early stages of fishes will vary depending on whether the river is rising or whether it is falling and the rate of change. Freeflowing rivers will generally rise rapidly but fall more slowly and spend relatively little time at any
one intermediate flow, whereas regulated rivers may remain for considerable periods at an intermediate flow.

Flood flow predictions (upper arrow, Figure 3): During flooding in reaches of both low and high physical complexity for all river types, drifting eggs and larvae will be dispersed downstream and laterally. On floodplains, enrichment through decomposition of terrestrial plants and other organic matter and release of soil nutrients will occur, which will fuel the production of zooplankton (Watkins et al. 2011). Concentration of nutrients and zooplankton, as floodplain water bodies contract after flooding, enhances feeding conditions for larval fish (Lake 1967; Winemiller and Jepsen 1998; De Lima and Araujo-Lima 2004; Feyrer et al. 2006). Flooding in tropical rivers predictably occurs coupled with warmer temperatures optimal for the spawning, growth and development of the early life stages (King et al. 2013); however, this coupling is less predictable in Mediterranean rivers (where flooding commonly occurs from late winter - early summer) or aridzone rivers (where flooding occurs stochastically, but can occur throughout the year depending on prevailing weather conditions). Assuming there is a coupling of high flows and warm temperatures, we predict that periodic species would have the strongest relative recruitment strength of all life history strategies under these conditions (Figure 3e); as large numbers of small eggs and larvae would be dispersed widely among a diversity of environments, a subset of which would comprise ideal conditions for survival and growth (McGinley et al. 1987; Winemiller and Rose 1993). Flood flow conditions will affect the recruitment of equilibrium species quite differently from periodic species, as many equilibrium species tend to breed predictably in the main channel, regardless of flow (Humphries 2005). Eggs and larvae of those species receiving parental care generally require flowing water or active intervention by the guarding male to provide enough oxygen; conditions that are more challenging on floodplains than in the main channel. Recruitment of equilibrium species may also be lower than during low flows because of the greater risk of predation and high current speeds in the main channel increasing the risk of premature washout from nests or disruption to other male guarding practices (e.g. mouth brooding). Under flood flow conditions, we predict that
recruitment strength for opportunistic species will be relatively high, for similar reasons as for periodic species. The differences in relative recruitment strength would probably lie in the lower fecundity of opportunistic species, which increases the risk of larvae ending up in unfavorable conditions. Flooding does not typically cue opportunists to spawn (King et al. 2003), but it does allow dispersal of larvae amongst floodplain wetlands (Tonkin et al. 2008), which is favorable for recruitment overall.

Use of the RSSM for Conservation and Management of Riverine Fishes

Our synthesis highlights some key factors and processes that will not only contribute to understanding flow-ecology relationships, but we hope will also assist in the conservation and management of riverine fishes. In recent decades, environmental flows of various types have been proposed to enhance or preserve riverine fish populations, particularly in flow-altered rivers (Arthington 2012). Although flow is a key driver for recruitment, our model integrates other important factors, such as temperature, physical complexity, movement, predation and species traits that interact with flow to influence fish recruitment strength. The model can therefore be used to explore elements of a river (e.g. temperature, physical complexity, flow) that are potentially able to be manipulated or ameliorated by managers in regulated rivers, or protected in at-risk rivers. Predictions can readily be made and tested about which species, based on life history and knowledge of the physical complexity of river reaches, would benefit and which could be impaired by flow alteration.

Our synthesis also proposes the likely zones in rivers that are critical for producing food for fish larvae, and suggests flow-related mechanisms and pathways that are responsible for the growth and survival of young fishes. It highlights the importance of physical complexity (hydraulic, geomorphic and structural) in rivers and its role in the retentive capacity of reaches, which we predict will have major influences on recruitment, especially at intermediate, in-channel flows. It
must be emphasized, however, that higher retention alone is insufficient to guarantee successful recruitment, because of other mitigating factors, such as predation, lack of sheltering habitat and hydraulic diversity and the presence of alien species. We conclude - as many others have before us that there is a need for a diversity of flows, from low-flows to flooding (Poff et al. 1997), and a diversity of hydraulic and physical complexity, to promote recruitment for riverine fish assemblages. Our synthesis now provides a solid rationale for why physical complexity is important for the earliest stages of fishes' lives, whereas previously the focus of adding woody debris, for example, to rivers for fish has been on providing adult habitat.

We embarked on this synthesis hoping to evaluate the significance of factors affecting recruitment by drawing on multi-year and multi-species studies of riverine fishes. To our surprise, there were no studies that we could find that simultaneously considered the relationship between recruitment, life history and other traits of multiple fish species, and reach physical complexity over a number of years under a range of flows. Such studies are desperately needed if we are to progress our understanding of riverine fish recruitment, and in particular enable informed decisions about environmental watering to improve fish populations. To reiterate our observation from the Introduction, fish recruitment research in freshwater lags behind that in marine environments. Furthermore, most freshwater fish recruitment research has focused on single recreational species, rather than fish assemblages. Although solid foundations have been laid for understanding flow-fish population dynamics relationships (see e.g. Schlosser 1985; Schlosser and Angermeier 1995) and some promising developments have followed (e.g. Falke et al. 2010; Kerezsy et al. 2011; Balcombe et al. 2012; Hoagstrom and Turner 2015), there seems a reluctance by researchers to posit recruitment models in rivers and then to test them. Marrying the key principles of the riverscape concept (Fausch et al. 2002) and river ecosystem models (Vannote et al. 1980; Junk et al. 1989; Thorp and Delong 1994) with the drivers of fish recruitment would seem to be a logical way forward.

Acknowledgments

This review was funded by the Australian Department of Environment and Energy's Commonwealth Environmental Water Office through the Murray-Darling Basin Environmental Water Knowledge and Research project, administered by the Centre for Freshwater Ecosystems, La Trobe University. Additional support for the preparation of this manuscript came from Charles Sturt University, CSIRO, Charles Darwin University, La Trobe University and SARDI. The review benefited from discussions with Stephen Balcombe, John Koehn and Lee Baumgartner.

References

Allen-Ankins, S., and Stoffels, R.J. 2017. Contrasting fundamental and realized niches: two fishes with similar thermal performance curves occupy different thermal habitats. Freshwater Science 36(3): 635-652.

Aratani, Y., Tajima, A., and Minamiyama, M. 2007. Relationship of nutrient and residual chlorine concentration in treated wastewater with periphytic algae grown in a stream receiving treated wastewater. In Water Science and Technology. pp. 375-386.

Arthington, A.H. 2012. Environmental flows: saving rivers in the third millennium. University of California Press, Berkeley, California.

Arumugam, P.T., and Geddes, M.C. 1987. Feeding and growth of golden perch larvae and fry (Macquaria ambigua Richardson). Trans. R. Soc. S. Aust. 111(1): 59-65.

Bakun, A. 1996. Patterns in the ocean. California Sea Grant, in cooperation with Centro de Investigaciones Biologicas del Noroeste, La Paz, Mexico.

Bakun, A. 1998. Ocean triads and radical interdecadal variation: bane and boon to scientific fisheries management. In Reinventing fisheries management. Springer. pp. 331-358.

Bakun, A. 2010. Linking climate to population variability in marine ecosystems characterized by nonsimple dynamics: conceptual templates and schematic constructs. Journal of Marine Systems 79(3): 361-373.

Balcombe, S.R., Lobegeiger, J.S., Marshall, S.M., Marshall, J.C., Ly, D., and Jones, D.N. 2012. Fish body condition and recruitment success reflect antecedent flows in an Australian dryland river. Fisheries Science 78(4): 841-847.

Baldock, J.R., Armstrong, J.B., Schindler, D.E., and Carter, J.L. 2016. Juvenile coho salmon track a seasonally shifting thermal mosaic across a river floodplain. Freshwater Biology 61(9): 14541465.

Baldwin, D.S., and Mitchell, A. 2000. The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river-floodplain systems: a synthesis. River Research and Applications 16(5): 457-467.

Balon, E.K. 1999. Alternative ways to become a juvenile or a definitive phenotype (and on some persisting linguistic offenses). Environmental Biology of Fishes 56: 17-38.

Beesley, L.S., Gwinn, D.C., Price, A., King, A.J., Gawne, B., Koehn, J.D., and Nielsen, D.L. 2014. Juvenile fish response to wetland inundation: how antecedent conditions can inform environmental flow policies for native fish. Journal of Applied Ecology 51(6): 1613-1621.

Bice, C. M., Gibbs, M. S., Kilsby, N. N., Mallen-Cooper, M., and Zampatti, B. P. 2017. Putting the "river" back into the Lower River Murray: quantifying the hydraulic impact of river regulation to guide ecological restoration. Transactions of the Royal Society of South Australia, 141(2): 108-131.

Binckley, C.A., Wipfli, M.S., Medhurst, R.B., Polivka, K., Hessburg, P., Brion Salter, R., and Kill, J.Y. 2010. Ecoregion and land-use influence invertebrate and detritus transport from headwater streams. Freshwater Biology 55(6): 1205-1218.

Briody, A.C., Cardenas, M.B., Shuai, P., Knappett, P.S.K., and Bennett, P.C. 2016. Groundwater flow, nutrient, and stable isotope dynamics in the parafluvial-hyporheic zone of the regulated Lower Colorado River (Texas, USA) over the course of a small flood. Hydrogeology Journal: 1-13.

Caddy, J.F., and Seijo, J.C. 2005. This is more difficult than we thought! The responsibility of scientists, managers and stakeholders to mitigate the unsustainability of marine fisheries. Philosophical Transactions of the Royal Society B: Biological Sciences 360(1453): 59-75.

Caissie, D. 2006. The thermal regime of rivers: a review. Freshwater biology 51(8): 1389-1406.
Caley, M.J., Carr, M.H., Hixon, M.A., Hughes, T.P., Jones, G.P., and Menge, B.A. 1996. Recruitment and the local dynamics of open marine populations. Annual Review of Ecology and Systematics 27: 477-500.

Chambers, R.C. 1997. Environmental influences on egg and propagule sizes in marine fishes. In Early life history and recruitment in fish populations. Springer. pp. 63-102.

Chambers, R.C., Leggett, W.C., and Brown, J.A. 1989. Egg size, female effects, and the correlations between early life history traits of capelin, Mallotus villosus: An appraisal at the individual level. Fishery Bulletin 87(3): 515-523.

Chambers, R.C., and Trippel, E. 2012. Early life history and recruitment in fish populations. Springer Science \& Business Media.

Cohen, A.S., Gergurich, E.L., Kraemer, B.M., McGlue, M.M., McIntyre, P.B., Russell, J.M., Simmons, J.D., and Swarzenski, P.W. 2016. Climate warming reduces fish production and benthic habitat in Lake Tanganyika, one of the most biodiverse freshwater ecosystems. Proceedings of the National Academy of Sciences 113(34): 9563-9568.

Cushing, D.H. 1975. Marine ecology and fisheries. Cambridge University Press Archive, Cambridge. Cushing, D.H. 1990. Plankton production and year-class strength in fish populations: an update of the match/mismatch hypothesis. Advances in Marine Biology 26: 250-293.

De Lima, Ã.C., and Araujo-Lima, C.A.R.M. 2004. The distributions of larval and juvenile fishes in Amazonian rivers of different nutrient status. Freshwater Biology 49(6): 787-800.

Dugdale, S.J., Bergeron, N.E., and St-Hilaire, A. 2015. Spatial distribution of thermal refuges analysed in relation to riverscape hydromorphology using airborne thermal infrared imagery. Remote Sensing of Environment 160: 43-55.

Elliott, J.M., and Elliott, J.A. 2010. Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: predicting the effects of climate change. Journal of Fish Biology 77(8): 1793-1817.

Eschbach, D., Piasny, G., Schmitt, L., Pfister, L., Grussenmeyer, P., Koehl, M., Skupinski, G., and Serradj, A. 2017. Thermal-infrared remote sensing of surface water-groundwater exchanges in a restored anastomosing channel (Upper Rhine River, France). Hydrological Processes 31(5): 1113-1124.

Falke, J.A., Bestgen, K.R., and Fausch, K.D. 2010. Streamflow reductions and habitat drying affect growth, survival, and recruitment of brassy minnow across a Great Plains riverscape. Transactions of the American Fisheries Society 139(5): 1566-1583.

Fausch, K.D., Torgersen, C.E., Baxter, C.V., and Li, H.W. 2002. Landscapes to riverscapes: Bridging the gap between research and conservation of stream fishes. BioScience 52(6): 483-498.

Feyrer, F., Sommer, T., and Harrell, W. 2006. Managing floodplain inundation for native fish: Production dynamics of age-0 splittail (Pogonichthys macrolepidotus) in California's Yolo Bypass. Hydrobiologia 573(1): 213-226.

Francis, M.P. 1994. Duration of larval and spawning periods inPagrus auratus (Sparidae) determined from otolith daily increments. Environmental biology of fishes 39(2): 137-152.

Froese, R., and Pauly, D. Editors. 2018. FishBase. World Wide Web electronic publication. www.fishbase.org, version (02/2018).

Fuiman, L.A., and Werner, R.G. 2002. Fishery science: the unique contributions of early life stages. Blackwell, Oxford.

Fullerton, A.H., Torgersen, C.E., Lawler, J.J., Faux, R.N., Steel, E.A., Beechie, T.J., Ebersole, J.L., and Leibowitz, S.G. 2015. Rethinking the longitudinal stream temperature paradigm: region-wide comparison of thermal infrared imagery reveals unexpected complexity of river temperatures. Hydrological Processes 29(22): 4719-4737.

Gido K.B., and Propst D.L. 2012. Long-term dynamics of native and nonnative fishes in the San Juan River, New Mexico and Utah, under a partially managed flow regime. Transactions of the American Fisheries Society 141(3):645-659.

Gordon, N.D., McMahon, T.A., and Finlayson, B.L. 2004. Stream hydrology: an introduction for ecologists. John Wiley and Sons.

Hale, R.L., Grimm, N.B., Vörösmarty, C.J., and Fekete, B. 2015. Nitrogen and phosphorus fluxes from watersheds of the northeast U.S. from 1930 to 2000: Role of anthropogenic nutrient inputs, infrastructure, and runoff. Global Biogeochemical Cycles 29(3): 341-356.

Hansen, M.J., Bozek, M.A., Newby, J.R., Newman, S.P., and Staggs, M.D. 1998. Factors affecting recruitment of walleyes in Escanaba Lake, Wisconsin, 1958-1996. North American Journal of Fisheries Management 18(4): 764-774.

Harris, J.H., and Gehrke, P.C. 1994. Development of predictive models linking fish population recruitment with streamflow. Proceedings of the Australian Society for Fish Biology Workshop. In Population Dynamics for Fisheries Management. Edited by D.A. Hancock. Bureau of Rural Resources Proceedings, Canberra. pp. 195-199.

Hein, T., Reckendorfer, W., Thorp, J.H., and Schiemer, F. 2005. The role of slackwater areas for biogeochemical processes in rehabilitated river corridors: examples from the Danube. Arch. Fur Hydrobiol. Suppl. Large Rivers 15: 425-442.

Hilborn, R., Branch, T.A., Ernst, B., Magnussson, A., Minte-Vera, C.V., Scheuerell, M.D., and Valero, J.L. 2003. State of the world's fisheries. In Annual Review of Environment and Resources. pp. 359-399.

Hjort, J. 1914. Fluctuations in the great fisheries of northern Europe. Rapport du Conseil d'Exploration de Mer 20: 1-228.

Hoagstrom, C.W., and Turner, T.F. 2015. Recruitment ecology of pelagic-broadcast spawning minnows: Paradigms from the ocean advance science and conservation of an imperilled freshwater fauna. Fish and Fisheries 16(2): 282-299.

Houde, E.D. 1989a. Subtleties and episodes in the early life of fishes. Journal of Fish Biology 35(sA): 29-38.

Houde, E.D. 1989b. Comparative growth, mortality, and energetics of marine fish larvae: temperature and implied latitudinal effects. Fishery Bulletin 87(3): 471-495.

Houde, E.D. 1994. Differences between marine and freshwater fish larvae: implications for recruitment. ICES Journal of Marine Science: Journal du Conseil 51(1): 91-97.

Houde, E.D., and Hoyt, R. 1987. Fish early life dynamics and recruitment variability. Transactions of the American Fisheries Society.

Houde, E.D. 2009. Recruitment variability. In Fish Reproductive Biology: Implications for Assessment and Management. Edited by M.J. Fogarty, T.M. Jakobsen, and B.A. Megrey. Wiley, New York. pp. 91-171.

Humphries, P. 2005. Spawning time and early life history of Murray cod, Maccullochella peelii peelii (Mitchell) in an Australian river. Environmental Biology of Fishes 72(4): 393-407.

Humphries, P., Keckeis, H., and Finlayson, B. 2014. The River Wave Concept: Integrating River Ecosystem Models. BioScience 64(10): 870-882.

Humphries, P., and King, A.J. 2004. Drifting fish larvae in Murray-Darling Basin rivers: composition, spatial and temporal patterns and distance drifted. In Downstream movement of fish in the Murray-Darling Basin. Statement, recommendations and supporting papers from a workshop held in Canberra 3-4 June 2003. Edited by M. Lintermans and B. Phillips. Murray-Darling Basin Commission, Canberra. pp. 51-58.

Humphries, P., King, A.J., and Koehn, J.D. 1999. Fish, Flows and Flood Plains: Links between Freshwater Fishes and their Environment in the Murray-Darling River System, Australia. Environmental Biology of Fishes 56(1): 129-151.

Humphries, P., Richardson, A., Wilson, G., and Ellison, T. 2013. River regulation and recruitment in a protracted-spawning riverine fish. Ecological Applications 23(1): 208-225.

Iles, T., and Sinclair, M. 1982. Atlantic herring: stock discreteness and abundance. Science 215(4533): 627-633.

Jelks, H.L.e.a. 2008. Conservation status of imperiled North American freshwater and diadromous fishes. Fisheries 33: 372-407.

Johnston, N., Maclsaac, E., Tschaplinski, P., and Hall, K. 2004. Effects of the abundance of spawning sockeye salmon (Oncorhynchus nerka) on nutrients and algal biomass in forested streams. Canadian Journal of Fisheries and Aquatic Sciences 61(3): 384-403.

Jorgensen, C., Opdal, A.F., and Fiksen, O. 2014. Can behavioural ecology unite hypotheses for fish recruitment? ICES Journal of Marine Science 71(4): 909-917.

Junk, W.J., Bayley, P.B., and Sparks, R.E. 1989. The flood pulse concept in river-floodplain systems. Can. Spec. Publ. Fish. Aquat. Sci. 106: 110-127.

Kaminskas, S., and Humphries, P. 2009. Diet of Murray cod (Maccullochella peelii peelii)(Mitchell) larvae in an Australian lowland river in low flow and high flow years. Hydrobiologia 636(1): 449.

Keckeis, H., Kamler, E., Bauer-Nemeschkal, E., and Schneeweiss, K. 2001. Survival, development and food energy partitioning of nase larvae and early juveniles at different temperatures. Journal of Fish Biology 59(1): 45-61.

Kerezsy, A., Balcombe, S.R., Arthington, A.H., and Bunn, S.E. 2011. Continuous recruitment underpins fish persistence in the arid rivers of far-western Queensland, Australia. Marine and Freshwater Research 62(10): 1178-1190.

Kerr, S.R., and Dickie, L.M. 2001. The biomass spectrum: a predator-prey theory of aquatic production. Columbia University Press, Cambridge.

King, A.J. 2004a. Density and distribution of potential prey for larval fish in the main channel of a floodplain river: Pelagic versus epibenthic meiofauna. River Research and Applications 20(8): 883-897.

King, A.J. 2004b. Ontogenetic patterns of habitat use by fishes within the main channel of an Australian floodplain river. Journal of Fish Biology 65(6): 1582-1603.

King, A.J. 2005. Ontogenetic dietary shifts of fishes in an Australian floodplain river. Marine and Freshwater Research 56(2): 215-225.

King, A.J., Humphries, P., and Lake, P.S. 2003. Fish recruitment on floodplains: The roles of patterns of flooding and life history characteristics. Canadian Journal of Fisheries and Aquatic Sciences 60(7): 773-786.

King, A.J., Humphries, P., and McCasker, N.G. 2013. Reproduction and early life history. In Ecology of Australian Freshwater Fishes. Edited by P. Humphries and K.F. Walker. CSIRO Publishing, Collingwood. pp. 159-192.

King, A.J., Townsend, S.A., Douglas, M.M., and Kennard, M.J. 2015. Implications of water extraction on the low-flow hydrology and ecology of tropical savannah rivers: an appraisal for northern Australia. Freshwater Science 34(2): 741-758.

Kobayashi, Y., Kim, C., Yoshimizu, C., Kohzu, A., Tayasu, I., and Nagata, T. 2009. Longitudinal changes in bacterial community composition in river epilithic biofilms: Influence of nutrients and organic matter. Aquatic Microbial Ecology 54(2): 135-152.

Kopf, S., Humphries, P., and Watts, R. 2014. Ontogeny of critical and prolonged swimming performance for the larvae of six Australian freshwater fish species. Journal of Fish Biology. 84(6): 1820-1841.

Lake, J.S. 1967. Rearing experiments with five species of Australian freshwater fishes. I. Inducement to spawning. Australian Journal of Marine and Freshwater Research 18(2): 137-154.

Lasker, R. 1978. Factors contributing to the variable recruitment of the northern anchovy (Engraulis mordax) in the Californian current: contrasting years 1975-1978. Rapports et Porcčs-Verbaux des Réunions, Conseil International pour l'Exploration de la Mer 178: 375-388.

Lechner, A., Keckeis, H., Glas, M., Tritthart, M., Habersack, H., Andorfer, L., and Humphries, P. 2017. The influence of discharge, current speed and development on the downstream dispersal of larval nase (Chondrostoma nasus) in the River Danube. Canadian Journal of Fisheries and Aquatic Sciences 75(2): 247-259.

Lechner, A., Keckeis, H., and Humphries, P. 2016. Patterns and processes in the drift of early developmental stages of fish in rivers: a review. Reviews in Fish Biology and Fisheries 26(3): 471-489.

Lechner, A., Keckeis, H., Schludermann, E., Loisl, F., Humphries, P., Glas, M., Tritthart, M., and Habersack, H. 2013. Shoreline configurations affect dispersal patterns of fish larvae in a large river. ICES Journal of Marine Science 71(4), 930-942.

Lewin, W.-C., Arlinghaus, R., and Mehner, T. 2006. Documented and Potential Biological Impacts of Recreational Fishing: Insights for Management and Conservation. Reviews in Fisheries Science, 14(4): 305-367.

Lintermans, M. 2013. Conservation and management. In Ecology of Australian freshwater fishes. Edited by P. Humphries and K. Walker. CSIRO Publishing, Collingwood. pp. 282-316.

Lisi, P.J., Schindler, D.E., Cline, T.J., Scheuerell, M.D., and Walsh, P.B. 2015. Watershed geomorphology and snowmelt control stream thermal sensitivity to air temperature. Geophysical Research Letters 42(9): 3380-3388.

Maceina, M., and Pereira, D.L. 2007. Recruitment. In Analysis and Interpretation of Freshwater Fisheries Data. Edited by C.S. Guy and M.L. Brown. American Fisheries Society, Bethesda, Maryland. pp. 121-185.

Mallen-Cooper, M., \& Zampatti, B. P. (2018). History, hydrology and hydraulics: Rethinking the ecological management of large rivers. Ecohydrology 11(5): e1965.

Matthews, W.J. 1998. Patterns in Freshwater Fish Ecology. Kluwer Academic Publishers, Norewll, Massachusetts.

McGinley, M.A., Temme, D.H., and Geber, M.A. 1987. Parental investment in offspring in variable environments: theoretical and empirical considerations. The American Naturalist 130(3): 370398.

McIntyre, P.B., Liermann, C.A.R., and Revenga, C. 2016. Linking freshwater fishery management to global food security and biodiversity conservation. Proceedings of the National Academy of Sciences 113(45): 12880-12885.

Mims, M.C., and Olden, J.D. 2012. Life history theory predicts fish assemblage response to hydrologic regimes. Ecology 93(1): 35-45.

Mims, M.C., and Olden, J.D. 2013. Fish assemblages respond to altered flow regimes via ecological filtering of life history strategies. Freshwater Biology 58(1): 50-62.

Naiman and, R.J., and Decamps, H. 1997. The ecology of interfaces: riparian zones. Annual review of Ecology and Systematics 28(1): 621-658.

Näslund, J., Aldvén, D., and Závorka, L. 2015. Eggs from anadromous adults provide marine-derived nutrients to Atlantic salmon and brown trout parr in late autumn - observations from a Swedish coastal stream. Environmental Biology of Fishes 98(12): 2305-2313.

Newbold, J.D. 1992. Cycles and spirals of nutrients. In The rivers handbook. Vol. 1. Edited by P. Callow, and G. Petts. Blackwell Publising, Oxford. pp. 379-408.

Ning, N.S.P., Nielsen, D.L., Paul, W.L., Hillman, T.J., and Suter, P.J. 2010. Microinvertebrate dynamics in riverine slackwater and mid-channel habitats in relation to physico-chemical parameters and food availability. River Research and Applications 26(3): 279-296.

Nishimura, K., and Hoshino, N. 2009. The evolutionary pattern of early life history in water currents. Evolutionary Ecology 23(2): 207-221.

Nunn, A., Harvey, J., and Cowx, I. 2007. The food and feeding relationships of larval and 0+ year juvenile fishes in lowland rivers and connected waterbodies. I. Ontogenetic shifts and interspecific diet similarity. Journal of Fish Biology 70(3): 726-742.

O'Neill, B.J., and Thorp, J.H. 2011. A simple channel complexity metric for analyzing river ecosystem responses. River Systems 19(4): 327-335.

Otterlei, E., Nyhammer, G., Folkvord, A., and Stefansson, S.O. 1999. Temperature-and sizedependent growth of larval and early juvenile Atlantic cod (Gadus morhua): a comparative study of Norwegian coastal cod and northeast Arctic cod. Canadian Journal of Fisheries and Aquatic Sciences 56(11): 2099-2111.

Pease, A.A., Davis, J.J., Edwards, M.S., and Turner, T.F. 2006. Habitat and resource use by larval and juvenile fishes in an arid-land river (Rio Grande, New Mexico). Freshwater Biology 51(3): 475486.

Poff, N.L., Allan, J.D., Bain, M.B., Karr, J.R., Prestegaard, K.L., Richter, B.D., Sparks, R.E., and Stromberg, J.C. 1997. The natural flow regime: a paradigm for river conservation and restoration. BioScience 47(11): 769-784.

Pörtner, H.O., and Farrell, A.P. 2008. Physiology and climate change. Science: 690-692.
Pringle, C.M., Naiman, R.J., Bretschko, G., Karr, J.R., Oswood, M.W., Webster, J.R., Welocmme, R.L., and Winterbourne, M.J. 1988. Patch dynamics in lotic ecosystems: the stream as a mosaic. Journal of the North American Benthological Society 7(4): 503-524.

Rayner, T.S., Pusey, B.J., and Pearson, R.G. 2008. Seasonal flooding, instream habitat structure and fish assemblages in the Mulgrave River, north-east Queensland: towards a new conceptual framework for understanding fish-habitat dynamics in small tropical rivers. Marine and Freshwater Research 59(2): 97-116.

Reckendorfer, W., Keckeis, H., Winkler, G., and Schiemer, F. 1999. Zooplankton abundance in the River Danube, Austria: the significance of inshore retention. Freshwater Biology 41(3): 583591.

Reynolds, C.S. 2000. Hydroecology of river plankton the role of variability in channel flow. Hydrological Processes 14(16-17): 3119-3132.

Reynolds, C.S., Carling, P., and Beven, K. 1991. Flow in river channels: new insights into hydraulic retention. Archiv fur Hydrobiologie 121(2): 171-179.

Reynolds, C.S., and Descey, J.P. 1996. The production, biomass and structure of phytoplankton in large rivers. Archiv fur Hydrobiologie Supplement 113: 161-187.

Ricker, W.E. 1954. Stock and recruitment. Journal of the Fisheries Research Board of Canada 11(5): 559-623.

Sauvanet, J., Bourdier, G., Jouve, L., Bec, A., and Desvilettes, C. 2013. Feeding of pike larvae (Esox lucius L.) in an alluvial river backwater: fatty acid as markers of two organic matter flows. Fundamental and Applied Limnology/Archiv für Hydrobiologie 183(4): 337-350.

Schiemer, F., Keckeis, H., Reckendorfer, W., and Winkler, G. 2001. The "inshore retention concept" and its significance for large rivers. Archive fur Hydrobiologie, Supplement 135: 509-516.

Schiemer, F., Keckeis, H., Nemeschkal, H., Schludermann, E., Winkler, G., and Zweimuler, I. 2004. Ontogenetic patterns in thermal adaptation of fish vs. long-term temperature trends in large rivers. In International Congress Series. Elsevier, London. pp. 209-217.

Schlosser, I.J. 1985. Flow regime, juvenile abundance, and the assemblage structure of stream fishes. Ecology 66(5): 1484-1490.

Schlosser, I.J., and Angermeier, P.L. 1995. Spatial variability in demographic processes in lotic fishes: conceptual models, empirical evidence and implications for conservation. American Fisheries Society Symposium 17: 360-370.

Schludermann, E., Tritthart, M., Humphries, P., and Keckeis, H. 2012. Dispersal and retention of larval fish in a potential nursery habitat of a large temperate river: an experimental study. Canadian Journal of Fisheries and Aquatic Sciences 69(8): 1302-1315.

Sheldon, F., and Thoms, M. 2006. In-channel geomorphic complexity: The key to the dynamics of organic matter in large dryland rivers? Geomorphology 77(3): 270-285.

Sinclair, M., and Iles, T.D. 1988. Population richness of marine fish species. Aquatic Living Resources 1(1): 71-83.

Snyder, C.D., Hitt, N.P., and Young, J.A. 2015. Accounting for groundwater in stream fish thermal habitat responses to climate change. Ecological Applications 25(5): 1397-1419.

Stewart-Koster, B., Olden, J. D., Kennard, M. J., Pusey, B. J., Boone, E. L., Douglas, M. and Jackson, S. (2011). Fish response to the temporal hierarchy of the natural flow regime in the Daly River, northern Australia. Journal of Fish Biology 79(6): 1525-1544.

Stoffels, R., Weatherman, K., and Allen-Ankins, S. 2017. Heat and hypoxia give a global invader, Gambusia holbrooki, the edge over a threatened endemic fish on Australian floodplains. Biological Invasions 19(8): 2477-2489.

Stoffels, R.J., Richardson, A.J., Vogel, M.T., Coates, S.P., and Muller, W.J. 2016. What do metabolic rates tell us about thermal niches? Mechanisms driving crayfish distributions along an altitudinal gradient. Oecologia 180(1): 45-54.

Swain, N.R., and Reynolds, J.D. 2015. Effects of salmon-derived nutrients and habitat characteristics on population densities of stream-resident sculpins. PLoS ONE 10(6).

Thorp, J.H., and Delong, M.D. 1994. The riverine productivity model: an heuristic view of carbon sources and organic processing in large river ecosystems. Oikos 70(2): 305-308.

Thorp, J.H., Thoms, M.C., and Delong, M.D. 2006. The riverine ecosystem synthesis: Biocomplexity in river networks across space and time. River Research and Applications 22(2): 123-147.

Thorp, J.H., Thoms, M.C., and Delong, M.D. 2008. The Riverine Ecosystem Synthesis. Elsevier, London.

Tonkin, Z.D., King, A.J., and Mahoney, J. 2008. Effects of flooding on recruitment and dispersal of the Southern Pygmy Perch (Nannoperca australis) at a Murray River floodplain wetland. Ecological Management and Restoration 9(3): 196-201.

Tonolla, D., Acuna, V., Uehlinger, U., Frank, T., and Tockner, K. 2010. Thermal Heterogeneity in River Floodplains. Ecosystems 13(5): 727-740.

Townsendsmall, A., McClelland, J.W., Holmes, R.M., and Peterson, B.J. 2011. Seasonal and hydrologic drivers of dissolved organic matter and nutrients in the upper Kuparuk River, Alaskan Arctic. Biogeochemistry 103(1): 109-124.

Turschwell, M.P., Balcombe, S.R., Steel, E.A., Sheldon, F., and Peterson, E.E. 2017. Thermal habitat restricts patterns of occurrence in multiple life-stages of a headwater fish. Freshwater Science 36(2): 402-414.

Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R., and Cushing, C.E. 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130-137. van Vliet, M.T.H., Ludwig, F., Zwolsman, J.J.G., Weedon, G.P., and Kabat, P. 2011. Global river temperatures and sensitivity to atmospheric warming and changes in river flow. Water Resources Research 47: 19.

Vatland, S.J., Gresswell, R.E., and Poole, G.C. 2015. Quantifying stream thermal regimes at multiple scales: Combining thermal infrared imagery and stationary stream temperature data in a novel modeling framework. Water Resources Research 51(1): 31-46.

Verspoor, J.J., Braun, D.C., Stubbs, M.M., and Reynolds, J.D. 2011. Persistent ecological effects of a salmon-derived nutrient pulse on stream invertebrate communities. Ecosphere 2(2): 1-17.

Vietz, G.J., Sammonds, M.J., and Stewardson, M.J. 2013. Impacts of flow regulation on slackwaters in river channels. Water Resources Research 49(4): 1797-1811.

Vranovsky, M. 1995. The effect of current velocity upon the biomass of zooplankton in the River Danube side arms. Biologia 50(5): 461-464.

Walker, K.F., Sheldon, F., and Puckridge, J.T. 1995. Perspective on dryland river ecosystems. Regulated Rivers: Research \& Management 11(1): 85-104.

Watkins, S.C., Nielsen, D., Quinn, G.P., and Gawne, B. 2011. The influence of leaf litter on zooplankton in floodplain wetlands: changes resulting from river regulation. Freshwater Biology 56(12): 2432-2447.

Wawrzyniak, V., Piegay, H., Allemand, P., Vaudor, L., and Grandjean, P. 2013. Prediction of water temperature heterogeneity of braided rivers using very high resolution thermal infrared (TIR) images. International Journal of Remote Sensing 34(13): 4812-4831.

Winemiller, K.O. 1989. Patterns of variation in life history among South American fishes in seasonal environments. Oecologia 81(2): 225-241.

Winemiller, K.O. 2004. Floodplain river food webs: generalizations and implications for fisheries management. RAP Publication 2004/17, FAO Regional Office for Asia and the Pacific Bangkok, Thailand, pp. 285-309.

Winemiller, K.O. 2005. Life history strategies, population regulation, and implications for fisheries management. Canadian Journal of Fisheries and Aquatic Sciences 62(4): 872-885.

Winemiller, K.O., and Jepsen, D.B. 1998. Effects of seasonality and fish movement on tropical river food webs. Journal of Fish Biology 53(SUPPL. A): 267-296.

Winemiller, K.O., and Rose, K.A. 1992. Patterns of life-history diversification in North American fishes: implications for population regulation. Canadian Journal of Fisheries and Aquatic Sciences 49(10): 2196-2218.

Winemiller, K.O., and Rose, K.A. 1993. Why do most fish produce so many tiny offspring? American Naturalist 142(4): 585-603.

Wolter, C., and Arlinghaus, R. 2003. Navigation impacts on freshwater fish assemblages: The ecological relevance of swimming performance. Reviews in Fish Biology and Fisheries 13(1): 63-89.

Wolter, C., and Arlinghaus, R. 2004. Burst and critical swimming speeds of fish and their ecological relevance in waterways. Berichte des IGB 20: 77-93.

Wootton, R.J. 1998. Ecology of Teleost Fishes. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Zampatti, B. P., and Leigh, S. J. 2013. Within-channel flows promote spawning and recruitment of golden perch, Macquaria ambigua ambigua - implications for environmental flow management in the River Murray, Australia. Marine and Freshwater Research 64(7): 618-630.

Zeug, S.C., and Winemiller, K.O. 2008. Relationships between hydrology, spatial heterogeneity, and fish recruitment dynamics in a temperate floodplain river. River Research and Applications 24(1): 90-102.

Ziv, G., Baran, E., Nam, S., Rodríguez-Iturbe, I., and Levin, S.A. 2012. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proceedings of the National Academy of Sciences 109(15): 5609-14.

[^0] associated with the Fundamental Triad relevant for fish recruitment in rivers.

		Life history strategy	
Species traits	Opportunistic	Periodic	Equilibrium
Size at maturity	Small	Moderate-large	Moderate-large
Fecundity	Low	Very high	Low
Parental care	Possibly	None	Often
Size at hatch	Tiny	Small	Large
Yolk size	Small	Hours-days	Large
Time from hatch to first feeding	Hours-days	Small	Days-weeks
Size at first feeding	Tiny	Very poor	Large
Swimming ability	Poor	Good	

Fundamental Triad processes

Recruitment of riverine fishes

Captions to figures

Figure 1. Macro-scale and meso-scale environmental patterns and interactions between the two, how they are filtered by life history and other species traits, influence individual or population processes and are mediated by dispersal/retention to create fish recruitment in rivers.

Figure 2. Examples in rivers of sources of nutrient enrichment; locations for concentration of food; and habitats likely to enhance retention of food and propagules. All the senior author's photographs and drawings, except: fish larvae (Tim Kaminskas) salmon carcass (By Peter Sircom Bromley, CC BY-SA 4.0; https://creativecommons.org/licenses/by-sa/4.0)], via Wikimedia Commons).

Figure 3. Riverscape recruitment synthesis model. The relationship between flow and: a) the amount \& sources of energy in rivers; b) the Fundamental Triad of nutrient enrichment and the concentration and retention of young fish and their food mediated by physical complexity of the river reach; c) the potential for movement and dispersal of eggs \& young fish (note: no periodic species are included during low flow because of the uncertainty of spawning under these conditions); and how this combines with d) hypothesized relative levels of temperature (Temp. \& T), food (F) and predation (Pr) considered relevant for fish from opportunistic (O, blue), periodic (P , green) and equilibrium (E, orange) life history strategies; to predict e) relative recruitment strength for fish in low complexity (solid fish) and high complexity (hatched fish) reaches. For b), solid line = low physical complexity, dashed line = high physical complexity. ? = uncertainty of breeding.

Recruitment of riverine fishes

1. Enrichment V

2. Retention N

Figure 3

[^0]: Spatial
 Plankton contact ${ }^{9}$
 Fundamental triad ${ }^{8}$

 Growth-mortality ${ }^{15}$
 Coast conveyer-belt ${ }^{16}$
 Aberrant drift ${ }^{17}$

 Member-vagrant ${ }^{18}$

 Fundamental triad ${ }^{8}$
 ${ }^{1}$ (Cushing 1990) ${ }^{2}\left(\right.$ Hjort 1914) ${ }^{3}$ (Harris and Gehrke 1994) ${ }^{4}$ (Lasker 1978) $5{ }^{6}\left(\right.$ Humphries et al. 1999) ${ }^{7}$ (Humphries et al. 2013) ${ }^{8}$ (Bakun 1998), ${ }^{910}$ (Kerr and Dickie 2001) ${ }^{11}$ (Francis 1994) ${ }^{121314}$ (Bakun 1998) ${ }^{151617}$ (Cushing 1975) ${ }^{18}$ (Iles and Sinclair 1982, Sinclair and Iles 1988)

