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This manual describes program RKR1, which utilizes the first-order semiclas-

sical Rydberg-Klein-Rees procedure to determine a diatomic molecule potential

energy function from from a knowledge of its vibrational level energies Gv and

inertial rotation constants Bv . RKR1 allows the vibrational energies and ro-

tational constants to be defined by conventional Dunham expansions, by near-

dissociation expansions (NDE’s), or by the “MXS” form of Tellinghuisen’s [J.

Chem. Phys. 118, 3532 (2003)] mixed Dunham/NDE functions. For a case in

which only vibrational data are available, it also allows an overall potential to

be constructed by combining directly-calculated well widths with inner turning

points generated from a Morse function. It can also automatically smooth over

irregular or unphysical behaviour of the steep inner wall of the potential.
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I. INTRODUCTION

The Rydberg1,2-Klein3-Rees4 or RKR method is an extremely widely used first-order semiclassical

inversion procedure for determining diatomic molecule potential energy curves from a knowledge of vibra-

tional level energies Gv and inertial rotation constants Bv . Within the first-order semiclassical or WKB

approximation,5 this method yields a unique potential energy function which exactly reflects the input

functions representing the v-dependence of Gv and Bv. This manual describes the use of program RKR1

for performing such calculations.

In spite of its now ubiquitous use, the success of the RKR method was slow in coming. Rydberg’s

1931 publication1 of the original graphical trial-and-error version of this procedure was followed promptly

by Klein’s derivation3 of the integral expressions which are at the core of the method as we know it

today (indeed his procedure had such elegant appeal that it was inadvertently re-invented some 4 decades

later6). However, while the method did see some use,2 for the next two decades it was largely ignored. This

oversight was probably mainly due to the startling success of Dunham’s 1932 derivation of exact (within the

third-order WKB approximation) analytic expressions relating the coefficients of a power series expansion

for the potential energy function to the coefficients of the conventional expansion for vibrational-rotational

energies as a double power series in (v + 1
2) and [J(J + 1)]. By the early 1950’s, however, the practical

limitations of the Dunham approach, particularly its restriction to the lower part of the potential well,

began to make themselves felt.

In 1947, Rees led subsequent work on this problem by turning his attention to the integral expressions

for the turning points derived by Klein.4 Followed by a host of other workers over the next decade

and a half, he devised analytic expressions for these integrals based on truncated or approximate local

representations for the vibrational energies and rotational constants. However, what really changed the

situation was Jarmain’s 1961 proposal that these integrals simply be evaluated numerically,7 and the formal

proof that the RKR and first-order Dunham procedures were equivalent.8 In the early 1960’s a number of

numerical techniques for evaluating the Klein integrals were proposed and saw service. In particular, Zare’s

development and generous distribution of his program effectively made it the de facto standard,9,10 and

contributed immensely to the infectious spread of the method throughout the spectroscopy and molecular

physics communities. However, as with virtually all methods in use before 1972, his code was based on

a relatively crude treatment of the (integrable) singularities in the integrands of the Klein integrals (see

below), and was incapable of yielding results of high precision.

Finally, a single 1972 issue of the Journal of Molecular Spectroscopy contained three papers reporting

accurate and efficient new procedures for evaluating the Klein integrals.11–13 Of these, the method of

Tellinghuisen13,14 has proved most durable, probably because of it’s simplicity and very high potential

accuracy. The present program is based on the quadrature procedure suggested by Tellinghuisen, but

incorporates a number of enhancements not included in other codes. These include: (i) an improved ability

to yield accurate results for levels lying near dissociation, (ii) an automatic procedure for smoothing to

remove the unphysical behaviour sometimes found in the upper part of the inner wall of directly-calculated

RKR potentials, (iii) the ability to generate complete potentials when only vibrational energies are available

(another procedure introduced by Tellinghuisen15), and (iv) provision of upper bounds on the numerical

precision of the calculations.

The current version of the (thoroughly commented) source code for RKR1 may be obtained by filling

in the form accessible from the “RKR1” link from the “Computer Programs” link on the www page

http://leroy.UWaterloo.ca ; a PDF file of this manual is also available there. While, there are no charges

associated with distribution or use of this program, its use should be acknowledged in publications through

reference to this report using a citation such as that of Ref. 16. Users are also requested not to distribute
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the program themselves, but to refer other prospective users to the above web site or to the author. I

would also appreciate having users inform me of any apparent errors or instabilities in the code, and of

additional features which might appear desirable for future versions.

II. METHODOLOGY

A Background Theory

The theory underlying the RKR method is discussed in the literature and in a number of

monographs.1–6,8,17–21 For the interested reader, a full derivation of the basic equations is presented

in Appendix A. The key result of this theory consists of the two Klein integrals on which the RKR method

is based:

r2(v) − r1(v) = 2
√

Cu/µ

∫ v

vmin

dv′

[Gv − Gv′ ]1/2
= 2 f (1)

1

r1(v)
−

1

r2(v)
= 2

√

µ/Cu

∫ v

vmin

Bv′ dv′

[Gv − Gv′ ]1/2
= 2 g (2)

where r1(v) and r2(v) are the inner and outer classical turning points of the potential for vibrational

level v with energy Gv , Bv is the inertial rotational constant for that vibrational level, and vmin is the

non-integer effective value of the vibrational quantum number at the potential minimum. In this expression

Gv and Bv are assumed to have units cm−1, the reduced mass µ is in amu, and the turning point are

in Å, so the constant Cu = ℏ
2/2 = 16.857 629 09 [amu Å2 cm

−1
]. Program RKR1 defines µ as Watson’s

charge-modified reduced mass µ = µW ≡ MA MB/(MA + MB − Qme) ,22 in which MA and MB are the

normal atomic isotope masses, me is the electron mass, and Q is the integer net charge on the molecule.

The numerical values of Cu and me used in the program are based on the current recommended physical

constants,23 while the masses of all stable atomic isotopes (provided in the program by a data subroutine)

are taken from the 1993 compilation.24 Rearrangement of Eqs. (1) and (2) gives the final expressions:

r1(v) =
√

f2 + f/g − f (3)

r2(v) =
√

f2 + f/g + f (4)

It is important to remember that although the semiclassical quantization condition maps integer values

of v onto the quantized vibrational energy levels, within the semiclassical approach v may be treated as

a continuous variable. This is illustrated by the fact that within the first-order RKR method the lower

bound of integration defined by the potential minimum is associated with vmin = − 1
2 , while in higher-order

semiclassical treatments it is a real number close to − 1
2 . More generally, it means that turning points

may be calculated at either integer or non-integer values of v. This is an important point, since if turning

points could only be calculated for integer values of v one would have a relatively sparse set of points to

define the potential, which in turn would make them difficult to use for precise numerical calculations. For

this reason program RKR1 allows a user to specify different vibrational intervals at which turning points

are to be calculated in different regions of the potential well.

Finally, it is also important to remember that the normal RKR inversion procedure is only exact within

the first-order semiclassical or WKB approximation. This approximation is sufficiently accurate that

for heavy (large reduced mass) molecules, quantum mechanical level spacings and Bv values calculated

(numerically) from the resulting potentials usually agree with the experimentally determined input Gv

and Bv functions to within the experimental uncertainties. On the other hand, for hydrides one often

finds significant discrepancies between such results and the ‘exact’ experimental values of those quantities

defined by those input functions. More accurate RKR-type methods based on higher-order semiclassical
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quantization conditions have been reported,19,25,26 but none has (yet!) been implemented in a robust,

documented, publicly available code.

In spite of the above, an approximate way of attempting to go beyond the first-order semiclassical

method is implemented as an option in RKR1. First introduced in 1970 by E.W. Kaiser,27 it is based on

the fact that within the third-order semiclassical quantization condition5,19,26,28 the value of v associated

with the the potential minimum is (approximately)

vmin = − 1
2 − Y0,0/Y1,0 (5)

where Y1,0 ≡ dGv/dv|
v=−

1
2

and29,30

Y0,0 =
Y0,1 + Y2,0

4
−

(

Y1,1 Y1,0

12 Y0,1

)

+
1

Y0,1

(

Y1,1 Y1,0

12 Y0,1

)2

(6)

and the Yl,m constants for {l,m} 6= {0, 0} are defined by the normal Dunham power series expressions for

Gv and Bv (see below), or more generally by the appropriate derivatives of the vibration-rotation energy

with respect to v and [J(J + 1)], evaluated at v = −1
2 and J = 0 . This “Kaiser correction” has often

been used when calculating RKR potentials, especially for small reduced mass species such as hydrides,

for which values of Y0,0 tend to be relatively large.

Use of the Kaiser correction would superficially appear to be ‘obviously’ better than a basic first-order

treatment, in that it takes at least some account of higher-order semiclassical effects. However, detailed

numerical studies (unpublished student exercises in a U. Waterloo grad course) indicate that its use does

not necessarily yield a potential curve whose quantum-calculated vibrational level spacings and Bv values

are in better agreement with the input Gv and Bv functions than are those obtained from a ‘basic’ first-order

calculation. The reason for this is the fact that the Kaiser correction effectively assumes that contributions

to the quantization condition from the higher-order phase integrals are constant, independent of v, which

is certainly not true in general.31 Thus, a user of RKR1 who chooses to invoke the Kaiser correction to

try to obtain highly accurate results would be advised to perform quantum calculations on the resulting

potential32 to examine whether or not its use actually improved the level of agreement with the Gv and

Bv functions used to generate the potential.

In any case, independent of whether or not the Kaiser correction is used, the zero of energy for turning

points generated by RKR1 is the energy associated with the value of vmin ≡ v00 shown in the program

output (e.g., see Appendix C).

B Representations for Gv and for Bv

RKR1 offers a user three possible ways of representing the v-dependence of the vibrational energies

Gv and the inertial rotational constants Bv , where the choice of representation for any particular case is

specified by parameters in the input data file.

1. Dunham Expansions.

The first type of representation for Gv and Bv is the conventional power series in (v + 1
2) associated

with Dunham:29,30

Gv =
∑

l=1

Yl,0 (v + 1
2)l = ωe(v + 1

2) − ωexe(v + 1
2)2 + ωeye(v + 1

2)3 + ... (7)

Bv =
∑

l=0

Yl,1 (v + 1
2)l = Be − αe(v + 1

2) + γe(v + 1
2)2 + ... (8)
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2. Near-Dissociation Expansions (NDE’s).

The second type of functional representation allowed by RKR1 is pure “near-dissociation expan-

sions” (NDE’s), which incorporate the theoretically-known limiting near-dissociation behaviour of

Gv or Bv into an expression which includes empirical parameters to be determined from the ex-

perimental data.33–39 Just as conventional Dunham expressions are expansions about the limiting

case of harmonic-oscillator/rigid-rotor behaviour at the potential minimum, NDE’s are expansions

about the theoretically-known limiting functional behaviour near dissociation, and hence are much

more effective for extrapolating to high v beyond the range of observed data37,38,40 and/or compactly

representing data sets spanning a large fraction of the potential well.36,39 The rest of this subsection

describes the NDE expressions and their parameterization in program RKR1; users not familiar

with this approach may wish to review some of the associated theory and review papers26,33–35,38,41–43

and illustrative applications of this approach.37,39,44–47

The theory underlying NDE expressions for vibrational energies, rotational constants and other prop-

erties of vibrational levels lying near dissociation is based on the fact that properties of such levels

depend mainly on the shape of the potential energy function near their outer turning points.33,34 As

a result, their v-dependence is mainly determined by the limiting asymptotic behaviour of the inter-

molecular potential, which usually has the simple attractive inverse-power form

V (r) = D − Cn/rn (9)

where D is the energy at the dissociation limit, the (known) power n is determined by the nature of

the electronic states of the atoms formed when the given molecular state dissociates,34,42 and reliable

values of the limiting long-range coefficient Cn are often known from theory.

The NDE expressions for Gv and Bv are usually written as

Gv = D − K∞
0 (v) ×F0(vD − v) (10)

Bv = K∞
1 (v) ×F1(vD − v) (11)

in which vD is the (non-integer) effective vibrational index at dissociation and Fm(vD− v) are em-

pirically determined expressions which are required to approach unity as v → vD . The theoretically-

known limiting near-dissociation behaviour of [D − Gv] and Bv incorporated in these functions is

given by

K∞
m (v) = Xm(n, Cn, µ) × (vD − v)[2n/(n−2)]−2m (12)

in which Xm(n, Cn, µ) = Xm(n)/[(µ)n (Cn)2]1/(n−2) and Xm(n) is a known numerical factor de-

pending only on the physical constants and the value of the integer n.26,34,35

The empirically-determined functions Fm(vD − v) used by RKR1 have one of the forms

Fm(vD − v) =

(

1 +
∑L

i=t pm
i (vD − v)i

1 +
∑M

j=t qm
j (vD − v)j

)S

(13)

Fm(vD − v) = exp

{

L
∑

i=t

pm
i (vD − v)i

}

(14)

In the rational polynomial expression of Eq. (13) the exponent power S is either S = 1 , yielding

what is called an “outer” expansion, or S = 2n/(n − 2) , yielding an “inner” expansion, and the

most appropriate choice of the power t of the leading expansion is often known from theory.43,48
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While they are somewhat more complicated to use, NDE expressions have two particular advantages

over Dunham expansions.

• Because they explicitly incorporate the theoretically-known limiting near-dissociation be-

haviour of vibrational energies and other properties, they are much more reliable for extrapolat-

ing to predict the dissociation energy and the number, energies and properties of unobserved

high vibrational levels. This means that they allow the calculation of realistic and reason-

able reliable turning points in the region between the highest observed vibrational level and

the dissociation limit. In contrast, as with all polynomial functions, Dunham expansions are

notoriously unreliable for performing extrapolations, and for them even the turning points

calculated for the highest observed levels may not be reliable.49

• For systems in which the experimental data span a large fraction of the potential well, NDE’s

tend to be more compact than Dunham expansions which yield equivalent quality fits, since

the dense manifold of levels near dissociation is represented by a relatively small number of

empirical expansion parameters.

3. “MXS” Mixed Near-Dissociation/Dunham Expansions.

In spite of their numerous advantages, applications of NDE representations to states with large

numbers of vibrational levels tend to encounter difficulties. Tellinghuisen has shown that these

problems could be resolved by using mixed representations consisting of Dunham-type power series

for levels spanning the lower part of the potential energy well and NDE expansions for levels lying

near dissociation.50,51 In particular, his “MXS” mixed representation functions use

• a normal Dunham polynomials in (v + 1
2) for v . vs and

• a near dissociation expansions for v & vs ,

and merges them at a chosen switch-over point v = vs using the switching function

Fs(v) =

{

1 + exp

(

v − vs

δvs

)}−1

(15)

to yield the MXS expressions

GMXS
v = Fs(v) GDun

v + [1 − Fs(v)]GNDE
v (16)

BMXS
v = Fs(v) GDun

v + [1 − Fs(v)]BNDE
v (17)

Thus, to specify an MXS expansion it is necessary to input the number and values of the Dunham

coefficients, the physical (D and vD) and empirical parameters defining the NDE function, and the

values of the parameters vs and δvs defining the switching function. Note too that because of the

sensitivity of the function to their values, the input values of vD, vs and δvs should all be input using

floating point “d” format (e.g., vs = 27.0d0).

Note that the type of representation RKR1 uses for Bv need not be the same at that used for Gv; however,

the former cannot be more sophisticated than the latter. In particular: if Gv is represented by a Dunham

expansion, the same must be true for Bv ; if Gv is represented by an NDE function, Bv may be represented

by either a Dunham or an NDE function; if Gv is represented by an MXS function, Bv may be represented

using any of the three type of functions.
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C Evaluating the f and g Integrals

As mentioned above, early applications of the Klein inversion integrals Eqs. (1) and (2) had diffi-

culty dealing with the (integrable) integrand singularity at the upper end of the range of integration.

Tellinghuisen pointed out13,14 that this problem is completely removed by use of the Gauss-Mehler quadra-

ture formula,52,53 as its points and weights implicitly take account of this behaviour. In particular, the f

integral of Eq. (1) is readily rearranged to the form:

f =
√

Cu/µ

∫ v

vmin

[v − v′]1/2

[Gv − Gv′ ]1/2

dv′

[v − v′]1/2
=
√

Cu/µ

∫ v

vmin

p(v′)
dv′

[v − v′]1/2
(18)

where the function p(v′) = [(v − v′)/(Gv −Gv′)]1/2 is well behaved (smooth, with no singularities) on the

entire interval; this is precisely the form required by the Gauss-Mehler quadrature formula.53

Tellinghuisen showed that for vibrational levels extending 80% of the way to dissociation, use of the

Gauss-Mehler formula with only four quadrature points typically yields f and g integrals with an accuracy

of better than 1 part in 107.13,14 However, he also showed that the error grows rapidly for the higher

vibrational levels, and it is important to ensure that these errors do not becoming unacceptably large.

Moreover, many applications require (or at least desire) potentials which are smooth to virtually machine

precision. Thus, there is a need for an enhanced procedure which can yield both higher accuracy and some

indication of the precision of the resulting turning points.

The most obvious way of increasing the the accuracy of any integration procedure is to simply increase

the number of quadrature points used. However, for a Gaussian-type procedure whose points and weights

are not readily generated analytically, it can be very inconvenient to attempt to make ever-higher-order

quadrature formulae available for testing and improving the accuracy of a desired result. The present

program takes an alternate approach which is based on use of a fixed number of quadrature points in the

numerical integration procedure(s), but with the overall integration interval being repeatedly subdivided

into smaller intervals until the total integral converges.

Since the singularities in the integrands in Eqs. (1) and (2) lie at the upper end of the range, dividing

the interval in half will yield two types of subintervals: in the first, [vmin , (vmin + v)/2] , the integrand is

everywhere well behaved, so the ordinary Gauss-Legendre quadrature formula will suffice (See § 25.4.30 of

Ref. 52); in the second, [(vmin+v)/2 , v] , the integrand has the same singular behaviour as when the whole

interval is treated as one, and the Gauss-Mehler procedure is again appropriate. If one repeatedly bisects

all subintervals, after the mth stage of subdivision the first (2m − 1) subintervals may be treated using the

ordinary Gauss-Legendre procedure, while only the last one requires use of the Gauss-Mehler points and

weights. Consideration of the error term associated with the ordinary Gauss-Legendre quadrature scheme

indicates that if an N–point quadrature is being performed on each subinterval, the overall error decreases

by a factor of 1/2N−2 with each stage of subdivision. For N = 16 , this corresponds to an increase in

accuracy by more than four orders of magnitude at each bisection, while only one set of points and weights

(of each type) needs to be stored. Thus, both rapid convergence and programming simplicity are achieved.

In the present version of program RKR1, N has been set at 16, and the necessary Gauss-Legendre

and Gauss-Mehler quadrature points and weights are prepared (in subroutine WGHT) on first entering the

program. At each energy Gv for which turning points are desired, the program begins by using a single

N = 16 point Gauss-Mehler quadrature to evaluate the integrals of Eqs (1) and (2). The interval is then

divided in half, the appropriate quadrature schemes applied in the two parts, and the results summed.

The relative changes in the two integrals tst(f) and tst(g) are then calculated and compared with an

internally specified convergence criterion, TOLER. This iterative subdivision is then repeated until the

convergence criterion is satisfied. When it is, the turning points are calculated from Eqs. (35) and (34)
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and printed out, together with the final values of tst(f) and tst(g) and the total number of subintervals

used in the final iteration cycle, NDIV = 2m. Thus, turning points generated by the present program are

accompanied by estimated upper bounds to their numerical error.

In a procedure such as this, the convergence criterion TOLER would usually be set at a small number,

such as 1 × 10−10. For many computers, however, optimum convergence is achieved by simply requiring

the iteration cycle to continue until the accumulative effect of numerical truncations causes the magnitude

of tst(f) or tst(g) to increase from its value for the preceding cycle. Both of these convergence tests

are used in RKR1. The first is based on a relative convergence test of TOLER = 10−KCONV, where the

value of KCONV (currently = 10) is set in line 60 of the code (and may be modified by the user). If this

criterion is made too demanding (say, KCONV = 16), the relative truncation error criterion takes over.

The approach described above is implemented in RKR1, and it provides a reliable and stable integration

procedure for virtually all cases. The only situations in which complete numerical convergence is not

achieved are those in which a substantial loss of significant digits occurs in the calculation of [Gv − Gv′ ]

or Bv, either because the level whose turning points are being calculated lies very close to the dissociation

limit or to the potential minimum, or because of a loss of significant digits when adding large terms of

opposite sign. Examples of such behaviour are found in the illustrative cases discussed in Appendices B

and C. We note that these anomalies could be removed by the use of quadruple precision (REAL*16)

arithmetic in the program. However, the loss of accuracy due to these problems is not significant relative

to the uncertainties in the first-order RKR method itself, and a REAL*16 implementation of the code

would inhibit its use by some researchers, so printout of occasional warning messages due to this problem

are deemed an tolerable irritation.

D Smoothing Over an Irregular Inner Potential Wall

Inadequacies in the experimentally-derived functions characterizing Gv and Bv will of course give rise

to errors in calculated RKR turning points. Since the repulsive inner wall of the potential is very steep, es-

pecially at high vibrational energies, these errors sometimes manifest themselves as non-physical behaviour

in this region. For example, rather than have a (negative) slope and slowly varying positive curvature, this

inner wall may pass through an inflection point and take on negative curvature, or the wall may even turn

outward with increasing energy, with the algebraic sign of the slope becoming positive. Occasional papers

in the literature have accepted behaviour such as inflection and negative curvature or “wiggling” of the

inner wall as being real, and attempted to explain it in terms of potential curve crossings or related effects.

However, it usually merely reflects inadequacies of the molecular constants used in the calculation.54–57

Except for the zero point level of the ground state, whose properties may sometimes be determined

by microwave spectroscopy, experimental data often define the Gv function with greater relative accuracy

than the Bv function. For this reason, irregular behaviour of the inner wall of an RKR potential is usually

attributed to inadequacies in the latter.54,56 (Indeed, minimization of such irregularities has been proposed

as a means of improving otherwise poorly-known rotational constants.54) However, whatever the source of

the problem, a modest degree of inappropriate behaviour of either the Gv or Bv function will give rise to

non-physical behaviour of the inner wall of the potential, since the expected monotonic increase in slope

with energy makes even very small errors in the f and/or g integrals manifestly obvious there. At the

same time, while small relative errors in the f or g integral would make the curvature or slope of the inner

wall at high energy change in an unacceptable non-physical manner, the rapid growth of the f integral

with increasing Gv means that the width of the potential [r2(v) − r1(v)] as a function of energy may still

be relatively well defined by Eq. (1), even when the directly calculated inner potential wall is unreliable.

Thus, combining this directly-calculated well-width function with a reasonable extrapolated inner potential
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wall (a procedure first introduced by Verma58) then yields a ‘best’ estimate of the upper portion of the

potential yielded by the available data. Program RKR1 incorporates the following automatic procedure

for doing this.

As a first step, it is necessary to determine whether or not the directly-calculated inner potential wall

displays irregular behaviour, and if it does, to locate its onset. RKR1 accomplishes this in the following

way. The turning point calculation normally starts near the potential minimum and proceeds monotonically

to successively higher energies. On completion of the calculation for each value of v, the program fits the

inner turning point for that case and those for the two closest smaller v values to the function

Vinner(r) = A + B e−C r (19)

and the value of the resulting exponent parameter C ≡ C(exp) is printed with the turning points in the

main output file. If the inner wall is well-behaved, the resulting values of C(exp) will be positive and will

vary slowly from one level to the next. However, if the wall passes through a point of inflection C(exp) will

change sign, while if the wall begins to double over outward, it will grow rapidly and become quite large

before the slope becomes positive. Thus, the behaviour of C(exp) is the required indicator of the onset of

non-physical behaviour (see sample outputs in Appendix C).

To correct for such irregular behaviour by imposing a smooth inner wall on the potential in the affected

region, the user must first perform an RKR calculation while setting input parameter VEXT≤ 0 (see

READ statement #16 in § IV). Examination of the behaviour of the C(exp) values listed in the program

output then allows one to determine whether there exists some energy above which the directly-calculated

inner potential wall can no longer be trusted. If so, the program should be re-run with the value of VEXT

set equal to the vibrational index associated with that energy. When this is done, inner turning points

for levels v ≥ VEXT will be calculated from Eq. (19) using the values of the constants A , B and C

associated with the three largest v values for which v ≤ VEXT , and the corresponding outer turning

points obtained by adding 2f to the associate inner turning point. When this is done, the program also

prints the values of the displacements d(RMIN) of the directly calculated turning points which yield the

desired smoothing of the directly-calculated value of RMIN = r1(v) . Examples of this type of correction

are found in the sample output listings in Appendix C.

E Determining a Potential in the Absence of Rotational Constants

If no experimental Bv values are available for the system of interest, the g integrals of Eq. (2) may

not be evaluated. However, directly calculated values of the f integral of Eq. (1) may be combined with

an assumed inner potential wall and used to generate a realistic overall potential. Following an approach

recommended by Tellinghuisen for this type of situation,15 the present program can automatically generate

the inner potential wall from a Morse function

VMorse(r) = De[e
−β(r−re) − 1]2 (20)

and generate the corresponding outer turning points by adding values of 2f calculated from Eq. (1) to the

Morse-function inner turning point at each specified energy.

This option is invoked in RKR1 by setting input parameter NDEBv = −1 and reading in a value for

the Morse potential equilibrium distance re [Å] . The program then uses the first two derivatives of the

vibrational energy at the potential minimum (Y1,0 = ωe and Y2,0 = −ωexe ) to determine the apparent

well depth De and exponent parameters β which define the Morse function which will then be used to

generate the required inner turning point values at the specified energies.
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III. USING RKR1: UNITS, ARRAY DIMENSIONS AND INPUT/OUTPUT

All input or output quantities associated with program RKR1 are either dimensionless or have units

with energy in cm−1 and lengths in Å. As mentioned earlier, the electron and atomic masses and the

physical constants used to define the constant Cu appearing in Eqs. (1) and (2) were taken from the most

recent compilations.23,24 For all stable isotopes of all atoms, the masses are found in the data subroutine

MASSES, so all a user need specify in the input is the atomic number and mass number of each atom of

each isotopomer considered in the analysis.

In the current version of the program, the array dimensioning allows for the calculation of pairs of

turning points for up to 500 vibrational levels, and for Dunham or NDE polynomial expansions of order

up to 20. However, a user may readily change this by making appropriate modifications to the array

dimensions in lines 36, 37, 40 and 44 of the source code.

RKR1 reads the input data file in free format on channel–5 (e.g., READ(5,* ) ... ). The structure

of the requisite data file and precise definitions of the various program options are presented below in

§ IV. The program writes standard output to channel–6 and a supplementary output file to channel–7.

The standard output written to channel–6 presents a complete description of the input data and lists the

calculated turning points and upper bounds on the precision of the calculated f and g integrals.

While the main channel–6 output file contains both the numerical results and a detailed description of

the input data file, the turning points are listed there in pairs as a function of v, a format not convenient

for use as input to other programs. The channel–7 output file therefore provides a compact listing of those

turning points, supplemented by the value of re defined by the value of Bv at v = vmin , arranged in order

of increasing distance. In addition, to facilitate use of the resulting potential array for making plots or

for numerical calculations, when appropriate, five additional inner extrapolated points are generated from

Eq. (19) and included as the innermost points in that channel–7 output array.

If one is executing RKR1 in a UNIX or Linux operating system environment, it may be convenient to

do so using a shell (named, say, rrkr ) such as that shown below, which may be stored in the system or

user’s ‘bin’ directory:

# UNIX shell ‘rrkr’ to execute the compiled version of program RKR1 named
# rkr.x, which is stored in the directory /userpath/. The channel-5 input
# data file $1.5 and the output files $1.6 & $1.7 are all assumed to be
# in the current directory. For an input datafile named molec.5 this
# shell causes the channel--6 and 7 output to be written to files
# molec.7 and molec.7
time /userpath/rkr.x < $1.5 > $1.6
mv fort.7 $1.7 >& /dev/null

where userpath is a path specifying the location of the executable file rkr.x on the user’s computer.

This shell allows the program to be executed using the input file ‘molec.5’ with the simple command:

rrkr molec

where molec.5 is the data file containing the instructions regarding the type of fit to be performed, and

molec is a filename which may be chosen arbitrarily by the user. In this case the standard output to

channel–6 will be written to file molec.6 and the channel–7 output to file molec.7 in the same directory

as the molec.5 channel–5 input data file.

IV. DATA FILE STRUCTURE AND INPUT PARAMETER DEFINITIONS

The logical structure and read statements defining the channel–5 input data file describing the system

to be treated, and providing all necessary system-specific parameters, is shown below. The following

subsection then provides a detailed description of the nature of and/or options associated with each of the

input variables.
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#1 READ(5,*,END=99) IAN1, IMN1, IAN2, IMN2, CHARGE, NDEGv, NDEBv

#2a IF((IAN1.LE.0).OR.(IAN1.GT.109) READ(5,*) NAME1, MASS1

#2b IF((IAN2.LE.0).OR.(IAN2.GT.109) READ(5,*) NAME2, MASS2

#3 READ(5,*) TITLE

IF((NDEGv.EQ.0).OR.(NDEGv.EQ.2)) THEN

#4 READ(5,*) LMAXGv

#5 READ(5,*) (YL0(L),L= 1,LMAXGv)

ENDIF

#6 IF(NDEGv.GE.2) READ(5,*) VS, DVS, DLIM

IF(NDEGv.GE.1) THEN

#7 READ(5,*) NLR, ITYPE, IZP0, IZQ0, NP0, NQ0, VD, XCN0

#8 IF(NP0.GT.0) READ(5,*) (P0(I),I= 1,NP0)

#9 IF(NQ0.GT.0) READ(5,*) (Q0(I),I= 1,NQ0)

ENDIF

#10 IF(NDEBv.LT.0) READ(5,*) Req

IF((NDEBv.EQ.0).OR.(NDEBv.EQ.2)) THEN

#11 READ(5,*) LMAXBv

#12 IF(LMAXBv.GE.0) READ(5,*) (YL1(L),L= 0,LMAXBv)

ENDIF

IF(NDEBv.GE.1) THEN

#13 READ(5,*) ITYPB, IZP1, IZQ1, NP1, NQ1, XCN1

#14 IF(NP1.GT.0) READ(5,*) (P1(I),I= 1,NP1)

#15 IF(NQ1.GT.0) READ(5,*) (Q1(I),I= 1,NP1)

ENDIF

#16 READ(5,*) Kaiser, NSV, VEXT

DO J= 1,NSV

#17 READ(5,*) V1(I), DV(I), V2(I)

ENDDO

Definitions and Descriptions of Input File Data

Read integers identifying the molecule or system.
#1. READ(5,*) IAN1, IMN1, IAN2, IMN2, CHARGE, NDEGv, NDEBv

IAN1 & IAN2 : integer atomic numbers of the atoms/particles #1 & 2 forming the molecule. If

both are positive and ≤ 109 , atomic masses from the tabulation in subroutine MASSES will

generate the reduced mass of the system. If either is ≤ 0 or > 109 , the mass of that particle

must be input via READ statement #2.

IMN1 & IMN2 : integer mass numbers of the atoms #1 & 2 forming the molecule. For a normal

stable atomic isotope, the mass is taken from the tabulation in subroutine MASSES; if IMN1

or IMN2 lies outside the range for the normal stable isotopes of that atom, the abundance-

averaged atomic mass is used.

CHARGE : ± integer for the total charge on the molecule. Used to generate Watson’s charge-

modified reduce mass for neutral or ionic molecules:22 µ = µW = MA MB/(MA + MB −me ×

CHARGE) .

NDEGv : specifies whether Gv for this state is to be represented: a) by the Dunham expansion

of Eq. (7) when NDEGv= 0 , b) by the NDE expressions of Eqs. (10) and (12) - (14), when

NDEGv =1, or c) by the Tellinghuisen-type MXS “mixed” representation of Eq. (16) when

NDEGv = 2 .

NDEBv : specifies whether Bv for this state is to be represented: a) by the Dunham expansion

of Eqs. (8) when NDEBv= 0 , b) by the NDE expressions of Eqs. (11) and (12) - (14), when
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NDEBv= 1 , or c) by the Tellinghuisen-type MXS “mixed” representation of Eq. (17) when

NDEBv≥ 2 . If no rotational data are available and a potential is to be generated using a

Morse function inner wall (see § II.E), one should set NDEBv= −1 . Note than necessarily

NDEBv ≤ NDEGv .

In the special case when IAN1 and/or IAN2 is either ≤ 0 or > 109 , we read in a two-character alphanumeric

name for that particle and its mass (in amu). This facilitates the treatment of model systems or of exotic

species such as muonium or positronium “molecules”.
#2.a IF((IAN1.LE.0).OR.(IAN1.GT.109)) READ(5,*) NAME1, MASS1
#2.b IF((IAN2.LE.0).OR.(IAN2.GT.109)) READ(5,*) NAME2, MASS2

NAME1 & NAME2 : a two-character alphanumeric name for the particle whose mass is being

read, enclosed in single quotes, as in ′mu′ .

MASS1 & MASS2 : the masses (in amu) of the particles.

Read a title or output header for the calculation, consisting of up to 78 characters on a single line enclosed

between single quotes: e.g., ′title of problem′.
#3. READ(5,*) TITLE

Representation for the vibrational energies Gv

READ statements #4− 9 are concerned with the three possible ways of representing Gv:
#4 & 5 are used

for a pure Dunham function, #7 − 9 for a pure NDE function, and all of #4 − 9 are used for an MXS

function.

If Dunham or MXS expansions are used for Gv (NDEGv = 0 or 2 ), read in the (integer) order of the Gv

vibrational polynomials, LMAXGv, and values of the Dunham coefficients Yl,0 , starting with l = 1 .
#4. READ(5,*) LMAXGv
#5. READ(5,*) (YL0(L), L= 1,LMAXGv)

If an MXS mixed representation is to be used for Gv (NDEGv = 2), read in the real number values

of VS = vs , the value of v at which the Dunham/NDE switching function Eq. (15) is centred, and of

DVS = δvs , the width parameter for that switching function. Because of the sensitivity of the calculation

to their values, VS and DVS should be read in floating point “d” format (e.g., vs = 55.0d0 ).

For an MXS function, the absolute value of DLIM ≡ [G(v = vD) − G(v = −1/2)] must also be specified.
#6. READ(5,*) VS, DVS, DLIM

If an NDE or MXS functions is used for Gv (NDEGv≥ 1), read in parameters characterizing the NDE

function to be used.
#7. READ(5,*) NLR, ITYPE, IZP0, IZQ0, NP0, NQ0, vD, XCN0

NLR : is the integer power of the asymptotically-dominant inverse-power term in the long-range

potential of Eq. (9).

ITYPE : is an integer specifying the type of NDE expression to be used for Gv:

• ITYPE= 1 for an “outer” rational polynomial expansion using Eq. (13) with S = 1 .

• ITYPE= 2 for an “inner” rational polynomial expansion using Eq. (13) with S = 2n/(n−2) .

• ITYPE= 3 uses the exponential NDE function of Eq. (14).

IZP0 & IZQ0 : are the values of the integer t specifying the leading term in the polynomial

expansions in, respectively, the numerator and denominator of Eq. (13) for ITYPE= 1 or

2, while for ITYPE = 3 IZP0 specifies the power of the leading term in the exponent expansion

of Eq. (14) and IZQ0 is a dummy variable.
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NP0 & NQ0 : are the (integer) number of coefficients in, respectively, the numerator and denom-

inator polynomials of Eq. (13) for ITYPE= 1 or 2, while for ITYPE = 3 NP0 is the number

of terms in the exponent polynomial of Eq. (14) and NQ0 is a dummy variable which should

be set ≤ 0 : NP0 = L + 1 − t and NQ0 = M + 1 − t .

vD : is the non-integer effective vibrational index at dissociation vD , and should be read in floating

point “d” format (e.g., vD = 64.41d0 ).

XCN0 : is the numerical value of the ND-theory coefficient X0(n, Cn, µ) of Eq. (12) for m = 0 .

Now read in the actual values of the NDE expansion coefficients P0(i) = p0
i−t+1 and Q0(j) = q0

j−t+1

required to define the particular NDE function.
#8. READ(5,*) (P0(i), i=1, NP0)
#9. READ(5,*) (Q0(j), j=1, NQ0)

Representation for the intertial rotational constants Bv

If no reliable Bv function is available for this state and one wishes to utilize the approach described in

§ II.E to generate an approximate potential, one should have NDEBv= −1 and read in here a value of

Req= re to specify the position of the minimum of the Morse function for this case.
#10. READ(5,*) Req

If a Dunham or MXS expansion is used for Bv (NDEBv= 0 or 2), read in the order of the Bv vibrational

polynomial LMAXBv and the values of the expansion coefficients YL1(l) = Yl,1 for l = 0 − LMAXBv .
#11. READ(5,*) LMAXBv
#11. IF(LMAXBv.GE.0) READ(5,*) (YL1(L), L= 0,LMAXBv)

If an NDE or MXS functions is used for Bv, read the parameters defining the type of NDE function and

the values of the associated expansion parameters. The function types and definitions of the parameters

are precisely analogous to those for the vibrational case: see description of READs #7 − 9.
#13. READ(5,*) ITYPB, IZP1, IZQ1, NP1, NQ1, XCN1
#14. READ(5,*) (P1(I), I=1, NP1)
#15. READ(5,*) (Q1(J), J=1, NQ1)

Finally, specify the sophistication of the calculation and define the set(s) of v values for which turning

points are to be calculated.
#16. READ(5,*) Kaiser, NSV, VEXT

Kaiser : is an integer which specifies whether (Kaiser≥ 1 ) or not ( Kaiser = 0 ) the “Kaiser correc-

tion” of § II.A is to be applied.

NSV : is an integer specifying the number of different mesh sizes ∆v are to be used in specifying

the set of v values for which turning points are to be calculated.

VEXT : is a real number whose value controls the option which allows the program to correct

unphysical behaviour of the upper part of the inner potential wall defined by the input Gv and

Bv functions, as described in § II.D. For VEXT≤ 0.0, no inner-wall smoothing is performed,

but if VEXT> 0.0 , for v >VEXT inner turning points r1(v) are generated from Eq. (19)

using values of the coefficients A, B & C define by fitting this function to the inner turning

points for the three largest v values with v ≤VEXT , while the outer turning points are defined

as the sum of these analytic value plus the calculated quantity 2f .
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For each of NSV cases, read in (floating point) variables V1(i), DV(i) & V2(i) to specify the set of v

values running from V1(i) to V2(i) in steps of DV(i) = ∆v , at which turning points are to be calculated.

If necessary, the program internally corrects the input values of V2(i) to ensure that when NSV> 1 ,

necessarily V1(i)≤V2(i+1). A reasonable example would be to set NSV = 2 and to then input

{V1(i), DV(i), V2(i)} = {−0.4d0, 0.2d0, 1.6d0} and {2.0d0, 0.5d0, vmax} for i = 1 & 2

where vmax is the highest vibrational level for which turning points are desired. It is usually best to set

V1(1)≥ −0.4d0 .
#17. READ(5,*) V1(i), DV(i), V2(i)

V. PROGRAM UPDATES

The current version16 of RKR1 incorporates a number of modifications and extensions not present in the

previous one.59 In particular:

• Instead of reading in explicit atomic masses in amu , the new version reads in the integer atomic

number and mass number of the component atoms and retrieves the appropriate atomic mass from an

internal data subroutine whose contents are taken from the most recent atomic mass determination.24

• In addition to allowing for use of Dunham or pure NDE functions to represent the v–dependence of

Gv and Bv, the new version also allows for use of Tellinghuisen’s “MXS” mixed representations.

• The NDE functions used to represent Bv in either pure NDE or MXS representations may now be

based on either Eq. (13) or (14), rather than only on the latter.

• The input defining the mesh of v values at which turning points are to be calculated is input in a

more convenient manner which obviates a need to explicitly count out the number of turning point

pairs to be associated with each of the NSV chosen mesh ∆v values.

• The compact channel–7 output turning point listing includes the value of re associated with the

value of Bv at the potential minimum v = vmin , plus five additional extrapolated inner-wall points

generated from Eq. (19) to provide a turning point array which can more readily be used for plotting

purposes.

Moreover, the present program manual contains substanially more discussion of details of the method and

sample results than did the earlier edition.
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APPENDIX: DERIVATION, AND ILLUSTRATIVE DATA & OUTPUT FILES

A. Derivation of the RKR Equations

The first formal derivation of what is now known as the “RKR” method was due to O. Klein,3 and

a version of it is outlined here. Starting from the first-order JWKB or Bohr-Sommerfeld quantization

condition

v + 1
2 =

1

π

√

2µ

ℏ2

∫ r2

r1

[E − V (r)]1/2 dr (21)

For the purpose of this derivation it is notationally convenient to start by replacing v by v′ and E by E′.

We then take the derivative of this expression with respect to energy E′, and divide the range of integration

into two parts to separate the repulsive and attractive regions:

dv′

dE′
=

1

2π

√

2µ

ℏ2

{
∫ re

r1

dr

[E′ − V (r)]1/2
+

∫ r2

re

dr

[E′ − V (r)]1/2

}

(22)

For a well-behaved single minimum potential, on each of the intervals [r1, re] and [re, r2] there is a unique

monotonic relationship between the distance variable r and the value of the potential energy function,

u = V (r) . We can therefore re-write Eq. (22) with u replacing r as the independent variable in the two

integrals:

dv′

dE′
=

1

2π

√

2µ

ℏ2

{

∫ 0

E′

1

[E′ − u]1/2

dr1(u)

du
du +

∫ E′

0

1

[E′ − u]1/2

dr2(u)

du
du

}

(23)

=
1

2π

√

2µ

ℏ2

∫ E′

0

(

dr2(u)

du
−

dr1(u)

du

)

du

[E′ − u]1/2

We now introduce a mathematical gimmick (sometimes called an Abelian transformation3), which involves

premultiplying both sides of Eq. (23) by the factor dE′/[E − E′]1/2 and integrating E′ from 0 to E:
∫ E

0

(dv′/dE′) dE′

[E − E′]1/2
=

∫ v(E)

vmin

dv′

[E(v) − E(v′)]1/2
(24)

=
1

2π

√

2µ

ℏ2

∫ E

0
dE′

{

∫ E′

0

(

dr2(u)

du
−

dr1(u)

du

)

du

[(E − E′)(E′ − u)]1/2

}

in which vmin = v(E =0) is the (non-integer) effective vibrational quantum number index associated with

the potential minimum. If we then change the order of the double integration, and utilize the standard

mathematical identity
∫ b

a

dx

[(b − x)(x − a)]1/2
= π (25)

we obtain
∫ v(E)

vmin

dv′

[E(v) − E(v′)]1/2
=

1

2π

√

2µ

ℏ2

∫ E

0
du

{

(

dr2(u)

du
−

dr1(u)

du

)
∫ E

u

dE′

[(E − E′)(E′ − u)]1/2

}

=
1

2

√

2µ

ℏ2

{
∫ E

0

dr2(u)

du
du −

∫ E

0

dr1(u)

du
du

}

=
1

2

√

2µ

ℏ2

{

∫ r2(E)

re

dr −

∫ r1(E)

re

dr

}

=
1

2

√

2µ

ℏ2
[re(E(v)) − r1(E(v))] (26)
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Rearranging this expression yields the first or “vibrational” RKR equation

r2(v) − r1(v) = 2

√

ℏ2

2µ

∫ v

vmin

dv′

[E(v) − E(v′)]1/2
= 2f (27)

The derivation of the second or “rotational” RKR equation proceeds in the same way, except that we

first have to perform some manipulations to obtain the appropriate starting equation. The starting point

is the recognition that for a rotating molecule J > 0 and the effective centrifugally-distorted potential

appearing in the quantization condition of Eq. (21) is actually

VJ(r) = V (r) +
ℏ

2

2µ

[J(J + 1)]

r2
(28)

so the quantization condition may be re-written as

v(E, J) + 1
2 =

1

π

√

2µ

ℏ2

∫ r2

r1

[

E − V (r) −
ℏ

2

2µ

[J(J + 1)]

r2

]1/2

dr (29)

For a given value of J , Eq. (29) tells us that there exists a unique mapping between v and E, and the chain

rule of calculus tell us that in ths case, for any function F(E, J),
(

∂F(E, J)

∂[J(J + 1)]

)

E

=

(

∂E

∂[J(J + 1)]

)

v

(

∂F

∂E

)

J

(30)

Applying this chain rule relationship to Eq. (29) then yields

(

∂v

∂[J(J + 1)]

)

E

=

(

∂E

∂[J(J + 1)]

)

v

(

∂v

∂E

)

J

= −
1

2π

√

ℏ2

2µ

∫ r2

r1

dr

r2
[

E − V (r) − ℏ2

2µ
[J(J+1)]

r2

]1/2
(31)

From the standard definition of the inertial rotational constant, we know that ∂E(v,J)
∂[J(J+1)]

∣

∣

∣

J=0
≡ Bv , so for

J =0 Eq. (31) becomes

Bv ×
dv

dE
= −

1

2π

√

ℏ2

2µ

∫ r2

r1

dr

r2 [E − V (r)]1/2
(32)

in which the partial derivative has been replaced by an exact derivative, since when J is fixed (at J =0)

there in only one independent variable.

Equation (32) provides a starting point which is the precise analog of Eq. (22) in the derivation of the

RKR “f integral” result of Eq. (27). Proceeding precisely as before: (i) replace variable names E and

v with E′ and v′, respectively, (ii) split the range of integration into two parts at re, (iii) change the

variable of integration from r to u=V (r) , (iv) multiply by dE′/(E − E′)1/2 and integrate E′ from 0 to

E, (v) change the order of integration and apply the identity of Eq. (25), and (vi) rearrange the result

appropriately, then yields the second or “rotational” RKR equation:

1

r1(v)
−

1

r2(v)
= 2

√

2µ

ℏ2

∫ v

vmin

Bv′ dv′

[E(v) − E(v′)]1/2
= 2g (33)

Combining Eqs. (27) and (33) then yields the final turning point expressions

r2(v) =
(

f2 + f/g
)1/2

+ f (34)

r1(v) =
(

f2 + f/g
)1/2

− f (35)

Thus, for any case in which we have smooth functions which accurately describe the dependence on v of

the vibrational energy and inertial rotational constant Bv, Eqs. (27) and (27)-(35) may be used to generate

the potential energy function in a pointwise manner.
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B. Illustrative Data Files and Commentary

The section presents sample data files for seven cases, and discusses some features of the results il-

lustrated by the associated channel-6 output files listed in Appendix C. Note that in the sample data

files shown below, the “ % ” symbol appearing on most lines after the last parameter associated with that

READ statement and any following text are merely comments, and are ignored by the program. It is often

convenient to include such comments on the input files to remind one which parameter is which.

Cases (i) & (ii): Standard Dunham-Representation Applications

The first two sample data files shown below are for the common case in which pure Dunham polynomials

in (v + 1
2) are used for both Gv and Bv. The experimental data on which these Dunham polynomials were

based stops at v = 82 , so the turning point calculation also stops there. The input data files for these

cases are shown below.

53 127 53 127 0 0 0 % IAN1 IMN1 IAN2 IMN2 CHARGE NDEGv NDEBv
’(i) Dunham Calculation with Gerstenkorn constants for I2(B) (VEXT = 0)’
16 % LMAXGv
1.256643430002D+2 -7.475284960242D-01 -5.016833169864D-3 3.788414181699D-4

-4.983773834286D-5 4.200565944860D-06 -2.462699605029D-7 1.035559345644D-8
-3.168784847369D-10 7.099055257498D-12 -1.159685360751D-13 1.361205680478D-15
-1.115309496593D-17 6.046170833273D-20 -1.947198245975D-22 2.820031243526D-25
15 % LMAXBv
2.900080684844D-2 -1.496203558218D-04 -1.122999681016D-6 -8.598750387065D-9

-3.993514191186D-9 7.442705931721D-10 -7.729114740147D-11 4.998660579762D-12
-2.157393379080D-13 6.436910217056D-15 -1.347501253707D-16 1.977227945639D-18
-1.994896518940D-20 1.320031684314D-22 -5.162433698190D-25 9.047632057664D-28
0 2 0.d0 % Kaiser NSV VEXT
-0.4d0 0.2d0 1.6d0 %(1) V1 DV V2
2.0d0 1.0d0 82.d0 %(2) V1 DV V2

53 127 53 127 0 0 0 % IAN1 IMN1 IAN2 IMN2 CHARGE NDEGv NDEBv
’(ii) Dunham Calculation with Gerstenkorn constants for I2(B) (VEXT > 0)’
16 % LMAXGv
1.256643430002D+2 -7.475284960242D-01 -5.016833169864D-3 3.788414181699D-4

-4.983773834286D-5 4.200565944860D-06 -2.462699605029D-7 1.035559345644D-8
-3.168784847369D-10 7.099055257498D-12 -1.159685360751D-13 1.361205680478D-15
-1.115309496593D-17 6.046170833273D-20 -1.947198245975D-22 2.820031243526D-25
15 % LMAXBv
2.900080684844D-2 -1.496203558218D-04 -1.122999681016D-6 -8.598750387065D-9

-3.993514191186D-9 7.442705931721D-10 -7.729114740147D-11 4.998660579762D-12
-2.157393379080D-13 6.436910217056D-15 -1.347501253707D-16 1.977227945639D-18
-1.994896518940D-20 1.320031684314D-22 -5.162433698190D-25 9.047632057664D-28
0 2 45.d0 % Kaiser NSV VEXT
-0.4d0 0.2d0 1.6d0 %(1) V1 DV V2
2.0d0 1.0d0 82.d0 %(2) V1 DV V2

Case (i) is a calculation performed with the input value of VEXT = 0 , so no inner-wall extrapolation is

performed. However, the rapid growth of the value of C(exp) above v ∼ 45 and the warning message

printed at v = 63 shows that the inner-wall unreliability discussed in § II.D is a problem here. Case (ii)

therefore repeats exactly the same calculation, but with the input value VEXT= 45 , so that for v > 45

the inner wall is defined by Eq. (19) and the outer turning points adjusted accordingly. As shown by the

resulting values of d(RMIN) in the last column of the output for Case (ii), the smoothing for this case

requires only very modest displacements of the turning points.

The various warning messages “ *** STOP ITERATION: At NDIV= ... ” appearing in both output

files for v = 70 and v ≥ 76 illustrate the type of convergence problem discussed at the end of § II.C. At

high v the higher-order terms in the Dunham polynomial yield large contributions of alternating sign, and

a substantial amount of numerical cancellation occurs when they are combined to give the overall values

of Gv, Gv′ and Bv′ appearing in the integrands of Eq. (1) and (2). This loss of significant digits introduces
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“numerical noise” into the calculation, and prevents the specified degree of numerical convergence being

achieved. Precisely the same problem sometimes occurs at low v when using high-order pure NDE functions,

because of the high powers of (vD − v) involved. This problem usually has nothing to do with the RKR

procedure itself, but rather is a precision problem associated with the type of Gv and/or Bv representation

being used. In this case the best way of avoiding them would be to use MXS representations, as relatively

lower-order polynomials (than for pure Dunham or NDE functions) would be required for both the Dunham

and NDE components, so the introduction of numerical noise due to cancellation of significant digits would

be greatly reduced.

Cases (iii) & (iv): Pure NDE Gv and Bv Functions

The two following data file are based on NDE functions reported for the 1 3Σ−
g state of Na2.

47 These

two cases again differ only in that one uses VEXT = 0 and the other VEXT = 35 , with the value of VEXT

used in Case (iv) being having been selected based on the trends in the values of C(exp) seen in the output

for Case (iii) in Appendix C. The output for Case (iii) shows three different types of warning messages

associated with inner-wall misbehaviour, but from the output for Case (iv) we see that the turning point

adjustments required to give a smooth inner wall are also quite modest for this case, especially relative to

the magnitude of the turning point differences [RMAX(v) - RMIN(v)] . Note too that in contrast to Cases

(i) and (ii), these Na2 calculations apply the Kaiser correction, so the lower bound on the integrals in

Eqs. (1) and (2) is v00 = vmin = −0.5018267... .

11 23 11 23 0 1 1 % IAN1 IMN1 IAN2 IMN2 CHARGE NDEGv NDEBv
’(iii) Liu et al. JCP 111, 3494 (1999) NDE functions for Na2: VEXT = 0’
6 1 1 1 3 2 61.41d0 4.4867d-2 % NLR ITYPE IZP0 IZQ0 NP0 NQ0 VD XCN0
0.436636d0 -3.529d-3 1.54d-5
4.8d-2 1.366d-2
3 1 0 7 0 3.0921d-3 % ITYPB IZP1 IZQ1 NP1 NQ1 XCN1
0.1341d0 -1.6863d-2 9.2d-4 -2.810837d-5 4.924d-7 -4.61952d-9 1.8d-11
1 2 0.d0 % Kaiser NSV VEXT
-0.4d0 0.2d0 1.6d0 %(1) V1 DV V2
1.d0 1.0d0 61.d0 %(2) V1 DV V2

11 23 11 23 0 1 1 % IAN1 IMN1 IAN2 IMN2 CHARGE NDEGv NDEBv
’(iv) Liu et al. JCP 111, 3494 (1999) NDE functions for Na2: VEXT > 0’
6 1 1 1 3 2 61.41d0 4.4867d-2 % NLR ITYPE IZP0 IZQ0 NP0 NQ0 VD XCN0
0.436636d0 -3.529d-3 1.54d-5
4.8d-2 1.366d-2
3 1 0 7 0 3.0921d-3 % ITYPB IZP1 IZQ1 NP1 NQ1 XCN1
0.1341d0 -1.6863d-2 9.2d-4 -2.810837d-5 4.924d-7 -4.61952d-9 1.8d-11
1 2 35.d0 % Kaiser NSV VEXT
-0.4d0 0.2d0 1.6d0 %(1) V1 DV V2
1.d0 1.0d0 61.d0 %(2) V1 DV V2

Case (v): No Rotational Data: Morse Inner Wall

This data set illustrates the type of situation discussed in § II.E, a case for which one has vibrational

data but little or no rotational data. As discussed in § II.E, the program uses the vibrational data to

determine Morse parameters De and β, which are then combined with a read-in value of re and used to

generate the inner-wall turning points. The regular RKR calculation of Eq. (1) is then used to define the

outer wall of the potential. Although the molecular species in this example is a hydride (ArH+), for which

one might normally expect to use the Kaiser correction, the uncertainty associated with the inner wall

makes such niceties pointless for this case.

20 40 1 1 0 1 -1 % IAN1 IMN1 IAN2 IMN2 CHARGE NDEGv NDEBv
’(v) NDE-based potential for Ar-H(+): Morse Inner Wall Extrapolation’
4 1 2 2 3 1 33.2D0 0.146D0 % NLR ITYPE IZP0 IZQ0 NP0 NQ0 VD XCN0
-0.396754604292D-4 0.456933925968D-5 -0.392256864315D-7
0.414470068478D-2

19



1.28066d0 % r_e Morse minimum
0 2 11.1d0 % Kaiser NSV VEXT
-0.4d0 0.2d0 1.6d0 %(1) V1 DV V2
2.0d0 1.0d0 32.d0 %(2) V1 DV V2

Cases (vi) & (vii): MXS Function for Gv With a Pure Dunham or an MXS Expression for Bv

These two cases illustrate the data file setup associated with use of an MXS representation for Gv,

combined with either a Dunham or an MXS representation for Bv. In the output for both cases we see

that there are some convergence problems as v → vD because of significant digit cancellation in the

integrand argument [Gv − Gv′ ] . This cannot be avoided unless the whole calculation is performed in

quadruple precision, but since no real additional physical accuracy would be attained, it would not be

worth the trouble to do that. Note too that both these examples use VEXT > 0 , which indicates that a

prior VEXT = 0 calculation was used to determine an appropriate value for VEXT for each.

3 7 3 7 +0 2 0 % IAN1 IMN1 IAN2 IMN2 CHARGE NDEGv NDEBv
’(vi) For Li2(A): MXS function for Gv & Dunham for Bv’
9 % LMAXGv
2.554976991440D+02 -1.591528931916D+00 4.320069610295D-03 -1.297800483407D-04
5.126092802711D-06 -3.043543008425D-07 9.142950968846D-09 -1.496898654541D-10
9.980517130870D-13
55.d0 1.d0 9352.11494d0 % VS DVS DLIM

3 1 2 2 7 0 113.2817653490D0 2.577D-08 % NLR ITYPE IZP0 IZQ0 NP0 NQ0 VD XCN0
1.910501922487D-03 -3.893923351925D-04 2.334546248943D-05 -6.987656722521D-07
1.155836220945D-08 -1.015514433411D-10 3.720613823813D-13
17 % LMAXBv
4.974826807719D-01 -5.451871858525D-03 -2.310449795574D-06 9.775126360220D-06

-2.425290834207D-06 3.831066457326D-07 -4.243945514918D-08 3.342936415566D-09
-1.887782854700D-10 7.703531741973D-12 -2.287056796063D-13 4.954101341163D-15
-7.802622660609D-17 8.821305429325D-19 -6.966209130239D-21 3.645524469475D-23
-1.135472319430D-25 1.593096618270D-28
1 2 45.d0 % Kaiser NSV VEXT
-0.4d0 0.2d0 1.6d0 %(1) V1 DV V2
1.d0 1.0d0 113.d0 %(2) V1 DV V2

3 7 3 7 +0 2 2 % IAN1 IMN1 IAN2 IMN2 CHARGE NDEGv NDEBv
’(vii) For Li2(A): MXS function for both Gv & Bv’
9 % LMAXGv
2.554976991440D+02 -1.591528931916D+00 4.320069610295D-03 -1.297800483407D-04
5.126092802711D-06 -3.043543008425D-07 9.142950968846D-09 -1.496898654541D-10
9.980517130870D-13
55.d0 1.d0 9352.11494d0 % VS DVS DLIM

3 1 2 2 7 0 113.2817653490D0 2.577D-08 % NLR ITYPE IZP0 IZQ0 NP0 NQ0 VD XCN0
1.910501922487D-03 -3.893923351925D-04 2.334546248943D-05 -6.987656722521D-07
1.155836220945D-08 -1.015514433411D-10 3.720613823813D-13
8 % LMAXBv
4.974956434974D-01 -5.487758555749D-03 2.648227703650D-05 -1.139866232979D-06
7.141138262611D-08 -4.445710119333D-09 1.443419023131D-10 -2.497993558364D-12
1.725383416037D-14

3 0 0 6 0 4.263D-08 % ITYPB IZP1 IZQ1 NP1 NQ1 XCN1
2.114415071744D-01 -2.929745145298D-02 1.369881187153D-03 -3.136194459560D-05
3.563240597730D-07 -1.610153741067D-09

1 2 49.d0 % Kaiser NSV VEXT
-0.4d0 0.2d0 1.6d0 %(1) V1 DV V2
1.d0 1.0d0 114.d0 %(2) V1 DV V2
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C. Channel-6 “Standard” Output for the Cases Considered in Appendix C

Cases (i): Standard Dunham-Representation Application with VEXT = 0

(i) Dunham Calculation with Gerstenkorn constants for I2(B) (VEXT = 0)
************************************************************
RKR potential for I(127)- I(127) with Charge= 0
Reduced mass ZMU= 63.45223400000 and constant C_u/ZMU = 0.265674319363

from atomic masses: 126.9044680000 & 126.9044680000(u)

Seek relative quadrature convergence 1.0D-10. Bisect interval up to 5 times.
performing 16-point Gaussian quadrature in each segment

The 16 Dunham Gv expansion coefficients are
1.2566434300D+02 -7.4752849602D-01 -5.0168331699D-03 3.7884141817D-04

-4.9837738343D-05 4.2005659449D-06 -2.4626996050D-07 1.0355593456D-08
-3.1687848474D-10 7.0990552575D-12 -1.1596853608D-13 1.3612056805D-15
-1.1153094966D-17 6.0461708333D-20 -1.9471982460D-22 2.8200312435D-25

The 16 Dunham Bv expansion coefficients are
2.9000806848D-02 -1.4962035582D-04 -1.1229996810D-06 -8.5987503871D-09

-3.9935141912D-09 7.4427059317D-10 -7.7291147401D-11 4.9986605798D-12
-2.1573933791D-13 6.4369102171D-15 -1.3475012537D-16 1.9772279456D-18
-1.9948965189D-20 1.3200316843D-22 -5.1624336982D-25 9.0476320577D-28

At v00= -0.50000 Gv= 0.00000000 dG/dv= 125.6643 (1/2)d2G/dv2= -0.747528
Bv= 0.02900081 { ==> Req= 3.026702587(A) }
alpha_e = 0.000149620

Calculate turning points at the 92 v-values
-0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00

13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00
24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00 34.00
35.00 36.00 37.00 38.00 39.00 40.00 41.00 42.00 43.00 44.00 45.00
46.00 47.00 48.00 49.00 50.00 51.00 52.00 53.00 54.00 55.00 56.00
57.00 58.00 59.00 60.00 61.00 62.00 63.00 64.00 65.00 66.00 67.00
68.00 69.00 70.00 71.00 72.00 73.00 74.00 75.00 76.00 77.00 78.00
79.00 80.00 81.00 82.00

Resulting Turning Points:
v E(v) dE(v)/dv B(v) RMIN(v) RMAX(v) NDIV tst(f) tst(g) C(exp) d(RMIN)

**************************************************************************************************************************
-0.40 12.5590 125.5147 0.0289858336 2.9982686459 3.0564581070 2 1.9D-15 1.8D-15
-0.20 37.6319 125.2145 0.0289558194 2.9782446305 3.0791322611 2 6.6D-15 6.7D-15
0.00 62.6447 124.9132 0.0289257146 2.9648302088 3.0952061881 2 8.9D-16 8.9D-16 24.136902
0.20 87.5971 124.6109 0.0288955185 2.9541434528 3.1085618932 2 3.3D-16 0.0D+00 18.743521
0.40 112.4890 124.3076 0.0288652304 2.9450561836 3.1203276364 2 2.2D-15 0.0D+00 16.187465
0.60 137.3201 124.0033 0.0288348494 2.9370523609 3.1310195425 2 3.3D-15 0.0D+00 14.589502
0.80 162.0902 123.6980 0.0288043746 2.9298446852 3.1409249984 2 4.4D-16 0.0D+00 13.464354
1.00 186.7992 123.3919 0.0287738052 2.9232537557 3.1502234944 2 1.8D-15 0.0D+00 12.615397
1.20 211.4469 123.0849 0.0287431401 2.9171586793 3.1590360152 2 1.4D-15 0.0D+00 11.944830
1.40 236.0331 122.7771 0.0287123783 2.9114734225 3.1674486871 2 8.9D-16 0.0D+00 11.397566
1.60 260.5577 122.4684 0.0286815190 2.9061341912 3.1755253986 2 4.4D-16 0.0D+00 10.939821
2.00 309.4212 121.8487 0.0286195034 2.8963088821 3.1908562445 2 2.8D-15 0.0D+00 10.441069
3.00 430.4899 120.2854 0.0284626875 2.8753681168 3.2257437218 2 1.1D-15 0.0D+00 9.702227
4.00 549.9855 118.7026 0.0283032399 2.8579347599 3.2573947782 2 1.8D-15 0.0D+00 8.895459
5.00 667.8885 117.1000 0.0281410524 2.8428708827 3.2869596105 2 1.2D-15 0.0D+00 8.178077

...........................................................................................................

................................. delete 35 intermediate lines of output ..................................

...........................................................................................................
41.00 3681.1924 47.2736 0.0194400086 2.6537025244 4.3732707639 2 2.3D-13 0.0D+00 5.192286
42.00 3727.4605 45.2666 0.0190953193 2.6519001036 4.4195058946 2 2.7D-13 0.0D+00 5.224621
43.00 3771.7343 43.2856 0.0187450476 2.6501912657 4.4675140226 2 2.6D-13 0.0D+00 5.274020
44.00 3814.0412 41.3331 0.0183893231 2.6485728093 4.5174035981 2 3.4D-13 0.0D+00 5.347653
45.00 3854.4110 39.4118 0.0180282757 2.6470416619 4.5692911140 2 2.8D-13 0.0D+00 5.453391
46.00 3892.8760 37.5240 0.0176620329 2.6455948697 4.6233023232 2 1.2D-12 0.0D+00 5.599118
47.00 3929.4709 35.6718 0.0172907158 2.6442295846 4.6795736761 2 9.2D-14 0.0D+00 5.791764
48.00 3964.2321 33.8570 0.0169144365 2.6429430468 4.7382540058 2 9.3D-13 0.0D+00 6.036134
49.00 3997.1980 32.0814 0.0165332948 2.6417325641 4.7995064979 2 6.8D-13 0.0D+00 6.333526
50.00 4028.4084 30.3464 0.0161473763 2.6405954908 4.8635109804 2 8.8D-13 0.0D+00 6.680356
51.00 4057.9046 28.6531 0.0157567507 2.6395292057 4.9304665782 2 4.0D-13 0.0D+00 7.067007
52.00 4085.7289 27.0026 0.0153614704 2.6385310949 5.0005947807 2 3.8D-12 0.0D+00 7.477323
53.00 4111.9244 25.3958 0.0149615706 2.6375985389 5.0741429799 2 1.7D-12 0.0D+00 7.889415
54.00 4136.5351 23.8333 0.0145570694 2.6367289097 5.1513885469 2 9.5D-14 0.0D+00 8.278745
55.00 4159.6059 22.3158 0.0141479701 2.6359195786 5.2326435303 2 6.8D-12 0.0D+00 8.624812
56.00 4181.1819 20.8439 0.0137342632 2.6351679364 5.3182600792 2 1.2D-11 0.0D+00 8.923187
57.00 4201.3091 19.4181 0.0133159311 2.6344714271 5.4086367194 2 9.0D-12 0.0D+00 9.204982
58.00 4220.0337 18.0390 0.0128929531 2.6338275935 5.5042256461 2 9.1D-12 0.0D+00 9.566795
59.00 4237.4027 16.7071 0.0124653122 2.6332341308 5.6055412466 2 7.1D-12 0.0D+00 10.213564
60.00 4253.4639 15.4232 0.0120330036 2.6326889442 5.7131701232 2 4.6D-12 0.0D+00 11.519225
61.00 4268.2654 14.1880 0.0115960442 2.6321902021 5.8277829769 2 3.4D-11 0.0D+00 14.112796
62.00 4281.8564 13.0023 0.0111544832 2.6317363743 5.9501488226 2 3.3D-11 0.0D+00 18.999250

*** CAUTION *** inner wall exponent parameter becomes very large so skip converging it.
63.00 4294.2868 11.8670 0.0107084144 2.6313262452 6.0811521635 2 1.9D-11 0.0D+00 27.731911
64.00 4305.6074 10.7830 0.0102579875 2.6309588868 6.2218139674 2 7.7D-12 0.0D+00 42.728016
65.00 4315.8701 9.7512 0.0098034201 2.6306335816 6.3733175872 2 7.3D-11 0.0D+00 67.687148
66.00 4325.1275 8.7726 0.0093450080 2.6303496808 6.5370411895 2 9.2D-11 0.0D+00 108.374812
67.00 4333.4333 7.8480 0.0088831328 2.6301063921 6.7145988856 2 5.3D-11 0.0D+00 173.796741
68.00 4340.8418 6.9782 0.0084182663 2.6299024984 6.9078936101 4 2.8D-11 0.0D+00 277.902359
69.00 4347.4081 6.1636 0.0079509683 2.6297360142 7.1191861948 2 6.3D-11 0.0D+00 440.777359

*** STOP ITERATION: At NDIV= 32 tst(f)/(previous)= 4.8D-10/1.8D-10 tst(g)/(previous)= 0.0D+00/0.0D+00
70.00 4353.1875 5.4046 0.0074818794 2.6296038088 7.3511870356 32 4.8D-10 0.0D+00 684.406781
71.00 4358.2357 4.7012 0.0070117035 2.6295012375 7.6071800042 2 1.7D-11 0.0D+001001.070502
72.00 4362.6083 4.0531 0.0065411828 2.6294218561 7.8911930896 4 4.4D-11 0.0D+001227.613180
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73.00 4366.3602 3.4598 0.0060710625 2.6293572889 8.2082388420 8 6.9D-11 0.0D+00 740.914685
74.00 4369.5458 2.9203 0.0056020488 2.6292973602 8.5646611076 2 9.2D-11 0.0D+00***********
75.00 4372.2184 2.4334 0.0051347613 2.6292305250 8.9686494197 4 7.1D-11 0.0D+00***********

*** STOP ITERATION: At NDIV= 8 tst(f)/(previous)= 8.6D-09/4.6D-09 tst(g)/(previous)= 0.0D+00/0.0D+00
76.00 4374.4295 1.9973 0.0046696885 2.6291445320 9.4310264483 8 8.6D-09 0.0D+00***********

*** STOP ITERATION: At NDIV= 8 tst(f)/(previous)= 4.8D-09/7.7D-10 tst(g)/(previous)= 0.0D+00/0.0D+00
77.00 4376.2292 1.6102 0.0042071562 2.6290269317 9.9664981783 8 4.8D-09 0.0D+00***********

*** STOP ITERATION: At NDIV= 16 tst(f)/(previous)= 1.0D-08/4.5D-09 tst(g)/(previous)= 0.0D+00/0.0D+00
78.00 4377.6655 1.2700 0.0037473247 2.6288642234 10.5957276302 16 1.0D-08 0.0D+00***********

*** STOP ITERATION: At NDIV= 16 tst(f)/(previous)= 2.2D-08/6.1D-10 tst(g)/(previous)= 0.0D+00/0.0D+00
79.00 4378.7840 0.9744 0.0032902410 2.6286369902 11.3489510075 16 2.2D-08 0.0D+00***********

*** STOP ITERATION: At NDIV= 16 tst(f)/(previous)= 8.1D-09/2.0D-09 tst(g)/(previous)= 0.0D+00/0.0D+00
80.00 4379.6283 0.7211 0.0028359793 2.6283048004 12.2726821336 16 8.1D-09 0.0D+00***********

*** STOP ITERATION: At NDIV= 8 tst(f)/(previous)= 9.3D-09/3.0D-09 tst(g)/(previous)= 0.0D+00/0.0D+00
81.00 4380.2397 0.5082 0.0023849172 2.6277675077 13.4430895058 8 9.3D-09 0.0D+00***********

*** STOP ITERATION: At NDIV= 8 tst(f)/(previous)= 3.8D-08/2.6D-08 tst(g)/(previous)= 0.0D+00/0.0D+00
82.00 4380.6576 0.3339 0.0019382124 2.6267751713 14.9951678534 8 3.8D-08 0.0D+00***********

**************************************************************************************************************************

Case (ii): Standard Dunham-Representation Application with VEXT > 0

(ii) Dunham Calculation with Gerstenkorn constants for I2(B) (VEXT > 0)
************************************************************
RKR potential for I(127)- I(127) with Charge= 0
Reduced mass ZMU= 63.45223400000 and constant C_u/ZMU = 0.265674319363

from atomic masses: 126.9044680000 & 126.9044680000(u)

Seek relative quadrature convergence 1.0D-10. Bisect interval up to 5 times.
performing 16-point Gaussian quadrature in each segment

The 16 Dunham Gv expansion coefficients are
1.2566434300D+02 -7.4752849602D-01 -5.0168331699D-03 3.7884141817D-04

-4.9837738343D-05 4.2005659449D-06 -2.4626996050D-07 1.0355593456D-08
-3.1687848474D-10 7.0990552575D-12 -1.1596853608D-13 1.3612056805D-15
-1.1153094966D-17 6.0461708333D-20 -1.9471982460D-22 2.8200312435D-25

The 16 Dunham Bv expansion coefficients are
2.9000806848D-02 -1.4962035582D-04 -1.1229996810D-06 -8.5987503871D-09

-3.9935141912D-09 7.4427059317D-10 -7.7291147401D-11 4.9986605798D-12
-2.1573933791D-13 6.4369102171D-15 -1.3475012537D-16 1.9772279456D-18
-1.9948965189D-20 1.3200316843D-22 -5.1624336982D-25 9.0476320577D-28

At v00= -0.50000 Gv= 0.00000000 dG/dv= 125.6643 (1/2)d2G/dv2= -0.747528
Bv= 0.02900081 { ==> Req= 3.026702587(A) }
alpha_e = 0.000149620

Above v = 45.000 extrapolate inner wall with exponential
fitted to last 3 points ( & shift RMAX accordingly)

Calculate turning points at the 92 v-values
-0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00

13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00
24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00 34.00
35.00 36.00 37.00 38.00 39.00 40.00 41.00 42.00 43.00 44.00 45.00
46.00 47.00 48.00 49.00 50.00 51.00 52.00 53.00 54.00 55.00 56.00
57.00 58.00 59.00 60.00 61.00 62.00 63.00 64.00 65.00 66.00 67.00
68.00 69.00 70.00 71.00 72.00 73.00 74.00 75.00 76.00 77.00 78.00
79.00 80.00 81.00 82.00

Resulting Turning Points:
v E(v) dE(v)/dv B(v) RMIN(v) RMAX(v) NDIV tst(f) tst(g) C(exp) d(RMIN)

**************************************************************************************************************************
-0.40 12.5590 125.5147 0.0289858336 2.9982686459 3.0564581070 2 1.9D-15 1.8D-15
-0.20 37.6319 125.2145 0.0289558194 2.9782446305 3.0791322611 2 6.6D-15 6.7D-15
0.00 62.6447 124.9132 0.0289257146 2.9648302088 3.0952061881 2 8.9D-16 8.9D-16 24.136902
0.20 87.5971 124.6109 0.0288955185 2.9541434528 3.1085618932 2 3.3D-16 7.8D-16 18.743521
0.40 112.4890 124.3076 0.0288652304 2.9450561836 3.1203276364 2 2.2D-15 2.3D-15 16.187465
0.60 137.3201 124.0033 0.0288348494 2.9370523609 3.1310195425 2 3.3D-15 3.3D-15 14.589502
0.80 162.0902 123.6980 0.0288043746 2.9298446852 3.1409249984 2 4.4D-16 4.4D-16 13.464354
1.00 186.7992 123.3919 0.0287738052 2.9232537557 3.1502234944 2 1.8D-15 1.3D-15 12.615397
1.20 211.4469 123.0849 0.0287431401 2.9171586793 3.1590360152 2 1.4D-15 1.4D-15 11.944830
1.40 236.0331 122.7771 0.0287123783 2.9114734225 3.1674486871 2 8.9D-16 6.7D-16 11.397566
1.60 260.5577 122.4684 0.0286815190 2.9061341912 3.1755253986 2 4.4D-16 6.7D-16 10.939821
2.00 309.4212 121.8487 0.0286195034 2.8963088821 3.1908562445 2 2.8D-15 2.7D-15 10.441069
3.00 430.4899 120.2854 0.0284626875 2.8753681168 3.2257437218 2 1.1D-15 1.7D-15 9.702227
4.00 549.9855 118.7026 0.0283032399 2.8579347599 3.2573947782 2 1.8D-15 1.8D-15 8.895459
5.00 667.8885 117.1000 0.0281410524 2.8428708827 3.2869596105 2 1.2D-15 1.0D-15 8.178077

...........................................................................................................

................................. delete 35 intermediate lines of output ..................................

...........................................................................................................
41.00 3681.1924 47.2736 0.0194400086 2.6537025244 4.3732707639 2 2.3D-13 1.9D-13 5.192286
42.00 3727.4605 45.2666 0.0190953193 2.6519001036 4.4195058946 2 2.7D-13 2.3D-13 5.224621
43.00 3771.7343 43.2856 0.0187450476 2.6501912657 4.4675140226 2 2.6D-13 2.2D-13 5.274020
44.00 3814.0412 41.3331 0.0183893231 2.6485728093 4.5174035981 2 3.4D-13 2.9D-13 5.347653
45.00 3854.4110 39.4118 0.0180282757 2.6470416619 4.5692911140 2 2.8D-13 2.3D-13 5.453391
46.00 3892.8760 37.5240 0.0176620329 2.6455945570 4.6233020105 2 1.2D-12 0.0D+00 5.453391 -0.0000003127
47.00 3929.4709 35.6718 0.0172907158 2.6442283317 4.6795724232 2 9.2D-14 0.0D+00 5.453391 -0.0000012529
48.00 3964.2321 33.8570 0.0169144365 2.6429399227 4.7382508818 2 9.3D-13 0.0D+00 5.453391 -0.0000031241
49.00 3997.1980 32.0814 0.0165332948 2.6417263632 4.7995002970 2 6.8D-13 0.0D+00 5.453391 -0.0000062010
50.00 4028.4084 30.3464 0.0161473763 2.6405847803 4.8635002700 2 8.8D-13 0.0D+00 5.453391 -0.0000107104

...........................................................................................................

................................. delete 15 intermediate lines of output ..................................

...........................................................................................................
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66.00 4325.1275 8.7726 0.0093450080 2.6300725746 6.5367640833 2 9.2D-11 0.0D+00 5.453391 -0.0002771062
67.00 4333.4333 7.8480 0.0088831328 2.6297868147 6.7142793081 2 5.3D-11 0.0D+00 5.453391 -0.0003195774
68.00 4340.8418 6.9782 0.0084182663 2.6295323006 6.9075234123 4 2.8D-11 0.0D+00 5.453391 -0.0003701978
69.00 4347.4081 6.1636 0.0079509683 2.6293070169 7.1187571975 2 6.3D-11 0.0D+00 5.453391 -0.0004289973

*** STOP ITERATION: At NDIV= 32 tst(f)/(previous)= 4.8D-10/1.8D-10 tst(g)/(previous)= 0.0D+00/0.0D+00
70.00 4353.1875 5.4046 0.0074818794 2.6291089572 7.3506921839 32 4.8D-10 0.0D+00 5.453391 -0.0004948516
71.00 4358.2357 4.7012 0.0070117035 2.6289361304 7.6066148971 2 1.7D-11 0.0D+00 5.453391 -0.0005651071
72.00 4362.6083 4.0531 0.0065411828 2.6287865671 7.8905578006 4 4.4D-11 0.0D+00 5.453391 -0.0006352890
73.00 4366.3602 3.4598 0.0060710625 2.6286583288 8.2075398819 8 6.9D-11 0.0D+00 5.453391 -0.0006989601
74.00 4369.5458 2.9203 0.0056020488 2.6285495164 8.5639132638 2 9.2D-11 0.0D+00 5.453391 -0.0007478438
75.00 4372.2184 2.4334 0.0051347613 2.6284582803 8.9678771751 4 7.1D-11 0.0D+00 5.453391 -0.0007722447

*** STOP ITERATION: At NDIV= 8 tst(f)/(previous)= 8.6D-09/4.6D-09 tst(g)/(previous)= 0.0D+00/0.0D+00
76.00 4374.4295 1.9973 0.0046696885 2.6283828296 9.4302647459 8 8.6D-09 0.0D+00 5.453391 -0.0007617024

*** STOP ITERATION: At NDIV= 8 tst(f)/(previous)= 4.8D-09/7.7D-10 tst(g)/(previous)= 0.0D+00/0.0D+00
77.00 4376.2292 1.6102 0.0042071562 2.6283214407 9.9657926872 8 4.8D-09 0.0D+00 5.453391 -0.0007054911

*** STOP ITERATION: At NDIV= 16 tst(f)/(previous)= 1.0D-08/4.5D-09 tst(g)/(previous)= 0.0D+00/0.0D+00
78.00 4377.6655 1.2700 0.0037473247 2.6282724645 10.5951358713 16 1.0D-08 0.0D+00 5.453391 -0.0005917589

*** STOP ITERATION: At NDIV= 16 tst(f)/(previous)= 2.2D-08/6.1D-10 tst(g)/(previous)= 0.0D+00/0.0D+00
79.00 4378.7840 0.9744 0.0032902410 2.6282343315 11.3485483488 16 2.2D-08 0.0D+00 5.453391 -0.0004026587

*** STOP ITERATION: At NDIV= 16 tst(f)/(previous)= 8.1D-09/2.0D-09 tst(g)/(previous)= 0.0D+00/0.0D+00
80.00 4379.6283 0.7211 0.0028359793 2.6282055525 12.2725828857 16 8.1D-09 0.0D+00 5.453391 -0.0000992479

*** STOP ITERATION: At NDIV= 8 tst(f)/(previous)= 9.3D-09/3.0D-09 tst(g)/(previous)= 0.0D+00/0.0D+00
81.00 4380.2397 0.5082 0.0023849172 2.6281847157 13.4435067139 8 9.3D-09 0.0D+00 5.453391 0.0004172080

*** STOP ITERATION: At NDIV= 8 tst(f)/(previous)= 3.8D-08/2.6D-08 tst(g)/(previous)= 0.0D+00/0.0D+00
82.00 4380.6576 0.3339 0.0019382124 2.6281704758 14.9965631578 8 3.8D-08 0.0D+00 5.453391 0.0013953044

**************************************************************************************************************************

Note that for v .GE. 45.00 inner wall extrapolated as: V(R) = -1000.5391 + 0.90235927D+10*exp(- 5.45339142*R)
**************************************************************************************************************************

Case (iii): Pure NDE Functions for Gv and Bv VEXT = 0

(iii) Liu et al. JCP 111, 3494 (1999) NDE functions for Na2: VEXT = 0
************************************************************
RKR potential for Na( 23)-Na( 23) with Charge= 0
Reduced mass ZMU= 11.49488483000 and constant C_u/ZMU = 1.466533099662

from atomic masses: 22.9897696600 & 22.9897696600(u)

Seek relative quadrature convergence 1.0D-10. Bisect interval up to 5 times.
performing 16-point Gaussian quadrature in each segment

NDE for Gv is an (NP= 3/NQ= 2) OUTER Pade expansion in (vD-v) with
X0(n=6)= 4.4867000D-02 and leading num. and denom. powers 1 & 1
vD= 61.4100 D-G(v=-1/2)= 3432.458368

Numerator coefficients are: 4.366360000000D-01 -3.529000000000D-03
1.540000000000D-05

Denominator coefficients : 4.800000000000D-02 1.366000000000D-02

NDE for Bv is an (NP= 7/NQ= 0) Exponential expansion in (vD-v) with
X1(n=6)= 3.0921000D-03 and leading num. and denom. powers 1 & 0

Numerator coefficients are: 1.341000000000D-01 -1.686300000000D-02
9.200000000000D-04 -2.810837000000D-05 4.924000000000D-07

-4.619520000000D-09 1.800000000000D-11

Calculate Y00= 0.171244236 v(cor)= -0.0018267047 v(min)= -0.5018267047
using we= 93.7441 wexe= 0.451924 Be= 0.118327 ae= 0.00188162
and corrected effective De= 3432.629612 (after adding Y00)

At v00= -0.50183 Gv= 0.00000000 dG/dv= 93.7457 (1/2)d2G/dv2= -0.451924
Bv= 0.11833058 { ==> Req= 3.520443964(A) }
alpha_e = 0.001881624

Calculate turning points at the 67 v-values
-0.40 -0.20 0.00 0.20 0.40 0.60 1.00 2.00 3.00 4.00 5.00
6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00

17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00
28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00
39.00 40.00 41.00 42.00 43.00 44.00 45.00 46.00 47.00 48.00 49.00
50.00 51.00 52.00 53.00 54.00 55.00 56.00 57.00 58.00 59.00 60.00
61.00

Resulting Turning Points:
v E(v) dE(v)/dv B(v) RMIN(v) RMAX(v) NDIV tst(f) tst(g) C(exp) d(RMIN)

**************************************************************************************************************************
-0.40 9.5411 93.6537 0.1181411455 3.4433774831 3.6030899250 2 3.7D-12 3.7D-12
-0.20 28.2538 93.4731 0.1177817356 3.3910255327 3.6662176475 2 4.5D-13 4.3D-13
0.00 46.9304 93.2926 0.1174382433 3.3563298755 3.7114568080 2 5.8D-13 5.9D-13 9.540879
0.20 65.5709 93.1123 0.1171096782 3.3288990060 3.7492108023 2 5.6D-14 0.0D+00 7.535556
0.40 84.1753 92.9322 0.1167950997 3.3056943386 3.7825296865 2 7.1D-14 0.0D+00 6.547257
0.60 102.7438 92.7521 0.1164936143 3.2853252312 3.8128151640 2 1.2D-13 0.0D+00 5.901498
1.00 139.7727 92.3924 0.1159265724 3.2502928119 3.8671290476 2 7.9D-14 0.0D+00 5.307723
2.00 231.7160 91.4946 0.1146836989 3.1817425861 3.9811207866 2 4.0D-14 0.0D+00 4.541315
3.00 322.7622 90.5979 0.1136272512 3.1278016425 4.0774161199 2 3.4D-14 0.0D+00 3.770565
4.00 412.9118 89.7012 0.1126941968 3.0821210595 4.1632698873 2 4.0D-14 0.0D+00 3.145085
5.00 502.1641 88.8032 0.1118369435 3.0419588892 4.2421563194 2 4.1D-14 0.0D+00 2.770094

...........................................................................................................

................................. delete 25 intermediate lines of output ..................................

...........................................................................................................
31.00 2475.5535 60.8194 0.0853376407 2.5748002973 5.8987370001 2 5.7D-15 0.0D+00 2.494313
32.00 2535.6636 59.3943 0.0839351846 2.5660411322 5.9710693371 2 3.0D-15 0.0D+00 2.557118
33.00 2594.3287 57.9291 0.0824882473 2.5576787204 6.0454464448 2 5.3D-15 0.0D+00 2.572445
34.00 2651.5077 56.4219 0.0809967870 2.5496940239 6.1220841546 2 6.7D-16 0.0D+00 2.516015
35.00 2707.1579 54.8708 0.0794609787 2.5420647559 6.2012201307 2 2.4D-15 0.0D+00 2.361046
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36.00 2761.2341 53.2737 0.0778809883 2.5347654982 6.2831191877 2 4.1D-15 0.0D+00 2.080646
37.00 2813.6893 51.6284 0.0762566898 2.5277681497 6.3680801273 2 2.2D-15 0.0D+00 1.651688
38.00 2864.4740 49.9324 0.0745873285 2.5210427320 6.4564444856 2 2.2D-16 0.0D+00 1.060115
39.00 2913.5363 48.1832 0.0728711368 2.5145585742 6.5486077108 2 1.3D-15 0.0D+00 0.307079

*** CAUTION *** Inner potential wall has negative curvature and requires smoothing for VEXT .ge. 40.00
40.00 2960.8217 46.3779 0.0711049093 2.5082858923 6.6450334682 2 1.7D-15 0.0D+00 -0.585320
41.00 3006.2725 44.5136 0.0692835503 2.5021977695 6.7462720275 2 4.4D-15 0.0D+00 -1.570285
42.00 3049.8281 42.5869 0.0673996069 2.4962725339 6.8529840661 2 2.7D-15 0.0D+00 -2.575856
43.00 3091.4244 40.5943 0.0654428122 2.4904965103 6.9659717804 2 4.9D-15 0.0D+00 -3.507648
44.00 3130.9935 38.5319 0.0633996671 2.4848670988 7.0862200463 2 2.7D-15 0.0D+00 -4.252501
45.00 3168.4635 36.3954 0.0612531062 2.4793960957 7.2149516703 2 2.2D-15 0.0D+00 -4.677874
46.00 3203.7583 34.1806 0.0589823104 2.4741131226 7.3537028255 2 8.9D-16 0.0D+00 -4.618253
47.00 3236.7971 31.8829 0.0565627497 2.4690689637 7.5044280716 2 1.1D-15 0.0D+00 -3.832715
48.00 3267.4950 29.4981 0.0539665741 2.4643385315 7.6696498268 2 1.6D-15 0.0D+00 -1.897550
49.00 3295.7631 27.0227 0.0511634986 2.4600231041 7.8526764784 2 2.2D-16 0.0D+00 2.069065
50.00 3321.5095 24.4547 0.0481223659 2.4562514269 8.0579297293 2 2.2D-16 0.0D+00 10.203665

*** CAUTION *** inner wall exponent parameter becomes very large so skip converging it.
51.00 3344.6420 21.7955 0.0448135876 2.4531793245 8.2914517940 2 1.3D-15 0.0D+00 28.503162
52.00 3365.0721 19.0516 0.0412126675 2.4509877706 8.5617204229 2 5.7D-14 0.0D+00 79.410279
53.00 3382.7221 16.2389 0.0373049516 2.4498801811 8.8810152590 2 2.8D-13 0.0D+00 292.309499

*** WARNING *** inner wall becomes unstable at v = 54.00 where RMIN turns!
54.00 3397.5369 13.3878 0.0330916168 2.4500815522 9.2678267882 2 1.7D-12 0.0D+00
55.00 3409.5017 10.5499 0.0285966481 2.4518458455 9.7513731752 2 1.1D-11 0.0D+00
56.00 3418.6677 7.8065 0.0238741458 2.4554852846 10.3807552860 2 7.8D-11 0.0D+00
57.00 3425.1846 5.2741 0.0190147352 2.4614486411 11.2455145113 4 7.5D-14 0.0D+00
58.00 3429.3359 3.1019 0.0141491994 2.4705000254 12.5288253204 4 1.5D-12 0.0D+00
59.00 3431.5617 1.4483 0.0094468833 2.4840954343 14.6775185059 8 4.2D-13 0.0D+00
60.00 3432.4448 0.4276 0.0051062558 2.5051464812 19.1825152839 8 1.7D-11 0.0D+00
61.00 3432.6260 0.0272 0.0013357077 2.5396186784 37.5136881941 32 8.5D-11 0.0D+00

**************************************************************************************************************************

Case (iv): Pure NDE Functions for Gv and Bv VEXT > 0

(iv) Liu et al. JCP 111, 3494 (1999) NDE functions for Na2: VEXT > 0
************************************************************
RKR potential for Na( 23)-Na( 23) with Charge= 0
Reduced mass ZMU= 11.49488483000 and constant C_u/ZMU = 1.466533099662

from atomic masses: 22.9897696600 & 22.9897696600(u)

Seek relative quadrature convergence 1.0D-10. Bisect interval up to 5 times.
performing 16-point Gaussian quadrature in each segment

NDE for Gv is an (NP= 3/NQ= 2) OUTER Pade expansion in (vD-v) with
X0(n=6)= 4.4867000D-02 and leading num. and denom. powers 1 & 1
vD= 61.4100 D-G(v=-1/2)= 3432.458368

Numerator coefficients are: 4.366360000000D-01 -3.529000000000D-03
1.540000000000D-05

Denominator coefficients : 4.800000000000D-02 1.366000000000D-02

NDE for Bv is an (NP= 7/NQ= 0) Exponential expansion in (vD-v) with
X1(n=6)= 3.0921000D-03 and leading num. and denom. powers 1 & 0

Numerator coefficients are: 1.341000000000D-01 -1.686300000000D-02
9.200000000000D-04 -2.810837000000D-05 4.924000000000D-07

-4.619520000000D-09 1.800000000000D-11

Calculate Y00= 0.171244236 v(cor)= -0.0018267047 v(min)= -0.5018267047
using we= 93.7441 wexe= 0.451924 Be= 0.118327 ae= 0.00188162
and corrected effective De= 3432.629612 (after adding Y00)

At v00= -0.50183 Gv= 0.00000000 dG/dv= 93.7457 (1/2)d2G/dv2= -0.451924
Bv= 0.11833058 { ==> Req= 3.520443964(A) }
alpha_e = 0.001881624

Above v = 35.000 extrapolate inner wall with exponential
fitted to last 3 points ( & shift RMAX accordingly)

Calculate turning points at the 67 v-values
-0.40 -0.20 0.00 0.20 0.40 0.60 1.00 2.00 3.00 4.00 5.00
6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00

17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00
28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00
39.00 40.00 41.00 42.00 43.00 44.00 45.00 46.00 47.00 48.00 49.00
50.00 51.00 52.00 53.00 54.00 55.00 56.00 57.00 58.00 59.00 60.00
61.00

Resulting Turning Points:
v E(v) dE(v)/dv B(v) RMIN(v) RMAX(v) NDIV tst(f) tst(g) C(exp) d(RMIN)

**************************************************************************************************************************
-0.40 9.5411 93.6537 0.1181411455 3.4433774831 3.6030899250 2 3.7D-12 3.7D-12
-0.20 28.2538 93.4731 0.1177817356 3.3910255327 3.6662176475 2 4.5D-13 4.3D-13
0.00 46.9304 93.2926 0.1174382433 3.3563298755 3.7114568080 2 5.8D-13 5.9D-13 9.540879
0.20 65.5709 93.1123 0.1171096782 3.3288990060 3.7492108023 2 5.6D-14 6.3D-14 7.535556
0.40 84.1753 92.9322 0.1167950997 3.3056943386 3.7825296865 2 7.1D-14 8.6D-14 6.547257
0.60 102.7438 92.7521 0.1164936143 3.2853252312 3.8128151640 2 1.2D-13 1.4D-13 5.901498
1.00 139.7727 92.3924 0.1159265724 3.2502928119 3.8671290476 2 7.9D-14 8.0D-14 5.307723

...........................................................................................................

................................. delete 30 intermediate lines of output ..................................

...........................................................................................................
32.00 2535.6636 59.3943 0.0839351846 2.5660411322 5.9710693371 2 3.0D-15 2.2D-16 2.557118
33.00 2594.3287 57.9291 0.0824882473 2.5576787204 6.0454464448 2 5.3D-15 9.3D-15 2.572445
34.00 2651.5077 56.4219 0.0809967870 2.5496940239 6.1220841546 2 6.7D-16 6.7D-16 2.516015
35.00 2707.1579 54.8708 0.0794609787 2.5420647559 6.2012201307 2 2.4D-15 2.0D-15 2.361046
36.00 2761.2341 53.2737 0.0778809883 2.5347806271 6.2831343166 2 4.1D-15 0.0D+00 2.361046 0.0000151289
37.00 2813.6893 51.6284 0.0762566898 2.5278325674 6.3681445450 2 2.2D-15 0.0D+00 2.361046 0.0000644177
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38.00 2864.4740 49.9324 0.0745873285 2.5212126519 6.4566144055 2 2.2D-16 0.0D+00 2.361046 0.0001699200
39.00 2913.5363 48.1832 0.0728711368 2.5149140417 6.5489631782 2 1.3D-15 0.0D+00 2.361046 0.0003554675
40.00 2960.8217 46.3779 0.0711049093 2.5089309366 6.6456785124 2 1.7D-15 0.0D+00 2.361046 0.0006450443

...........................................................................................................

................................. delete 15 intermediate lines of output ..................................

...........................................................................................................
56.00 3418.6677 7.8065 0.0238741458 2.4549913497 10.3802613511 2 7.8D-11 0.0D+00 2.361046 -0.0004939349
57.00 3425.1846 5.2741 0.0190147352 2.4542710724 11.2383369426 4 7.5D-14 0.0D+00 2.361046 -0.0071775687
58.00 3429.3359 3.1019 0.0141491994 2.4538128985 12.5121381934 4 1.5D-12 0.0D+00 2.361046 -0.0166871270
59.00 3431.5617 1.4483 0.0094468833 2.4535674352 14.6469905068 8 4.2D-13 0.0D+00 2.361046 -0.0305279991
60.00 3432.4448 0.4276 0.0051062558 2.4534700877 19.1308388903 8 1.7D-11 0.0D+00 2.361046 -0.0516763935
61.00 3432.6260 0.0272 0.0013357077 2.4534501120 37.4275196277 32 8.5D-11 0.0D+00 2.361046 -0.0861685664

**************************************************************************************************************************

Note that for v .GE. 35.00 inner wall extrapolated as: V(R) = -410.1832 + 0.12600573D+07*exp(- 2.36104609*R)
**************************************************************************************************************************

Case (v): No Rotational Data: Morse Inner Wall

(v) NDE-based potential for Ar-H(+): Morse Inner Wall Extrapolation
************************************************************
RKR potential for Ca( 40)- H( 1) with Charge= 0
Reduced mass ZMU= 0.98303369736 and constant C_u/ZMU = 17.148577027645

from atomic masses: 39.9625912000 & 1.0078250319(u)

Seek relative quadrature convergence 1.0D-10. Bisect interval up to 5 times.
performing 16-point Gaussian quadrature in each segment

NDE for Gv is an (NP= 3/NQ= 1) OUTER Pade expansion in (vD-v) with
X0(n=4)= 1.4600000D-01 and leading num. and denom. powers 2 & 2
vD= 33.2000 D-G(v=-1/2)= 35609.923120

Numerator coefficients are: -3.967546042920D-05 4.569339259680D-06
-3.922568643150D-08

Denominator coefficients : 4.144700684780D-03

NO rotational constants input, so inner wall of potential is Morse function.
Input Req= 1.280660(Angst) plus we= 2710.952 & wexe= 61.66771 [cm-1]
yields Morse with De= 29793.805 [cm-1] and beta= 1.896334 [1/Angst.]

At v00= -0.50000 Gv= 0.00000000 dG/dv=2710.9524 (1/2)d2G/dv2=-61.667709
Bv= 10.45587538 { ==> Req= 1.280660000(A) }
alpha_e = 0.345659441

Calculate turning points at the 42 v-values
-0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00

13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00
24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00

Resulting Turning Points:
v E(v) dE(v)/dv B(v) RMIN(v) RMAX(v) NDIV tst(f) tst(g) C(exp) d(RMIN)

**************************************************************************************************************************
-0.40 270.4791 2698.6344 10.4558753821 1.2326671604 1.3334617169 2 2.3D-12 0.0D+00
-0.20 807.7496 2674.0913 10.4558753821 1.2002812029 1.3755279841 2 2.4D-13 0.0D+00
0.00 1340.1238 2649.6715 10.4558753821 1.1792317644 1.4063398848 2 1.4D-13 0.0D+00
0.20 1867.6263 2625.3741 10.4558753821 1.1628329913 1.4325826462 2 1.0D-13 0.0D+00
0.40 2390.2815 2601.1982 10.4558753821 1.1491474879 1.4561934677 2 2.6D-13 0.0D+00
0.60 2908.1136 2577.1429 10.4558753821 1.1372913397 1.4780563096 2 1.8D-15 0.0D+00
0.80 3421.1467 2553.2073 10.4558753821 1.1267736204 1.4986623086 2 5.4D-14 0.0D+00
1.00 3929.4045 2529.3905 10.4558753821 1.1172884796 1.5183176490 2 6.0D-14 0.0D+00
1.20 4432.9107 2505.6914 10.4558753821 1.1086302686 1.5372284122 2 5.9D-14 0.0D+00
1.40 4931.6888 2482.1091 10.4558753821 1.1006529499 1.5555411520 2 2.4D-14 0.0D+00
1.60 5425.7621 2458.6426 10.4558753821 1.0932484604 1.5733645202 2 2.2D-15 0.0D+00
2.00 6399.8859 2412.0524 10.4558753821 1.0798454827 1.6078583065 2 4.4D-14 0.0D+00
3.00 8754.4466 2297.5257 10.4558753821 1.0522601543 1.6896839677 2 7.8D-15 0.0D+00

...........................................................................................................

................................. delete 25 intermediate lines of output ..................................

...........................................................................................................
29.00 35567.6034 38.9271 10.4558753821 0.8912713112 8.1742294726 2 2.4D-12 0.0D+00
30.00 35595.2410 17.9773 10.4558753821 0.8911643690 10.2996571510 2 1.1D-12 0.0D+00
31.00 35606.5707 6.0350 10.4558753821 0.8911205477 14.3471635421 4 4.4D-12 0.0D+00
32.00 35609.6222 1.0001 10.4558753821 0.8911087469 25.1222213607 8 1.4D-13 0.0D+00

**************************************************************************************************************************

Case (vi): MXS Function for Gv Combined With a Pure Dunham Expansion for Bv

(vi) For Li2(A): MXS function for Gv & Dunham for Bv
************************************************************
RKR potential for Li( 7)-Li( 7) with Charge= 0
Reduced mass ZMU= 3.50800205000 and constant C_u/ZMU = 4.805478685510

from atomic masses: 7.0160041000 & 7.0160041000(u)

Seek relative quadrature convergence 1.0D-10. Bisect interval up to 5 times.
performing 16-point Gaussian quadrature in each segment

Represent Gv’s by Tellinghuisen-type MXS mixed representation:
================================

9’th order Dunham for v .le. VS & NDE for v > VS, with VS= 55.0000
with switching function F_s = 1/[1 + exp{(v-VS)/DVS}] with DVS= 1.0000
and a sympotote energy (dissociation limit) DLIM= 9352.1149 [cm-1]
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The 9 Dunham Gv expansion coefficients are
2.5549769914D+02 -1.5915289319D+00 4.3200696103D-03 -1.2978004834D-04
5.1260928027D-06 -3.0435430084D-07 9.1429509688D-09 -1.4968986545D-10
9.9805171309D-13

NDE for Gv is an (NP= 7/NQ= 0) OUTER Pade expansion in (vD-v) with
X0(n=3)= 2.5770000D-08 and leading num. and denom. powers 2 & 2
vD= 113.2818 D-G(v=-1/2)= 9352.114940

Numerator coefficients are: 1.910501922487D-03 -3.893923351925D-04
2.334546248943D-05 -6.987656722521D-07 1.155836220945D-08

-1.015514433411D-10 3.720613823813D-13

The 18 Dunham Bv expansion coefficients are
4.9748268077D-01 -5.4518718585D-03 -2.3104497956D-06 9.7751263602D-06

-2.4252908342D-06 3.8310664573D-07 -4.2439455149D-08 3.3429364156D-09
-1.8877828547D-10 7.7035317420D-12 -2.2870567961D-13 4.9541013412D-15
-7.8026226606D-17 8.8213054293D-19 -6.9662091302D-21 3.6455244695D-23
-1.1354723194D-25 1.5930966183D-28

Calculate Y00= 0.069258147 v(cor)= -0.0002710711 v(min)= -0.5002710711
using we= 255.4977 wexe= 1.591529 Be= 0.497483 ae= 0.00545187
and corrected effective De= 9352.184198 (after adding Y00)

At v00= -0.50027 Gv= 0.00000000 dG/dv= 255.4986 (1/2)d2G/dv2= -1.591529
Bv= 0.49748416 { ==> Req= 3.107983465(A) }
alpha_e = 0.005451872

Above v = 45.000 extrapolate inner wall with exponential
fitted to last 3 points ( & shift RMAX accordingly)

Calculate turning points at the 119 v-values
-0.40 -0.20 0.00 0.20 0.40 0.60 1.00 2.00 3.00 4.00 5.00
6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00

17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00
28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00
39.00 40.00 41.00 42.00 43.00 44.00 45.00 46.00 47.00 48.00 49.00
50.00 51.00 52.00 53.00 54.00 55.00 56.00 57.00 58.00 59.00 60.00
61.00 62.00 63.00 64.00 65.00 66.00 67.00 68.00 69.00 70.00 71.00
72.00 73.00 74.00 75.00 76.00 77.00 78.00 79.00 80.00 81.00 82.00
83.00 84.00 85.00 86.00 87.00 88.00 89.00 90.00 91.00 92.00 93.00
94.00 95.00 96.00 97.00 98.00 99.00 100.00 101.00 102.00 103.00 104.00

105.00 106.00 107.00 108.00 109.00 110.00 111.00 112.00 113.00

Resulting Turning Points:
v E(v) dE(v)/dv B(v) RMIN(v) RMAX(v) NDIV tst(f) tst(g) C(exp) d(RMIN)

**************************************************************************************************************************
-0.40 25.6031 255.1795 0.4969374800 3.0234371089 3.1972364033 2 1.1D-15 1.1D-15
-0.20 76.5754 254.5439 0.4958471565 2.9645028124 3.2655732754 2 1.1D-15 1.1D-15
0.00 127.4208 253.9093 0.4947572489 2.9252415954 3.3142559945 2 5.9D-15 5.9D-15 8.335775
0.20 178.1392 253.2757 0.4936680686 2.8941027582 3.3548343809 2 3.1D-15 2.8D-15 6.542694
0.40 228.7311 252.6431 0.4925798647 2.8677257784 3.3906682381 2 6.7D-16 8.9D-16 5.697028
0.60 279.1965 252.0114 0.4914928338 2.8445729297 3.4232947125 2 4.2D-15 4.0D-15 5.170596
1.00 379.7488 250.7506 0.4893228659 2.8048359201 3.4820274749 2 5.9D-15 6.0D-15 4.714860
2.00 628.9293 247.6138 0.4839253904 2.7279074651 3.6067168586 2 5.3D-15 5.0D-15 4.178674

...........................................................................................................

................................. delete 40 intermediate lines of output ..................................

...........................................................................................................
43.00 8062.0241 102.0111 0.2412555800 2.0485434778 7.1373524453 2 4.0D-15 7.3D-14 2.575810
44.00 8161.4881 96.9039 0.2324814935 2.0439677236 7.2771485827 2 1.7D-14 2.9D-13 2.616591
45.00 8255.8092 91.7289 0.2234973505 2.0396767315 7.4254973941 2 1.3D-14 1.2D-13 2.518026
46.00 8344.9314 86.5106 0.2143347759 2.0356644184 7.5833042914 2 6.7D-16 0.0D+00 2.518026 0.0000048059
47.00 8428.8260 81.2792 0.2050337064 2.0319241366 7.7515235865 2 3.3D-15 0.0D+00 2.518026 0.0000207800
48.00 8507.4973 76.0703 0.1956415038 2.0284484460 7.9311393873 2 1.2D-14 0.0D+00 2.518026 0.0000542433
49.00 8580.9874 70.9239 0.1862115850 2.0252289113 8.1231385570 2 1.1D-16 0.0D+00 2.518026 0.0001093876
50.00 8649.3802 65.8830 0.1768016272 2.0222559517 8.3284767587 2 4.2D-15 0.0D+00 2.518026 0.0001860396

...........................................................................................................

................................. delete 40 intermediate lines of output ..................................

...........................................................................................................
91.00 9349.9208 0.5433 0.0043654185 1.9930208941 52.7914063130 16 2.9D-12 0.0D+00 2.518026 0.0024226820
92.00 9350.4146 0.4468 0.0043678740 1.9930010257 57.0230301833 16 1.9D-13 0.0D+00 2.518026 0.0020612915
93.00 9350.8188 0.3637 0.0081788543 1.9929847656 61.8154949905 16 1.2D-11 0.0D+00 2.518026 0.0344420865
94.00 9351.1461 0.2927 0.0211356402 1.9929716000 67.2840583830 16 4.5D-12 0.0D+00 2.518026 0.1662928645
95.00 9351.4078 0.2325 0.0532459063 1.9929610696 73.5769426792 16 7.9D-12 0.0D+00 2.518026 0.4821751393
96.00 9351.6143 0.1819 0.1221249565 1.9929527639 80.8871455165 16 9.0D-12 0.0D+00 2.518026 0.9560123018
97.00 9351.7746 0.1399 0.2573510113 1.9929463169 89.4694647127 16 2.3D-12 0.0D+00 2.518026 1.4016998047
98.00 9351.8967 0.1055 0.5067819126 1.9929414038 99.6655697000 16 3.2D-11 0.0D+00 2.518026 1.6929583242
99.00 9351.9879 0.0778 0.9455438757 1.9929377378 111.9418033860 16 8.8D-11 0.0D+00 2.518026 1.8477776097

100.00 9352.0542 0.0558 1.6886134727 1.9929350682 126.9476946642 16 7.5D-12 0.0D+00 2.518026 1.9233260861
101.00 9352.1012 0.0389 2.9081746778 1.9929331783 145.6092456814 8 7.7D-11 0.0D+00 2.518026 1.9593706439
102.00 9352.1334 0.0261 4.8572546941 1.9929318835 169.2827628491 16 7.6D-11 0.0D+00 2.518026 1.9766193774
*** STOP ITERATION: At NDIV= 16 tst(f)/(previous)= 2.0D-10/1.3D-10 tst(g)/(previous)= 0.0D+00/0.0D+00
103.00 9352.1546 0.0168 7.9015366608 1.9929310302 200.0186077996 16 2.0D-10 0.0D+00 2.518026 1.9849609294
*** STOP ITERATION: At NDIV= 16 tst(f)/(previous)= 5.1D-10/1.3D-10 tst(g)/(previous)= 0.0D+00/0.0D+00
104.00 9352.1680 0.0103 12.5617284597 1.9929304931 241.0345549613 16 5.1D-10 0.0D+00 2.518026 1.9890364583
*** STOP ITERATION: At NDIV= 32 tst(f)/(previous)= 7.4D-10/1.9D-10 tst(g)/(previous)= 0.0D+00/0.0D+00
105.00 9352.1759 0.0059 19.5694488444 1.9929301732 297.6128540392 32 7.4D-10 0.0D+00 2.518026 1.9910407175
*** STOP ITERATION: At NDIV= 32 tst(f)/(previous)= 1.3D-09/4.5D-10 tst(g)/(previous)= 0.0D+00/0.0D+00
106.00 9352.1803 0.0032 29.9402950271 1.9929299953 378.9163296103 32 1.3D-09 0.0D+00 2.518026 1.9920273470
*** CAUTION: 32 interval incomplete convergence: tst(f) & tst(g)= 5.0D-10 0.0D+00 while TOLER= 1.0D-10
107.00 9352.1826 0.0015 45.0685981148 1.9929299044 501.9793549911 32 5.0D-10 0.0D+00 2.518026 1.9925101038
*** STOP ITERATION: At NDIV= 16 tst(f)/(previous)= 4.4D-09/3.7D-09 tst(g)/(previous)= 0.0D+00/0.0D+00
108.00 9352.1836 0.0006 66.8493802887 1.9929298629 701.4484332249 16 4.4D-09 0.0D+00 2.518026 1.9927427801
*** STOP ITERATION: At NDIV= 16 tst(f)/(previous)= 1.2D-08/3.6D-09 tst(g)/(previous)= 0.0D+00/0.0D+00
109.00 9352.1840 0.0002 97.8342234679 1.99292984661056.9199760441 16 1.2D-08 0.0D+00 2.518026 1.9928518808
*** STOP ITERATION: At NDIV= 16 tst(f)/(previous)= 8.5D-08/6.7D-09 tst(g)/(previous)= 0.0D+00/0.0D+00
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110.00 9352.1842 0.0001 141.4291794378 1.99292984141786.3831882618 16 8.5D-08 0.0D+00 2.518026 1.9929007150
*** STOP ITERATION: At NDIV= 16 tst(f)/(previous)= 3.9D-07/1.9D-07 tst(g)/(previous)= 0.0D+00/0.0D+00
111.00 9352.1842 0.0000 202.1445232172 1.99292984033679.6494191046 16 3.9D-07 0.0D+00 2.518026 1.9929208980
*** STOP ITERATION: At NDIV= 32 tst(f)/(previous)= 2.4D-05/3.0D-06 tst(g)/(previous)= 0.0D+00/0.0D+00
112.00 9352.1842 0.0000 285.9081210720 1.9929298401*************** 32 2.4D-05 0.0D+00 2.518026 1.9929280629
*** STOP ITERATION: At NDIV= 16 tst(f)/(previous)= 4.8D-02/1.3D-02 tst(g)/(previous)= 0.0D+00/0.0D+00
113.00 9352.1842 0.0000 400.4564901612 1.9929298401*************** 16 4.8D-02 0.0D+00 2.518026 1.9929297870
**************************************************************************************************************************

Note that for v .GE. 45.00 inner wall extrapolated as: V(R) = -520.9673 + 0.14922924D+07*exp(- 2.51802625*R)
**************************************************************************************************************************

Case (vii): MXS Functions for Gv and for Bv

(vii) For Li2(A): MXS function for both Gv & Bv
************************************************************
RKR potential for Li( 7)-Li( 7) with Charge= 0
Reduced mass ZMU= 3.50800205000 and constant C_u/ZMU = 4.805478685510

from atomic masses: 7.0160041000 & 7.0160041000(u)

Seek relative quadrature convergence 1.0D-10. Bisect interval up to 5 times.
performing 16-point Gaussian quadrature in each segment

Represent Gv’s by Tellinghuisen-type MXS mixed representation:
================================

9’th order Dunham for v .le. VS & NDE for v > VS, with VS= 55.0000
with switching function F_s = 1/[1 + exp{(v-VS)/DVS}] with DVS= 1.0000
and a sympotote energy (dissociation limit) DLIM= 9352.1149 [cm-1]

The 9 Dunham Gv expansion coefficients are
2.5549769914D+02 -1.5915289319D+00 4.3200696103D-03 -1.2978004834D-04
5.1260928027D-06 -3.0435430084D-07 9.1429509688D-09 -1.4968986545D-10
9.9805171309D-13

NDE for Gv is an (NP= 7/NQ= 0) OUTER Pade expansion in (vD-v) with
X0(n=3)= 2.5770000D-08 and leading num. and denom. powers 2 & 2
vD= 113.2818 D-G(v=-1/2)= 9352.114940

Numerator coefficients are: 1.910501922487D-03 -3.893923351925D-04
2.334546248943D-05 -6.987656722521D-07 1.155836220945D-08

-1.015514433411D-10 3.720613823813D-13

Represent Bv’s by Tellinghuisen-type MXS mixed representation:
================================

8’th order Dunham for v .le. VS & NDE for v > VS, with VS= 55.0000

The 9 Dunham Bv expansion coefficients are
4.9749564350D-01 -5.4877585557D-03 2.6482277037D-05 -1.1398662330D-06
7.1411382626D-08 -4.4457101193D-09 1.4434190231D-10 -2.4979935584D-12
1.7253834160D-14

NDE for Bv is an (NP= 6/NQ= 0) Exponential expansion in (vD-v) with
X1(n=3)= 4.2630000D-08 and leading num. and denom. powers 0 & 0

Numerator coefficients are: 2.114415071744D-01 -2.929745145298D-02
1.369881187153D-03 -3.136194459560D-05 3.563240597730D-07

-1.610153741067D-09

Calculate Y00= 0.072227980 v(cor)= -0.0002826947 v(min)= -0.5002826947
using we= 255.4977 wexe= 1.591529 Be= 0.497496 ae= 0.00548776
and corrected effective De= 9352.187168 (after adding Y00)

At v00= -0.50028 Gv= 0.00000000 dG/dv= 255.4986 (1/2)d2G/dv2= -1.591529
Bv= 0.49749719 { ==> Req= 3.107942744(A) }
alpha_e = 0.005487759

Above v = 49.000 extrapolate inner wall with exponential
fitted to last 3 points ( & shift RMAX accordingly)

Calculate turning points at the 119 v-values
-0.40 -0.20 0.00 0.20 0.40 0.60 1.00 2.00 3.00 4.00 5.00
6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00

17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00
28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00
39.00 40.00 41.00 42.00 43.00 44.00 45.00 46.00 47.00 48.00 49.00
50.00 51.00 52.00 53.00 54.00 55.00 56.00 57.00 58.00 59.00 60.00
61.00 62.00 63.00 64.00 65.00 66.00 67.00 68.00 69.00 70.00 71.00
72.00 73.00 74.00 75.00 76.00 77.00 78.00 79.00 80.00 81.00 82.00
83.00 84.00 85.00 86.00 87.00 88.00 89.00 90.00 91.00 92.00 93.00
94.00 95.00 96.00 97.00 98.00 99.00 100.00 101.00 102.00 103.00 104.00

105.00 106.00 107.00 108.00 109.00 110.00 111.00 112.00 113.00

Resulting Turning Points:
v E(v) dE(v)/dv B(v) RMIN(v) RMAX(v) NDIV tst(f) tst(g) C(exp) d(RMIN)

**************************************************************************************************************************
-0.40 25.6061 255.1795 0.4969471313 3.0233986323 3.1972079980 2 3.3D-15 2.9D-15
-0.20 76.5784 254.5439 0.4958516691 2.9644779293 3.2655542160 2 5.8D-15 6.0D-15
0.00 127.4237 253.9093 0.4947582466 2.9252260088 3.3142449225 2 8.9D-16 6.7D-16 8.337849
0.20 178.1422 253.2757 0.4936668143 2.8940938619 3.3548293028 2 1.3D-15 1.3D-15 6.543549
0.40 228.7341 252.6431 0.4925773248 2.8677215946 3.3906674239 2 2.2D-15 1.8D-15 5.696890
0.60 279.1995 252.0114 0.4914897331 2.8445719144 3.4232967471 2 2.0D-15 1.8D-15 5.169724
1.00 379.7518 250.7506 0.4893200731 2.8048379029 3.4820320728 2 1.8D-15 1.6D-15 4.713391
2.00 628.9323 247.6138 0.4839263400 2.7279072064 3.6067186320 2 2.7D-15 2.4D-15 4.176945

...........................................................................................................

................................. delete 40 intermediate lines of output ..................................
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...........................................................................................................
43.00 8062.0271 102.0111 0.2412589816 2.0486529072 7.1374624423 2 1.8D-15 1.1D-15 2.082971
44.00 8161.4911 96.9039 0.2325109768 2.0440506931 7.2772321162 2 1.3D-14 9.3D-15 2.100804
45.00 8255.8122 91.7289 0.2235482561 2.0397275717 7.4255487952 2 9.3D-15 6.9D-15 2.121922
46.00 8344.9344 86.5106 0.2143966102 2.0356792150 7.5833196458 2 1.5D-14 1.2D-14 2.143082
47.00 8428.8290 81.2792 0.2050918461 2.0319002973 7.7515003022 2 2.9D-14 2.3D-14 2.153211
48.00 8507.5003 76.0703 0.1956805490 2.0283840142 7.9310755081 2 2.8D-14 1.2D-14 2.124768
49.00 8580.9904 70.9239 0.1862199849 2.0251215470 8.1230317429 2 7.8D-16 5.0D-14 2.004384
50.00 8649.3832 65.8830 0.1767764544 2.0221044119 8.3283257668 2 3.6D-14 0.0D+00 2.004384 0.0000026832

...........................................................................................................

................................. delete 40 intermediate lines of output ..................................

...........................................................................................................
91.00 9349.9237 0.5433 0.0054828749 1.9922074225 52.7905933683 16 2.2D-13 0.0D+00 2.004384 0.0107413154
92.00 9350.4176 0.4468 0.0048343858 1.9921869662 57.0222166506 16 5.2D-12 0.0D+00 2.004384 0.0132731106
93.00 9350.8218 0.3637 0.0042447604 1.9921702247 61.8146809772 16 5.8D-12 0.0D+00 2.004384 0.0161634248
94.00 9351.1490 0.2927 0.0037078430 1.9921566693 67.2832439790 16 1.1D-12 0.0D+00 2.004384 0.0194191920
95.00 9351.4108 0.2325 0.0032181566 1.9921458271 73.5761279630 16 9.6D-12 0.0D+00 2.004384 0.0230387198
96.00 9351.6173 0.1819 0.0027709805 1.9921372754 80.8863305535 16 5.8D-12 0.0D+00 2.004384 0.0270095533
97.00 9351.7776 0.1399 0.0023624202 1.9921306374 89.4686495599 16 2.3D-11 0.0D+00 2.004384 0.0313061498
98.00 9351.8997 0.1055 0.0019894625 1.9921255787 99.6647544012 16 3.9D-11 0.0D+00 2.004384 0.0358874912
99.00 9351.9908 0.0778 0.0016500049 1.9921218042 111.9409879905 16 1.5D-12 0.0D+00 2.004384 0.0406948594

100.00 9352.0572 0.0558 0.0013428443 1.9921190555 126.9468791764 32 4.9D-11 0.0D+00 2.004384 0.0456501251
101.00 9352.1042 0.0389 0.0010676020 1.9921171096 145.6084301443 8 9.3D-11 0.0D+00 2.004384 0.0506550630
*** CAUTION: 32 interval incomplete convergence: tst(f) & tst(g)= 1.1D-10 0.0D+00 while TOLER= 1.0D-10
102.00 9352.1364 0.0261 0.0008245605 1.9921157765 169.2819472668 32 1.1D-10 0.0D+00 2.004384 0.0555923788
103.00 9352.1576 0.0168 0.0006143927 1.9921148979 200.0177922226 8 1.3D-11 0.0D+00 2.004384 0.0603292831
*** STOP ITERATION: At NDIV= 8 tst(f)/(previous)= 3.8D-10/1.2D-10 tst(g)/(previous)= 0.0D+00/0.0D+00
104.00 9352.1709 0.0103 0.0004377745 1.9921143448 241.0337393271 8 3.8D-10 0.0D+00 2.004384 0.0647244857
*** STOP ITERATION: At NDIV= 16 tst(f)/(previous)= 3.3D-10/1.3D-10 tst(g)/(previous)= 0.0D+00/0.0D+00
105.00 9352.1789 0.0059 0.0002949042 1.9921140155 297.6120385123 16 3.3D-10 0.0D+00 2.004384 0.0686393081
106.00 9352.1833 0.0032 0.0001849888 1.9921138323 378.9155144481 32 7.2D-11 0.0D+00 2.004384 0.0719530285
*** STOP ITERATION: At NDIV= 16 tst(f)/(previous)= 4.9D-09/2.8D-09 tst(g)/(previous)= 0.0D+00/0.0D+00
107.00 9352.1856 0.0015 0.0001058115 1.9921137387 501.9785405388 16 4.9D-09 0.0D+00 2.004384 0.0745814315
*** STOP ITERATION: At NDIV= 32 tst(f)/(previous)= 1.9D-08/2.5D-09 tst(g)/(previous)= 0.0D+00/0.0D+00
108.00 9352.1866 0.0006 0.0000535269 1.9921136960 701.4476102169 32 1.9D-08 0.0D+00 2.004384 0.0764957225
*** STOP ITERATION: At NDIV= 16 tst(f)/(previous)= 8.4D-09/7.9D-09 tst(g)/(previous)= 0.0D+00/0.0D+00
109.00 9352.1870 0.0002 0.0000228278 1.99211367921056.9191687147 16 8.4D-09 0.0D+00 2.004384 0.0777366851
*** STOP ITERATION: At NDIV= 16 tst(f)/(previous)= 5.8D-08/6.3D-09 tst(g)/(previous)= 0.0D+00/0.0D+00
110.00 9352.1871 0.0001 0.0000075505 1.99211367391786.3821355100 16 5.8D-08 0.0D+00 2.004384 0.0784169107
*** CAUTION: 32 interval incomplete convergence: tst(f) & tst(g)= 8.9D-08 0.0D+00 while TOLER= 1.0D-10
111.00 9352.1872 0.0000 0.0000016323 1.99211367273679.6483059296 32 8.9D-08 0.0D+00 2.004384 0.0787037348
*** STOP ITERATION: At NDIV= 32 tst(f)/(previous)= 2.5D-05/3.2D-06 tst(g)/(previous)= 0.0D+00/0.0D+00
112.00 9352.1872 0.0000 0.0000001442 1.9921136725*************** 32 2.5D-05 0.0D+00 2.004384 0.0787795026
*** STOP ITERATION: At NDIV= 16 tst(f)/(previous)= 6.1D-02/1.3D-02 tst(g)/(previous)= 0.0D+00/0.0D+00
113.00 9352.1872 0.0000 0.0000000003 1.9921136725*************** 16 6.1D-02 0.0D+00 2.004384 0.0787927230
**************************************************************************************************************************

Note that for v .GE. 49.00 inner wall extrapolated as: V(R) = -2694.1259 + 0.65309251D+06*exp(- 2.00438369*R)
**************************************************************************************************************************
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