
Under review as a conference paper at ICLR 2017

RL2: FAST REINFORCEMENT LEARNING VIA SLOW

REINFORCEMENT LEARNING

Yan Duan†‡, John Schulman†‡, Xi Chen†‡, Peter L. Bartlett†, Ilya Sutskever‡, Pieter Abbeel†‡

† UC Berkeley, Department of Electrical Engineering and Computer Science
‡ OpenAI
{rocky,joschu,peter}@openai.com, peter@berkeley.edu, {ilyasu,pieter}@openai.com

ABSTRACT

Deep reinforcement learning (deep RL) has been successful in learning sophis-
ticated behaviors automatically; however, the learning process requires a huge
number of trials. In contrast, animals can learn new tasks in just a few trials, bene-
fiting from their prior knowledge about the world. This paper seeks to bridge this
gap. Rather than designing a “fast” reinforcement learning algorithm, we propose
to represent it as a recurrent neural network (RNN) and learn it from data. In
our proposed method, RL2, the algorithm is encoded in the weights of the RNN,
which are learned slowly through a general-purpose (“slow”) RL algorithm. The
RNN receives all information a typical RL algorithm would receive, including ob-
servations, actions, rewards, and termination flags; and it retains its state across
episodes in a given Markov Decision Process (MDP). The activations of the RNN
store the state of the “fast” RL algorithm on the current (previously unseen) MDP.
We evaluate RL2 experimentally on both small-scale and large-scale problems.
On the small-scale side, we train it to solve randomly generated multi-armed ban-
dit problems and finite MDPs. After RL2 is trained, its performance on new MDPs
is close to human-designed algorithms with optimality guarantees. On the large-
scale side, we test RL2 on a vision-based navigation task and show that it scales
up to high-dimensional problems.

1 INTRODUCTION

In recent years, deep reinforcement learning has achieved many impressive results, including play-
ing Atari games from raw pixels (Guo et al., 2014; Mnih et al., 2015; Schulman et al., 2015), and
acquiring advanced manipulation and locomotion skills (Levine et al., 2016; Lillicrap et al., 2015;
Watter et al., 2015; Heess et al., 2015b; Schulman et al., 2015; 2016). However, many of the suc-
cesses come at the expense of high sample complexity. For example, the state-of-the-art Atari results
require tens of thousands of episodes of experience (Mnih et al., 2015) per game. To master a game,
one would need to spend nearly 40 days playing it with no rest. In contrast, humans and animals are
capable of learning a new task in a very small number of trials. Continuing the previous example,
the human player in Mnih et al. (2015) only needed 2 hours of experience before mastering a game.
We argue that the reason for this sharp contrast is largely due to the lack of a good prior, which
results in these deep RL agents needing to rebuild their knowledge about the world from scratch.

Although Bayesian reinforcement learning provides a solid framework for incorporating prior
knowledge into the learning process (Strens, 2000; Ghavamzadeh et al., 2015; Kolter & Ng, 2009),
exact computation of the Bayesian update is intractable in all but the simplest cases. Thus, practi-
cal reinforcement learning algorithms often incorporate a mixture of Bayesian and domain-specific
ideas to bring down sample complexity and computational burden. Notable examples include guided
policy search with unknown dynamics (Levine & Abbeel, 2014) and PILCO (Deisenroth & Ras-
mussen, 2011). These methods can learn a task using a few minutes to a few hours of real experience,
compared to days or even weeks required by previous methods (Schulman et al., 2015; 2016; Lilli-
crap et al., 2015). However, these methods tend to make assumptions about the environment (e.g.,
instrumentation for access to the state at learning time), or become computationally intractable in
high-dimensional settings (Wahlström et al., 2015).

1

Under review as a conference paper at ICLR 2017

Rather than hand-designing domain-specific reinforcement learning algorithms, we take a different
approach in this paper: we view the learning process of the agent itself as an objective, which can
be optimized using standard reinforcement learning algorithms. The objective is averaged across
all possible MDPs according to a specific distribution, which reflects the prior that we would like
to distill into the agent. We structure the agent as a recurrent neural network, which receives past
rewards, actions, and termination flags as inputs in addition to the normally received observations.
Furthermore, its internal state is preserved across episodes, so that it has the capacity to perform
learning in its own hidden activations. The learned agent thus also acts as the learning algorithm,
and can adapt to the task at hand when deployed.

We evaluate this approach on two sets of classical problems, multi-armed bandits and tabular MDPs.
These problems have been extensively studied, and there exist algorithms that achieve asymptoti-
cally optimal performance. We demonstrate that our method, named RL2, can achieve performance
comparable with these theoretically justified algorithms. Next, we evaluate RL2 on a vision-based
navigation task implemented using the ViZDoom environment (Kempka et al., 2016), showing that
RL2 can also scale to high-dimensional problems.

2 METHOD

2.1 PRELIMINARIES

We define a discrete-time finite-horizon discounted Markov decision process (MDP) by a tuple M =
(S,A,P, r, ρ0, γ, T), in which S is a state set, A an action set, P : S × A × S → R+ a transition
probability distribution, r : S × A → [−Rmax, Rmax] a bounded reward function, ρ0 : S → R+ an
initial state distribution, γ ∈ [0, 1] a discount factor, and T the horizon. In policy search methods,
we typically optimize a stochastic policy πθ : S × A → R+ parametrized by θ. The objective is

to maximize its expected discounted return, η(πθ) = Eτ [
∑T

t=0 γ
tr(st, at)], where τ = (s0, a0, . . .)

denotes the whole trajectory, s0 ∼ ρ0(s0), at ∼ πθ(at|st), and st+1 ∼ P(st+1|st, at).

2.2 FORMULATION

We now describe our formulation, which casts learning an RL algorithm as a reinforcement learning
problem, and hence the name RL2.

We assume knowledge of a set of MDPs, denoted by M, and a distribution over them: ρM : M →
R+. We only need to sample from this distribution. We use n to denote the total number of episodes
allowed to spend with a specific MDP. We define a trial to be such a series of episodes of interaction
with a fixed MDP.

Episode 1 Episode 2

s0 s1 s2

h0 h1

a0

r0,d0

h2 h3

s3

a1

r1,d1

a2

r2,d2

s0 s1 s2

h4 h5

a0

r0,d0

h6

a1

r1,d1

Agent

MDP 1

Episode 1

s0 s1 …

h0 h1

a0

r0,d0

…

a1

Agent

MDP 2

…

…

…

Trial 1 Trial 2

Figure 1: Procedure of agent-environment interaction

This process of interaction between an agent and the environment is illustrated in Figure 1. Here,
each trial happens to consist of two episodes, hence n = 2. For each trial, a separate MDP is
drawn from ρM, and for each episode, a fresh s0 is drawn from the initial state distribution specific
to the corresponding MDP. Upon receiving an action at produced by the agent, the environment
computes reward rt, steps forward, and computes the next state st+1. If the episode has terminated,
it sets termination flag dt to 1, which otherwise defaults to 0. Together, the next state st+1, action

2

Under review as a conference paper at ICLR 2017

at, reward rt, and termination flag dt, are concatenated to form the input to the policy1, which,
conditioned on the hidden state ht+1, generates the next hidden state ht+2 and action at+1. At the
end of an episode, the hidden state of the policy is preserved to the next episode, but not preserved
between trials.

The objective under this formulation is to maximize the expected total discounted reward accumu-
lated during a single trial rather than a single episode. Maximizing this objective is equivalent to
minimizing the cumulative pseudo-regret (Bubeck & Cesa-Bianchi, 2012). Since the underlying
MDP changes across trials, as long as different strategies are required for different MDPs, the agent
must act differently according to its belief over which MDP it is currently in. Hence, the agent is
forced to integrate all the information it has received, including past actions, rewards, and termi-
nation flags, and adapt its strategy continually. Hence, we have set up an end-to-end optimization
process, where the agent is encouraged to learn a “fast” reinforcement learning algorithm.

For clarity of exposition, we have defined the “inner” problem (of which the agent sees n each trials)
to be an MDP rather than a POMDP. However, the method can also be applied in the partially-
observed setting without any conceptual changes. In the partially observed setting, the agent is
faced with a sequence of POMDPs, and it receives an observation ot instead of state st at time t.
The visual navigation experiment in Section 3.3, is actually an instance of the this POMDP setting.

2.3 POLICY REPRESENTATION

We represent the policy as a general recurrent neural network. Each timestep, it receives the tuple
(s, a, r, d) as input, which is embedded using a function φ(s, a, r, d) and provided as input to an
RNN. To alleviate the difficulty of training RNNs due to vanishing and exploding gradients (Bengio
et al., 1994), we use Gated Recurrent Units (GRUs) (Cho et al., 2014) which have been demonstrated
to have good empirical performance (Chung et al., 2014; Józefowicz et al., 2015). The output of the
GRU is fed to a fully connected layer followed by a softmax function, which forms the distribution
over actions.

We have also experimented with alternative architectures which explicitly reset part of the hidden
state each episode of the sampled MDP, but we did not find any improvement over the simple archi-
tecture described above.

2.4 POLICY OPTIMIZATION

After formulating the task as a reinforcement learning problem, we can readily use standard off-the-
shelf RL algorithms to optimize the policy. We use a first-order implementation of Trust Region
Policy Optimization (TRPO) (Schulman et al., 2015), because of its excellent empirical perfor-
mance, and because it does not require excessive hyperparameter tuning. For more details, we refer
the reader to the original paper. To reduce variance in the stochastic gradient estimation, we use a
baseline which is also represented as an RNN using GRUs as building blocks. We optionally apply
Generalized Advantage Estimation (GAE) (Schulman et al., 2016) to further reduce the variance.

3 EVALUATION

We designed experiments to answer the following questions:

• Can RL2 learn algorithms that achieve good performance on MDP classes with special
structure, relative to existing algorithms tailored to this structure that have been proposed
in the literature?

• Can RL2 scale to high-dimensional tasks?

For the first question, we evaluate RL2 on two sets of tasks, multi-armed bandits (MAB) and tabular
MDPs. These problems have been studied extensively in the reinforcement learning literature, and
this body of work includes algorithms with guarantees of asymptotic optimality. We demonstrate
that our approach achieves comparable performance to these theoretically justified algorithms.

1To make sure that the inputs have a consistent dimension, we use placeholder values for the initial input to
the policy.

3

Under review as a conference paper at ICLR 2017

For the second question, we evaluate RL2 on a vision-based navigation task. Our experiments show
that the learned policy makes effective use of the learned visual information and also short-term
information acquired from previous episodes.

3.1 MULTI-ARMED BANDITS

Multi-armed bandit problems are a subset of MDPs where the agent’s environment is stateless.
Specifically, there are k arms (actions), and at every time step, the agent pulls one of the arms, say
i, and receives a reward drawn from an unknown distribution: our experiments take each arm to
be a Bernoulli distribution with parameter pi. The goal is to maximize the total reward obtained
over a fixed number of time steps. The key challenge is balancing exploration and exploitation—
“exploring” each arm enough times to estimate its distribution (pi), but eventually switching over to
“exploitation” of the best arm. Despite the simplicity of multi-arm bandit problems, their study has
led to a rich theory and a collection of algorithms with optimality guarantees.

Using RL2, we can train an RNN policy to solve bandit problems by training it on a given distribution
ρM. If the learning is successful, the resulting policy should be able to perform competitively with
the theoretically optimal algorithms. We randomly generated bandit problems by sampling each
parameter pi from the uniform distribution on [0, 1]. After training the RNN policy with RL2, we
compared it against the following strategies:

• Random: this is a baseline strategy, where the agent pulls a random arm each time.

• Gittins index (Gittins, 1979): this method gives the Bayes optimal solution in the dis-
counted infinite-horizon case, by computing an index separately for each arm, and taking
the arm with the largest index. While this work shows it is sufficient to independently com-
pute an index for each arm (hence avoiding combinatorial explosion with the number of
arms), it doesn’t show how to tractably compute these individual indices exactly. We fol-
low the practical approximations described in Gittins et al. (2011), Chakravorty & Mahajan
(2013), and Whittle (1982), and choose the best-performing approximation for each setup.

• UCB1 (Auer, 2002): this method estimates an upper-confidence bound, and pulls the arm

with the largest value of ucbi(t) = µ̂i(t−1)+c
√

2 log t

Ti(t−1) , where µ̂i(t−1) is the estimated

mean parameter for the ith arm, Ti(t−1) is the number of times the ith arm has been pulled,
and c is a tunable hyperparameter (Audibert & Munos, 2011). We initialize the statistics
with exactly one success and one failure, which corresponds to a Beta(1, 1) prior.

• Thompson sampling (TS) (Thompson, 1933): this is a simple method which, at each time
step, samples a list of arm means from the posterior distribution, and choose the best arm
according to this sample. It has been demonstrated to compare favorably to UCB1 empir-
ically (Chapelle & Li, 2011). We also experiment with an optimistic variant (OTS) (May
et al., 2012), which samples N times from the posterior, and takes the one with the highest
probability.

• ǫ-Greedy: in this strategy, the agent chooses the arm with the best empirical mean with
probability 1 − ǫ, and chooses a random arm with probability ǫ. We use the same initial-
ization as UCB1.

• Greedy: this is a special case of ǫ-Greedy with ǫ = 0.

The Bayesian methods, Gittins index and Thompson sampling, take advantage of the distribution
ρM; and we provide these methods with the true distribution. For each method with hyperparame-
ters, we maximize the score with a separate grid search for each of the experimental settings. The
hyperparameters used for TRPO are shown in the appendix.

The results are summarized in Table 1. Learning curves for various settings are shown in Figure 2.
We observe that our approach achieves performance that is almost as good as the the reference meth-
ods, which were (human) designed specifically to perform well on multi-armed bandit problems. It
is worth noting that the published algorithms are mostly designed to minimize asymptotic regret
(rather than finite horizon regret), hence there tends to be a little bit of room to outperform them in
the finite horizon settings.

4

Under review as a conference paper at ICLR 2017

Table 1: MAB Results. Each grid cell records the total reward averaged over 1000 different instances
of the bandit problem. We consider k ∈ {5, 10, 50} bandits and n ∈ {10, 100, 500} episodes of
interaction. We highlight the best-performing algorithms in each setup according to the computed
mean, and we also highlight the other algorithms in that row whose performance is not significantly
different from the best one (determined by a one-sided t-test with p = 0.05).

Setup Random Gittins TS OTS UCB1 ǫ-Greedy Greedy RL2

n = 10, k = 5 5.0 6.6 5.7 6.5 6.7 6.6 6.6 6.7
n = 10, k = 10 5.0 6.6 5.5 6.2 6.7 6.6 6.6 6.7
n = 10, k = 50 5.1 6.5 5.2 5.5 6.6 6.5 6.5 6.8
n = 100, k = 5 49.9 78.3 74.7 77.9 78.0 75.4 74.8 78.7
n = 100, k = 10 49.9 82.8 76.7 81.4 82.4 77.4 77.1 83.5
n = 100, k = 50 49.8 85.2 64.5 67.7 84.3 78.3 78.0 84.9
n = 500, k = 5 249.8 405.8 402.0 406.7 405.8 388.2 380.6 401.6
n = 500, k = 10 249.0 437.8 429.5 438.9 437.1 408.0 395.0 432.5
n = 500, k = 50 249.6 463.7 427.2 437.6 457.6 413.6 402.8 438.9

0 300
Iteration

0

1

N
or

m
al

iz
ed

 to
ta

l r
ew

ar
d

k = 5
k = 10
k = 50
Gittins

(a) n = 10

0 600
Iteration

0

1

N
or

m
al

iz
ed

 to
ta

l r
ew

ar
d

k = 5
k = 10
k = 50
Gittins

(b) n = 100

0 600
Iteration

0

1

N
or

m
al

iz
ed

 to
ta

l r
ew

ar
d

k = 5
k = 10
k = 50
Gittins

(c) n = 500

Figure 2: RL2 learning curves for multi-armed bandits. Performance is normalized such that Gittins
index scores 1, and random policy scores 0.

We observe that there is a noticeable gap between Gittins index and RL2 in the most challenging
scenario, with 50 arms and 500 episodes. This raises the question whether better architectures
or better (slow) RL algorithms should be explored. To determine the bottleneck, we trained the
same policy architecture using supervised learning, using the trajectories generated by the Gittins
index approach as training data. We found that the learned policy, when executed in test domains,
achieved the same level of performance as the Gittins index approach, suggesting that there is room
for improvement by using better RL algorithms.

3.2 TABULAR MDPS

The bandit problem provides a natural and simple setting to investigate whether the policy learns
to trade off between exploration and exploitation. However, the problem itself involves no sequen-
tial decision making, and does not fully characterize the challenges in solving MDPs. Hence, we
perform further experiments using randomly generated tabular MDPs, where there is a finite num-
ber of possible states and actions—small enough that the transition probability distribution can be
explicitly given as a table. We compare our approach with the following methods:

• Random: the agent chooses an action uniformly at random for each time step;

• PSRL (Strens, 2000; Osband et al., 2013): this is a direct generalization of Thompson sam-
pling to MDPs, where at the beginning of each episode, we sample an MDP from the pos-
terior distribution, and take actions according to the optimal policy for the entire episode.
Similarly, we include an optimistic variant (OPSRL), which has also been explored in Os-
band & Van Roy (2016).

• BEB (Kolter & Ng, 2009): this is a model-based optimistic algorithm that adds an explo-
ration bonus to (thus far) infrequently visited states and actions.

5

Under review as a conference paper at ICLR 2017

• UCRL2 (Jaksch et al., 2010): this algorithm computes, at each iteration, the optimal pol-
icy against an optimistic MDP under the current belief, using an extended value iteration
procedure.

• ǫ-Greedy: this algorithm takes actions optimal against the MAP estimate according to the
current posterior, which is updated once per episode.

• Greedy: a special case of ǫ-Greedy with ǫ = 0.

Table 2: Random MDP Results

Setup Random PSRL OPSRL UCRL2 BEB ǫ-Greedy Greedy RL2

n = 10 100.1 138.1 144.1 146.6 150.2 132.8 134.8 156.2
n = 25 250.2 408.8 425.2 424.1 427.8 377.3 368.8 445.7
n = 50 499.7 904.4 930.7 918.9 917.8 823.3 769.3 936.1
n = 75 749.9 1417.1 1449.2 1427.6 1422.6 1293.9 1172.9 1428.8
n = 100 999.4 1939.5 1973.9 1942.1 1935.1 1778.2 1578.5 1913.7

The distribution over MDPs is constructed with |S| = 10, |A| = 5. The rewards follow a Gaus-
sian distribution with unit variance, and the mean parameters are sampled independently from
Normal(1, 1). The transitions are sampled from a flat Dirichlet distribution. This construction
matches the commonly used prior in Bayesian RL methods. We set the horizon for each episode to
be T = 10, and an episode always starts on the first state.

0 1000 5000
Iteration

0

1

N
or

m
al

iz
ed

 to
ta

l r
ew

ar
d

n = 10
n = 25
n = 50
n = 75
n = 100
OPSRL

Figure 3: RL2 learning curves for tabular MDPs. Performance is normalized such that OPSRL
scores 1, and random policy scores 0.

The results are summarized in Table 2, and the learning curves are shown in Figure 3. We follow
the same evaluation procedure as in the bandit case. We experiment with n ∈ {10, 25, 50, 75, 100}.
For fewer episodes, our approach surprisingly outperforms existing methods by a large margin. The
advantage is reversed as n increases, suggesting that the reinforcement learning problem in the outer
loop becomes more challenging to solve. We think that the advantage for small n comes from the
need for more aggressive exploitation: since there are 140 degrees of freedom to estimate in order
to characterize the MDP, and by the 10th episode, we will not have enough samples to form a
good estimate of the entire dynamics. By directly optimizing the RNN in this setting, our approach
should be able to cope with this shortage of samples, and decides to exploit sooner compared to the
reference algorithms.

3.3 VISUAL NAVIGATION

The previous two tasks both only involve very low-dimensional state spaces. To evaluate the fea-
sibility of scaling up RL2, we further experiment with a challenging vision-based task, where the

6

Under review as a conference paper at ICLR 2017

agent is asked to navigate a randomly generated maze to find a randomly placed target2. The agent
receives a +1 reward when it reaches the target, −0.001 when it hits the wall, and −0.04 per time
step to encourage it to reach targets faster. It can interact with the maze for multiple episodes, dur-
ing which the maze structure and target position are held fixed. The optimal strategy is to explore
the maze efficiently during the first episode, and after locating the target, act optimally against the
current maze and target based on the collected information. An illustration of the task is given in
Figure 4.

(a) Sample observation (b) Layout of the 5× 5 maze in (a) (c) Layout of a 9× 9 maze

Figure 4: Visual navigation. The target block is shown in red, and occupies an entire grid in the
maze layout.

Visual navigation alone is a challenging task for reinforcement learning. The agent only receives
very sparse rewards during training, and does not have the primitives for efficient exploration at the
beginning of training. It also needs to make efficient use of memory to decide how it should explore
the space, without forgetting about where it has already explored. Previously, Oh et al. (2016) have
studied similar vision-based navigation tasks in Minecraft. However, they use higher-level actions
for efficient navigation. Similar high-level actions in our task would each require around 5 low-level
actions combined in the right way. In contrast, our RL2 agent needs to learn these higher-level
actions from scratch.

We use a simple training setup, where we use small mazes of size 5× 5, with 2 episodes of interac-
tion, each with horizon up to 250. Here the size of the maze is measured by the number of grid cells
along each wall in a discrete representation of the maze. During each trial, we sample 1 out of 1000
randomly generated configurations of map layout and target positions. During testing, we evaluate
on 1000 separately generated configurations. In addition, we also study its extrapolation behavior
along two axes, by (1) testing on large mazes of size 9× 9 (see Figure 4c) and (2) running the agent
for up to 5 episodes in both small and large mazes. For the large maze, we also increase the horizon
per episode by 4x due to the increased size of the maze.

Table 3: Results for visual navigation. These metrics are computed using the best run among all
runs shown in Figure 5. In 3c, we measure the proportion of mazes where the trajectory length in
the second episode does not exceed the trajectory length in the first episode.

(a) Average length of successful trajectories

Episode Small Large

1 52.4± 1.3 180.1± 6.0
2 39.1± 0.9 151.8± 5.9
3 42.6± 1.0 169.3± 6.3
4 43.5± 1.1 162.3± 6.4
5 43.9± 1.1 169.3± 6.5

(b) %Success

Episode Small Large

1 99.3% 97.1%
2 99.6% 96.7%
3 99.7% 95.8%
4 99.4% 95.6%
5 99.6% 96.1%

(c) %Improved

Small Large

91.7% 71.4%

2Videos for the task are available at https://goo.gl/rDDBpb.

7

https://goo.gl/rDDBpb

Under review as a conference paper at ICLR 2017

0 500 1000 1500 2000 2500 3000 3500
Iteration

16

14

12

10

8

6

4

2

0

To
ta

l r
ew

ar
d

Figure 5: RL2 learning curves for visual navigation. Each curve shows a different random initial-
ization of the RNN weights (by using a different random seed). Performance varies greatly across
different initializations.

The results are summarized in Table 3, and the learning curves are shown in Figure 5. We observe
that there is a significant reduction in trajectory lengths between the first two episodes in both the
smaller and larger mazes, suggesting that the agent has learned how to use information from past
episodes. It also achieves reasonable extrapolation behavior in further episodes by maintaining its
performance, although there is a small drop in the rate of success in the larger mazes. We also
observe that on larger mazes, the ratio of improved trajectories is lower, likely because the agent has
not learned how to act optimally in the larger mazes.

Still, even on the small mazes, the agent does not learn to perfectly reuse prior information. An
illustration of the agent’s behavior is shown in Figure 6. The intended behavior, which occurs most
frequently, as shown in 6a and 6b, is that the agent should remember the target’s location, and utilize
it to act optimally in the second episode. However, occasionally the agent forgets about where the
target was, and continues to explore in the second episode, as shown in 6c and 6d. We believe that
better reinforcement learning techniques used as the outer-loop algorithm will improve these results
in the future.

(a) Good behavior, 1st
episode

(b) Good behavior, 2nd
episode

(c) Bad behavior, 1st
episode

(d) Bad behavior, 2nd
episode

Figure 6: Visualization of the agent’s behavior. In each scenario, the agent starts at the center of the
blue block, and the goal is to reach anywhere in the red block.

4 RELATED WORK

The concept of using prior experience to speed up reinforcement learning algorithms has been ex-
plored in the past in various forms. Earlier studies have investigated automatic tuning of hyper-
parameters, such as learning rate and temperature (Ishii et al., 2002; Schweighofer & Doya, 2003),
as a form of meta-learning. Wilson et al. (2007) use hierarchical Bayesian methods to maintain a
posterior over possible models of dynamics, and apply optimistic Thompson sampling according to
the posterior. Many works in hierarchical reinforcement learning propose to extract reusable skills
from previous tasks to speed up exploration in new tasks (Singh, 1992; Perkins et al., 1999). We

8

Under review as a conference paper at ICLR 2017

refer the reader to Taylor & Stone (2009) for a more thorough survey on the multi-task and transfer
learning aspects.

The formulation of searching for a best-performing algorithm, whose performance is averaged over
a given distribution over MDPs, have been investigated in the past in more limited forms (Maes
et al., 2011; Castronovo et al., 2012). There, they propose to learn an algorithm to solve multi-
armed bandits using program search, where the search space consists of simple formulas composed
from hand-specified primitives, which needs to be tuned for each specific distribution over MDPs.
In comparison, our approach allows for entirely end-to-end training without requiring such domain
knowledge.

More recently, Fu et al. (2015) propose a model-based approach on top of iLQG with unknown
dynamics (Levine & Abbeel, 2014), which uses samples collected from previous tasks to build
a neural network prior for the dynamics, and can perform one-shot learning on new, but related
tasks thanks to reduced sample complexity. There has been a growing interest in using deep neural
networks for multi-task learning and transfer learning (Parisotto et al., 2015; Rusu et al., 2015;
2016a; Devin et al., 2016; Rusu et al., 2016b).

In the broader context of machine learning, there has been a lot of interest in one-shot learning
for object classification (Vilalta & Drissi, 2002; Fei-Fei et al., 2006; Larochelle et al., 2008; Lake
et al., 2011; Koch, 2015). Our work draws inspiration from a particular line of work (Younger et al.,
2001; Santoro et al., 2016; Vinyals et al., 2016), which formulates meta-learning as an optimization
problem, and can thus be optimized end-to-end via gradient descent. While these work applies to
the supervised learning setting, our work applies in the more general reinforcement learning setting.
Although the reinforcement learning setting is more challenging, the resulting behavior is far richer:
our agent must not only learn to exploit existing information, but also learn to explore, a problem
that is usually not a factor in supervised learning. Another line of work (Hochreiter et al., 2001;
Younger et al., 2001; Andrychowicz et al., 2016; Li & Malik, 2016) studies meta-learning over the
optimization process. There, the meta-learner makes explicit updates to a parametrized model. In
comparison, we do not use a directly parametrized policy; instead, the recurrent neural network
agent acts as the meta-learner and the resulting policy simultaneously.

Our formulation essentially constructs a partially observable MDP (POMDP) which is solved in the
outer loop, where the underlying MDP is unobserved by the agent. This reduction of an unknown
MDP to a POMDP can be traced back to dual control theory (Feldbaum, 1960), where “dual” refers
to the fact that one is controlling both the state and the state estimate. Feldbaum pointed out that
the solution can in principle be computed with dynamic programming, but doing so is usually im-
practical. POMDPs with such structure have also been studied under the name “mixed observability
MDPs” (Ong et al., 2010). However, the method proposed there suffers from the usual challenges
of solving POMDPs in high dimensions.

Apart from the various multiple-episode tasks we investigate in this work, previous literature on
training RNN policies have used similar tasks that require memory to test if long-term dependency
can be learned. Recent examples include the Labyrinth experiment in the A3C paper (Mnih et al.,
2016), and the water maze experiment in the Recurrent DDPG paper (Heess et al., 2015a). Although
these tasks can be reformulated under the RL2 framework, the key difference is that they focus on
the memory aspect instead of the fast RL aspect.

5 DISCUSSION

This paper suggests a different approach for designing better reinforcement learning algorithms:
instead of acting as the designers ourselves, learn the algorithm end-to-end using standard rein-
forcement learning techniques. That is, the “fast” RL algorithm is a computation whose state is
stored in the RNN activations, and the RNN’s weights are learned by a general-purpose “slow” re-
inforcement learning algorithm. Our method, RL2, has demonstrated competence comparable with
theoretically optimal algorithms in small-scale settings. We have further shown its potential to scale
to high-dimensional tasks.

In the experiments, we have identified opportunities to improve upon RL2: the outer-loop reinforce-
ment learning algorithm was shown to be an immediate bottleneck, and we believe that for settings
with extremely long horizons, better architecture may also be required for the policy. Although we

9

Under review as a conference paper at ICLR 2017

have used generic methods and architectures for the outer-loop algorithm and the policy, doing this
also ignores the underlying episodic structure. We expect algorithms and policy architectures that
exploit the problem structure to significantly boost the performance.

ACKNOWLEDGMENTS

We would like to thank our colleagues at Berkeley and OpenAI for insightful discussions. This
research was funded in part by ONR through a PECASE award. Yan Duan was also supported by a
Berkeley AI Research lab Fellowship and a Huawei Fellowship. Xi Chen was also supported by a
Berkeley AI Research lab Fellowship. We gratefully acknowledge the support of the NSF through
grant IIS-1619362 and of the ARC through a Laureate Fellowship (FL110100281) and through the
ARC Centre of Excellence for Mathematical and Statistical Frontiers.

REFERENCES

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
and Nando de Freitas. Learning to learn by gradient descent by gradient descent. arXiv preprint
arXiv:1606.04474, 2016.

Jean-Yves Audibert and Rémi Munos. Introduction to bandits: Algorithms and theory. ICML
Tutorial on bandits, 2011.

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397–422, 2002.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. arXiv preprint arXiv:1204.5721, 2012.

Michael Castronovo, Francis Maes, Raphael Fonteneau, and Damien Ernst. Learning explo-
ration/exploitation strategies for single trajectory reinforcement learning. In EWRL, pp. 1–10,
2012.

Jhelum Chakravorty and Aditya Mahajan. Multi-armed bandits, gittins index, and its calculation.
Methods and Applications of Statistics in Clinical Trials: Planning, Analysis, and Inferential
Methods, 2:416–435, 2013.

Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. In Advances in
neural information processing systems, pp. 2249–2257, 2011.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties
of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259,
2014.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy
search. In Proceedings of the 28th International Conference on machine learning (ICML-11), pp.
465–472, 2011.

Coline Devin, Abhishek Gupta, Trevor Darrell, Pieter Abbeel, and Sergey Levine. Learning modular
neural network policies for multi-task and multi-robot transfer. arXiv preprint arXiv:1609.07088,
2016.

Li Fei-Fei, Rob Fergus, and Pietro Perona. One-shot learning of object categories. IEEE transactions
on pattern analysis and machine intelligence, 28(4):594–611, 2006.

AA Feldbaum. Dual control theory. i. Avtomatika i Telemekhanika, 21(9):1240–1249, 1960.

10

Under review as a conference paper at ICLR 2017

Justin Fu, Sergey Levine, and Pieter Abbeel. One-shot learning of manipulation skills with online
dynamics adaptation and neural network priors. arXiv preprint arXiv:1509.06841, 2015.

Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, Aviv Tamar, et al. Bayesian reinforcement
learning: a survey. World Scientific, 2015.

John Gittins, Kevin Glazebrook, and Richard Weber. Multi-armed bandit allocation indices. John
Wiley & Sons, 2011.

John C Gittins. Bandit processes and dynamic allocation indices. Journal of the Royal Statistical
Society. Series B (Methodological), pp. 148–177, 1979.

Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard L Lewis, and Xiaoshi Wang. Deep learning
for real-time atari game play using offline monte-carlo tree search planning. In Advances in neural
information processing systems, pp. 3338–3346, 2014.

Nicolas Heess, Jonathan J Hunt, Timothy P Lillicrap, and David Silver. Memory-based control with
recurrent neural networks. arXiv preprint arXiv:1512.04455, 2015a.

Nicolas Heess, Gregory Wayne, David Silver, Tim Lillicrap, Tom Erez, and Yuval Tassa. Learning
continuous control policies by stochastic value gradients. In Advances in Neural Information
Processing Systems, pp. 2944–2952, 2015b.

Sepp Hochreiter, A Steven Younger, and Peter R Conwell. Learning to learn using gradient descent.
In International Conference on Artificial Neural Networks, pp. 87–94. Springer, 2001.

Shin Ishii, Wako Yoshida, and Junichiro Yoshimoto. Control of exploitation–exploration meta-
parameter in reinforcement learning. Neural networks, 15(4):665–687, 2002.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11(Apr):1563–1600, 2010.

Rafal Józefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical exploration of recur-
rent network architectures. In Proceedings of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, 6-11 July 2015, pp. 2342–2350, 2015. URL http:

//jmlr.org/proceedings/papers/v37/jozefowicz15.html.

Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaśkowski. Viz-
doom: A doom-based ai research platform for visual reinforcement learning. arXiv preprint
arXiv:1605.02097, 2016.

Gregory Koch. Siamese neural networks for one-shot image recognition. PhD thesis, University of
Toronto, 2015.

J Zico Kolter and Andrew Y Ng. Near-bayesian exploration in polynomial time. In Proceedings of
the 26th Annual International Conference on Machine Learning, pp. 513–520. ACM, 2009.

Brenden M Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua B Tenenbaum. One shot learning
of simple visual concepts. In Proceedings of the 33rd Annual Conference of the Cognitive Science
Society, volume 172, pp. 2, 2011.

Hugo Larochelle, Dumitru Erhan, and Yoshua Bengio. Zero-data learning of new tasks. In AAAI,
volume 1, pp. 3, 2008.

Sergey Levine and Pieter Abbeel. Learning neural network policies with guided policy search under
unknown dynamics. In Advances in Neural Information Processing Systems, pp. 1071–1079,
2014.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuo-
motor policies. Journal of Machine Learning Research, 17(39):1–40, 2016.

Ke Li and Jitendra Malik. Learning to optimize. arXiv preprint arXiv:1606.01885, 2016.

11

http://jmlr.org/proceedings/papers/v37/jozefowicz15.html
http://jmlr.org/proceedings/papers/v37/jozefowicz15.html

Under review as a conference paper at ICLR 2017

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Francis Maes, Louis Wehenkel, and Damien Ernst. Automatic discovery of ranking formulas for
playing with multi-armed bandits. In European Workshop on Reinforcement Learning, pp. 5–17.
Springer, 2011.

Benedict C May, Nathan Korda, Anthony Lee, and David S Leslie. Optimistic bayesian sampling in
contextual-bandit problems. Journal of Machine Learning Research, 13(Jun):2069–2106, 2012.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy P Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. arXiv preprint arXiv:1602.01783, 2016.

Junhyuk Oh, Valliappa Chockalingam, Satinder Singh, and Honglak Lee. Control of memory, active
perception, and action in minecraft. arXiv preprint arXiv:1605.09128, 2016.

Sylvie CW Ong, Shao Wei Png, David Hsu, and Wee Sun Lee. Planning under uncertainty for
robotic tasks with mixed observability. The International Journal of Robotics Research, 29(8):
1053–1068, 2010.

Ian Osband and Benjamin Van Roy. Why is posterior sampling better than optimism for reinforce-
ment learning. arXiv preprint arXiv:1607.00215, 2016.

Ian Osband, Dan Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via poste-
rior sampling. In Advances in Neural Information Processing Systems, pp. 3003–3011, 2013.

Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask and
transfer reinforcement learning. arXiv preprint arXiv:1511.06342, 2015.

Theodore J Perkins, Doina Precup, et al. Using options for knowledge transfer in reinforcement
learning. University of Massachusetts, Amherst, MA, USA, Tech. Rep, 1999.

Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James Kirk-
patrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy distil-
lation. arXiv preprint arXiv:1511.06295, 2015.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016a.

Andrei A Rusu, Matej Vecerik, Thomas Rothörl, Nicolas Heess, Razvan Pascanu, and Raia Hadsell.
Sim-to-real robot learning from pixels with progressive nets. arXiv preprint arXiv:1610.04286,
2016b.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. One-
shot learning with memory-augmented neural networks. arXiv preprint arXiv:1605.06065, 2016.

John Schulman, Sergey Levine, Philipp Moritz, Michael I Jordan, and Pieter Abbeel. Trust region
policy optimization. CoRR, abs/1502.05477, 2015.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In International Con-
ference on Learning Representations (ICLR2016), 2016.

Nicolas Schweighofer and Kenji Doya. Meta-learning in reinforcement learning. Neural Networks,
16(1):5–9, 2003.

Satinder Pal Singh. Transfer of learning by composing solutions of elemental sequential tasks.
Machine Learning, 8(3-4):323–339, 1992.

12

Under review as a conference paper at ICLR 2017

Malcolm Strens. A bayesian framework for reinforcement learning. In ICML, pp. 943–950, 2000.

Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey.
Journal of Machine Learning Research, 10(Jul):1633–1685, 2009.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning. Artificial
Intelligence Review, 18(2):77–95, 2002.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Match-
ing networks for one shot learning. arXiv preprint arXiv:1606.04080, 2016.

Niklas Wahlström, Thomas B Schön, and Marc Peter Deisenroth. From pixels to torques: Policy
learning with deep dynamical models. arXiv preprint arXiv:1502.02251, 2015.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control:
A locally linear latent dynamics model for control from raw images. In Advances in Neural
Information Processing Systems, pp. 2746–2754, 2015.

Peter Whittle. Optimization over time. John Wiley & Sons, Inc., 1982.

Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. Multi-task reinforcement learning: a
hierarchical bayesian approach. In Proceedings of the 24th international conference on Machine
learning, pp. 1015–1022. ACM, 2007.

A Steven Younger, Sepp Hochreiter, and Peter R Conwell. Meta-learning with backpropagation. In
Neural Networks, 2001. Proceedings. IJCNN’01. International Joint Conference on, volume 3.
IEEE, 2001.

13

Under review as a conference paper at ICLR 2017

APPENDIX

A DETAILED EXPERIMENT SETUP

Common to all experiments: as mentioned in Section 2.2, we use placeholder values when neces-
sary. For example, at t = 0 there is no previous action, reward, or termination flag. Since all of
our experiments use discrete actions, we use the embedding of the action 0 as a placeholder for
actions, and 0 for both the rewards and termination flags. To form the input to the GRU, we use
the values for the rewards and termination flags as-is, and embed the states and actions as described
separately below for each experiments. These values are then concatenated together to form the joint
embedding.

For the neural network architecture, We use rectified linear units throughout the experiments as the
hidden activation, and we apply weight normalization without data-dependent initialization (Sali-
mans & Kingma, 2016) to all weight matrices. The hidden-to-hidden weight matrix uses an orthog-
onal initialization (Saxe et al., 2013), and all other weight matrices use Xavier initialization (Glorot
& Bengio, 2010). We initialize all bias vectors to 0. Unless otherwise mentioned, the policy and
the baseline uses separate neural networks with the same architecture until the final layer, where the
number of outputs differ.

All experiments are implemented using TensorFlow (Abadi et al., 2016) and rllab (Duan et al.,
2016). We use the implementations of classic algorithms provided by the TabulaRL package (Os-
band, 2016).

A.1 MULTI-ARMED BANDITS

The parameters for TRPO are shown in Table 1. Since the environment is stateless, we use a constant
embedding 0 as a placeholder in place of the states, and a one-hot embedding for the actions.

Table 1: Hyperparameters for TRPO: multi-armed bandits

Discount 0.99
GAE λ 0.3
Policy Iters Up to 1000
#GRU Units 256
Mean KL 0.01
Batch size 250000

A.2 TABULAR MDPS

The parameters for TRPO are shown in Table 2. We use a one-hot embedding for the states and
actions separately, which are then concatenated together.

Table 2: Hyperparameters for TRPO: tabular MDPs

Discount 0.99
GAE λ 0.3
Policy Iters Up to 10000
#GRU Units 256
Mean KL 0.01
Batch size 250000

A.3 VISUAL NAVIGATION

The parameters for TRPO are shown in Table 3. For this task, we use a neural network to form
the joint embedding. We rescale the images to have width 40 and height 30 with RGB channels
preserved, and we recenter the RGB values to lie within range [−1, 1]. Then, this preprocessed

14

Under review as a conference paper at ICLR 2017

image is passed through 2 convolution layers, each with 16 filters of size 5 × 5 and stride 2. The
action is first embedded into a 256-dimensional vector where the embedding is learned, and then
concatenated with the flattened output of the final convolution layer. The joint vector is then fed to
a fully connected layer with 256 hidden units.

Unlike previous experiments, we let the policy and the baseline share the same neural network. We
found this to improve the stability of training baselines and also the end performance of the policy,
possibly due to regularization effects and better learned features imposed by weight sharing. Similar
weight-sharing techniques have also been explored in Mnih et al. (2016).

Table 3: Hyperparameters for TRPO: visual navigation

Discount 0.99
GAE λ 0.99
Policy Iters Up to 5000
#GRU Units 256
Mean KL 0.01
Batch size 50000

B HYPERPARAMETERS FOR BASELINE ALGORITHMS

B.1 MULTI-ARMED BANDITS

There are 3 algorithms with hyperparameters: UCB1, Optimistic Thompson Sampling (OTS), and
ǫ-Greedy. We perform a coarse grid search to find the best hyperparameter for each of them. More
specifically:

• UCB1: We test c ∈ {0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The best found pa-
rameter for each setting is given in Table 4.

Table 4: Best hyperparameter for UCB1

Setting Best c

n = 10, k = 5 0.1
n = 10, k = 10 0.1
n = 10, k = 50 0.1
n = 100, k = 5 0.2
n = 100, k = 10 0.2
n = 100, k = 50 0.2
n = 500, k = 5 0.2
n = 500, k = 10 0.2
n = 500, k = 50 0.2

• Optimistic Thompson Sampling (OTS): The hyperparameter is the number of posterior
samples. We use up to 20 samples. The best found parameter for each setting is given in
Table 5.

15

Under review as a conference paper at ICLR 2017

Table 5: Best hyperparameter for OTS

Setting Best #samples

n = 10, k = 5 15
n = 10, k = 10 14
n = 10, k = 50 19
n = 100, k = 5 8
n = 100, k = 10 20
n = 100, k = 50 16
n = 500, k = 5 7
n = 500, k = 10 20
n = 500, k = 50 20

• ǫ-Greedy: The hyperparameter is the ǫ parameter. We test ǫ ∈
{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The best found parameter for each
setting is given in Table 6.

Table 6: Best hyperparameter for ǫ-Greedy

Setting Best ǫ

n = 10, k = 5 0.0
n = 10, k = 10 0.0
n = 10, k = 50 0.0
n = 100, k = 5 0.0
n = 100, k = 10 0.0
n = 100, k = 50 0.1
n = 500, k = 5 0.1
n = 500, k = 10 0.1
n = 500, k = 50 0.1

B.2 TABULAR MDPS

There are 4 algorithms with hyperparameters: Optimistic PSRL (OPSRL), BEB, ǫ-Greedy, UCRL2.
Details are given below.

• Optimistic PSRL (OPSRL): The hyperparameter is the number of posterior samples. We
use up to 20 samples. The best found parameter for each setting is given in Table 7.

Table 7: Best hyperparameter for OPSRL

Setting Best #samples

n = 10 14
n = 25 14
n = 50 14
n = 75 14
n = 100 17

• BEB: We search for the scaling factor in front of the exploration bonus, in the log-linear
span of [log(0.0001), log(1.0)] with 21 way points. The actual searched parameters are
0.0001, 0.000158, 0.000251, 0.000398, 0.000631, 0.001, 0.001585, 0.002512, 0.003981,
0.00631, 0.01, 0.015849, 0.025119, 0.039811, 0.063096, 0.1, 0.158489, 0.251189,
0.398107, 0.630957, 1.0. The best found parameter for each setting is given in Table 8.

16

Under review as a conference paper at ICLR 2017

Table 8: Best hyperparameter for BEB

Setting Best scaling

n = 10 0.002512
n = 25 0.001585
n = 50 0.001585
n = 75 0.001585
n = 100 0.001585

• ǫ-Greedy: We test ǫ ∈ {0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The best found
parameter for each setting is given in Table 9.

Table 9: Best hyperparameter for ǫ-Greedy

Setting Best ǫ

n = 10 0.1
n = 25 0.1
n = 50 0.1
n = 75 0.1
n = 100 0.1

• UCRL2: We search for the scaling factor of exploration bonus among the same values as
BEB. The best found parameter for each setting is given in Table 10.

Table 10: Best hyperparameter for UCRL2

Setting Best scaling

n = 10 0.398107
n = 25 0.398107
n = 50 0.398107
n = 75 0.398107
n = 100 0.398107

C FURTHER ANALYSIS ON MULTI-ARMED BANDITS

In this section, we provide further analysis of the behavior of RL2 agent in comparison with the
baseline algorithms, on the multi-armed bandit task. Certain algorithms such as UCB1 are designed
not in the Bayesian context; instead they are tailored to be robust in adversarial cases. To highlight
this aspect, we evaluate the algorithms on a different metric, namely the percentage of trials where
the best arm is recovered. We treat the best arm chosen by the policy to be the arm that has been
pulled most often, and the ground truth best arm is the arm with the highest mean parameter. In
addition, we split the set of all possible bandit tasks into simpler and harder tasks, where the difficulty
is measured by the ǫ-gap between the mean parameter of the best arm and the second best arm. We
compare the percentage of recovering the best arm separately according to the ǫ gap, as shown in
Table 11.

17

Under review as a conference paper at ICLR 2017

Table 11: Percentage of tasks where the best arm is chosen most frequently, with k = 5 arms and
n = 500 episodes of interaction.

Setup Random Gittins TS OTS UCB1 UCB1∗ ǫ-Greedy Greedy RL2

ǫ ∈ [0, 0.01] 21.5% 51.1% 53.1% 52.8% 50.9% 56.5% 37.3% 38.3% 46.1%
ǫ ∈ [0.01, 0.05] 19.3% 59.5% 71.2% 67.4% 62.5% 76.3% 42.3% 41.3% 55.1%
ǫ ∈ [0.05, 0.1] 17.7% 71.2% 91.5% 84.0% 78.9% 94.6% 46.1% 45.7% 67.4%
ǫ ∈ [0.1, 0.3] 20.1% 92.7% 99.2% 95.3% 93.5% 99.9% 58.1% 58.4% 87.1%
ǫ ∈ [0.3, 0.5] 20.4% 99.6% 100.0% 99.5% 99.8% 100.0% 85.4% 84.6% 99.0%
ǫ ∈ [0.5, 1.0] 19.4% 100.0% 100.0% 100.0% 100.0% 100.0% 98.4% 99.1% 100.0%

Note that there are two columns associated with the UCB1 algorithm, where UCB1 (without “∗”) is
evaluated with c = 0.2, the parameter that gives the best performance as evaluated by the average
total reward, and UCB1∗ uses c = 1.0. Surprisingly, although using c = 1.0 performs the best in
terms of recovering the best arm, its performance is significantly worse than using c = 0.2 when
evaluated under the average total reward (369.2 ± 2.2 vs. 405.8 ± 2.2). This also explains that
although RL2 does not perform the best according to this metric (which is totally expected, since
it is not optimized under this metric), it achieves comparable average total reward as other best-
performing methods.

REFERENCES

Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. arXiv preprint arXiv:1604.06778, 2016.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Aistats, volume 9, pp. 249–256, 2010.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy P Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. arXiv preprint arXiv:1602.01783, 2016.

Ian Osband. TabulaRL. https://github.com/iosband/TabulaRL, 2016.

Tim Salimans and Diederik P Kingma. Weight normalization: A simple reparameterization to ac-
celerate training of deep neural networks. arXiv preprint arXiv:1602.07868, 2016.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynam-
ics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

18

https://github.com/iosband/TabulaRL

	Introduction
	Method
	Preliminaries
	Formulation
	Policy Representation
	Policy Optimization

	Evaluation
	Multi-armed bandits
	Tabular MDPs
	Visual Navigation

	Related Work
	Discussion
	Detailed experiment setup
	Multi-armed bandits
	Tabular MDPs
	Visual Navigation

	Hyperparameters for baseline algorithms
	Multi-armed bandits
	Tabular MDPs

	Further analysis on multi-armed bandits

