
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 4, AUGUST 2019 1543

RL-NSB: Reinforcement Learning-Based

5G Network Slice Broker
Vincenzo Sciancalepore , Member, IEEE, Xavier Costa-Perez , Senior Member, IEEE,

and Albert Banchs , Senior Member, IEEE

Abstract— Network slicing is considered one of the main
pillars of the upcoming 5G networks. Indeed, the ability to
slice a mobile network and tailor each slice to the needs of
the corresponding tenant is envisioned as a key enabler for
the design of future networks. However, this novel paradigm
opens up to new challenges, such as isolation between network
slices, the allocation of resources across them, and the admission
of resource requests by network slice tenants. In this paper,
we address this problem by designing the following building
blocks for supporting network slicing: i) traffic and user mobil-
ity analysis, ii) a learning and forecasting scheme per slice,
iii) optimal admission control decisions based on spatial and
traffic information, and iv) a reinforcement process to drive
the system towards optimal states. In our framework, namely
RL-NSB, infrastructure providers perform admission control
considering the service level agreements (SLA) of the different
tenants as well as their traffic usage and user distribution, and
enhance the overall process by the means of learning and the
reinforcement techniques that consider heterogeneous mobility
and traffic models among diverse slices. Our results show that by
relying on appropriately tuned forecasting schemes, our approach
provides very substantial potential gains in terms of system
utilization while meeting the tenants’ SLAs.

Index Terms— 5G, wireless networks, forecasting, reinforce-
ment learning, virtualization, network slicing.

I. INTRODUCTION

MOBILE users and their respective data traffic are

expected to grow excessively in the next years touching

an increased eight-fold compared to 2015 [1]. This uncount-

able explosion opens to new remunerative business models

while bringing vertical segments into play, such as automotive

digital factories (with the novel concept of industry 4.0), smart

cities, e-health with regular advanced multimedia services and

ultra-high definition video. Indeed, 3GPP has released the

Manuscript received February 23, 2018; revised November 13, 2018 and
April 10, 2019; accepted June 4, 2019; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor B. Krishnamachari. Date of publi-
cation July 18, 2019; date of current version August 16, 2019. The work
of V. Sciancalepore and X. Costa-Perez was supported by the European
Union H-2020 Project 5G-TRANSFORMER under Grant 761536. The work
of A. Banchs was supported in part by the 5GCity project of the Spanish
Ministry of Economy and Competitiveness under Grant TEC2016-76795-C6-
3-R. (Corresponding author: Vincenzo Sciancalepore.)

V. Sciancalepore and X. Costa-Perez are with the NEC
Laboratories Europe GmbH, 69115 Heidelberg, Germany (e-mail:
Vincenzo.Sciancalepore@neclab.eu; Xavier.Costa@neclab.eu).

A. Banchs is with the IMDEA Networks Institute, 28918 Madrid, Spain, and
also with the University Carlos III of Madrid, 28903 Madrid, Spain (e-mail:
albert.banchs@imdea.org).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors.

Digital Object Identifier 10.1109/TNET.2019.2924471

first 5G networks guidelines providing support for critical

communications, massive machine type communications and

vehicular-to-everything [2]. Among the others, the core feature

of the fifth generation of mobile networks is the possibility

of hosting on the same infrastructure different services with

possibly conflicting requirements. This would require a flex-

ible network architecture that builds on i) the network virtu-

alization paradigm allowing for the on-demand introduction

of very diverse services in a shared infrastructure, and ii) the

novel concept of network slicing [3], which allows to deploy

different (virtualized) network instances of different services.

The network slicing paradigm allows infrastructure

providers (such as mobile network operators, MNOs) to open

their physical network facilities to multiple tenants through the

instantiation of logical self-contained networks, orchestrated

in different ways depending on the tenants’ specific service

requirements; such network slices are (temporarily) owned

and managed by the respective tenants. In contrast to classical

resource provisioning, network slicing resource management

deals with aggregated multi-flow resource guarantees per slice

instead of single per-flow guarantees which are still expected

to be handled by schedulers.

In the above context, network tenants may issue requests for

network slices with associated (networking and computational)

resources thereby calling for an advanced admission control

that preserves the service quality to already-running network

slices. To this end, the 5G Network Slice Broker [4] is envi-

sioned as a novel network element that builds on the capacity

broker functional block considered by 3GPP for advanced

RAN sharing [5]. This element maps incoming Service Level

Agreement (SLA) requirements associated to network slice

requests into physical resources. The architectural specifi-

cations for this new network paradigm are currently under

definition and the necessary algorithms yet to be devised.

When considering network slice requests, very conservative

criteria may be followed for mission critical services that

need ultra-high availability, while more aggressive criteria may

be applied in other cases, leveraging multiplexing gains of

traffic among slices and thus optimize network utilization and

monetization. To this end, the ability to predict the actual

footprint of a particular network slice is essential to increase

the number of slices that might be running on the same

infrastructure without harming their performance.

Building on the above idea, in this paper we design three

key network slicing building blocks: i) a forecasting module

that predicts network slices’ traffic based on past information

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-0680-7150
https://orcid.org/0000-0002-9654-6109
https://orcid.org/0000-0003-3544-8537

1544 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 4, AUGUST 2019

regarding user demands and mobility patterns, ii) a network

slicing admission control algorithm and iii) a network slicing

scheduler algorithm in charge of meeting the agreed SLAs

and report back deviations to the forecasting module.

The remaining of the paper is organized as follows.

In Section II we review the state-of-the-art solutions, before

presenting our framework building blocks in Section III.

In Section IV we establish the basis of our slice forecasting

model, whereas in Section V we formulate the admission

control problem as a geometric knapsack, showing that this

problem is NP-Hard. In Section VI we study the slice schedul-

ing process and analyze how its feedback is used to adjust the

forecasting process. In Section VII we discuss the simulation

results and, finally, we conclude the paper in Section VIII.

II. RELATED WORK

The time-series prediction topic has been exhaustively

investigated in the past providing a number of practical solu-

tions applied on different fields. In [6], the authors propose to

use a multi-smoothing function to predict short- and long-term

traffic windows. Similarly, [7] applies the concept of Bayesian

neural networks to predict the number of active UEs in an LTE

network so as to efficiently assign resources. Conversely, in our

solution we apply known forecasting techniques to profile the

slice traffic behaviors and user mobility while still performing

an efficient slice resource allocation.

A RAN sharing solution applying the proportional fairness

criterion is proposed in [8]. To share resources among different

operators under diverse radio conditions, [9] introduces the

Network Virtualization Substrate (NVS), a two-step process

where the infrastructure first allocates resources to the virtual

instances of eNBs and then each tenant customizes scheduling

within its eNB instance [10]. A network slicing solution con-

sidering a gateway-based approach is proposed in [11]. In such

solution, a controller provides application-oriented resource

abstraction of the underlying RAN, and allocates resources

to network slices based on an optimization framework that

considers an elasticity margin in resource provisioning. Simi-

larly to the last-mentioned work, we adopt a similar two-step

process, allocating slices via a broker entity that performs

admission control based on the requested SLAs.

Our approach builds on the concept of a signaling-based

network slicing broker solution by implementing a capac-

ity forecasting algorithm [12] that considers guaranteed and

best-effort traffic as well as user mobility. A study that

explores different options for network sharing based on a

centralized broker is provided in [13], considering mobility

means, spectrum transfer policies and resource virtualization

to optimize the usage of MNO’s limited resources. Unlike

our proposal, this study introduces new 3GPP interfaces to

accommodate the broker functionality. A scheme that inte-

grates the capacity broker with enhancements on the 3GPP

architecture is documented in [14]. Such capacity broker

forecasts the network capacity when allocating guaranteed

and best-effort slices, considering their respective SLAs. Our

approach complements this solution by introducing algorithms

that dynamically evaluate network slices SLA requests, while

maximizing the infrastructure resources utilization.

Fig. 1. RL-NSB: a holistic view.

The work in [15] assigns a different slice to each operator

implementing the sharing of network resources among oper-

ators by dynamically allocating slice resources. Furthermore,

a dynamic slicing scheme that accounts for tenants’ priority,

baseband resources, fronthaul and backhaul capacities, quality

of service (QoS) and interference within the context of hetero-

geneous cloud radio access network architecture is proposed

in [16] as well as in [17].

In contrast to all these approaches, our work focuses on

the admission control and traffic forecasting to enable mobile

network operators (MNOs) to make the best out of their spare

resources.

III. RL-NSB: SYSTEM DESIGN

This paper builds on the concept of a 5G network slice bro-

ker for establishing network slices through a proper signaling,

studied in [4], in the context of the 3GPP network sharing

management architecture [18]. The concept of broker is envi-

sioned to become part of the future 5G network architecture,

introducing the required new interfaces into the architecture.1

Fig. 1 depicts the Reinforcement Learning-based 5G Net-

work Slice Broker (RL-NSB) building blocks addressed in

this paper and their interactions. The design of the different

modules is addressed in detail in the following sections.

Slice Forecasting

This module evaluates the tenants’ traffic near-future.

In addition, knowledge about the tenant users (spatial) distrib-

ution might further increase the efficiency of the admission

process, as explained in Section IV. When no forecasting

solution is applied or during the training period (for adjusting

the forecasting algorithm parameters), original network slice

SLA request information is used.

Admission Control

This module selects the granted network slice requests for

the next time window based on two different algorithms,

as illustrated in Section V.

1We refer the reader to [19] that provides an overall picture of an imple-
mentable mobile architecture shedding the light on potential issues while
including the broker entity into the new standard architecture.

SCIANCALEPORE et al.: RL-NSB 1545

TABLE I

NETWORK SLICE TRAFFIC REQUIREMENTS [23]

Slice Scheduling

A list of granted slice requests is sent to the Scheduling

module, which allocates network slice physical resources and

monitors the served traffic levels and potential SLA violations

with a penalty history function. Such a function is used to

provide a feedback signal to the forecasting module and to

adaptively adjust the system behavior. The design of this

module is addressed in Section VI.

IV. SLICE FORECASTING

Forecasted traffic patterns provide a useful information to

predict base stations load for the different network tenants.

This allows to properly dimension network slices and thus

maximize the overall system resource utilization across differ-

ent cells. This involves predicting the resource usage of the

different tenants in time as well as in space: by forecasting the

load at different cells, the RL-NSB framework can properly

assign cell resources to different tenants while leaving unused

resources in under-utilized cells for further slice requests. The

effectiveness of such an approach highly depends on the accu-

racy of the forecasting algorithm: the more accurate, the more

aggressive the resource provisioning while still keeping low

the probability of violating slice SLAs. In the following we

address the first aspect, while we refer the reader to Section VI

for more details on SLA violations and dynamic forecasting

parameters adjustments.

A. Tenant Traffic Analysis: Characterization and Forecasting

Traffic predictions are performed on an aggregate basis

for every admitted tenant. Tenants might ask for a different

network slice request tailored to their specific service require-

ments without specifying the set of physical cells users will

be lying in. Indeed, a given vertical tenant might need only

a small subset of cells to provide selected services to its

own users, e.g., automotive may need only cells covering

extra-urban roads. The idea is that the forecasting process

categorizes the traffic requests based on the associated service

requirements and (geographical) location, thereby performing

a prediction separately per cell and per slice. In our analysis,

we first assume that traffic requests are uniformly distributed

within the whole network. However, in Section IV-B and

Section IV-C we further extend this assumption by consid-

ering multi-cellular environments where user mobility follows

different patterns for different tenants, yielding heterogeneous

user distributions across tenants.

We assume the following traffic model. We assume different

classes of traffic based on specific SLAs, as shown in Table I.

We let the traffic volumes of tenant i for traffic class k (e.g.,

satisfying particular service requirements) be a realization of a

point process, ζ
(k)
i =

∑T
t=0 δt

∑

b∈B r
(k)
i,b (t), where δt denotes

the Dirac measure for sample t. We express traffic requests

r
(k)
i,b (t) per cell b in terms of required resources (note that

such resource requirements could be easily translated into

different metrics, such as latency or throughput demands) and

the aggregate traffic requests as r
(k)
i =

∑

b∈B r
(k)
i,b for each

tenant i.
The underlying key-assumption in our model is that traffic

requests follow a periodic pattern, which is needed to apply

time-series forecasting algorithms. Given such a periodic

nature, the traffic forecasting is based on an observed time

window TOBS, and is given by the vector r
(k)
i

= (r
(k)
i (t −

TOBS), r
(k)
i (t− (TOBS − 1)), · · · , r

(k)
i (t)). Then, given a fixed

future time window TFUTURE, the forecasting function fHW

provides the forecasted traffic volumes for time period [t + 1,

t + TFUTURE], denoted as r̂
(k)
i

= (r̂
(k)
i (t + 1), r̂

(k)
i (t + 2),

· · · , r̂
(k)
i (t + TFUTURE)). Intuitively, the longer the observed

time window TOBS, the more information to rely on, the higher

the accuracy of the traffic forecasting within the next time

window TFUTURE per tenant slice. In our analysis we fix

the observed time window given the periodic nature of the

network traffic requests regardless the corresponding service

requirements [20].

Following our assumption above, the system exhibits a

periodic behavior, which translates into seasons of length WS

that are repeated over time. Within a single season, we assume

that process ζ
(k)
i is stationary and ergodic. 2 Such a process

is evaluated and predicted through a seasonal exponential

smoothing function. To this end, we use the Holt-Winters

(HW) forecasting procedure to analyze and predict future traf-

fic requests associated to a particular network slice across all

selected cells (as shown in the next section). The forecasting

function fHW is defined as:

fHW : R
TOBS+1 → R

TFUTURE

r
(k)
i

→ r̂
(k)
i

.

We denote a specific predicted traffic request r̂
(k)
i (t) by r̂

(k)
i,t .

We rely on the additive version of the HW forecasting problem

as the seasonal effect does not depend on the mean traffic

level of the observed time window but instead it is added

considering values predicted through level and trend effects.

Following HW standard procedure and assuming a frequency

of the seasonality (W) based on the traffic characteristics,

we can predict such requests based on the level lt, trend bt

and seasonal st factors, as follows:

r̂
(k)
i,t+TFUTURE

= lt + btTFUTURE + st+TFUTURE−W (κ+1) where

lt = α(r
(k)
i,t − st−W)+(1 − α)(lt−1 + bt−1),

bt = β(Lt − lt−1) + (1 − β)bt−1,

st = γ(r
(k)
i,t − lt−1 − bt−1) + (1 − γ)st−W . (1)

2Stationary and ergodicity of point process (c.f. e.g. [21]) imply that

µ̄
(k)
i = 1

Z

Z�

z=0
X[z] = 1

T

T�

t=0
ri,k[t].

1546 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 4, AUGUST 2019

While κ is the integer part of (TFUTURE − 1)/W and the

set of optimal HW parameters α, β and γ can be obtained

during a training period employing existing techniques [22],

we focus on the forecasting errors and how the forecasting

inaccuracy may affect our network slicing solution. In other

words, inaccurate forecasted traffic values (for instance, lower

values) might lead the admission control to accommodate

more network slices that cannot fit the overall system capacity

resulting in service degradation and, in turn, in SLA violation.

We define the one-step training forecasting error e
(k)
i,t as

follows

e
(k)
i,t = r

(k)
i,t − r̂

(k)
i,t = r

(k)
i,t − (lt−1 + bt−1 + st−1), (2)

which is computed during the training period of our fore-

casting algorithm (when predicted values are compared with

the observed ones). Given that our process ζ
(k)
i is ergodic

and assuming an optimal HW parameter set, for any pre-

dicted value at time z we can derive the prediction interval
[

l̂l
(k,χ)

i,z , ĥh
(k,χ)

i,z

]

wherein future traffic requests lie with a

certain probability χ
(k)
i for that particular network slice.

Thus, it holds that

Pr
{

l̂l
(k,χ)

i,z ≤ r̂
(k)
i,z ≤ ĥh

(k,χ)

i,z

}

=χ
(k)
i , ∀z∈[t+1, t+TFUTURE]

(3)

where ĥh
(k,χ)

i,z (or l̂l
(k,χ)

i,z) = r̂
(k)
i,z + (−)Ωχ

√

V ar(e
(k)
i,z) and

V ar(e
(k)
i,z) ≈

(

(1 + (z − 1)α2[1 + zβ +
z(2z − 1)

6
β2]

)

σ2
e .

In the above equation, Ωχ denotes the one-tailed value of

a standard normal distribution such that we obtain χ
(k)
i prob-

ability and σ2
e is the variance of one-step training forecasting

error, i.e., σ2
e = V ar(e

(k)
i,t), over the observed time window.

Due to the requirements imposed by traffic SLAs, we focus

only on the upper bound of the prediction interval as it

provides the “worst-case” of a forecasted traffic level. It can

be seen from (3) that a larger prediction time window TFUTURE

yields a higher number of predicted values z (spread over fixed

time intervals), and this in turn leads to a lower accuracy

according to the above equations; the intuition is that the

further into the future we need to predict, the higher the uncer-

tainty. Even if accuracy is high, if we set the forecasting error

probability χ
(k)
i too low, this can result in severe penalties in

case it does not guarantee the desired slice SLAs. Therefore,

we adjust the forecasting error probability χ
(k)
i based on the

service requirements and to the number of prediction points

the forecasting process needs to perform.

Following the above, best-effort traffic requests with no

stringent requirements can tolerate a prediction with a longer

time pace that results in imprecise values. This makes the

upper bound ĥh
(k,χ)

i,z very close to the real (future) values

r
(k,χ)
i,z regardless the error probability χ

(k)
i as the number

of z values to predict is limited. Hence, we might select

a low forecasting error probability χ
(k)
i for this service

type. On the other hand, when guaranteed bit rate traffic

is considered, the corresponding SLA must be fulfilled in a

shorter time basis, which makes our forecasting process much

more complex, requiring significantly more predicted values

z. To achieve this, our system models such a type of traffic

with a higher forecasting error probability χ
(k)
i .

We implement the above mathematically as follows.

According to the traffic classes defined in Table I, traffic

class k = 0 provides a forecasted horizon shorter than the

other traffic classes, and hence a larger number of values

z must be predicted. To achieve this, we derive an upper

bound for the forecasting probability error per tenant for this

traffic class. We define the maximum potential gain between

the slice request and the forecasted traffic requests as d̂
(k)
i

.
=

max
z∈TFUTURE

(

R
(k)
i − r̂

(k)
i,z

)

. We then compute the forecasting error

probability as follows

χ
(k=0)
i : Ωχ

√

V ar(e
(k=0)
i,z) = d̂

(k=0)
i . (4)

As soon as the potential gain d̂
(k=0)
i becomes very large,

we cap the one-tailed value Ωχ to 3.49, resulting in χ
(k=0)
i =

99.9%. Conversely, for the best-effort traffic (k = 5) we

compute the forecasting error probability χ
(k=|K|)
i = 50%,

due to its more relaxed service. For the other traffic classes k,

intermediate forecasting error probabilities χ
(k)
i are calculated

from (4) by deriving d̂
(k)
i values from the upper and the lower

bound values. In addition to the above, note that forecasting

error probability values are dynamically evaluated and adjusted

based on the SLA violations experienced during the slice

scheduling process, as explained in detail in Section VI-B.

B. User Mobility and Traffic Model Periodicity

We next extend our forecasting model to dynamic scenarios

where user mobility is considered and the traffic periodicity

assumption may no longer hold. The Hold-Winters method

used above cannot be applied unless the underlaying system

is periodic. To overcome this issue, in the following we devise

an approximation to the traffic load which is i) as close as

possible to the original traffic load, and yet ii) is periodical.

We consider a multi-cellular environment covering the

whole area. In order to design forecasting algorithms that

are accurate under realistic settings, we rely on human-based

mobility patterns. Specifically, we employ the well-accepted

SLAW mobility model [24] for user motions. According to

this model, users move among a number of waypoints,

which are distributed over the covered area according to

self-similarity rules forming a number of clusters. Clusters

with more waypoints can be seen as hotspots attracting more

users. When performing a flight (a movement from one

waypoint to the other within the same trip), users choose a

set of clusters which are dynamically and randomly replaced

during the flight based on some given probabilities. Then, users

start moving between a subset of waypoints residing within

the selected clusters according to a least-action trip plan-

ning (LATP) with αSLAW = 3. Traffic is randomly generated

during the user trip. Assuming that users stop when reaching

a waypoint for a pause-time, we can model the value of the

flight-time (xL) and pause-time (xP) as a random value drawn

SCIANCALEPORE et al.: RL-NSB 1547

from a heavy-tailed distribution function defined in terms of

Fourier transformations as

fL(x) = fP (x) =
1

2π

∞
∫

−∞

e−iu x−|ψu|αDISTR
du (5)

where ψ is the scale factor and αDISTR depends on the

distribution considered (pause-time or flight-time).

Considering a uniform user speed distribution, the traffic

model of the considered users is dominated by a heavy-tailed

distribution. We decouple the variation trends of the traffic

model by means of the Fourier transformation as showed

in (5). In this way, each component of the traffic variation

is isolated so as to provide a periodic behavior that improves

the accuracy of the forecasting process (like in the previous

section).Without loss of generality, we can obtain a periodic

traffic vector as follows. Let M denote the period and r
(k)
i

=
{rt} a generic traffic vector. Then, the forecasting process

applies a Discrete Fourier Transform (DFT) to retrieve the

M -periodic samples Rw =
∑M−1

n=0 rte
−iw 2π

N
t, where w =

0, · · · , M − 1. Note that Rw is a complex number translating

the sinusoidal component of rt. Then, the forecasting process

can obtain all single time-series components derived by each

of those frequency samples by applying the Inverse Discrete

Fourier Transform (IDFT), e.g., rn = 1
N

∑M−1
w=0 Rwe

2πi
Nwn ,

where n = 0, · · · , N − 1, which provides a periodic traffic

vector r
(k)
i

= (r
(k)
i (n), r

(k)
i (n + 1), · · · , r

(k)
i (n + M)). This

vector is a good approximation of the real traffic and is

periodic, and hence we can use the Holt-Winters method

described in the previous section over this vector to obtain

a prediction of future traffic load.

C. Tenant Spatial Distribution

While tenants can only request a slice across the entire

network area, the accurate prediction of the distribution of

the tenants’ users across space can be leveraged to improve

the system efficiency, by considering resource usage of the

admitted slices on specific cells when taking admission control

decisions. Thus, the spatial domain introduces an additional

degree of freedom that can be exploited by our tenant distri-

bution prediction module to provide an accurate estimation of

the cells’ load to the admission control module.

In the following, we extend our traffic predictor proposed

above to capture not only the overall load of each tenant but

also the distribution of this load over the different cells. To this

end, we proceed as follows: i) we develop a Markovian chain

to capture the mobility pattern of a user, ii) we assume that the

mobility of a tenant is reflected by a weighted combination of

such patterns, depending on the mobility patterns of the ten-

ants’ users, iii) we employ an unsupervised learning method

to learn the weights of each tenant, and finally iv) we obtain

the load at each cell by combining the overall load predicted

by the Holt-Winters method described in the previous sections

with the mobility model developed in this section.

The tenant distribution prediction module is based on the

probabilistic latent variable model [25]. This model relies on

a Discrete-time Markov Chain {Xn ∈ S} with the state space

Fig. 2. Spatial distribution and mobility prediction. (a) Discrete-time Markov
Chain prediction model. (b) Illustration of tenant distributions.

S = {S1, . . . , Sc, SB}, where each state indicates whether

a tenant user is within cell b at time n, and px,y is the

transition probability to move from cell x to cell y. Note

that an user might remain within the same cell coverage with

probability pb,b, as shown in Fig. 2(a). However, the same

Markov chain evolution cannot be applied to heterogeneous

user behaviours. 3 As consequence, we derive distinct tran-

sition probability sets and we update them based on past

observations about user associations.

Given that users belonging to the same tenants might

visit cells following different mobility behaviours—not known

a-priori—we apply the concept of unsupervised learning to

identify specific mobility patterns showing the tenant request

distributions across the network. In some cases, e.g., automo-

tive tenants, only a single mobility pattern may be enough to

draw all user motions under the same tenant control.

Let m ∈ M be the stochastic latent variable denoting the

mobility pattern. We can reformulate the transition probability

as follows

pm
x,y = Pr(Xn = Sy | Xn−1 = Sx, hi = m), (6)

i.e., the probability to stay at time n within cell y if the

user under tenant i comes from cell x and follows mobility

pattern hi = m. In order to derive such transition probabilities,

we use the expectation maximization 4 technique based on

previous observations about the users moves for tenant i from

cell x to cell y, namely ji(x, y), obtained through the user

context information. We can write the a-posteriori probability

3We rely on the Markovian property to make our analysis tractable.
However, in Section VII we relax this assumption to evaluate our solution
with realistic mobility scenarios, e.g., applying the well-known SLAW model.

4We refer the reader to [25] for further information on the unsupervised
learning methods.

1548 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 4, AUGUST 2019

as follows

Pr(hi = m | Xn = Sy, Xn−1 = Sx)

=
Pr(Xn =Sy | Xn−1 =Sx, hi =m)Pr(hi = m)
∑

o∈M
Pr(Xn = Sy | Xn−1 =Sx, hi =o)Pr(hi =o)

(7)

and the likelihood maximization of the learning problem as

follows

Pr(Xn = Sy | Xn−1 = Sx, hi = m)

=

∑

i∈I
ji(x, y)Pr(hi =m | Xn =Sy, Xn−1 =Sx)

∑

{sa,sb}∈S

∑

i∈I

ji(a, b)Pr(hi =m | Xn = Sb, Xn−1 = Sa)

(8)

Pr(hi = m)

=

∑

{sa,sb}∈S

ji(a, b)Pr(hi = m | Xn = Sb, Xn−1 = Sa)

ji

(9)

where ji =
∑

{a,b}∈S

ji(a, b) denotes all user moves under

tenant i within the whole network. By iteratively solving those

two sets of equations with specific initial conditions, 5 we

can easily reach the convergence that provides i) the set of

valid mobility patterns m ∈ M based on past observations,

ii) associations between tenant behaviours hi and obtained

mobility patterns and, iii) the probability to stay in any

of the available cells based on such mobility patterns and

tenant associations. Finally, given the Markovian property of

memoryless, we assign a weight to different mobility patterns

m based on how accurately they can be mapped onto previous

observed paths Ŝi chosen by users under the same tenant i as

follows

w(m | Ŝi) =

∑

{a,b}∈Ŝi
pm

a,b
∑

o∈M

∑

{a,b}∈Ŝi
po

a,b

. (10)

The probability to stay at time n + 1 under coverage of cell b
based on the path used by tenant i can be formulated as the

following

ρi,b = Pr(Xn+1=Sb | Ŝi) =
∑

a∈B

∑

m∈M

w(m| Ŝi)p
m
a,b. (11)

The probabilistic latent variable model can be easily applied

to unknown mobility models as it only relies on the past obser-

vations and future inferences. When the users mobility follows

the SLAW model [24], we can easily reduce the complexity

of our prediction by priorly setting some transition probability

pm
x,y = 0. Specifically, the SLAW model imposes that, before

moving, each user must select a subset of clusters where it

potentially moves to. For the sake of simplicity, we divide

our network into multiple clusters wherein each cluster cor-

responds to a single cell. This automatically prevents users

from being moved to specific cells. Additionally, based on the

5Diverse initial conditions may lead to different optimal solutions. However,
as shown in [26] the difference between such optimal solutions can be
considered negligible and, in some case, they may even converge to the same
identical solution. Therefore, we use a trivial initial condition to trigger the
process.

SLAW model, each cluster (or cell) might comprise different

way-points that must be visited based on the LATP algorithm

as explained in Section IV-B. Finally, the SLAW model may

exhibit a pause-time for a single way-point as a random

realization of a power-law statistical distribution. Therefore,

the number (and the geographical positions) of way-points

placed into a single cells and the pause-time within a single

way-point directly impact on the probability of remaining

within the same cell pb,b.

The overall tenant load predicted by the forecasting module

is properly combined with the probability of being within

specific cells (Eq. (11)) so as to derive the predicted amount of

resources requested by tenant i under base station b as R̂
(k)
i,b,z =

ρi,bR̂
(k)
i,z . This result is used into our admission control algo-

rithm to efficiently instantiate network slices while providing

tenant SLA guarantees, as explained in the next section.

V. ADMISSION CONTROL: DESIGN AND VALIDATION

We design an admission control scheme to decide on

the network slice requests to be granted for the subsequent

time window TFUTURE based solely on the current resource

availability. It relies on the key-idea of using the forecasting

information to accurately reshape the resources consumed by

network slice requests thereby fitting additional slice requests

into the system. Additionally, users distribution information

may further help the RL-NSB framework to spatially install

network slices only on affected cells (see Fig. 3).

A. Problem Formulation

In our problem formulation, we first assume a constant

amount of resources required for a network slice instantia-

tion. Then, we relax this assumption—considering different

forecasted traffic levels and user distributions—and show that

this makes the problem more complex, but still tractable for

our admission control process. Note that the latter model leads

to more efficient solutions.

Let us define a network slice request as σ
(k)
i = {R, L, i, k} 6

where i denotes the tenant, R is the amount of resources

required, L is the time duration of the slice and k is the

traffic class. Without loss of generality, we simply refer to

a tenant request as R
(k)
i (Li). Recalling the main objective of

accommodating the network slice requests while maximizing

the network resource utilization within a fixed time window

TFUTURE, we next derive our model.

Let us assume a rectangular box for each base station with

fixed width W and height H representing the resource avail-

ability within a fixed time window. In particular, the box width

corresponds to T b
FUTURE and box height corresponds to the total

amount of resources Θb available for base station b. Let us

assume a set of items I, where each item i ∈ I corresponds

to a network slice request having width wi corresponding to

slice duration Li and height hi corresponding to the amount of

resources Ri. Abusing notation, we write Lb
i = Li, ∀b ∈ B and

Rb
i = Ri, ∀b ∈ B as tenant requests are identically distributed

6Our assumption unveils that tenants may only ask for a certain amount of
resources along the whole network deployment. Advanced mechanisms might
admit tenants asking for network resources only on particular areas, but this
is out of the scope of this paper and may be addressed in future works.

SCIANCALEPORE et al.: RL-NSB 1549

Fig. 3. Admission control problem as multiple geometric knapsack problems on three different cellular areas. On the left-hand side, full requests are shown.
On the right-hand side, reshaped tenant requests are shown based on the forecasting module.

along the whole network. In addition, each item provides a

profit ci; we assume that slices pay a price proportional to

the resources requested, and hence ci is proportional to the

amount of resources. 7 The objective of our admission control

problem is to find a subset of items I ′ ⊆ I that maximizes

the total profit
∑

i∈I′ ci, i.e., the total amount of granted

resources. The following lemma allows to decompose this

problem. Formal proofs of the following lemmas are given

in the Appendix (provided as Supplementary downloadable

material).

Lemma 1: Let each cell b independently assigned with a

fixed amount of resources Θb within a given time windows T b.

The admission control problem of the overall network aiming

at accommodating the network slice requests while maximizing

the network resource utilization, can be obtained as the

combination of independent instances of an admission control

problem executed for each cell b.

With the above lemma, we only need to focus on a single

admission control problem executed on a single cell. The

overall admission control solution can be reformulated as a

combination of (simpler) admission control problem instances,

as shown in Fig. 3. The following lemma shows that this can

be mapped to a well-known NP-hard problem.

Lemma 2: Let the resource availability of cell b be a box

with height Θb and width T b, and let each item i ∈ I be

the network slice request σi with height Ri and width Li.

Then, the admission control problem is mapped onto a Geo-

metric Two-dimensional knapsack problem with the objective

of filling up the cell capacity with network slice requests while

maximizing the base station resource utilization.

The above formulation assumes that tenants use all

requested resources. However, if we can estimate the actual

resource usage through the prediction module proposed in

the previous section, we may be able to improve efficiency.

Following this, we now assume tenant requests characterized

7This assumption could be relaxed to reflect a different economic model
within the multi-tenancy framework, which is out of the scope of the paper.

by a set R̂
(k)
i,z = ĥh

(k,χ)

i,z representing the predicted amount of

needed resources per time z for a traffic type k (i.e., given

a forecasting error probability χ
(k)
i) based on the forecasting

phase. Note that tenant traffic predictions are derived based

on the aggregate traffic requests extended across the entire

network for each specific tenant. Thus, to derive the predicted

amount of resources requested by tenant i under base station b,

we can use Eq. (11) and write R̂
(k)
i,b,z = ρi,b R̂

(k)
i,z . This results

in time-variant resource requests where item shapes are no

longer rectangular.

Lemma 3: Let the resource availability of cell b be a box

with height Θb and width T b, and let each item i ∈ I be the

network slice request σi with irregular shapes, identified by

different height values R̂
(k)
i,b,z and width Li. Then, the admis-

sion control problem is mapped onto a Flexible Geometric

Two-dimensional knapsack problem, with the objective of max-

imizing the cell resources utilization whilst accommodating

network slice requests.

An illustrative example is provided in Fig. 3 for three

different cells running independently the admission control

problem. As depicted, different amounts of resource values

are forecasted for a single network slice request. It may be

observed that when the forecasting is accurate, i.e. real traffic

(pulse signal) are correctly bounded within new slice values

(slice i = 4), there is more room to accommodate slices (i =
6), as shown in the right-hand side. Information on the users

distribution may further help to properly reshape the network

slice by considering the spatial domain as an additional degree

of freedom. For example, user traffic requests belonging to

tenant i = 5 are mostly distributed on the first two cells (in

the foreground of the picture) and barely present in the last

cell (in the background).

Note that in our case the (flexible) geometric

two-dimensional knapsack problem is constrained by

the orientation law of the considered items. In particular,

each item i has a fixed orientation, which cannot be changed

to fit in the box. Although some state-of-the-art work calls

1550 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 4, AUGUST 2019

such a problem constrained geometrical knapsack problem,

we prefer to omit the “constrained” word as it may refer

to additional constraints on the relationship between items

stored in the box, which are out of the scope of this work.

Taking into account all the above constraints, we can

formulate our overall admission control problem as follows 8

Problem ADM-CONTROL:

maximize
∑

i∈I

ci

∑

b∈B

xb
i

subject to
∑

i∈I

wb
i · x

b
i ≤ W b; ∀b ∈ B

Sb(xb
i) ∩ Sb(xb

k) = ∅, ∀b ∈ B, ∀i
= k;

Sb(xb
i) ⊂ S

b, ∀b ∈ B, ∀i ∈ I;

xb
i ∈ {0, 1}, ∀b ∈ B, ∀i ∈ I;

where Sb(xb
i) is the geometrical area of the item i (either

rectangular or irregular defined) whereas S
b is the area of

the box defined for each cell b, i.e., |Sb| = T b · Θb. Note

that if the tenant is not admitted into the cell, we assume its

geometrical area is zero, i.e., if xb
i = 0,Sb(xb

i) = ∅. The

first constraint refers to the weight of each item. For the sake

of simplicity, we consider the weight capacity of our box as

infinite W b = ∞ to neglect the item weight. The next two

constraints state that items cannot overlap with each other and

must be contained within the total space of the box.

When tenants distribution information is available at the

tenant distribution prediction module (see Fig. 1), Sb(xb
i) is

accurately derived by means of ρi,b (in Eq. (11)) and properly

used to make more room for additional network slice requests.

The solution the above problem provides a set of xb
i , which is

a binary value indicating whether the item i is admitted into

the system (and allocated under cell b) or rejected for the next

time window TFUTURE. Thus, the solution provides a list of

granted slice requests per cell (see Fig. 1).

B. Complexity Analysis

We next analyze the complexity issues of the admission

control problem. To this end, we can formulate the following

decision problem DEC-ADM-CONTROL: given an arbitrary

value V , n items with a value ci and a given area ai enclosed

within a two-dimensional shape identified by R̂
(k)
i,b,z and Li,

and a box with capacity S
b delimited by Θb and T b, is there

a subset I ∈ {1, 2, · · · , n} such that items do not overlap and
∑

i∈I ci ≥ V ? In the following, we reduce this problem to

an NP-hard one.

Lemma 4: Considering all items with full flexible

dimensions, we can identify one single weight wi per

item representing the area required. Then, if the utility value

ci = wi the decision problem DEC-ADM-CONTROL reduces

to a “Subset Sum Problem”.

Building on the above, we can show that the admission

control problem is NP-hard.

8In addition to the constraints included in our problem formulation,
the Flexibile Geometric Two dimensional knapsack problem also includes an
additional constraint on weight capacities. For the sake of simplicity, we have
omitted this constraint in our problem.

Fig. 4. Admitted slice requests within a time windows while collecting
slice requests with GBR traffic requirements (k = 0) and best-effort traffic
requirements (k = 5).

Theorem 1: The decision problem DEC-ADM-CONTROL is

NP-Complete and Problem ADM-CONTROL is NP-Hard for

any type of traffic k along the network slice request.

Sketch of Proof: We use a reduction from the subset

sum problem based on Lemma 4. We apply a polynomial

reduction to the decision problem DEC-ADM-CONTROL con-

sidering only items with full flexible dimensions collapsed

into a weight wi and utility value equal to the weights

ci = wi. This reduces the problem to a Subset-Sum prob-

lem, known to be NP-COMPLETE. When considering items

with fixed resource provisioning, e.g., items with constrained

shape values, it is even more difficult to find a solution

to Problem DEC-ADM-CONTROL, which proves the NP-

Completeness. Based on that, for all > 0, approximating the

solution for Problem ADM-CONTROL, |I| = n within n1−ǫ,

is NP-Hard. This proves that our Problem ADM-CONTROL is

NP-Hard. �

Theorem 1 suggests that no optimal poly-time algorithm

solves our admission control problem. Interestingly, we remark

that the admission control problem is easier when only

best-effort slice requests are processed (still NP-Hard). This

could negatively drive the infrastructure provider to have a

particular tendency for best-effort, or less-demanding, require-

ments as depicted in Fig. 4. In particular, assuming only strin-

gent traffic class requirements GBR (k = 0) and best-effort

(BE) class (k = 5), we show the number of admitted slice

requests considering different resource demands to the 5G

Network Slice Broker. The total number of admitted slices

increases with the number of best-effort slice requests showing

that best-effort slice requests are preferred due to the higher

flexibility. This is further supported by Fig. 5(a), where we

show the contour of the total system utilization when different

number of slice requests arrive and span equally the entire

network. Although a disparity between GBR and BE slice

requests appears, the utilization of the system is maximized

providing outstanding results (more than 90%) in the best case.

Along these lines, we provide a smart mechanism that

ensures no traffic inter-class prioritization. We define the utility

value in Problem ADM-CONTROL for each slice request as

ci = LiRi

(T (k))η , with η ∈ {0, 1}. For η = 0, the utility value is

exactly the amount of data required within the slice whereas

η = 1 leads to more priority for strict service requirements

SCIANCALEPORE et al.: RL-NSB 1551

Fig. 5. System utilization with different utility functions. (a) η = 0; no
inter-class priority. (b) η = 1; inter-class priority.

slices. In Fig. 5(b), we show the contour of the system

utilization when η = 1. While the inter-class fairness is

guaranteed (as shown in the top-right part of the picture),

the overall utilization degrades exhibiting values around 55%
in the best case.

C. Heuristic Algorithm Design

Given that the admission control problem is NP-hard, in the

following we derive a heuristic algorithm. As given by the

formulation of the Problem ADM-CONTROL, this algorithm

needs to cope with different network slice requests along

multiple cells and optimize the total utility function. Net-

work slice requests can be i) regularly shaped, i.e., no fore-

casted information is considered, but with different flexibility

degrees due to the traffic class considered, ii) irregularly

shaped exhibiting a different degree of freedom. The first

class of network slice requests is handled through a Network

Slices Packer algorithm, a revised and improved version

of [27]. The second class of network slice problem admits

at least the same solution of the first class but, if properly

explored, it could provide much more flexibility and resources

utilization.

Network Slices Packer: We assume rectangular shapes for

network slice requests with different traffic requirements.

When traffic class k = 0, the regular shape of the network slice

is hardly defined and no flexibility is allowed for allocating

the traffic requests. Conversely, when less-demanding slice

requests k > 0 are considered, the slice might be reshaped,

delaying the slice traffic, to efficiently fit into the network.

The algorithm pseudocode is given in Algorithm 1. We rely

on the assumption that each tenant is not allowed to ask more

than the half of the resource availability of the infrastructure

provider, i.e., Ri ≤ Θ
2 . This implies that at least 2 network

slices can be accommodated. Thus, following standard existing

algorithms for geometric knapsack problems, we divide the

set of elements into two sub-sets by considering among all

possible pairs of network slice requests, only those fitting the

available system capacity (line 2). For each of these 2-slice

sets (Cl), we formulate the following 0-1 knapsack problem

Problem BIN-KP:

maximize
∑

j∈Cl

v(σ
(k)
j) +

∑

i�∈Cl

ωiv(σ
(k)
i)

subject to
∑

j∈Cl

s(σ
(k)
j) +

∑

i�∈Cl

ωis(σ
(k)
i) ≤ Θ;

ωi ∈ {0, 1}, ∀i ∈ Σ;

Algorithm 1 Network Slices Packer: Algorithm to Admit

Network Slice Requests σ
(k)
i Within the System Capacity Θ

for the Next Time Window TFUTURE

Input: Σ = {σ
(k)
i }, Θ, TFUTURE

Initialization: C ← ∅,F1 ← ∅,F2 ← ∅, E ← ∅
Procedure

1: for all Cl ←
(

Σ
2

)

do

2: if Cl fits into S then

3: C ← C ∪ Cl

4: end if

5: end for

6: for all Cl ∈ C do

7: {v(Cl ∪ Bl), s(Cl ∪ Bl)} ← Solve Problem BIN-KP

8: end for

9: l∗ = arg max
l∈C

{v(Cl ∪ Bl)}

10: if v(Cl∗) ≥
v(Cl∗∪Bl∗)

2 then

11: return Cl∗

12: else

13: F1 ← Cl∗

14: F2 ← Bl∗

15: if s(F1) ≥
Θ
2 then

16: return Bl∗

17: else

18: Sort F2 in non-increasing order of their profits and

traffic class k
19: while s(F1) < Θ

2 do

20: e = pop(F2)

21: F1 ← {F1 ∪ e}
22: end while

23: if v(F2) ≥
v(Cl∗∪Bl∗)

2 then

24: return F2

25: else

26: E ← arg max{v(F1 \ e); v(F2)}
27: return E
28: end if

29: end if

30: end if

where v(σ
(k)
i) denotes the profit 9 of slice σ

(k)
i (in our case

Ri ·Li) whereas s(σ
(k)
i) is the geometrical area of slice σ

(k)
i .

The aim of Problem BIN-KP is to maximize the total profit

by keeping the 2-slice set (Cl) as fixed while adding additional

slice requests as long as all selected items fit within the total

system capacity (Θ). The solution provides a set Bl = {ωi} of

binary values specifying whether network slice σ
(k)
i has been

included into Bl. Based on the FPTAS [28], we retrieve the

best solution, i.e., a set of network slice requests (Cl∗ ∪ Bl∗)

among all binary knapsack problems BIN-KP (line 9).

If the total profit v(·) assigned to the 2-slice set requests Cl∗

is greater than the half of the best profit retrieved after running

all knapsack problems, we keep Cl∗ as the best feasible set

(line 10-11). Otherwise, we split the best set into two subsets

F1 and F2 (line 13-14), where Cl∗ is assigned to F1 while the

9With abuse of notation, we use throughout the paper v(U) to identify the
overall profit of all elements in U , i.e., v(U) =

�
u∈U

v(σu).

1552 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 4, AUGUST 2019

remaining items to F2. In this case, F1 has a total profit less

than the half of profit of the best solution whereas F2 shows a

total profit greater than the half of the best solution (recall that

the sum of the profits of both subsets gives exactly the profit

of the best solution). If the total space covered by the items

within F1 is greater than the half of the total system capacity

area (line 15), the second subset F2 will consequently cover

less then the half of the available system capacity. 10 Therefore,

the subset F2 = Bl∗ could be easily (in polynomial time)

packed into the system capacity (line 16). Otherwise, if the

space of F1 is not enough to cover the half of the total system

capacity Θ, we move the item with the greatest profit and the

highest traffic class k (more flexible) from F2 to F1 one by

one until the space of F1 is greater than the half of the system

capacity (lines 19-22). Then, if the total profit of F2 is greater

than the half of the best one (line 23), the algorithm ends and

we keep F2 as the optimal set. Otherwise, we choose the set

providing the best total profit after comparing F2 without the

latest added element, against F1.

Theorem 2: The Algorithm 1 provides a performance ratio

of at most 5
2 + .

Sketch of Proof: The binary knapsack problem BIN-KP

admits an FPTAS, as shown in [28]. For any small > 0,

there exists an algorithm that provides in polynomial time

the best solution Cl∗ ∪ Bl∗ among
(

|Σ|
2

)

knapsack problems

with a total profit of v∗ = v(Cl∗ ∪ Bl∗), where v∗ = OPT
1+ǫ/2

and OPT is the profit of the optimal solution. When we

split the best set of items into two subsets F1 and F2 while

moving items one by one from F2 to F1 in order to reach half

of the total system capacity Θ, the first subset F1 contains

more than 2 items, i.e., |F1| ≥ |Cl| + 1, where |Cl| = 2
by definition. Considering the last added item u in F1, its

profit is v(σu) ≤ v(F1)
3 . If v(F2) < 2 v∗

5 then v(F1) > 3 v∗

5 .

Therefore, v(F1 \ u) ≥ 2 v(F1)
3 > 2 v∗

5 . In this case the

performance ratio is at most 5/2+ (line 27 of Algorithm 1).

In all other cases (line 11, line 16 and line 24), the solution

provides a profit of at least v∗

2 that results in a performance

ratio of at most 2 + . �

The first 5 rows of our algorithm are solved within O(n2)
computational time, revealing the number of knapsack prob-

lems BIN-KP to be solved. Given that the knapsack problem

solution is achieved within a O(n log n), as the solution is

optimal with a moderate number of items, the complexity of

the Network Slices Packer is dominated by O(n3 log n).

Forecasting-Aware Network Slicer: When the forecasted

information is available, i.e., network slice requests accurately

reshaped, the admission control might fit more network slice

requests while still guaranteeing the committed traffic SLAs.

To this aim, we need to propose a new algorithm that reflects

the concept of simulated annealing [29]. The additional com-

plexity is due to the feasibility check of a given set of items

into the system capacity: packing items in a different order

might influence the solution optimality in the next attempts.

10Based on the Steinberg’s theorem, if the sum of the item areas are less than
the half of the box, they can be packed. See A. Steinberg, “A strip-packing
algorithm with absolute performance bound 2”, SIAM Journal on Computing.

The details of the algorithm are described in the following.

We adopt a coding scheme called sequence pair [30] to

represent candidate solutions of Problem ADM-CONTROL.

The solution is represented by a pair of permutations of

|I| items {π+, π−}. The first π+ permutation indicates the

spatial relation between items on the horizontal axis. In other

words, the order of the items included in π+ unveils how they

are spatially allocated into the system capacity, e.g., if i is

specified before j in π+, it should be allocated on the left side

of j. Similarly, π− provides guidelines on how to vertically

accommodate items into the system capacity.

The algorithm iteratively works on such permutations. The

simulated annealing scheme could easily change the permuta-

tions by checking at every step kk whether the new locations

of selected items into the system capacity are i) feasible

(i.e., within the system capacity bounds and not overlapping

each others) and ii) whether they provide a greater objective

function value, i.e., ∆F = Fkk+1(x) − Fkk(x) > 0. The

objective function Fkk(x) at step kk is defined as the overall

profit of accommodated items into the system capacity based

on the sequence pair {π+, π−}.

However, solutions with lower objectives might also be

accepted according to an admission probability Pra(∆F) =
∆F
Tr , where Tr is defined as a temperature value obtained by

the logarithmic cooling function Trk = Tr0

ln(1+kk) whereas Tr0

is the initial temperature. The temperature implicitly defines

the scope of our search while looking for a better solution.

At the beginning of the algorithm execution, the temperature

value is high resulting in a broader area to find a better solu-

tion. As the number of steps grows, the temperature decreases

and our algorithm focuses on more selective areas. This

mechanism prevents our scheme from selecting sub-optimal

value thereby choosing the global optimum.

The Forecasting-aware Network Slicer algorithm starts by

sorting in non-increasing order the slice requests according

to their profits (ci) and traffic class (k). At each step kk,

the algorithm decides to shuffle permutations π+, π−, add

a new item into both sets or remove an existing one. The

algorithm stops when the temperature Tr reaches a zero-value

without finding better solutions in the next steps. While this

algorithm asymptotically finds the global optimal solution,

the running time might be not affordable. In Section VII,

we provide an empirical complexity analysis with suggestions

to improve it.

VI. SCHEDULING NETWORK SLICE TRAFFIC

Once network slices have been admitted, a proper schedul-

ing is needed to meet the slice SLAs. In the following we

present a novel network slice scheduler running on each base

station that pursues the following two goals: i) serving the

tenant traffic of the granted network slices, and ii) providing

the required feedback to the forecasting process, yielding a

closed-loop solution that drives the system to optimal perfor-

mance (see Fig. 1).

A. Multi-Class Slice Scheduler

We start by designing a scheduling algorithm that accounts

for the different slice SLAs. We denote a traffic request

SCIANCALEPORE et al.: RL-NSB 1553

from tenant i under base station b for traffic class k by

r
(k)
i,b,z . We consider 6 traffic classes as described in Table I.

Each traffic class is characterized by a time window T (k)

identifying the time duration [z; z + T (k)] for which a class

should see the rate guaranteed, where z ∈ Z denotes the

individual time intervals. This is shorter for high-demanding

traffic requirements, larger for best-effort class. The scheduler

ensures that the amount of committed resources is served

within the given time window.

The key objective of our novel network slice traffic sched-

uler is to minimize consumed resources while guaranteeing the

traffic SLAs within a network slice. When forecasted traffic

and tenant distribution information is available, the scheduler

expects slice traffic levels below the predicted traffic bounds

i.e., r
(k)
i,b,z ≤ R̂

(k)
i,b,z , ∀z ∈ Li. If forecasted traffic bounds are

under-estimated and the traffic demands exceed the expected

values, the allocated resources may grow to a value as

large as the value agreed during the slice request admission,

i.e., R
(k)
i = R

(k)
i,b , ∀b ∈ B. In this case, slice allocations may

overlap and traffic class requirements might not be satisfied

incurring in slice SLA violations.

We formulate the scheduler problem as a general minimiza-

tion problem addressing all traffic class SLAs within a time

window TSCHED much larger than any time window T (k),

i.e., TSCHED ≫ T (k), ∀k. We let s
(k)
i,b,j denote the scheduled

traffic corresponding to the resources served at time j under

base station b for each network slice, within the set of admitted

slices x
b,(k)
i available from the admission phase. The problem

is formulated as follows

Problem: SLICER-SCHEDULING
11:

minimize
∑

j∈TSCHED

(

s
(k)
i,j + ζ P

(k)
i,j

)

subject to

⎛

⎝

zk+̄t+T (k)
∑

j=zk+̄t

s
(k)
i,j

⎞

⎠≥r
(k)
i,z x

(k)
i , ∀z∈

[

0, ⌈
Li

T (k)
⌉−1

]

;

∑

i∈N

s
(k)
i,j ≤ Θ + P

(k)
i,j , ∀j ∈ L;

s
(k)
i,j ∈ R+, ∀i ∈ N , j ∈ L, k ∈ K;

where Θ is the capacity of the cell, given by the total amount

of resource blocks, whereas P
(k)
i,j is the penalty incurred for

not having satisfied a particular tenant slice traffic SLA, i.e., a

SLA violation. ζ is constant factor set to a large value so as

to guarantee that decreasing the penalty P
(k)
i,j has always the

highest priority.

We have design a simple heuristic to solve Problem

SLICER-SCHEDULING based on the earliest deadline

first (EDF) policy, as shown in Algorithm 2. The algorithm

is run every time slot j. We select only slice traffic requests

r
(k)
i of admitted network slice requests σi, i.e., where xi = 1

(line 3). We calculate a utility function µi for each network

slice request by giving more priority to those close to the

deadline T
(k)
i (line 5). Thus, we start scheduling slice traffic

requests within the available system capacity Θ (line 16) based

11To reduce clutter, hereafter we drop the cell subscript b as the same
problem formulation can be independently applied to multiple cells.

Algorithm 2 Multi-Class Slice Scheduler: Algorithm to

Schedule the Network Slice Traffic at Time j Without Vio-

lating Traffic SLAs Within the Time Window TSCHED

Input: X = {x
(k)
i }, Σ = {σ

(k)
i }, r

(k)
i,j , Θ

Initialization: C = 0, s
(k)
i,j = 0, P

(k)
i,j = 0; ∀i ∈ I

Procedure

1: r
(k)
i = r

(k)
i + r

(k)
i,j

2: for all σi(r
(k)
i,z , T

(k)
i) do

3: if x
(k)
i == 1 then

4: if (T
(k)
i − j) ≥ 0 then

5: A ← µi =

�
r
(k)
i,z −

j�
t=0

s
(k)
i,t

�

(T
(k)
i −j)Θ

6: else

7: P
(k)
i,j = r

(k)
i −

t
∑

j=0

s
(k)
i,j

8: r
(k)
i = 0

9: end if

10: end if

11: end for

12: C = Θ
13: while C > 0 do

14: Sort A in non-increasing order of utility µi

15: H ← A, Pull only element(s) with highest utility µi

16: s
(k)
i,j = min{r

(k)
i , ⌈ C

|H|⌉}, ∀i ∈ H

17: C = C −
∑

i∈I

s
(k)
i,j

18: r
(k)
i = r

(k)
i − s

(k)
i,j , ∀i ∈ I

19: end while

Output: s
(k)
i,j , P

(k)
i,j , r

(k)
i ; ∀i ∈ I

on such utility. We keep assigning resources to network slices

until the system capacity is saturated (line 12). Slice traffic

requests r
(k)
i not fully satisfied are kept for the next time slot

j+1. If they are not served within the deadline T
(k)
i , a penalty

value P
(k)
i,j is set up (line 7).

The network slice scheduler keeps track of SLA violations

by monitoring the penalty values P
(k)
i,j to promptly trigger

dynamic forecasting parameters adjustments (as explained in

the next sub-section).

B. Online Reinforcement Learning

Forecasting process failures may lead admission control

to overbook available network resources, yielding SLA vio-

lations. A monitoring procedure is designed to keep track

of the number of such violations and provide feedbacks to

the forecasting phase about the penalty value P
(k)
i,j in Prob-

lem SLICER-SCHEDULING. From Eq. (4), we can derive

the forecasting error probability for a generic traffic class k as

follows

χ
(k)
i : h

(k)
i Ωχ

√

V ar(e
(k)
i,z) = d̂

(k)
i , (12)

1554 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 4, AUGUST 2019

TABLE II

SYSTEM PARAMETERS ([31])

where h
(k)
i is the penalty history function defined as 12

h
(k)
i = e

nm
WS+nm , (13)

with nm defined as the number of times the penalty is null,

P
(k)
i,j = 0, ∀j, and WS as the length of the season considered

in the forecasting process in Section IV. The penalty history

function represents the control policy and drives the system

from a setting where a higher forecasting error probability

may be experienced to a more conservative setting, where

no SLA violation occurs. This is efficiently done by our

algorithm: in case of forecasting failures, a larger forecasting

error probability (χ
(k)
i) is derived pushing the system towards

a more conservative setting, with smaller gains.

VII. PERFORMANCE EVALUATION

We carried out an exhaustive simulation campaign to

validate our RL-NSB framework. Our system is evaluated

through an ad-hoc simulator developed in MATLAB®with a

dual Intel(R) Xeon CPU 2.40GHz 4-cores and 16GB RAM.

A summary of the simulation parameters used is provided

in Table II. The system includes |B| = 7 base stations ([31])

and |I| = 10 tenants ([3]). The average number of users

associated with a tenant is E[|Ui|] = 100, which are distributed

uniformly. When they move, a SLAW model is applied [24].

Each tenant slice request may require an amount of resources

ranging from 5% to 25% of the total system capacity, while

their duration ranges between 1000 and 3600 seconds. Pi,k

defines the probability that a slice request reaches the network

within a time window. At the beginning of each TFUTURE

the admission control procedure is invoked. Based on the

forecasting information, network slice requests are granted for

the next time window and the associated slice traffic is served.

A. System Utilization and SLA Violations

A dynamic analysis of our system is provided here. Since

no other work in the literature has proposed a solution for

addressing network slice request accommodation, we bench-

mark our proposal against a legacy solution wherein no

forecasted information is available during the admission con-

trol phase. The results are shown in Fig. 6(a) for a long

simulation period of 720 minutes in terms of system utiliza-

tion Ul = Θ −
∑

i,k s
(k)
i,j , ∀j ∈ TFUTURE, based on Prob-

lem SLICER-SCHEDULING. After a prior training period,

12Note that different penalty history functions might be applied in order
to properly model the feedback loop reactiveness without affecting the
complexity of the proposed framework.

Fig. 6. System performance comparison with and without forecasting
preprocessing. (a) System utilization. (b) SLA Violations.

the forecasting process provides useful information to the

admission control block. Based on such information, network

slice requests are properly reshaped and more traffic requests

are efficiently accommodated into the network capacity. The

gain after the second time window is about 20%. While no

SLA violation occurs, the forecasting process moves from

a conservative behavior to a more aggressive by reducing

the safe margin, i.e., the forecasting error probability from

Eq. (12), which visibly brings more gain in terms of system

utilization. However, due to the randomness of the traffic

requests issued to the system, forecasted information might

underestimate the real traffic level resulting in a SLA violation,

as shown in Fig. 6(b). This triggers the penalty history function

h
(k)
i which increases the forecasting error probability in the

next time window, thereby keeping the SLA violation under

control. Interestingly, our solution boosts the system utilization

up to 100% while incurring a small SLA violation per tenant

request (about 1.8% in a very short period).

B. Training and Prediction Performance

In [12, Fig. 6], we deeply evaluated the effectiveness

of the forecasted information as the relative gain GF =
(

ŪlF
ŪlL

− 1
)

%, where Ū lF and Ū lL are the average utilization

value of the forecasting and legacy solution, respectively.

Hereafter, we evaluate the impact of the training period on

the forecasting process and, in turn, on the overall system

performance in terms of efficiency and revenues.

On the one hand, we show the relative gain GF when

different observation window sizes are considered in Fig. 7.

As explained in Section IV, the observation window plays

a key-role as it unveils the trend, level and season features

of the (traffic) time-series for any admitted slice. The larger

the observation window, the more available past information,

the higher the accuracy of the forecasting process. However,

a very long observation period may prevent the system from

accurately following traffic variations, especially when dealing

SCIANCALEPORE et al.: RL-NSB 1555

Fig. 7. Evaluation of different observation window-values TOBS when the
number of tenants is I = 10 and TFUTURE = 7200s.

Fig. 8. Evaluation of different future window-values TFUTURE when the
number of tenants is I = 20 and TOBS = 3600s.

with periodic traffic (within fixed time-seasons). This behavior

is clearly showed in Fig. 7, where both curves tend to

saturation after certain observation window-values. Note that,

when the observation window is set to TOBS = 0, there is

no available information for the forecasting process leading

to a relative gain equal to 0. In addition, a longer observation

window implies higher complexity and requires more memory

to store information, as depicted on the right y-axis in Fig. 7.

On the other hand, the future time window TFUTURE exhibits

its relevance in Fig. 8 as it directly impacts on the decision

window in the slice admission control. While a large future

time window may result in inaccurate forecasted values (as

explained in Section IV), a short one may require the admis-

sion control to run very frequently resulting in higher time

complexity. Therefore, both terms must be properly adjusted,

as explained in [32], based on the tenant traffic features, user

mobility properties and network deployments.

C. User Mobility

When users of different tenants are geographically spread on

different areas, the proposed solution can learn and leverage

on such information to improve the efficiency of admission

control mechanism. Indeed, if different slices use network

Fig. 9. System utilization gain for different network scenarios when
γ = 42%.

resources of different cells, they can safely be admitted without

risking saturation in any of these cells. The improvement on

the overall efficiency of the network translates, in turn, into

more admitted network slices and increased revenues.

Due to the nature of vertical segments (for e.g. automotive

tenant that only gets users within specific geographical areas)

we assume that each tenant is modeled with a different set

of clusters and different structure of way-points within such

clusters, as previously shown in Fig. 2. Please note that the

spread of tenant users over the cellular network significantly

affects the overall system performance. The smaller the num-

ber of selectable clusters, the more the accuracy of our tenant

distribution prediction module. This in turn translates into a

higher multiplexing gain as shown in Section V. We model

the tenant spread with a spread factor γ.

We first improve the synthetic scenario shown in [12, Fig. 6]

by limiting the spread of the tenant users to γ = 42%. In other

words, each tenant users are distributed a-priori only on the

42% of the cells in the network. Our solution can iteratively

learn such information and allocate the network slice along

those affected cells c. Obtained results are shown in Fig. 9.

Considering the maximum system capacity Θ = 200 RBs,

the relative gain is above 100% when the number of tenants

asking for network slices is large.

We also evaluate the relative gain while varying the spread

factor γ for different system capacity values and two scenarios

with 10 and 20 tenants, as depicted in Fig. 10. Notably, when

few tenants are requesting network slices (I = 10), the relative

gain curve exhibits an increasing trend as the tenant users

are located within smaller areas. The reason is due to the

spatial multiplexing gain obtained for those tenants using only

limited portions of the network: our mechanism can learn

and predict the user distributions and efficiently reduce the

spatial extension of the network slice admitted into the system.

When the number of tenants is large (I = 20), due to the

high variability of the network slice requests, the system can

better select those maximizing the system efficiency and reach

even higher values of relative gains GF. However, we note

that after certain spread factor values, the curve shows a

saturation behavior. All in all, our simulation campaign proves

1556 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 4, AUGUST 2019

Fig. 10. System utilization gain for different heterogeneity levels γ.

TABLE III

EMPIRICAL COMPLEXITY ANALYSIS

that specific tenants behaviors—when accurately captured—

can significantly benefit the admission control process and the

system efficiency maximization.

D. Algorithm Complexity

Finally, we provide an empirically study of the computa-

tional cost for the two admission control algorithms proposed.

For a fair comparison, we apply the algorithm to the same

instances of the problem and average the results over several

instances (100). Note that in this study only regular network

slice shapes are considered.

In Table III, we show the results for different tenants present

in the system. The results are expressed in terms of number

of slices admitted into the system capacity (on the left part

of the column) and time elapsed for getting a response to

an admission request (on the right part of the column). The

average number of network slice requests within a single

instance of the problem ranges from 30 (with 10 tenants)

to 90 (with 30 tenants). Interestingly, the Forecasting-aware

Network Slicer algorithm outperforms the Network Slices

Packer, but it also experiences a longer computational time.

We impose a time limit TZ = 600s to avoid the process

starvation. Given the long-term execution (every 30 minutes)

of admission control algorithms, this time bound is still

acceptable for the overall system implementation. Results for

that fixed time window are shown in brackets while optimal

ones when the algorithm successfully ends are highlighted

in bold text. Indeed, the Forecasting-aware Network Slicer

algorithm shows reasonable results in an affordable computing

time.

Conversely, when irregular shape patterns are considered,

the time complexity of the Forecasting-aware Network slicer

further increases. This may become a significant drawback

when the number of network slice requests is greater then 50.

We overcome this problem in the following way. We first apply

the network slices packer algorithm for the case with regular

shapes. This provides an initial state for the Forecasting-aware

Network slicer, which then starts exploring the neighboring

solutions to check whether they fit into the system capacity.

In this way, we are able to reduce the computational time

of the Forecasting-aware Network slicer by 20%, making it

suitable for realistic deployments.

VIII. CONCLUSIONS

In this paper, we have presented our proposed network slic-

ing traffic framework for a Reinforcement Learning-based 5G

Network Slice Broker (RL-NSB) building on i) traffic forecast-

ing, ii) slice admission control and iii) slice traffic scheduling.

The forecasting solution builds on Holt-Winters theory to

predict future traffic levels per network slice and analyzes

users’ behavior to infer future mobility patterns. Predictions

are used to improve the admission control decision process

with the goal of maximizing the overall system utilization. The

admission control solution maps the problem of admitting slice

requests onto a geometric knapsack problem. As this problem

is NP-hard, we have proposed two computationally-tractable

algorithms that address, respectively, regular and irregular

network slice requests. The network slice scheduling solution

keeps track of SLA violations for the different slices and feeds

this information back to the forecasting engine, which adapts

its behavior to correct the deviations observed.

Our main findings can be summarized as follows:

i) Holt-Winters theory is effective to forecast network slic-

ing traffic, ii) elastic network slice requests might increase

the maximum achievable system utilization due to the loose

service guarantees, iii) the information on users spatial distrib-

ution can be used to drive admission control decisions and thus

increase the network efficiency, iv) the benefits resulting from

a proper forecasting increase as the number of network slice

requests and system capacity grows and v) very significant

system utilization gains can be achieved while keeping very

low SLA violation risk levels.

REFERENCES

[1] GSMA. (Sep. 2017). Smart 5G Networks: Enabled by Network

Slicing and Tailored to Customers’ Needs. [Online]. Available:
https://www.gsma.com/futurenetworks/wp-content/uploads/2017/09/5G-
Network-Slicing-Report.pdf

[2] System Architecture for the 5G System, document 3GPP TS 23.501,
v. 16.0.2, Third Generation Partnership Project (3GPP), Apr. 2019.

[3] “NGMN 5G white paper,” NGMN Alliance, Frankfurt, Germany,
Tech. Rep. Version 1, Feb. 2015.

[4] K. Samdanis, X. Costa-Perez, and V. Sciancalepore, “From network
sharing to multi-tenancy: The 5G network slice broker,” IEEE Commun.

Mag., vol. 54, no. 7, pp. 32–39, Jul. 2016.
[5] Study on Radio Access Network (RAN) Sharing Enhancements,

document 3GPP TR 22.852, v. 13.1.0, Third Generation Partnership
Project (3GPP), Sep. 2014.

[6] A. R. Raikwar et al., “Long-term and short-term traffic forecasting using
holt-winters method: A comparability approach with comparable data in
multiple seasons,” Int. J. Synth. Emot., vol. 8, no. 2, pp. 38–50, 2017.

SCIANCALEPORE et al.: RL-NSB 1557

[7] O. Narmanlioglu, E. Zeydan, M. Kandemir, and T. Kranda, “Prediction
of active UE number with Bayesian neural networks for self-organizing
lte networks,” in Proc. 8th Int. Conf. Netw. Future (NOF), Nov. 2017,
pp. 73–78.

[8] R. Mahindra, M. A. Khojastepour, H. Zhang, and S. Rangarajan, “Radio
access network sharing in cellular networks,” in Proc. IEEE Int. Conf.

Netw. Protocols (ICNP), Oct. 2013, pp. 1–10.
[9] R. Kokku, R. Mahindra, H. Zhang, and S. Rangarajan, “NVS:

A substrate for virtualizing wireless resources in cellular networks,”
IEEE/ACM Trans. Netw., vol. 20, no. 5, pp. 1333–1346, Oct. 2012.

[10] X. Costa-Pèrez et al., “Radio access network virtualization for future
mobile carrier networks,” IEEE Commun. Mag., vol. 51, no. 7,
pp. 27–35, Jul. 2013.

[11] J. He and W. Song, “AppRAN: Application-oriented radio access
network sharing in mobile networks,” in Proc. IEEE Int. Conf. Com-

mun. (ICC), Jun. 2015, pp. 3788–3794.
[12] V. Sciancalepore et al., “Mobile traffic forecasting for maximizing 5G

network slicing resource utilization,” in Proc. IEEE Int. Conf. Comput.

Commun. (INFOCOM), May 2017, pp. 1–9.
[13] J. S. Panchal, R. D. Yates, and M. M. Buddhikot, “Mobile network

resource sharing options: Performance comparisons,” IEEE Trans. Wire-
less Commun., vol. 12, no. 9, pp. 4470–4482, Sep. 2013.

[14] G. Tseliou et al., “A capacity broker architecture and framework for
multi-tenant support in LTE-A networks,” in Proc. IEEE Int. Conf.
Commun. (ICC), May 2016, pp. 1–6.

[15] P. Caballero et al., “Multi-tenant radio access network slicing: Statistical
multiplexing of spatial loads,” IEEE/ACM Trans. Netw., vol. 25, no. 5,
pp. 3044–3058, Oct. 2017.

[16] Y. L. Lee, J. Loo, T. C. Chuah, and L.-C. Wang, “Dynamic network slic-
ing for multitenant heterogeneous cloud radio access networks,” IEEE

Trans. Wireless Commun., vol. 17, no. 4, pp. 2146–2161, Apr. 2018.
[17] B. Han et al., “A utility-driven multi-queue admission control solution

for network slicing,” in Proc. IEEE Int. Conf. Comput. Commun. (INFO-

COM), Apr. 2019, pp. 55–63.
[18] Telecommunication Management; Network Sharing; Concepts and

Requirements, document 3GPP TS 32.130, v. 15.0.0, Third Generation
Partnership Project (3GPP), Jun. 2018.

[19] J. Salvat et al., “Overbooking network slices through yield-driven
end-to-end orchestration,” in Proc. 14th Int. Conf. Emerg. Netw. Exp.
Technol. (CONEXT), 2018, pp. 353–365.

[20] G. Ash, Traffic Engineering and QoS Optimization of Integrated Voice

and Data Networks. Burlington, MA, USA: Morgan Kaufmann, 2007.
[21] B. Błaszczyszyn, M. Jovanovicy, and M. K. Karray, “How user through-

put depends on the traffic demand in large cellular networks,” in
Proc. 12th Int. Symposium Modeling Optim. Mobile, Ad Hoc, Wireless

Netw. (WiOpt), May 2014, pp. 611–619.
[22] A. B. Koehler, R. D. Snyder, and J. K. Ord, “Forecasting models and

prediction intervals for the multiplicative Holt–Winters method,” Int. J.

Forecasting, vol. 17, no. 2, pp. 269–286, Apr./Jun. 2001.
[23] Technical Specification Group Services and System Aspects; Policy and

Charging Control Architecture, document 3GPP TS 23.203, v. 16.0.0,
Third Generation Partnership Project (3GPP), Mar. 2019.

[24] K. Lee et al., “SLAW: Self-similar least-action human walk,” IEEE/ACM
Trans. Netw., vol. 20, no. 2, pp. 515–529, Apr. 2012.

[25] T. Hofmann, “Unsupervised learning by probabilistic latent semantic
analysis,” Mach. Learn., vol. 42, no. 1, pp. 177–196, Jan. 2001.

[26] C. Biernacki, G. Celeux, and G. Govaert, “Choosing starting values
for the EM algorithm for getting the highest likelihood in multivari-
ate Gaussian mixture models,” Comput. Stat. Data Anal., vol. 41,
pp. 561–575, Jan. 2003.

[27] K. Jansen and G. Zhang, “Maximizing the total profit of rectangles
packed into a rectangle,” Algorithmica, vol. 47, pp. 323–342, Mar. 2007.

[28] H. Kellerer and U. Pferschy, “A new fully polynomial time approxima-
tion scheme for the knapsack problem,” J. Combinat. Optim., vol. 3,
no. 1, pp. 59–71, Jul. 1999.

[29] A. Liu et al., “Improved simulated annealing algorithm solving for 0/1
knapsack problem,” in Proc. 6th Int. Conf. Intell. Syst. Design Appl.,
Oct. 2006, pp. 1159–1164.

[30] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “VLSI module
placement based on rectangle-packing by the sequence-pair,” IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 15, no. 12,
pp. 1518–1524, Dec. 1996.

[31] Guidelines for Evaluation of Radio Interface Technologies for IMT-

Advanced, document ITU-R M.2135-1, ITU-R, Geneva, Switzerland,
Dec. 2009.

[32] S. Gelper, R. Fried, and C. Croux, “Robust forecasting with expo-
nential and Holt–Winters smoothing,” J. Forecasting, vol. 29, no. 3,
pp. 285–300, 2010.

[33] E. M. Arkin, S. Khuller, and J. S. B. Mitchell, “Geometric knapsack
problems,” Algorithmica, vol. 10, no. 5, pp. 399–427, Nov. 1993.

Vincenzo Sciancalepore (S’11–M’15) is a Senior
Researcher and a RAN Specialist with the NEC Lab-
oratories Europe, Germany. He is currently focusing
his activity in the area of network virtualization
and network slicing challenges. He was a recipient
of the national award for the best Ph.D. thesis in
the area of communication technologies in 2015.
He is involved in the IEEE Emerging Technologies
Committee leading the initiatives on SDN and NFV
as well as in the IEEE Mobile Communication Net-
works Standards Committee (IEEE MobiNet-SC).

Xavier Costa-Perez (M’06–SM’18) received the
M.Sc. and Ph.D. degrees in telecommunications
from the Polytechnic University of Catalonia (UPC),
Barcelona, Spain. He is currently the Head of 5G
Networks R&D and the Deputy General Manager
of the Security & Networking Research Division,
NEC Laboratories Europe. His team contributes to
products roadmap evolution as well as to Euro-
pean Commission R&D collaborative projects and
received several awards for successful technology
transfers. He was a recipient of a national award
for the Ph.D. thesis.

Albert Banchs (M’04–SM’12) received the M.Sc.
and Ph.D. degrees from the Polytechnic Univer-
sity of Catalonia (UPC-BarcelonaTech) in 1997 and
2002, respectively. He was with the ICSI, Berkeley,
in 1997, Telefónica I+D in 1998, and NEC Europe
Ltd. from 1998 to 2003. He is currently a Full
Professor with the University Carlos III of Madrid
(UC3M) and has a double affiliation as the Deputy
Director of the IMDEA Networks Institute. His
research interests include the performance evalua-
tion and algorithm design in wireless and wired
networks.

