
Received February 15, 2021, accepted March 15, 2021, date of publication April 2, 2021, date of current version April 14, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3070627

RL-PDNN: Reinforcement Learning for
Privacy-Aware Distributed Neural
Networks in IoT Systems

EMNA BACCOUR 1, AIMAN ERBAD 1, (Senior Member, IEEE),

AMR MOHAMED 2, (Senior Member, IEEE), MOUNIR HAMDI 1, (Fellow, IEEE),

AND MOHSEN GUIZANI 2, (Fellow, IEEE)
1Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
2CSE Department, College of Engineering, Qatar University, Doha, Qatar

Corresponding author: Emna Baccour (ebaccourepbesaid@hbku.edu.qa)

ABSTRACT Due to their high computational and memory demand, deep learning applications are mainly

restricted to high-performance units, e.g., cloud and edge servers. Particularly, in Internet of Things (IoT)

systems, the data acquired by pervasive devices is sent to the computing servers for classification. However,

this approach might not be always possible because of the limited bandwidth and the privacy issues.

Furthermore, it presents uncertainty in terms of latency because of the unstable remote connectivity. To sup-

port resource and delay requirements of such paradigm, joint and real-time deep co-inference framework

with IoT synergy was introduced. However, scheduling the distributed, dynamic and real-time Deep Neural

Network (DNN) inference requests among resource-constrained devices has not been well explored in the

literature. Additionally, the distribution of DNN has drawn the attention to the privacy protection of sensitive

data. In this context, various threats have been presented, including white-box attacks, where malicious

devices can accurately recover received inputs if theDNNmodel is fully exposed to participants. In this paper,

we introduce a methodology aiming at distributing the DNN tasks onto the resource-constrained devices of

the IoT system, while avoiding to reveal the model to participants. We formulate such an approach as an

optimization problem, where we establish a trade-off between the latency of co-inference, the privacy of

the data, and the limited resources of devices. Next, due to the NP-hardness of the problem, we shape our

approach as a reinforcement learning design adequate for real-time applications and highly dynamic systems,

namely RL-PDNN. Our system proved its ability to outperform existing static approaches and achieve close

results compared to the optimal solution.

INDEX TERMS IoT devices, distributed DNN, privacy, white-box, resource constraints, DQN.

I. INTRODUCTION

The deep neural networks represent the core technique for a

wide spectrum of applications, including computer vision [2]

and natural language processing [1]. The prevalence and

achievements of DNN learning are related to the deep struc-

ture of the adopted neural network. A typical DNN network

may contain tens of layers and hundreds of neurons, and

these parameters can even scale to reach millions of nodes.

A prominent state-of-the-art DNN is VGG network [3], con-

structed of convolutional layers and deep architecture, which

results in an outstanding performance for many applications,

The associate editor coordinating the review of this manuscript and

approving it for publication was Junggab Son .

particularly image processing. Such DNN-based applications

are typically characterized by a high memory occupation

and computational load, which restricts their implementation

in low cost and limited energy devices and their deploy-

ments in powerful machines. In pervasive systems, rely-

ing on resource-constrained IoT devices, the deep learning

tasks (e.g., image processing) require data gathering and

transmission from sensors (e.g,. cameras and microphones)

to remote servers for processing. However, this approach

might not be possible if the data gathering-to-classification

latency does not match the real-time requirements of the

applications, specifically those that need prompt interven-

tions. Moreover, the system stability highly depends on the

availability of remote connectivity between IoT units and

54872 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 9, 2021

https://orcid.org/0000-0001-8218-8745
https://orcid.org/0000-0001-7565-5253
https://orcid.org/0000-0002-1583-7503
https://orcid.org/0000-0002-9766-0085
https://orcid.org/0000-0002-8972-8094
https://orcid.org/0000-0002-6206-083X

E. Baccour et al.: RL-PDNN: Reinforcement Learning for Privacy-Aware Distributed Neural Networks in IoT Systems

computing servers, resulting in a fluctuating latency. Addi-

tionally, in surveillance systems, as IoT devices send high-

resolution images to remote servers at small intervals of time

despite the rare occurrence of events of interest, the large data

volume transmitted by source units becomes problematic and

may result in frequent congestion and higher network cost.

Because of tremendous data shared with remote servers

and the volatile latency to obtain the classification results,

AI processing should be moved as close as possible to

data-generating devices. However, the embedded resource-

constrained IoT systems fail to deploy large-scale com-

putation with reasonable latency and energy consumption.

To support DNN processing in IoT devices, the design

of deep learning solutions has been completely rethought,

while considering hardware and physical constraints. More

specifically, in order to fit the requirements of DNN into

the resource-constrained devices, collaborative deep learn-

ing strategies have been recently proposed in the literature.

The basic idea is to divide the DNN model into segments

(e.g., layers and multiplication tasks), and each segment is

allocated within a participant. Each participant shares the out-

put to the next participant until generating the final prediction.

Efforts dealing with DNN partitioning can be classified into

three categories: The first approach is to offload a fraction

of the DNN network to remote servers. In such partition-

ing approaches, shallow layers are computed in constrained

devices, while deep layers leverage the cloud [19]. In this

way, intermediate transmitted data is minimized. A second

partition strategy is the hierarchical architecture, where the

offloading is accomplished across cloud, edge servers, and

mobile devices [21]. These strategies consider mainly the del-

egation of DNN fractions from resource-constrained devices

to more powerful servers. Still, bottleneck scenarios can

occur in case of high classification demands. Recently,

researchers have investigated the feasibility of leveraging the

resources of IoT devices to jointly allocate different segments

of deep neural networks and execute the classification at the

vicinity of the source device [5]–[7].

These aforementioned works mainly studied the optimal

partition strategy that reduces the transmitted data and the

dependency between inference participants. Additionally,

the proposed approaches are based on static distribution of

the model, without taking into account the dynamics of the

system in terms of online classification requests. Rather,

offloading network segments needs to be conducted in real-

time to consider the distribution of the requests arriving to the

network, the dynamics of participants (participants joining

and leaving IoTs, etc.) and their capacity to handle multiple

parallel inference tasks. To summarize, scheduling the IoT

devices to perform real-time DNN tasks, while respecting

their available memory and computation capabilities, was

not explored by existing efforts. Furthermore, the distribution

of deep learning technologies has underlined the privacy

issues of sensitive data. In fact, when splitting the trained

model and distributing its segments among different partici-

pants, a malicious device can recover the input received from

the previous participant. Authors in [26] proposed different

attacks against collaborative inference, which include white-

box attacks. In white-box settings, the untrusted participant

has complete knowledge about the model (e.g., weights,

biases, and neurons) and attempts to map the received data

to the initial input in order to obtain the original data. Thus,

exposing only few segments to each participant should be

considered in the distribution process to enhance the security

of the system against white-box attacks.

In this paper, we study the distribution of Convolu-

tional Neural Networks (CNNs), as they have demonstrated

unprecedented efficiency in image and video classification.

To match resource-consuming DNN solutions with the con-

straints of IoT devices, we exploit the hierarchical design

characterizing deep learning models in order to suitably place

layers of dynamic incoming classification requests. Partic-

ularly, we propose an approach that receives as an input

the set of CNN classification requests (whose model was

previously trained) and the technological characteristics of

the IoT participants, and provides as an output the optimal

placement of inferences’ layers among the participants, while

having as an objective to minimize the classification latency

and cover the maximum of the model parameters from the

untrusted devices. The contributions of our paper are pre-

sented as follows:

• We formulate our privacy-aware collaborative infer-

ence as an optimization problem that aims to minimize

the classification latency, while respecting the required

white-box privacy by covering the structure of the model

from untrusted participants.

• To relax the optimization problem, we propose a

novel approach based on Reinforcement Learning (RL)

for privacy-aware distributed CNN networks, namely

RL-PDNN. This approach learns the allocation pol-

icy and takes real-time actions based on the available

resources, the dynamics of requests, and the required

privacy level. In this context, we define the set of states,

actions, and reward function, and we use an efficient

RL-approach: Deep Q-Learning (DQN).

• We conduct extensive simulations to evaluate the perfor-

mance of the RL-PDNN predictive model. Additionally,

we demonstrate that our RL-approach presents close

results to the optimal solution, and better results com-

pared to existing approaches.

Our paper is organized as follows: Section II explores some

related works. Section III presents our proposed framework,

the problem formulation and the RL-PDNN approach. The

evaluation of our approach is conducted in section IV, using

three state-of-the-art CNN networks. Finally, we present the

conclusion and future works in section V.

II. RELATED WORKS

Deep Neural Networks have become widely ubiquitous

owing to their ability to revolutionize a large variety of appli-

cations in many research fields, including image recognition.

Such high performance of DNN systems is related to the

VOLUME 9, 2021 54873

E. Baccour et al.: RL-PDNN: Reinforcement Learning for Privacy-Aware Distributed Neural Networks in IoT Systems

number of layers and the complex structure constituting the

network. A typical DNN network is composed of a series

of connected layers, where each layer is designed to execute

a defined task on the input data and to generate a specific

output. More precisely, some DNNs comprise tens of layers

associated with thousands of neurons, incurring a computa-

tion and a memory footprint of a terabyte of floating point

operations per second (flops) [27], [28]. As an example, VGG

is composed of more than 130 million parameters, resulting

in high performance in a variety of applications [3]. Another

example of CNNs applied mainly to image recognition is

AlexNet [9]. This model comprises 60 million parameters,

making it able to revolutionize visual recognition challenges.

Because of their intensive computational and memory

demands, deep learning tasks have mainly been assigned to

highly powerful machines requiring long transmission time

and stable connectivity, e.g., cloud/edge servers. In this con-

text, several efforts have been conducted to fit deep neural

networks to resource-constrained devices from computation,

memory, or hardware perspective. Particularly, a promising

approach that has been proposed in the literature, is compres-

sion, where the main idea is to reduce the number of param-

eters of the deep network in order to decrease the memory

demand and the execution time. Among the most popular

compression techniques designed for resource-constrained

IoT devices is pruning, which consists of eliminating param-

eters (e.g. weights and channels) with minor importance

[10]–[12]. Binarization [15] is another compression method

that uses binary values to design weights and activation

parameters. Another research direction aiming at accelerat-

ing the learning process is the design of custom integrated

circuits dedicated for deep learning tasks, including the tensor

processing unit (TPU) of Google [16]. Finally, many libraries

and software tools are commercialized to parallelize the DNN

computation (e.g. matrix multiplications), such as RSTensor-

Flow [17] and DeepX [18]. Even though the aforementioned

techniques presented high-performance solutions that enable

to integrate deep learning networks in pervasive IoTs, many

of them cannot be supported by all types of devices neither

all types of data. Additionally, most of these approaches

compromise the classification accuracy in order to compact

the deep models, which makes them inadequate for applica-

tions requiring precision and reliability of the inference tasks

(e.g., critical areas monitoring).

The wide prevalence and connection between IoT devices

paved the path for the research community to propose collab-

orative deep learning strategies in order to reduce bandwidth

bottlenecks, incur less latency, and preserve the accuracy of

the model [23], [24]. More specifically, collaborative deep

learning approaches consist of partitioning the DNN network

into segments and assigning different tasks to the IoT par-

ticipants intending to collaborate in the distributed system.

Efforts exploring DNN partitioning can be classified into

three categories: The first approach proposes to offload a

fraction of the DNN network to be computed in edge or

cloud servers. As the network goes deeper, the intermediate

outputs become relatively small, which makes the offload-

ing over the network less bandwidth consuming. Therefore,

it is more efficient to execute shallow layers on resource-

constrained devices and delegate the deep layers that require

high computation to powerful servers. Based on this moti-

vation, the objective is to determine the optimal split point

that minimizes the size of intermediate data and the latency to

transmit it. In this context, the authors of Neurosurgeon [19]

examined the impact of splitting the DNN network at differ-

ent layers on the latency and energy consumption and selected

the best partition point, accordingly. Similarly, authors in [20]

studied the computation time of different DNNs’ layers

and the transmission delays of their intermediate outputs,

when using different IoT technologies. Then, they defined

accordingly the optimal partitioning configuration that meets

the minimum classification latency. The second partition

strategy is the hierarchical splitting where the offloading is

accomplished across the cloud, edge servers, and mobile

devices. HDDNN [22] is one of the hierarchical partition-

ing approaches, where authors tested the performance of

the distributed system with heterogeneous nodes’ capacities,

heterogeneous DNN networks, and heterogeneous tasks.

Even though offloading only a fraction of the DNN net-

work to remote servers can be a solution to avoid network

bottlenecks, the transmission latency can prevent the imple-

mentation of such approaches, specifically for applications

with low-delays requirements and with high classification

demands. Recently, researchers have investigated a third

approach that consists of involving only the pervasive IoT

devices that offer their limited computational resources and

collaborate to execute different segments of the DNN. In this

context, two partitioning techniques have been introduced:

either to adopt per-layer distribution or to apply per-input

partitioning (e.g., rows or columns of feature maps). The

work in [25] presented an offline per-layer-CNN partitioning

strategy, where each layer computation is statically assigned

to one of the resource-constrained devices, without consid-

ering the dynamic of the online requests. On the other hand,

two contributions marked the input-wise partitioning, namely

MoDNN [4] and DeepThings [5]. These approaches exam-

ined the optimal segmentation of DNN models that mini-

mizes the amount of data transmitted between participants.

However, scheduling the correlation between IoT devices to

perform online and dynamic inference tasks, while respecting

their computational and memory constraints, has not been

considered by previous works. Following the same input-

wise partitioning strategy, we proposed in our work in [6] to

distribute the feature-maps transformation tasks into different

IoT devices, such as each untrusted participant receives only

a part of the shared data and cannot apply black-box attacks to

revert it and generate the original input. Such a fine-grained

partition results in a high dependency between devices and

a large bandwidth utilization to transmit intermediate data.

In addition, a pervasive system that includes tens and even

hundreds of IoT participants is required to allocate different

segments of the DNN network.

54874 VOLUME 9, 2021

E. Baccour et al.: RL-PDNN: Reinforcement Learning for Privacy-Aware Distributed Neural Networks in IoT Systems

Our proposed method is distinguished from the afore-

mentioned approaches by several points: (1) The works that

proposed re-designing the model to fit the DNN networks on

IoT devices, such as compression, showed a high potential

to reduce the size of CNN networks with lower accuracy

performance [13], [14] or without loss of accuracy [11], [12].

However, squeezed deep networks may still be not suitable

for IoT devices, particularly those resulting from very large

DNNs or when the end-devices are small. In contrast, our

approach presents a solution, where no modification of the

DNN characteristics is introduced during the distribution.

Instead, we distribute a high-performance trained model that

proved its efficiency on classification tasks. Furthermore,

decomposing the DNN into small segments allows its deploy-

ing on constrained devices. (2) The input-wise distribution

is designed for highly resource-limited devices or for sensor

networks that are not even able to execute layers of deep

DNN models. Furthermore, these methods are implemented

on large pervasive systems that include hundreds of devices

and support large data transmission between participants.

In our work, we opt for per-layer distribution in order to

design a system with a reduced number of participants and a

lower dependency between them, while guaranteeing the per-

vasive deep learning and the security of the model. (3) Some

previously-described efforts proposed a static distribution of

DNN models, where each subset of devices is responsible

for processing a specific portion of the DNN model. This

does not fit our online system, where a dynamic incoming

load of classifications is received randomly and the connected

IoT devices must cooperate to parallelize all requests and

optimally leverage the limited resources, without being con-

strained by a static planned partitioning. (4) To the best of

our knowledge, we are the first to investigate real-time CNN

inference distribution over an IoT network, while consider-

ing the security of the system and covering the structure of

the network from untrusted participants against white-box

attacks, using reinforcement learning technique.

III. PRIVACY-AWARE DISTRIBUTED CNN

FOR IoT DEVICES

In this section, we present our distributed CNN approach

for privacy-aware and low decision-latency applications,

the system model, followed by our strategy formulated as an

optimization problem. As the optimal solution is NP-hard,

we shape our problem as a RL approach adequate for highly

dynamic systems and online classification.

A. SYSTEM MODEL

Our pervasive system is composed of a set S = {s1, . . . , st }

of data-generating IoT devices (e.g., microphones, cameras

and medical sensors), collecting data to be classified by a

trained CNN. We define I = {I1, . . . , ID} as the set of

D heterogeneous IoT participants intending to cooperate in

computing different layers of the CNN network. In order to

save the resources (e.g., bandwidth, memory and energy) for

data collection, processing, and offloading, the source devices

FIGURE 1. Illustration of the privacy-aware distributed CNN.

do not participate in the computation of intermediate layers

of the neural network and they are only used to execute the

first and last layers to ensure the privacy of the input data

and the resultant prediction. Besides, each IoT participant Ii
is characterized by limited resources, including the compu-

tation capacity c̄i, the memory usage m̄i and the bandwidth

availability ¯bdi. In this paper, we assume that all devices have

the same transmission technology with different transmission

rates ρi. Furthermore, the study of the noise and the impact

of the channel (e.g., loss or distortion) on the shared data

between devices is beyond the scope of this work. Finally,

without loss of generality, we assume that all IoT participants

are connected and can reach each other.

We emphasize that, in this work, the proposed distribu-

tion encompasses only typical CNN models organized into a

pipeline of processing layers (e.g., convolutional and ReLU),

and without any residual block [29]. Thus, we define Lnj
as the number of layers composing the CNN network nj ∈

{1N }, whereN is the number of trained CNNs leading the

applications in our IoT system. Each layer lknj ∈ {1, . . . ,Lnj}

is characterized by a computation requirement ckj and a mem-

ory demandmkj . More specifically, the computational require-

ment of each layer is calculated as the number of multiplica-

tions needed to accomplish the layer’s goal as done in [27].

Hence, the computational requirement of a convolution layer

lknj is measured as follows:

ckj = nk−1.Sk .nk .ok , (1)

where nk−1 is the number of input channels of the convolu-

tional layer lknj , which is equal to the number of feature maps

resulting from the layer lk−1nj
. Sk presents the spatial size of

the filter defined by the layer lknj , nk denotes the number of

filters of lknj and ok presents the spatial size of the output map.

VOLUME 9, 2021 54875

E. Baccour et al.: RL-PDNN: Reinforcement Learning for Privacy-Aware Distributed Neural Networks in IoT Systems

The computational requirement of a fully-connected layer is

expressed as:

ckj = n∗k−1.n
∗
k , (2)

where n∗k and n∗k−1 represent the number of neurons of the

layers lknj and lk−1nj
, respectively. The computational loads

introduced by pooling and ReLU layers can be typically

neglected [27]. Furthermore, the memory requirement of the

layer lknj can be measured as the number of weightsW k
j com-

posing this layer multiplied by the number of bits b allocated

to store each weight [28]:

mkj = W k
j .b. (3)

Let Okj denote the memory occupation of the output data

generated by the layer lknj of the CNN nj. These data are

communicated between any two devices Ii1 computing the

layer lknj and Ii2 handling the subsequent layer lk+1nj
. The

memory size of the output is calculated according to Eq. (3).

B. PROBLEM FORMULATION

In this section, we present the optimal placement of different

layers within the IoT computing devices available in the

pervasive network, while considering the available resources

and the privacy level against white-box attacks. The proposed

methodology relies on the decision variableAir∗,k that is equal

to 1, if the IoT device Ii computes the layer lknj of the request

r ; 0 otherwise. We note that r ∈ RQ presents a request for

data classification. In practice, r represents the index of the

source device that requests the computation of an inference.

Furthermore, for simplicity purposes, we suppose that each

source device requests only one type of inference, namely r∗.

We also defineM=max {Ln1 . . . LnN }, which is themaximum

number of layers among the considered N CNNs. The distri-

bution of IoT devices contributing to the collaborative system

is supposed to be fixed during the optimization to maintain

a static state of data rates. Finally, to cover the variation of

the network (e.g., new requests, new joining devices, and

removal of participants), the optimization should be executed

periodically.

The objective function of the optimization models the

latency of computing all the inferences presented by the set

of requests RQ. This latency defines the delay to transmit the

output of layers to the subsequent devices, as well as the time

to execute different CNN tasks. Hence, the objective function

to be minimized is expressed in equation (4). We remind that

we adopted the per-layer distribution, as it is more adequate

for systems with limited number of devices, and compatible

as well with heaving IoT environments. Furthermore, per-

layer partitioning results in less data transmission, conse-

quently less energy utilization and in reduced dependency

between devices.

min
Ai
r∗,l

∑

r∈RQ

∑

Ii∈I∪S

∑

Ij∈I∪S

Lnr∗
−1

∑

l=1

Air∗,l ∗ A
j
r∗,l+1 ∗

Olr∗

ρi
∗ 1Ii 6=Ij +

∑

Ii∈I∪S

t ic (4)

subject to:

(4.a) :
∑

r∈RQ

Lcr∗
∑

l=1

Air∗,l ∗ m
l
r∗ ≤ m̄i ∀Ii ∈ I ∪ {s1..sn},

(4.b) :
∑

r∈RQ

Lnr∗
∑

l=1

Air∗,l ∗ c
l
r∗ ≤ c̄i ∀Ii ∈ I ∪ {s1..sn},

(4.c) :
∑

r∈RQ

Lnr∗
∑

l=1

∑

Ij∈I

Air∗,l ∗ A
j
r∗,l+1 ∗ O

l
r∗ ∗ 1Ii 6=Ij ≤

¯bdi

∀Ii ∈ I ∪ {s1..sn},

(4.d) :
∑

i∈I∪S

Air∗,l =

{

1 if l ≤ Lnr∗

0 Otherwise
∀r ∈ RQ,

(4.e) : Arr∗,1 = 1 ∀r ∈ RQ,

(4.f) : Arr∗,Lnr∗
= 1 ∀r ∈ RQ,Lnr∗ ≤ M ,

(4.g) : H i
r∗,l = 5l−1

k=2max(A
i
r∗j ,k ,∀r

∗ = r∗1 = r∗2 ..) ∀Ii ∈ I,

(4.h) : 1− H i
r∗,(l−1) ≥ A

i
r∗,l ∀Ii ∈ I, r ∈ RQ,

l ∈ {2 . . .M − 1},

(4.i) : Air∗,l ∈ {0, 1}.

where:

t ic =
∑

r∈RQ

Lnr∗
∑

l=1

Air∗,l ∗
clr∗

e(i)
, ∀Ii ∈ I.

The objective function in Eq. (4) consists of two latencies:

• The total latency to transmit intermediate outputs

between subsequent IoT devices, executing the CNN

layers: In practice, the transmission latency of the output

generated by the l-th layer of the r∗-th CNN request is

expressed as follows:

Olr∗

ρi
∗ 1Ii 6=Ij , (5)

where ρi is the transmission data rate of the device

Ii. We note that the transmitted output is equal to 0,

if Ii = Ij, including the scenario where the source device

generates the input data and processes the first layer.

• The processing latency of different layers on the IoT par-

ticipants: The computation time of the layer l belonging

to the CNN r∗ by the Ii-th IoT unit is approximated as

the ratio between the computational demand clr∗ of the

layer l and e(i) presenting the number of multiplications

performed by the device Ii in one second [25]. In prac-

tice, e(i) indirectly depicts the number of cores available

within the participant Ii and the presence of GPU or CPU

to parallelize operations.

The equations (4.a), (4.b) and (4.c) ensure that the compu-

tational, memory, and bandwidth constraints are respected

for different participants, including source devices. The

constraint in Eq. (4.d) guarantees that each layer l,

of each inference request is assigned to one node.

54876 VOLUME 9, 2021

E. Baccour et al.: RL-PDNN: Reinforcement Learning for Privacy-Aware Distributed Neural Networks in IoT Systems

FIGURE 2. Illustration of the privacy strategy.

Equations (4.e) and (4.f) ensure that the first and the last

layers of each inference request should be computed on the

source device. The transmission and computation require-

ments to execute these two layers justify further our design

related to source devices. More specifically, data-generating

devices do not participate in the inference process to save

their endowed resources for data collection and execution of

the first and last layers. The constraint in (4.g) introduces the

variable H i
r∗,l , which is the multiplication of all allocation

decisions of layers from 1 to l− 1, in all requests of the same

CNN (r∗ = r∗1 = r∗2 = . . .). It meansH i
r∗,l is equal to 1, if all

sequential layers of the trained CNN r∗ are assigned/exposed

to the same device, 0 otherwise.We remind that {r, r1, r2, . . .}

present the source devices and {r∗, r∗1 , r∗2 , . . .} denote their

requested CNNs. The constraint in Eq. (4.h) guarantees that

H i
r∗,l can never be 1, meaning at least one layer is not exposed

to the untrusted device. Note that, we can replace the equation

(4.g) and the constraint (4.h) by:

H i
r∗,l =

l−1
∑

k=2

max(Air∗j ,k ,∀r
∗ = r∗1 = r∗2 = ..) ∀Ii ∈ I

H i
r∗,l ≤ l ∗ Sl (6)

This equation adds a constraint of the security level Sl, which

means the proportion of the model to be exposed to each

participant. Figure 2 shows a scenario of distributing two

inference requests, where Sl is equal to 50%, meaning, half

of the previous layers should be hidden from the participant

for all the executed classifications related to the same model.

The problem in (4) is NP-hard, which means finding the

optimal solution is highly difficult in terms of time and cannot

be used as an online solution dealing with real-time classi-

fications. Furthermore, the optimization relies on assuming

a full overview about the set of incoming requests and the

dynamics of participants during the considered period of

time. However, our system is covering an extremely dynamic

system, where different IoT devices can participate or leave

the collaborative framework randomly. Also, the load of

requests is highly dynamic and the available resources are

volatile. Therefore, assuming a static environment to get the

optimal solution is not practical. Recently, RL approaches are

becoming increasingly popular, particularly for applications

having large and complex problem spaces. These approaches

are able to react under unforeseen environments, by a contin-

uous process of gaining rewards and incurring penalties for

each taken action. Moreover, the RL system learns an opti-

mal decision making policy from historical knowledge about

the environment states, which is similar to the optimization

process. Another asset of reinforcement learning approaches

is their continuous online learning that enables them to adapt

to any system fluctuation. To summarize, in order to reduce

the complexity of the optimization and implement an online

and realistic layers’ distribution while respecting the required

privacy, we propose an RL-based approach to approximate an

optimal allocation, namely RL-PDNN.

C. RL-PDNN: REINFORCEMENT LEARNING FOR

PRIVACY-AWARE DISTRIBUTED NEURAL NETWORKS

In this section, we shape our privacy-aware distribution

of online CNN classifications as a reinforcement learning

process. Specifically, we introduce the environment design,

present the set of states and actions, design the appropriate

reward function as well as the RL-agent, and finally choose

the most effective RL technique.

The reinforcement learning concept is based on learning

how to map situations and environment states to actions in

order to maximize the reward signal. The RL-agent is not

apprised which action to choose; instead, it discovers the

actions that achieve the highest reward by trying different

combinations and receiving immediate gains and penalties.

In some challenging scenarios, the chosen action does not

impact only the direct reward, but also all subsequent sit-

uations and related rewards. These two features, trial and

error, and search and delayed reward assignment, are the key

characteristics of the RL enabling it to learn by interacting

with its environment and then adapting to it. In our context,

at each time step of the distribution process, the RL-agent

selects the IoT device that can handle each layer computation.

This decision is taken depending on the CNN network trained

for the classification, the current layer, the number of layers

that can be exposed to each device at each step, and the

available resources offered by the participants, with an objec-

tive to enable the inference on small devices while achieving

the minimum latency and respecting the required privacy.

During this learning process, the RL-PDNN system gains

rewards and experiences penalties for each action it takes until

converging to the optimal policy. Accordingly, we abstract

VOLUME 9, 2021 54877

E. Baccour et al.: RL-PDNN: Reinforcement Learning for Privacy-Aware Distributed Neural Networks in IoT Systems

FIGURE 3. The environment design of the RL-PDNN system for participants selection.

our problem as a Markov Decision Process (MDP) frame-

work depicted by (S,A,P,R, γ). S defines the set of states,

A presents the possible actions, P is the state transition prob-

ability, R defines the direct reward of the RL-step, and γ

presents the discount factor. The introduced elements are

discussed further in the following sections.

1) ENVIRONMENT DESIGN

In this work, the MDP environment presents a pervasive

system involving a set of IoT devices desiring to participate

in the collaborative inference. This environment is designed

to interact with a centralized agent that generates episodes

of experiences by: selecting an action At at each time-step t ,

generating the next set of states St+1, and receiving the step

reward Rt . By generating episodes of experiences, the agent

is able to learn from past actions and the related rewards.

The episode is defined as a sequence of time-steps. A time-

step illustrates, in our system, the allocation of one CNN

layer belonging to one of the incoming classification requests,

whereas an episode defines the distribution of one of the

requested inferences among the IoT participants. Different

episodes are independent and the total reward is initialized

to 0 at the beginning of each episode. We emphasize that

the RL-agent does not have visibility regarding the envi-

ronment design. Instead, the optimal policy is learned by

interacting with the environment, selecting advantageous

actions, and receiving rewards/penalties. Meaning, the opti-

mal policy 5∗ is a mapping between the states St and

the corresponding actions At , i.e., 5∗ : S → A. The

environment design of the RL-PDNN system is presented

in Figure 3.

2) STATES AND ACTIONS

The set of states S consists of all possible circumstances that

can impact the assignment of the layer computation to one of

the IoT devices. Thus, at each time step t , the observations

received by the agent comprises the following components:

• ni: the type of the CNN request (e.g. VGG and LeNet),

• lkni : the current layer to be allocated,

• {m̄1, . . . , m̄D}: the set of memory capacities within dif-

ferent IoT participants,

• {b̄1, . . . , b̄D}: the set of available bandwidth resources,

• {c̄1, . . . , c̄D}: the set of available computation resources,

• {ρ1, . . . , ρD}: the set of data rates,

• {L̄1, . . . , L̄D}: the number of layers’ structures, preced-

ing the current layer and exposed to each participant.

We underline that a layer structure is exposed to a par-

ticipant if it is computed by this device in a previous

request.

The system state S is therefore a vector defined as: {ni, l
k
ni
,

{m̄1, . . . , m̄D}, {b̄1, . . . , b̄D}, {c̄1, . . . , c̄D}, {ρ1, . . . , ρD},

{L̄1, . . . , L̄D}}. We remind that D denotes the number of

IoT devices that envisage to participate in the collaborative

system. Following the described design, the set of states

becomes highly sizeable (equal to k ∗ D + 2) and affected

by the number of participants D. Note that k denotes the

number of device parameters (memory, bandwidth, etc.),

equal to 5 in our case. Moreover, the scales of different states

(e.g. number of layers L̄i ∼ 2− 100 and bandwidth capacity

b̄i ∼ 106) are highly unbalanced and need to be normalized.

Therefore, we propose to convert the set of privacy levels

and resource availabilities to binary, where 1 implies that

the related device has sufficient resources and can compute

the current layer while still respecting the privacy constraint;

0 otherwise. In this way, S will include the product of

different binary states and devices’ capacities. Regarding the

potentially selected actions, we define a set A containing D

binaries, where each value indicates whether the current layer

computation is assigned to the related IoT participant. For

example, A(4) = 1 means that the fourth device is chosen

to perform the correspondent task. Finally, at the end of

54878 VOLUME 9, 2021

E. Baccour et al.: RL-PDNN: Reinforcement Learning for Privacy-Aware Distributed Neural Networks in IoT Systems

each time step, the memory, bandwidth and computational

resources are updated according to the predicted action and

available devices are updated following the dynamics of

participants. Additionally, the number of layers’ structures

exposed to each participant is also updated. The updated

resources and allocated layers are the input to the next

time-step.

3) REWARD FUNCTION

To match our high-level objective aiming at minimizing the

inference latency, while exploiting the distributed resources

and meeting the privacy requirements of the deep learning

system, the reward function R should be well designed. More

specifically, when the RL agent executes an action At based

on the state St , a reward is given. This reward is attributed

depending on the ability of the RL-system to respect the

following constraints:

C1: if 1 < l tni < Lni →
∑

At = 1, constraint (4.d)

C2: if At (j) = 1→ mti ≤ m̄j, c
t
i ≤ c̄j, constraint

Ot−1i ∗ 1j 6=j′ ≤ ¯bdj (4.a,b,c)

C3: At (j) = 1→
∑t

l=1 Al <= Sl ∗ t, constraint (4.h)

(7)

C1 indicates that the sum of the action set should be equal

to 1, which matches the constraint (4.d). The first and last

layers are assigned directly to the source devices to secure

the original data and the classification results, as stated in

constraints (4.e) and (4.f). C2 indicates that the available

resources within the selected device should be sufficient to

achieve the layer goals, which is equivalent to the constraints

(4.a), (4.b), and (4.c). C3 shows that each participant should

respect the privacy level required by the collaborative system.

Particularly, only a proportion Sl of previous layers should

be exposed to any untrusted device, which is equivalent to

the constraint (4.h) or the constraint (6). Next, we define the

immediate reward as follows:

Rt = C1 ∗ C2 ∗ C3 (8)

Not respecting the first constraint (C1 = 0) means either the

task is rejected and could not be handled by any participant

or it is assigned to multiple devices simultaneously. Hence,

we set the reward to be 0 to avoid these invalid situations.

Furthermore, if the chosen participant does not have enough

resources to compute the current layer, or it is not able to

meet the privacy requirements, we attribute 0 as a reward.

Themaximum immediate reward, equal to 1, is only received,

when all constraints are met. In addition to the rewards given

for respecting different constraints, the RL-PDDN system

charges the agent for selecting low-capacity devices and

incurring higher latencies to achieve the classification tasks.

Therefore, these charges are counted as penalties experienced

by the system and added to the reward function. In this

way, the RL-agent tries to maximize the cumulative rewards

by minimizing the penalties and learning the optimal layers

allocation. More specifically, when t = 1, the reward Rt

is initialized to c1r∗/e(r), which is the delay of computing

the first layer at the source device as indicated by the con-

straint (4f). Next, at each time-step t , the penalty equal to

(
Ot
r∗

ρi
∗ 1Ii 6=Ij + c

t
r∗/e(i)) is added to the reward function.

4) AGENT DESIGN

The RL-agent has an objective to learn an optimal policy 5∗,

defined as the strategy giving the maximum reward through-

out the experienced episodes. In order to design the optimal

strategy, the agent starts by building an approximation of

the optimal action-value functionQ(St ,At), which represents

the expected future reward and assesses the performance of

taking a specific action At for a given state St . The action-

value function Q(St ,At) is expressed as follows:

Q(s, a) = E[

N
∑

k=1

γ kRt+k |St = s,At = a], (9)

We underline that γ ∈ [0, 1] defines the discount factor,

which presents the importance of the immediate reward com-

pared to long-term reward accumulated at the end of each

episode. To evaluate Q(s, a), a temporal difference method

is used:

Q(s, r)← Q(s, r)+α(Rt+γ max
a′

Q(s′, a′)−Q(s, a)), (10)

where α ∈ (0, 1] presents the learning rate.

5) DEEP Q-LEARNING ALGORITHM

Our distributed environment is highly variable due to the

dynamics of IoT participants joining and leaving the perva-

sive system and the varying load of requests. Additionally,

the action space is highly dimensional and depends on the

number of existing IoT participants. Hence, it is challeng-

ing to apply traditional reinforcement learning methods for

resource allocation problems, where Q-tables are used to

store dimensional historical Q-values. Due to these chal-

lenges, we chose to use Deep Q-Network (DQN) [30], which

is an algorithm that is able to learn the parametric represen-

tation of the action-value function Q(s, a) by interacting with

the environment based only on the current states. The DQN

is trained to minimize the loss function illustrated as follows:

L(θ) = E[(Rt + γ max
a′

Q(s′, a′, θ ′)− Q(s, a, θ))2]. (11)

where Q(s, r) is approximated to Q(s, r, θ) and θ denotes

the weights of the deep networks. To stabilize the training

of the DQN network and guarantee the convergence of the

learning, multiple techniques should be followed, which are

detailed in algorithm 1. In this algorithm, we start by ini-

tializing two copies of the Q-Network with the same NN

weights (lines 2-3). Next, the training process generates a

number of sequential episodes repeatedly (lines 5-20) and

stores the experience tuples in a buffer D (lines 21-23).

To ensure that the agent explores the quality of different

possible actions, we follow an ǫ− greedy algorithm (line 9),

where decisions are taken randomly with probability ǫ or by

VOLUME 9, 2021 54879

E. Baccour et al.: RL-PDNN: Reinforcement Learning for Privacy-Aware Distributed Neural Networks in IoT Systems

Algorithm 1 RL-PDNN

1: Initialization:

2: Initialize randomly the parameters θ of the first

Q-network.

3: Initialize parameters of the second target network:

θ ′← θ .

4: DQN Learning:

5: for each episode r ∈ RQ do

6: for each time-step t = 1..Lr∗ do

7: S(t) = {ni, l
t
ni
, {m̄1, . . . , m̄D}, {b̄1, . . . , b̄D},

8: {ρ1, . . . , ρD}, {c̄1, . . . , c̄D}, {L̄1, . . . , L̄D}}

9: Select At based on ǫ−greedy policy

10: if
∑

At = 1 then

11: if t = 1 then

12: Rt = Rt − c
t
r∗/e(r)

13: i = r

14: else

15: for j = 1 : D do

16: if At (j) = 1 then

17: Rt = Rt − (
Ot
r∗

ρj
∗ 1Ii 6=Ij + c

t
r∗/e(j))

18: i = j

19: if C2 ∗ C3 = 1 then

20: Rt = Rt + 1

21: Observe Rt and the next state St+1.

22: Save (St ,At ,Rt , St+1) in the experience

23: memory D.

24: Sample a mini-batch of (S(j),A(j),R(j),

25: S(j+ 1)) from the memory D.

26: Find target Q-value Qtarget (j) from target

27: Q-network: Qtarget (j) = R(j)+

28: γmaxa′Q(s
′, a′, θ ′).

29: Update the target Q-network with loss function:

30: L(θ) = [Qtarget (j)− Q(s, a, θ)]
2 every G steps.

choosing the highest Q-value experienced until the current

time-step: At =arg maxQ(St ,At). Additionally, we use the

decaying scheduling of ǫ. More specifically, ǫ is fixed to 1 at

the beginning of the training; thus the agent can discover

the environment and then it decays over time to allow the

system to exploit the learned knowledge and select opti-

mal actions without losing the ability to behave randomly

and detect any occurring changes. Once the action is taken,

a reward is given depending on the accuracy of the decision.

Meaning, if the resource and privacy constrains are respected,

a reward is added to the agent (lines 19-20). Besides, if a

valid participant is chosen (line 10), a penalty is added

according to the incurred latency to compute the current layer

(lines 11-18). Next, a new state St+1 is generated for the next

layer allocation. To improve the Q-values and the accuracy of

the decisions, the agent samples a randomminibatch from the

replay buffer D (line 24) at each time step, and target values

for each tuple in the sample-batch are calculated using the

target Q-network (line 26). These values are used for the net-

work update. The describedmechanism, known as experience

replay, helps to further learn from past experience and leads

to the stabilization and convergence of the learning process.

While improving the main Q-network, the target network is

held fixed, to stabilize the learning. Then, at each G steps,

the target network is updated toward the main one, in order

to always reflect the most recent knowledge (line 30) [30].

IV. PERFORMANCE EVALUATION

In this section, our RL-PDNN distributed system is evalu-

ated under different networking configurations. Particularly,

the impact of the privacy level, the number of participants,

the type of devices, and the type of requests on the total

latency, accuracy of decisions, and shared data is examined.

Next, to prove the performance of our RL approach, we com-

pared it to the static distribution approach [25] and the optimal

framework.

A. FRAMEWORK SETTINGS

Our RL-PDNN approach has been validated on image clas-

sification scenarios. Deep learning applications, involving

image classification, can serve for example in a surveillance

system monitoring a critical area (e.g., highway accidents

and borders). Three standard CNN benchmark datasets are

adopted in our simulation: CIFAR10, MNIST, and Stan-

ford CARs. More specifically, CIFAR10 is trained with a

medium-sized CNN (6 convolutional and 2 fully connected

layers), MNIST is trained with a small CNN, namely LeNet

(2 convolutional and 3 fully connected layers), and VGG16

(13 convolutional and 3 fully connected layers) is trained on

Stanford CARs dataset. Following the data characteristics,

we suppose that the source devices (e.g., cameras) capture

28×28 gray images (MNIST), 36×36 RGB images (CIFAR),

and 128× 128 RGB images (Stanford CARs).

Furthermore, our system is composed of three types of

technological devices, which are LG Nexus 5, Raspberry

Pi B+, and STM32H7. The first type is considered as a

powerful unit endowedwith a 2.28 GHz processor and a 2 GB

RAM. The second one is less powerful and it is equipped

with 1.4 GHz 64-bit quad-core processor and 1 GB RAM.

The last type corresponds to a very resource-limited device

(e.g., smart watch), which is supplied with a 400 MHz-

cortex and 1 MB RAM. The number of multiplications

per second e [25], is equal to 800 for LG Nexus, 560 for

RPi3 and 40 for STM32H7. Besides, the powerful IoT

devices (RPi3 and LG Nexus) are equipped with the band-

width standard IEEE 802.11n having an average ρ equal to

72.2 Mb/s. Meanwhile, the small devices (STM32H7) own

a low bandwidth technology, namely IEEE 802.11ah, with

an average data rate ρ equal to 7.2 Mb/s. We note that

all cameras are deployed with RPi3 system. Furthermore,

we suppose that 51 IoT units participate in the cooperative

classification, where each 17 devices are related to a techno-

logical family. In our simulation, the classification requests

are generated using a Poisson process with a data rate λ

equal to 3/s. Moreover, the set of participants is changing

every 60 s. It means the set of available resources is changing

54880 VOLUME 9, 2021

E. Baccour et al.: RL-PDNN: Reinforcement Learning for Privacy-Aware Distributed Neural Networks in IoT Systems

FIGURE 4. Average cumulative rewards vs. training episodes: LeNet, CIFAR CNN, VGG, and heterogeneous requests distribution.

and the number of exposed layers to the new participants is

equal to 0.

Our approach is first evaluated through measuring the

inference latency, presented by the delay between acquiring

the data and generating the prediction. Second, we evaluate

the amount of data transmitted between all IoT devices to

execute all CNN tasks. Third, the accuracy of the system

is assessed, which is defined as the capacity to respect dif-

ferent constraints (resources and privacy requirements) after

the convergence. The privacy robustness of the system is

examined on 3 security levels (all layers are exposed/no

security, 2 hidden layers prior to the currently executed, half

of the previous layers are covered) and 4 types of networks

(onlyMnist-LeNet requests, only CIFAR-CNN requests, only

VGG requests, and heterogeneous requests.).

The RL-PDNN algorithm is validated according to the

parameters shown in Table 1. These parameters are empiri-

cally chosen, andwe expect that similar architectures perform

identically.

B. SIMULATION RESULTS

1) PERFORMANCE OF THE RL CONVERGENCE

Figure 4 depicts the variation of the average cumula-

tive rewards among training episodes. Particularly, the

TABLE 1. Parameters of the RL simulation.

obtained cumulative rewards are smoothed over a window

of 50 episodes. In the first 1000 episodes, ǫ is set to 1 to

act randomly for all taken decisions in order to obtain an

initial estimate of the random policy. Next, a decay param-

eter, namely ǫdecay, is applied after each episode to pass

quickly and smoothly to an enhanced policy. Based on this

configuration, We can see, in Figure 4, that most of the

constraints (resources and privacy) are not respected at the

VOLUME 9, 2021 54881

E. Baccour et al.: RL-PDNN: Reinforcement Learning for Privacy-Aware Distributed Neural Networks in IoT Systems

FIGURE 5. Average cumulative penalties vs. training episodes: LeNet, CIFAR CNN, and heterogeneous requests
distribution.

beginning of the learning process. However, as the number

of episodes increases, the number of respected constraints

increases until reaching stability where all requirements are

met, which confirms the convergence performance of our RL

system for different types of networks. Moreover, we can

notice that the convergence of LeNet requests is slower than

the convergence of other types of networks, which can be

explained by the fact that the number of layers of LeNet

network is small and a larger number of episodes is needed to

learn how to respect the privacy requirements. Accordingly,

VGG network converges faster, as it has a higher number of

layers compared to the latter one. Also, when all requests are

related to LeNet classifications and no privacy is required,

Figure 4(i) shows that all constraints on different layers are

respected from the beginning of the learning process, as the

cumulative rewards are equal to 9 (number of layers in LeNet)

from the first episodes summed with the penalties related to

the latency. In fact, the LeNet network does not require high

resource demand, and the available IoT devices are able to

handle the load of requests. Furthermore, the learning process

consists only in determining the optimal policy to minimize

the classification latency. Finally, when the network is het-

erogeneous, we can see that the convergence is not smooth,

which is related to the dynamics of the incoming requests,

their number, and their types.

Figure 5 depicts the convergence of the penalty added to

the reward to learn the latency minimization strategy. We can

see that in addition to respecting the constraints (privacy and

resource constraints), the RL system is able to find the fine-

grained policy that schedules an efficient layers’ allocation

with reduced latency. Furthermore, the figure shows that min-

imizing the latency is slowly learned and the penalties start

to converge after 15000 episodes depending on the network

type (penalties are smoothed over a window of 50 episodes).

This can be explained by the fact that the exploration space is

large and the system needs to discover optimal actions related

to each received set of states, then near-optimal decisions will

be taken on the fly.

Figure 6 depicts the average accuracy of the RL decisions

for different types of networks, under different security levels.

We can see that the accuracy of our RL model is very high,

FIGURE 6. Accuracy of the system in terms of meeting constraints.

reaching 80% and more for all types of requests, when no

privacy is required. It means more than 80% of episodes

respect privacy and resources constraints. Moreover, we can

notice that the LeNet system respects the resource constraints

for all requests when privacy is not required, meaning the

accuracy is equal to 100%. This can be attributed to the fact

that processing a LeNet request is not resource-consuming

and does not require any distribution. Similarly, even though

the distribution is required for privacy purposes, the accuracy

of LeNet network is still high due to its lightweight com-

putational demand. The Figure also shows that the studied

networks exhibit different performances. More specifically,

around 90% of Mnist-LeNet, CIFAR-CNN, and heteroge-

neous requests are classified by the pervasive IoT devices,

while respecting different privacy requirements. If all infer-

ences are classified by a VGG model, only 70 % of them

meet the privacy requirements. This accuracy is related to the

fact that the neighboring IoT participants are not sufficient

to distribute different layers of the resource-consuming VGG

requests, while respecting the privacy distribution require-

ments. Hence, the system either chooses to leverage the exist-

ing resources without considering privacy or assigns tasks

to occupied devices and respects the security requirements.

For example, when the privacy level is high (Sl = 50%),

51 devices are not able to compute all incoming requests with

54882 VOLUME 9, 2021

E. Baccour et al.: RL-PDNN: Reinforcement Learning for Privacy-Aware Distributed Neural Networks in IoT Systems

challenging distribution requirements and accordingly, less

than 60% of classifications are accomplished. Involvingmore

devices could enhance the accuracy of the system by more

than 10%, as illustrated in Figure 6.

FIGURE 7. Total latency of 15000 inferences including different types of
requests.

FIGURE 8. Total shared data to execute 15000 inferences for different
types of requests.

2) IMPACT OF THE NETWORK CONFIGURATION

ON THE RL-PDNN PERFORMANCE

Figures 7 and 8 depict the total latency and the total shared

data of 15000 incoming requests comprising only one type of

CNN or heterogeneous CNN inferences. When all requests

are classified by LeNet and no security is imposed, the latency

of the system (0.006 s per inference) and transmitted data

(0.2 Mb per inference) are very low as the network structure

is only composed of 9 layers (Conv, ReLu and Fc) and deals

with small 28 × 28 images, which implies that only one

participant is able to compute one incoming request without

being forced to share intermediate outputs. When the pri-

vacy of data is required and more participants are involved,

the latency (0.019 s per inference on average among both

privacy levels) and shared data (0.5 Mb per inference on

average) are still low, due to the lightweight of LeNet layers.

For a larger network (CIFAR CNN), the latency (0.8 s per

inference on average among all levels) is still low compared to

the time needed to process VGG requests (11 s per inference

on average among all levels), which is justified by the limited

number of layers (17 layers), and the small size of images

(32 × 32). VGG 16 is well known for its performance in

computer vision and image classification owing to its deep

network. However, the memory occupation and computation

requirements restrain the VGG model from being processed

on resource-limited devices. By distributing such complex

models, high computations and large memory occupation

could be shared between edge participants, which avoids

transmissions to remote servers. In fact, in case of remote

cloud inference, the transmission of the intermediate data of

the first layers takes around 15 s according to the reference

paper Neurosurgeon [19]. Tominimize the transmission over-

head, only the last layers should be executed in the cloud.

In this case, end-devices with GPUs have to be used to fit the

high computation requirements of the shallow layers. In our

approach, we use collaborative resource-constrained devices,

existing everywhere, to execute VGG with an acceptable

delay and without resorting to the cloud. Finally, We can

notice, in Figures 7 and 8, that imposing privacy requirements

and hiding layers structure from participants contribute to

involving more IoT devices, which results in higher latency

and data sharing.

FIGURE 9. Performance of RL-PDNN when varying the number of devices.

Figure 9 illustrates the performance of RL-PDNN, when

varying the number of participants. We can see that for

LeNet or CIFAR load of requests, 30 devices are enough

to accomplish a high accuracy and meet different require-

ments of the system (e.g., privacy and resources.). When

the load of requests is heterogeneous or involves only VGG

classifications, a small number of devices cannot achieve the

distribution while respecting the privacy constraints. We can

also notice that 60 devices are enough for most of request

types to achieve good performance, when following a similar

network configuration. Still, when classifying the data using

only resource-consuming VGG and while respecting a high

privacy level, 60 IoT devices are not able to accomplish a

high performance and more participants should be involved

in the distribution. Finally, we can notice that increasing the

number of IoT devices participating in the CNN partitioning

is not enhancing the system performance in most of the cases.

VOLUME 9, 2021 54883

E. Baccour et al.: RL-PDNN: Reinforcement Learning for Privacy-Aware Distributed Neural Networks in IoT Systems

This can be explained by the fact that the set of action size is

equal to the number of IoT participants and increasing the

number of actions can decrease the accuracy of decisions

slightly.

FIGURE 10. Performance of RL-PDNN, applied on VGG requests, when
varying the capacity of 51 IoT participants.

Figure 10 shows the accuracy of the system receiving VGG

requests, when varying the capacity of 51 IoT participants.

The system presents similar performance when half or more

IoT devices are small, for low privacy constraints. When

the privacy requirements are high, performant devices are

indispensable for a better accuracy, in addition to higher num-

ber of devices as depicted in previous simulations. We can

also note that involving only high-performance devices in the

distribution enhances the accuracy for all privacy levels.

FIGURE 11. Performance of RL-PDNN VS offline and static distribution.

3) COMPARISON TO STATE-OF-THE-ART APPROACHES

AND OPTIMAL SOLUTION

Figure 11 depicts the performance of our RL-PDNN sys-

tem compared to the static and offline layers distribution

proposed in [25]. In the latter approach, the authors assign

the computation of different layers to the most performant

devices, without considering the load of the online incoming

requests. Furthermore, this strategy needs to be re-run each

time the network configuration changes, e.g., new partici-

pants join the collaborative system or others leave it. This

increases the complexity of the system that requires real-time

decisions. We emphasize that the approach in [25] does not

present any privacy requirement. Hence, for a fair compari-

son, we compared it to our RL-PDNN with no security con-

straints. Figure 11 shows that our system is able to adapt to the

system dynamics, while respecting the available resources,

in real time.Meanwhile, the offline distribution presents a low

accuracy and incapacity to handle all online CNN tasks using

the static partitioning. More specifically, when only LeNet

or CIFAR requests are presented to the system, the static

distribution is able to handle the lightweight CNNs. However,

when the load corresponds to deep networks, assigning stati-

cally specific tasks to fixed devices exhibits low performance,

particularly when the load of requests is high and exceeds the

capacity of the chosen participants. This is not the case of our

approach that takes into consideration all available resources

to distribute different layers.

Most of the privacy-preserving algorithms focus on secur-

ing the training data, however, fewer defense strategies to

mitigate the inference privacy attacks are proposed in the lit-

erature. One of the proposed approaches is the deep split [26].

More specifically, the fully-connected layers generate data

that is difficult to recover owing to their ability to mix the

input and hide the sample features. Hence, the idea is to divide

the model after the first fully-connected layer and compute

the first part in the source device while offloading the rest

to a second participant. However, this approach requires the

computation of all convolutional layers in one device, which

is a heavy task and cannot be deployed in all IoT devices.

As a solution, the work in [26] proved that the reverted data

become blurrier as the CNN network goes deeper. Therefore,

a smaller segment can be deployed in the IoT device, while

sacrificing in terms of privacy level. Meanwhile, the sec-

ond large segment should be allocated in high-performing

machine such as remote servers, which increases the latency

overhead. This is not the case of our approach that distributes

the computational tasks among small devices existing every-

where, while hiding the structure of the model.

Another solution to secure the inference samples is to use

the differential privacy, adopted in [31]. This approach con-

sists of adding noise to the intermediate shared data in order to

obfuscate it. Obviously, a trade-off between the accuracy loss

and the privacy should be established as a higher level of noise

causes a lower classification performance. Encryption, used

in [32], [33], is another robust privacy-preservingmethod that

allows to compute the inference on encoded data, so that

the private information is not leaked. However, the main

drawbacks of such approach are the computation overhead

to perform the encryption, the potential accuracy loss, and

incompatibility with some DNN operations [26]. We remind

that our approach is applicable to all DNN tasks and it is

designed to distribute trained models without affecting the

accuracy. Table 2 summarizes the characteristics of different

privacy-preserving techniques.

54884 VOLUME 9, 2021

E. Baccour et al.: RL-PDNN: Reinforcement Learning for Privacy-Aware Distributed Neural Networks in IoT Systems

FIGURE 12. RL-PDNN vs PDNN-optimal for LeNet requests with no security requirements: (a) shows the latency,
and (b) shows the shared data.

TABLE 2. RL-PDNN Vs privacy-preserving techniques.

Figure 12 illustrates the performance of our RL-PDNN

approach compared to the optimal solution. Because of the

high complexity of the problem defined in equation (4),

the optimal simulation is conducted on a network with small

parameters’ values. More specifically, the network is receiv-

ing one type of requests namely LeNet and 30 IoT par-

ticipants, without any privacy requirements. We note that

we run our optimization on a ’No security’ network as the

same configuration in the RL is giving 100% accuracy (see

Figure 6), which guarantees a fair comparison and lower

complexity. Furthermore, the optimization is conducted on

60 frames of requests’ arrival, where for each frame we

represent the total latency (Figure 12(a)) and total shared

data (Figure 12(b)). Distributing the classification requests

optimally with reduced parameters and without privacy con-

straints contributes to relax the runtime of the simulation.

Following this configuration, the optimization takes around

5 hours and if we add security requirements, it reaches more

than 20 hours. The time complexity of the optimization jus-

tifies the design of an online solution adequate for real-time

allocation. It is worth mentioning that our RL approach uses

an MLP model with 2 layers and 64 neurons, which is a

lightweight network with a small complexity.We note that we

run our simulation usingCVX tool1 on a computer, having the

following characteristics: core i7 and 16 GB RAM. Figure 12

shows that the RL-PDNN presents close results compared to

1http://cvxr.com/cvx/doc/

the optimal results, exceeding 90% in some frames, which

proves the high performance of our RL approach that is able

to adapt to the system dynamics (devices capacities’, load of

requests, etc.).

To summarize:

• In this paper, we are studying an extremely dynamic

system, where different IoT devices can participate or

leave the collaborative framework.Moreover, the load of

requests is highly dynamic and the available resources

are volatile. Hence, we chose to adopt reinforcement

learning that learns an optimal decision making policy

from knowledge about the environment states and adapts

to any network changes owing to the past learning.

• Our designed RL-PDNN is validated according to the

described parameters in Table 1. Based on this config-

uration, we confirmed the convergence of our system

for different types of networks and we proved that the

accuracy is high for all privacy levels.

• Since the memory occupation and computation require-

ments of complex models restrain them from being pro-

cessed on resource-limited devices and knowing that

remote inference is costly in terms of latency, perva-

sive distribution of DNN tasks is an efficient solu-

tion to minimize the delay caused by the transmission

overhead.

• By including more devices in the collaborative system

or choosing performant participants, the capacity of the

network becomes higher and sufficient particularly for

inferences related to extremely complex networks such

as VGG.

• Compared to existing approaches that propose static

assignment of CNN computation, our RL approach is

able to leverage the available resources and schedule the

CNNpartition by taking into consideration the dynamics

of participants and online load of requests.

• Compared to the privacy-preserving techniques, our

approach maintains the high accuracy of the model

and supports heterogeneous IoT devices as well as

VOLUME 9, 2021 54885

E. Baccour et al.: RL-PDNN: Reinforcement Learning for Privacy-Aware Distributed Neural Networks in IoT Systems

multiple DNNs and datasets, making the pervasive sys-

tem a general-purpose platform for privacy-aware and

low decision-latency applications.

V. CONCLUSION

In this paper, we re-thought the execution of deep learning

inference, requiring high memory and computation demands,

in order to fit it to the limited-resources characterizing the

IoT units, while considering the white-box risks and real-time

requirements of the classification requests. Our distribution

approach is formulated as an NP-hard optimization prob-

lem, where the classification latency is minimized. Then,

due to the complexity of the problem, we proposed an

online RL-based solution, namely RL-PDNN that is adequate

for real-time scenarios and dynamic systems. Our simula-

tion revealed different parameters that should be present to

achieve the distribution and privacy of online classifications,

including the number of devices, their capacities, and the

deployed networks. As a future work, we can apply compres-

sion strategies, e.g., pruning and quantization, in conjunction

with our approach. The motivation behind this is to reduce

the requirements of layers in terms of memory and computa-

tion, allocate more sequential segments in one device, and

consequently minimize the latency and data transmission.

We intend also to study the distribution of CNN networks

into smaller segments (e.g., feature maps and multiplication

tasks.) and exploit this distribution to protect the pervasive

system from white and black-box attacks.

ACKNOWLEDGMENT

Open Access funding provided by the Qatar National Library.

REFERENCES

[1] M.-T. Luong, H. Pham, and C. D. Manning, ‘‘Effective approaches to

attention-based neural machine translation,’’ CoRR, vol. abs/1508.04025,

pp. 1–11, Aug. 2015. [Online]. Available: http://arxiv.org/abs/1508.04025

[2] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image

recognition,’’ CoRR, vol. abs/1512.03385, pp. 1–5, Dec. 2015. [Online].

Available: http://arxiv.org/abs/1512.03385

[3] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for

large-scale image recognition,’’ inProc. Int. Conf. Learn. Represent., 2015,

pp. 1–6.

[4] J. Mao, X. Chen, K. W. Nixon, C. Krieger, and Y. Chen, ‘‘MoDNN: Local

distributed mobile computing system for deep neural network,’’ in Proc.

Design, Autom. Test Eur. Conf. Exhib. (DATE), Lausanne, Switzerland,

Mar. 2017, pp. 1396–1401.

[5] Z. Zhao, K. M. Barijough, and A. Gerstlauer, ‘‘DeepThings: Distributed

adaptive deep learning inference on resource-constrained IoT edge clus-

ters,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37,

no. 11, pp. 2348–2359, Nov. 2018.

[6] E. Baccour, A. Erbad, A. Mohamed, M. Hamdi, and M. Guizani, ‘‘Dist-

Privacy: Privacy-aware distributed deep neural networks in IoT surveil-

lance systems,’’ 2020, arXiv:2010.13234. [Online]. Available: http://arxiv.

org/abs/2010.13234

[7] R. Hadidi, J. Cao, M. S. Ryoo, and H. Kim, ‘‘Toward collaborative

inferencing of deep neural networks on Internet-of-Things devices,’’ IEEE

Internet Things J., vol. 7, no. 6, pp. 4950–4960, Jun. 2020.

[8] K. Ganju, Q. Wang, W. Yang, C. A. Gunter, and N. Borisov, ‘‘Property

inference a acks on fully connected neural networks using permutation

invariant representations,’’ in Proc. ACM Conf. Comput. Commun. Secur.,

2018, pp. 1–3.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification

with deep convolutional neural networks,’’ Commun. ACM, vol. 60, no. 6,

pp. 84–90, May 2017.

[10] H.-J. Kang, ‘‘Accelerator-aware pruning for convolutional neural net-

works,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 30, no. 7,

pp. 2093–2103, Jul. 2020.

[11] S. Han, J. Pool, J. Tran, and W. J. Dally, ‘‘Learning both weights and

connections for efficient neural networks,’’ in Proc. 28th Int. Conf. Neural

Inf. Process. Syst., vol. 1, 2015, pp. 1–9.

[12] A. Marchisio, M. A. Hanif, M. Martina, and M. Shafique, ‘‘PruNet: Class-

blind pruning method for deep neural networks,’’ in Proc. Int. Joint Conf.

Neural Netw. (IJCNN), Jul. 2018, pp. 1–8.

[13] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, ‘‘Pruning

convolutional neural networks for resource efficient inference,’’ 2016,

arXiv:1611.06440. [Online]. Available: http://arxiv.org/abs/1611.06440

[14] S. Han, H. Mao, and W. J. Dally, ‘‘Deep compression: Compress-

ing deep neural networks with pruning, trained quantization and Huff-

man coding,’’ 2015, arXiv:1510.00149. [Online]. Available: http://arxiv.

org/abs/1510.00149

[15] H. Qin, R. Gong, X. Liu, X. Bai, J. Song, and N. Sebe, ‘‘Binary neural net-

works: A survey,’’ Pattern Recognit., vol. 105, Sep. 2020, Art. no. 107281.

[16] (Dec. 2020). Edge TPU. [Online]. Available: https://cloud.google.

com/edge-tpu/

[17] M.Alzantot, Y.Wang, Z. Ren, andM. B. Srivastava, ‘‘RSTensorFlow:GPU

enabled tensorflow for deep learning on commodity Android devices,’’ in

Proc. 1st Int. Workshop Deep Learn. Mobile Syst. Appl. (EMDL), 2017,

pp. 7–12.

[18] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro,

and F. Kawsar, ‘‘Deepx: A software accelerator for low-power deep learn-

ing inference on mobile devices,’’ in Proc. 15thACM/IEEE Int. Conf. Inf.

Process. Sensor Netw. (IPSN), Oct. 2016, pp. 1–12.

[19] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and

L. Tang, ‘‘Neurosurgeon: Collaborative intelligence between the cloud and

mobile edge,’’ ACM SIGOPS Oper. Syst. Rev., vol. 51, no. 2, pp. 615–629,

Apr. 2017.

[20] A. Erfan Eshratifar, M. Saeed Abrishami, and M. Pedram, ‘‘JointDNN:

An efficient training and inference engine for intelligent mobile cloud

computing services,’’ 2018, arXiv:1801.08618. [Online]. Available:

http://arxiv.org/abs/1801.08618

[21] S. Teerapittayanon, B. McDanel, and H. T. Kung, ‘‘Distributed deep

neural networks over the cloud, the edge and end devices,’’ in Proc.

IEEE 37th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2017,

pp. 328–339.

[22] Z. Zhang, T. Song, L. Lin, Y. Hua, X. He, Z. Xue, R. Ma, and H. Guan,

‘‘Towards ubiquitous intelligent computing: Heterogeneous distributed

deep neural networks,’’ IEEE Trans. Big Data, early access, Nov. 26, 2018,

doi: 10.1109/TBDATA.2018.2880978.

[23] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan, and X. Chen,

‘‘Convergence of edge computing and deep learning: A comprehensive

survey,’’ IEEE Commun. Surveys Tuts., vol. 22, no. 2, pp. 869–904,

2nd Quart., 2020.

[24] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, ‘‘Edge intelligence:

Paving the last mile of artificial intelligence with edge computing,’’ Proc.

IEEE, vol. 107, no. 8, pp. 1738–1762, Aug. 2019.

[25] S. Disabato, M. Roveri, and C. Alippi, ‘‘Distributed deep convolutional

neural networks for the Internet-of-Things,’’ 2019, arXiv:1908.01656.

[Online]. Available: http://arxiv.org/abs/1908.01656

[26] Z. He, T. Zhang, and R. B. Lee, ‘‘Model inversion attacks against collabora-

tive inference,’’ inProc. 35th Annu. Comput. Secur. Appl. Conf., New York,

NY, USA, Dec. 2019, pp. 148–162.

[27] C. Alippi, S. Disabato, and M. Roveri, ‘‘Moving convolutional neural

networks to embedded systems: The AlexNet and VGG-16 case,’’ in Proc.

17th ACM/IEEE Int. Conf. Inf. Process. Sensor Netw. (IPSN), Apr. 2018,

pp. 212–223.

[28] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, ‘‘Deep

learning with limited numerical precision,’’ in Proc. 32nd Int. Conf. Int.

Conf. Mach. Learn. (ICML), vol. 37. JMLR.org, 2015, pp. 1737–1746.

[29] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning

for image recognition,’’ 2015, arXiv:1512.03385. [Online]. Available:

http://arxiv.org/abs/1512.03385

[30] K. V. M. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjel, G. Ostrovski, S. Petersen,

C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra,

S. Legg, and D. Hassabis, ‘‘Human-level control through deep reinforce-

ment learning,’’ Nature, vol. 7540, pp. 529–533, Feb. 2015.

54886 VOLUME 9, 2021

http://dx.doi.org/10.1109/TBDATA.2018.2880978

E. Baccour et al.: RL-PDNN: Reinforcement Learning for Privacy-Aware Distributed Neural Networks in IoT Systems

[31] L. Lyu, J. C. Bezdek, J. Jin, and Y. Yang, ‘‘FORESEEN: Towards differ-

entially private deep inference for intelligent Internet of Things,’’ IEEE

J. Sel. Areas Commun., vol. 38, no. 10, pp. 2418–2429, Oct. 2020.

[32] Z. Ghodsi, A. Veldanda, B. Reagen, and S. Garg, ‘‘CryptoNAS: Pri-

vate inference on a ReLU budget,’’ 2020, arXiv:2006.08733. [Online].

Available: http://arxiv.org/abs/2006.08733

[33] Q. Lou and L. Jiang, ‘‘SHE: A fast and accurate deep neural net-

work for encrypted data,’’ 2019, arXiv:1906.00148. [Online]. Available:

http://arxiv.org/abs/1906.00148

EMNA BACCOUR received the Ph.D. degree in

computer science from the University of Bur-

gundy, France, in 2017. She was a Postdoctoral

Fellow with Qatar University on a project cov-

ering the interconnection networks for massive

data centers and then on a project covering video

caching and processing in mobile edge comput-

ing networks. She currently holds a postdoctoral

position at Hamad Ben Khalifa University. Her

research interests include data center networks,

cloud computing, green computing, software defined networks, distributed

systems, edge networks, and mobile edge caching and computing.

AIMAN ERBAD (Senior Member, IEEE) received

the Master of Computer Science in embedded sys-

tems and robotics from the University of Essex,

U.K., and the Ph.D. degree in computer science

from The University of British Columbia, Canada.

He is currently an Associate Professor with the

College of Science and Engineering, Hamad Bin

Khalifa University (HBKU). His research interests

include cloud computing, edge computing, the IoT,

private and secure networks, and multimedia sys-

tems. He received the Platinum Award from the H. H. The Emir Sheikh

Tamim Bin Hamad Al Thani at the Education Excellence Day 2013 (Ph.D.

category), the 2020 Best Research Paper Award from the Computer Commu-

nications journal, the IWCMC 2019 Best Paper Award, and the IEEE CCWC

2017 Best Paper Award. He is also an Editor ofKSII Transactions on Internet

and Information Systems and a Guest Editor of IEEE Networks.

AMR MOHAMED (Senior Member, IEEE)

received the M.S. and Ph.D. degrees in electrical

and computer engineering from The University of

British Columbia, Vancouver, Canada, in 2001,

and 2006 respectively. He has worked as an Advi-

sory IT Specialist with the IBM Innovation Centre,

Vancouver, from 1998 to 2007, taking a leadership

role in systems development for vertical industries.

He is currently a Professor with the College of

Engineering, Qatar University, and the Director of

the Cisco Regional Academy. He has over 25 years of experience in wireless

networking research and industrial systems development. He has authored

or coauthored over 160 refereed journal and conference papers, textbook,

and book chapters in reputable international journals, and conferences. His

research interests include wireless networking, and edge computing for IoT

applications. He holds three awards from IBM Canada for his achievements

and leadership, and four Best Paper Awards from IEEE conferences. He has

served as the Technical Program Committee (TPC) Co-Chair for workshops

in IEEE WCNC’16. He has also served as the Co-Chair for technical sym-

posia of international conferences, including Globecom’16, Crowncom’15,

AICCSA’14, IEEEWLN’11, and IEEE ICT’10. He has served on the organi-

zation committee for many other international conferences as a TPCmember,

including the IEEE ICC, GLOBECOM, WCNC, LCN, and PIMRC, and a

Technical Reviewer for many international IEEE, ACM, Elsevier, Springer,

and Wiley journals. He is also serving as a Technical Editor for the Journal

of Internet Technology and the International Journal of Sensor Networks.

MOUNIR HAMDI (Fellow, IEEE) received the

B.S. degree (Hons.) in electrical engineering

(computer engineering) from the University of

Louisiana, in 1985, and theM.S. and Ph.D. degrees

in electrical engineering from the University of

Pittsburgh, in 1987 and 1991, respectively. He was

the Chair Professor and a Founding Member of

The Hong Kong University of Science and Tech-

nology (HKUST), where he was the Head of the

Department of Computer Science and Engineer-

ing. From 1999 to 2000, he held a Visiting Professor positions with Stanford

University and the Swiss Federal Institute of Technology. He is currently

the Founding Dean of the College of Science and Engineering, Hamad Bin

Khalifa University (HBKU). He has published more than 360 publications,

graduated more 50 M.S./Ph.D. students, and awarded numerous research

grants. His research interest includes high-speed wired/wireless networking.

In addition, he has frequently consulted for companies and governmental

organizations in the USA, Europe, and Asia. He is also a Fellow of the

IEEE for his contributions to design and analysis of high-speed packet

switching, which is the highest research distinction bestowed by IEEE. He is

also a Frequent Keynote Speaker in international conferences and forums.

He is/was on the editorial board of more than ten prestigious journals and

magazines. He has chaired more than 20 international conferences and work-

shops. In addition to his commitment to research and academic/professional

service, he is also a Dedicated Teacher and a Quality Assurance Educator.

He received the Best ten Lecturer Award and the Distinguished Engineer-

ing Teaching Appreciation Award from HKUST. He is frequently involved

in higher education quality assurance activities and engineering programs

accreditation all over the world.

MOHSEN GUIZANI (Fellow, IEEE) received

the B.S. (Hons.) and M.S. degrees in electrical

engineering, and the M.S. and Ph.D. degrees in

computer engineering from Syracuse University,

Syracuse, NY, USA, in 1984, 1986, 1987, and

1990, respectively. He served in different academic

and administrative positions at the University of

Idaho, Western Michigan University, the Univer-

sity of West Florida, the University of Missouri–

Kansas City, the University of Colorado–Boulder,

and Syracuse University. He is currently a Professor with the Computer

Science and Engineering Department, Qatar University, Qatar. He is the

author of nine books and more than 500 publications in refereed journals

and conferences. His research interests include wireless communications and

mobile computing, computer networks, mobile cloud computing, security,

and smart grid. He is also a Senior Member of ACM. He also served as

a member, the Chair, and the General Chair for a number of international

conferences. Throughout his career, he received three teaching awards and

four research awards. He also received the 2017 IEEE Communications

SocietyWTCRecognition Award and the 2018 AdHoc Technical Committee

Recognition Award for his contribution to outstanding research in wireless

communications and Ad-Hoc Sensor networks. He was the Chair of the

IEEE Communications Society Wireless Technical Committee and the of

the TAOS Technical Committee. He is also the Editor-in-Chief of the IEEE

Network Magazine, serves on the editorial boards of several international

technical journals and the Founder and Editor-in-Chief of Wireless Com-

munications and Mobile Computing (Wiley) journal. He guest edited a

number of special issues in IEEE journals and magazines. He served as the

IEEEComputer Society Distinguished Speaker. He is also the IEEEComSoc

Distinguished Lecturer.

VOLUME 9, 2021 54887

