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In recent years, as a new subject in the computer field, artificial intelligence has developed rapidly, especially in reinforcement
learning (RL) and deep reinforcement learning. Combined with the characteristics of Software Defined Network (SDN) for
centralized control and scheduling, resource scheduling based on artificial intelligence becomes possible. However, the current
SDN routing algorithm has the problem of low link utilization and is unable to update and adjust according to the real-time
network status. *is paper aims to address these problems by proposing a reinforcement learning-based multipath routing for
SDN (RLMR) scheme. RLMR uses Markov Decision Process (MDP) and Q-Learning for training. Based on the real-time in-
formation of network state and flow characteristics, RLMR performs routing for different flows. When there is no link that meets
the bandwidth requirements, the remaining flows are redistributed according to the Quality of Service (QoS) priority to complete
the multipath routing. In addition, this paper defines the forward efficiency (FE) to measure the link bandwidth utilization (LBU)
under multipath routing. Simulation results show that compared with the current mainstream shortest path algorithm and ECMP
algorithm, the routing algorithm in RLMR has advantages in FE, jitter, and packet loss rate. It can effectively improve the efficiency
and quality of routing.

1. Introduction

As the rapid development of the Internet, people are
increasingly dependent on the network, and the amount
of data in the network is also exploding. However, the
current routing strategy based on Dijkstra’s Shortest Path
(DjSP) is so fixed that the routing path has a high repe-
tition rate, while the other slightly longer links cannot be
fully utilized. To reduce the wasted resources, multipath
routing is gradually becoming a hot spot for solving this
problem.

In traditional network, existing multipath routing
such as ECMP [1] and WCMP is less efficient in matching
the current data flow requirements for QoS [2, 3] and
collecting real-time operating status of the network.
Google’s B4 network [4] is currently the most famous and
influential new generation network based on SDN. Its flow
engineering system is the idea of multipath routing for

each different flow. *e maximum-minimum fair band-
width allocation algorithm is provided to greatly improve
the system LBU.

In recent years, Artificial Intelligence (AI) has developed
rapidly as a new subject in computer science, especially in
the field of RL [5] and Deep Reinforcement Learning (DRL)
[6]. As a new type of network architecture, SDN [7] is widely
concerned by academia and the business filed because of its
separation of forwarding and control. AI’s characteristics of
high-efficiency and real-time are suitable for solving com-
plicated network problems.

*is paper based on the research of current SDN flow
scheduling technology, combined with the advantages of RL
in policy optimization and the characteristics of centralized
control of SDN network resources. RLMR is proposed to
perform multipath routing of network flow based on the
current network status information and flow characteristics.
Simulation shows that this scheme can find multiple
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forwarding paths that match different flows characteristics
and improve the LBU. At the same time, compared with the
existing flow scheduling algorithm, the flow scheduling
scheme proposed in this paper can effectively reduce the
network delay and reduce the network packet loss rate.

*e rest of this paper is structured as follows. Section 2
describes the related work. Section 3 presents the archi-
tecture of RLMR. Section 4 shows the simulation results.
Conclusion and future works are shown in Section 5.

2. Related Work

SDN breaks the limitations of traditional networks. Its core
idea is to separate the forward layer and control layer. By
centralized management of network resources and real-time
monitoring of network status, the controller provides nec-
essary information for flow scheduling decisions [8]. Taking
advantage of SDN and planning an efficient path for data
flow by programming flow scheduling strategies are still a
hot topic in current network research. Zhu et al. [9] pro-
posed an SVC optimization scheme with the help of SDN.
*is scheme uses the great power of the cloud to collect the
status information of the whole network to improve SVC
flows. However, most of the current SDN controllers use the
shortest path algorithm and focus on the shortcomings of
the shortest path algorithm in SDN. Many works have been
done to optimize routing algorithm. Lin et al. [10] propose a
scheme to optimize the traditional shortest path algorithm
by improving the data storage structure. Yan et al. [11]
proposed an SDN-based multipath QoS system HiQoS,
which provides guaranteed service for different flows
through the queue scheduling on the SDN switch. However,
this scheme is still based on the idea of the shortest path
algorithm, so that when the network topology is busy, this
scheme is getting less efficient.

Zhu et al. [12] made a comparison based on whether it is
dynamic and whether it is multipath. *e results show that
dynamic routing is better than static routing, and multipath
is better than single path. *ose results point out two op-
timization directions. For multipath, the remaining link
bandwidth can be used to improve resource utilization.
Combined with a dynamic routing decision, further rea-
sonable routing can be achieved.

*e uneven distribution of network flows increases the
possibility of network link congestion. To obtain better
network performance and make full use of link band-
width, a series of work studies the multipath routing
algorithm in SDN, which can reasonably distribute flow to
multipath. Yang et al. [13] proposed a dynamic load
balancing routing algorithm Deamp based on the mul-
tipath transmission that redefines the key link and the key
degree of the link and optimizes link weight. [14] pro-
posed a load balancing multipath routing algorithm based
on SDN, which obtains the load information of the global
link through the controller and calculates all forwardable
paths between the source and destination nodes, and then
selects the path with the smallest link load and sends the
flow table to switch. *is scheme can give the routing
decision which has optimal link load for each flow

entering the network. However, in the real network en-
vironment, the network state is so complex that this
scheme requires too much calculation.

With the development of machine learning algorithms,
various schemes dedicated to solving routing problems in a
computer network through machine learning algorithms
have emerged [15–18]. Cheng [19] proposed a routing al-
gorithm based on RL, which can effectively select the optimal
path. But all flows are treated uniformly in routing, without
distinguishing. Rischke et al. [20] proposed QR-SDN, which
is a reinforcement learning-based scheme. QR-SDN uses an
entire route path as action and all available paths as action
space. In this way, flows can be maintained maximum in-
tegrity. *e disadvantage is that any change of node will
cause the change of entire action space. Besides, when nodes
increase, the action space will get too large to converge.
Another machine learning solution is to take the next hop as
the action. Guo et al. [21] focused on the SDN-IoT field, took
black hole attacks and DDoS attacks into account, proposed
the QoS-Aware secure routing based deep reinforcement
learning. *e proposed scheme takes next-hop as an action
and updates the model by maximizing the cumulative
reward.

At the same time, as network services require higher
quality, routing strategies that satisfy QoS constraints have
always been a hotspot in academic and industrial research. A
lot of research related to the QoS level has appeared in
response to the demands of different flows with different
service quality. Bueno et al. [22] proposed a QoS policy
configuration framework that can provide end-to-end
network services according to the specific needs of online
interactive applications. Tomovic et al. [23] proposed an
SDN-based QoS-aware algorithm, which uses different
routing strategies for QoS flow and non-QoS flow to meet
the requirements of QoS flow.

In summary, the existing SDN routing schemes still have
the problems of low efficiency and high computational
complexity. In response to the above problems, this paper
proposes RLMR to optimize flow forwarding. Considering
that different services have different requirements for QoS,
the algorithm provides different routing priorities for dif-
ferent services. When the link bandwidth is not enough,
RLMR divide a large flow into multiple small flows, thereby
improving the LBU.

3. Schemes

3.1. System Framework. In a traditional routing strategy
based on the shortest path algorithm, multiple flows occupy
the same link so that congestions may occur. *at is because
the shortest path from the source node to the destination
node in the network is too fixed. To avoid such situations, the
routing scheme studied in this paper is based on the current
network available bandwidth and the current characteristics
of flow to be forwarded (including the flow size, QoS level,
etc.). By setting different reward functions for flow with
different QoS levels, multiple paths are planned to forward
the flow to improve the LBU.*e specific structure is shown
in Figure 1.
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As shown in Figure 1, there are 6 modules: Data col-
lection module, Data processing module, State awareness
module, Learning module, Action module, and Q-Table
processing module. *e function of six modules is listed as
follows:

(i) Data collection module: the data collection module
takes advantage of centralized control of SDN to
obtain global network information. *is module
sends the obtained network information and flow
information to the data processing module.

(ii) Data processing module: the processing result of the
data processing module is the input of the whole RL
module. *is module processes the information
obtained from the data collection module, extracts
the available features, and sends them into the RL
module.*e results are the network topologymatrix
and flow feature matrix. *e network topology
matrix contains link available bandwidth infor-
mation and total bandwidth information. *e flow
feature matrix contains the flow source address, a
destination address, QoS level, and flow bandwidth
demand.

(iii) State awareness module: the state awareness module
has the following two functions. First, it maps the
environment state to agent’s internal perception
and updates the mapping result when the current
environment state changes after the agent selects an
action. *e input obtained from the data processing
module can be regarded as the initial state of the
environment. Second, at the end of the training of
RLmodule, the current flow can be judged from two
matrices to determine whether this chosen link’s
bandwidth meets the demand of the flow. If the
resulting path does not meet the demand, the state
awareness module continues to plan the path;

otherwise, the results will be sent to the Q-table
processing module.

(iv) Learning module: the learning module is the core of
the RL module. It can update the strategy according
to the reward value of the current environment state
and the internal perception acquired from the State
awareness module, and then, it will select actions
that are conducive to the accumulation of total
rewards. *e selected action is sent to the Action
module.

(v) Action module: the action module executes received
actions and then updates the current environment
state.

(vi) Q-table processing module:With the information of
Q-table, this module generates flow tables and post
flow tables to the OpenFlow switch in the Forward
layer. After the Forwarding layer receives the flow
table, flows will forward according to the policy.

QoS is mainly reflected in delay. A higher QoS level
service has higher delay sensitivity, and a lower QoS level
service has lower delay sensitivity. *e delay in this paper
mainly considers the number of routers that the flow passes
through. A path with fewer router hops is preferentially
assigned to a flow with a higher QoS level.

In this paper, the multipath scheme used to improve
LBU is as follows: *e Data collection module collects a
flow that needs to route, and the Data processing module
extracts the characteristics and network topology infor-
mation. *en this module obtains network topology in-
formation matrix T and flow � {s, d, β, Bmin}, where s
stands for the source node, d stands for destination node,
ß stands for QoS level, and Bmin stands for flow size. *e
Data processing module input the result to the RL Part for
routing decision to obtain the optimal path R. If the result
link bandwidth is bigger than the minimum demand for
this flow, the flow decision is completed. Otherwise, the
flow will be offloaded. When the flow is offloaded, the
available bandwidth of the link and the QoS level of the
flow are comprehensively considered. For a flow with a
large QoS level, more link bandwidth is allocated on the
path, and the RL module is continued to obtain a sub-
optimal path, repeat the above process until the flow is
allocated or there is no path forwarding. Finally, the
output of the RL module is input to the Q-table processing
module, and the flow table is sent to the switch to
complete the routing decision of this flow.

3.2. System Modelling. RLMR system uses MDP for mod-
elling. *eMDP quadruple proposed in this paper is defined
as follows.

(i) State Set. In the network topology, this paper defines
state i as Si as shown in (1). Here, p represents the
switch where the agent is currently at. x represents
how many hops agent passes. β and η represents
current flow’s QoS level and current LBU. N rep-
resents the total number of switches in the topology.

Data collection module Data processing module

Action module

Learning module

Q-Table processing module

State awareness module

Control Layer

OpenFlow Protocol

OpenFlow
Switch 0

OpenFlow
Switch 1

OpenFlow
Switch 2

OpenFlow
Switch 3

OpenFlow
Switch N

Forwad Layer

…

Reinforcement learning module

Figure 1: RLMR architecture.
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Si � [p, x, η, β]p ∈ [1, 2, . . . , N], x ∈ N
∗
, η ∈ (0, 100), β ∈ [1, 2, . . . , 100]. (1)

(ii) Action Set. Agent can only be transmitted at the
connected network node. *erefore, this article

defines the network connection status as shown in
the following equation:

T pl  pm  �
0, pl, pm disconnected

1, pl, pm connected
 pl, pm ∈ 1, 2, . . . , N( . (2)

Since the agent can only be transmitted between
connected network nodes, this paper defines action
ai from the action set A( Si) as shown in the fol-
lowing equation:

ai ∈ A Si(  � pm|T pl  pm  � 1  pl, pm ∈ 1, 2, . . . , N( .

(3)

(iii) State Transition. In each training round, the agent is
in the state Si after selecting an action in the action
set. If the action is not the state that has been se-
lected for the round, the agent will move to the next
state.

(iv) Reward Function. In RL, the agent must find the
optimal action that maximizes the overall reward.
*e reward represents the success of agent’s action
decision, and the reward function tells the agent
about which actions will be selected to accumulate
the maximum overall reward. *e action of the
agent not only affects the direct ward but also affects
the subsequent reward. *e reward function will be
given in the following part.

*e quality update function of RL proposed in this paper
is as (4), in which learning rate α and discount rate c will be
determined in the next section.

Q Si, ai( ←Q Si, ai(  + α R Si, ai(  + cmax
ai+1

Q si+1, ai+1(  − Q Si, ai(  . (4)

In reinforcement learning, the choice of action strategy
and the design of reward function are related to the
implementation effect of the whole algorithm. *ese two
parts will be introduced in detail in the next two sections.

3.3.ActionStrategy. In the RL, the task of the agent is to keep
trying in the system and find a strategy. *e quality of
strategy depends on the cumulative rewards obtained after
the execution of this strategy. Our best strategy is to choose
the action with the largest Q in each state. In fact, due to a
limited number of attempts, exploration and utilization are
contradictory, and the problem to be solved by the strategy is
to achieve a better balance between exploration and utili-
zation. Exploration refers to the actions that the agent has
not performed before. Utilization refers to the agent
obtaining the current optimal action from the previously
learned experience. In this paper, explorationmeans to select
links that have not been selected before to find more pos-
sibilities. Utilization means selecting links that have been
selected to improve the known route planning route.

Currently, the four action strategies widely used are the
random strategy, the greedy strategy, the ε-greedy strategy,
and the softmax strategy. π(a|s) represents action strategy,
and it means the probability that the agent chooses action a
in state s. According to this strategy, the action to be selected
in the state s ( a � π(s)) can be known.

*e random strategy refers that the decision-maker
selects possible actions with equal probability at each step

state s. When the network topology is large, using this
strategy may not find the destination node and cannot send
the packet to the destination node, so this strategy is not
desirable.

*e greedy strategy is a definite strategy. *at is, the
decision-maker chooses the action a with the largest quality
value Q at each step state s. It only uses the quality value
which is already known by the decision-maker and never
explores other states. But in that way, a bigger quality value
may exist. In routing, if an agent does not explore other
unknown links, the already known link may not be the
optimal path or even cause link congestion, so this strategy is
not desirable.

*e softmax strategy is a strategy based on probability. It
calculates the probability of selecting an action based on the
quality of the optional action Q(s, a) in the current state s.
*e basic idea is that the larger the Q(s, a) is, the greater the
probability of selecting the action will be. It maps agent’s
optional action set to a probability distribution, and then the
agent selects actions according to this probability distri-
bution. *e softmax strategy’s formula is as follows:

π(a|s) �
exp(Q(s, a)/τ)


n
i�1 exp(Q(s, i)/τ)

. (5)

Here, n represents the size of the optional action set of
the agent in the state s.Q(s, a) represents the quality function
of selecting the action a in the state s, and τ is called the
temperature parameter, which can change the weight of
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exploration and utilization. In the process of planning the
path, when τ tends to infinity and the agent chooses to
forward the action, the probability of all actions in the action
set would tend to be equal; that is, the agent would tend to
only explore; when τ tends to 0, the agent would choose to
forward action. *e larger the Q(s, a) is, the greater the
probability of being selected will be, and the agent will tend
to only use it. Because the value range of τ is too large, the
value of τ cannot be determined well, so this strategy is also
unacceptable.

*e ε-greedy strategy compromises exploration and
utilization based on the probability ε. Specifically, the agent
adopts a random strategy with the probability of ε at each
step state s. When the route is planned, the agent has a
certain probability to explore a new path, and a greedy
strategy with a probability of 1− ε will be token, which
means that the agent will select the forwarding action
corresponding to the largest quality value. *e ε-greedy
strategy’s formula is as follows:

π(a | s) �

1 − ε +
ε

|A(s)|
, if a � argmax

a

Q(s, a),

ε
|A(s)|

, if a≠ argmax
a

Q(s, a).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

*e ε-greedy strategy can balance the weight between
choosing a known action and choosing an unknown action.
*erefore, in this paper, we choose the ε-greedy strategy. In
the simulation part, the value of ε will be determined.

3.4. Reward Function. A key issue of RL is the generation of
reward values and the weight update function. While the
state transition of agent occurs, the system will feedback a
reward to the agent according to the reward function R.

*e goal of RLMR is to plan reasonable multipath
through training, so the setting of the reward value R is also
crucial. *is paper mainly considers LBU and QoS. *e
design of the reward function should meet the following:

(i) Consider both QoS level ß and LBU η
(ii) Encourage paths with large ß to allocate paths with

few hops

In summary, reward function (6) designed in this paper
is as follows:

R Si, ai(  � −βg(x) + η + δ ai( . (7)

In (7), R(Si, ai) represents the reward received by the
agent when selecting action ai from action set. It represents
the reward generated when the agent in state Si selects the
next hop ai. δ(ai) is defined as impulse function. When the
destination node is the chosen action, the function’s value is
100. Otherwise, the function’s value is 100.

g(x) �
e
4x/lm − e

−4x/lm

e
4x/lm + e

−4x/lm
. (8)

As shown in (7) and (8), g(x) is cost function. *e cost
function stands for the cost increases with the rising number

of hops that agent passed x. When x is getting bigger the cost
increases, and g(x) ∈ (0, 1). lm represents total number of
nodes in the network topology. Considering that when the
network topology is getting larger, the more agent passes and
the higher the delay is, so the agent can only be encouraged
to forward through part of the link, so the cost function
should meet, and rapid growth in the early stage and
gradually stabilized, if the number of hops passed by agent
reaches lm, then the cost function value will reach the
maximum. *e trend of function g(x) is in Figure 2.

*e second requirement is to encourage flow with large-
β to allocate paths with few hops. *erefore, the cost
function g(x) in the reward function is multiplied by the
flowQoS level -β. In this way, under the same circumstances,
the more path hops agent forwards, the greater the cost of
the flow with a large QoS level will be, then the routing
strategy will choose paths with few hops for a large QoS level
flow.

Based on the above definition, the model of RLMR in
routing decisions is as follows: Each node in the network
maintains a Q-Table as the strategy of the next hop is chosen.
For each Q-Table, the columns represent the action set,
which is the neighbor nodes, and the rows represent the
destination node. Figure 3 is Q-table of node S1, in which Q
(S2, S3) represents that For traffic that destination node is S2,
then agent takes an action from columns S2 in Q-Table S1 by
ε-greedy action strategy. According to the results of this
decision, the agent gets a reward by reward function (7), and
update Q-Table by quality update function (4).

3.5. Multipath Routing Algorithm. According to the prin-
ciples of RL and the environment of SDN routing, the
multipath routing algorithm in RLMR is shown in Algo-
rithm 1.

Pseudocode shows that the algorithm performs
multipath routing for flow to be distributed. *e T in the
algorithm is a two-dimensional matrix that represents the
current link state. If the switch is connected, its value will
be set to 1. Otherwise, its value will be set to 0. When
performing multipath division, it is necessary to cut off
the congested link, as shown in the algorithm
T[si][sj] � 0. For the agent, the worst case is that N nodes
in the network are neighbor nodes (except the destination
node). In this case, the time complexity and space
complexity of this algorithm are O(n2).

4. Results and Discussion

4.1. Simulation Environment. Before the simulation, we
need to prepare some necessary environment. Mininet is a
network simulator connected by some virtual nodes, routers,
and switches. It adopts lightweight virtualization technology
and supports OpenFlow protocol. Ryu is an open-source
SDN controller implemented by Python. It supports all
OpenFlow protocols. Users can write their own applications
in Python.

*e simulation system environment is Ubuntu 14.04,
using Ryu controller and Mininet to test the effectiveness of
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Figure 3: Q-table of node S1.

(1) s⟵ Source, d⟵Destination, β⟵QoS level, B⟵*e minimum available bandwidth of the current path, Bmin⟵ Flow
size, Q(s, a)⟵ 0, π(s)⟵Action strategy, R⟵Reward function, Routing (S, D)⟵Routing set, iterations⟵Total training
times, steps⟵ a single training step

(2) for i in range (iterations)
(3) while Bmin≠ 0
(4) for j in range (steps)
(5) a⟵ π(s) choose action
(6) s′� a
(7) r⟵R (calculate reward value)
(8) use quality update function Q (s, a)
(9) s� s′
(10) if s� � d
(11) Get Routing from Q (s, a)
(12) Get two nodes with the smallest available bandwidth si, sj
(13) Routing (S, D)⟵Routing
(14) Break
(15) end if
(16) end for
(17) if Bmin>B
(18) T[si][sj] � 0
(19) update T
(20) Bmin � Bmin − Bβ/ β
(21) else

ALGORITHM 1: Continued.
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the routing scheme. Topology built by Mininet is shown in
Figure 4, which includes 9 OpenFlow switches and 5 hosts.

4.2. Model Parameter. In RLMR, the convergence rate of
model results is affected by the following parameters:

(i) Learning rate α: α is between (0, 1). If α is too big,
it may not converge to the optimal solution, and
the model is prone to oscillation. On the con-
trary, if α is too small, the convergence speed will
be slow; the model is easy to fall into local op-
timality and overfitting. *is paper will deter-
mine the value of the learning rate in the
simulation.

(ii) Discount rate c: c is between (0, 1), c determines
which agent takes between the current reward and
the long-term reward. If c is 0, the model will not
learn any future reward information but only focus
on the reward of the current state. If c is greater than
or equal to 1, the reward will not converge because it
keeps accumulating and does not decay. *is paper
will determine the value of the discount rate in the
simulation.

(iii) Steps of exploration in each round: *is paper
defines that the maximum number of exploration
steps in each round is 20. When the exploration
steps exceed 20, the agent still fails to reach the
destination node, which means that the current
training strategy is inappropriate and cannot reach
the destination node.

(iv) Greedy strategy ε: In this paper, the agent need to
choose known links and explore unknown links, so
it is important to select an appropriate ε. *e initial
value of the exploration factor εwas set as 0.1, which
will be determined in the simulation.

According to Section 3.3, this paper uses ε-greedy
strategy (ε was taken as 0.1 temporarily, and then deter-
mined by simulation). We compare the convergence effects
to find optimal α and c.

In Figure 5, the y-axis represents the number of hops that
the agent passes to reach the destination node in the net-
work. It shows that the value of the y-axis is larger at the
beginning because themodel needs to explore links that have
not performed actions at the beginning of training. As the
number of training increases, the actions that have been
selected become more and more so that it gradually con-
verges. When the y-axis converges, it means that after the

model is trained, the agent can pass through a specific node
to reach the destination node. *e smaller the y-axis value,
the fewer hops agent pass through when it reaches the
destination node.

It can be seen from Figure 5 that the learning rate α has
a greater impact on the model convergence than the dis-
count rate c, and as the model learning rate α increases, the
model can converge faster. When the discount rate c � 0.7,
the model converges fastest, and the y-axis value is small
under the same conditions. *erefore, the learning rate is
set to α ∈ (0.5, 0.9) and the discount rate is set to c ∈ (0.5,
0.9).

To obtain the accurate values of the learning rate α and
the discount rate c, the required learning rate and discount
rate of the model are determined by comparing the model
errors at different α and c. *e simulation results are shown
in Figure 6.

It can be seen from Figure 6 that the model’s error
gradually decreases with the increase of training episodes,
and the model error can gradually approach zero after
1000 episodes. When α is the same, the bigger the c, the
bigger the model error. Comparing different learning rate
α and discount rate c models, it can be observed that when
α� 0.8 and c � 0.6, the model performs better in the
simulation and can quickly reduce the simulation error to
the minimum.

According to the performance of the different learning
rates and discount rate in simulation, this paper sets the
learning rate α of the quality update function in the RL to 0.8
and the discount rate c to 0.6.

To make a better compromise between exploration and
utilization, the action strategy adopted in this paper is the
ε-greedy strategy. *e agent adopts a random strategy with a
probability ε.*e bigger the ε, the greater the probability that
the strategy will be used to select the action, the worse the
model converges. When ε is too large, the model may not
converge, and the final path planned by the model may not
be the optimal path. *erefore, in the action strategy of this
paper, the probability of utilization should be greater than
that of exploration, that is, the value of e-greedy strategy
ε ∈ (0, 0.5). *is paper determines ε by comparing the ac-
curacy of different ε models. *e simulation results are
shown in Figure 7.

It can be seen from Figure 7 that under the same
conditions, as the number of iterations increases, the model
accuracy rate shows an upward trend. And when the iter-
ations are large enough, the model accuracy rate reaches the
maximum when ε� 0.1. *e value of the ε-greedy strategy ε
is set to 0.1.

(22) Bmin � 0
(23) if B� � 0
(24) break
(25) end if
(26) end for
(27) return Routing (S, D)

ALGORITHM 1: Multipath routing algorithm in RLMR.
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4.3. LBU Verification Simulation. DjSP is a typical shortest
path algorithm.*e advantage of this algorithm is that it can
calculate the shortest path from any node to all other nodes.
However, the disadvantage of this algorithm is also obvious.
If network packet forwarding only depends on the shortest
path, it will easily lead to link congestion.

*e purpose of this algorithm is to improve the LBU. To
verify the feasibility of this algorithm and compare it with
DjSP, this paper defines FE as e to reflect the quality of LBU.
*e higher the value of e, the higher the value of LBU, the
lower the value of e, the lower the value of LBU. FE’s specific
formula is as follows:

e �
iB

i
send

iB
i

. (9)

In (9), Bi represents the bandwidth requirement of the
ith flow, Bi

send represents the size of the flow that is suc-
cessfully forwarded by the ith flow, Bi

send is definite as
follows:

B
i
send � min

i
B

i
, min

B
R

i
B . (10)

In (10), Ri
B represents the bandwidth of all links that are

selected by the ith flow forwarding, min
B

Ri
B is the smallest

link bandwidth in this route.
To compare with RLMR, the shortest path algorithm

DjSP is used in the simulation. In addition, considering that
different congestion levels of the current network link
bandwidth will affect the evaluation of the algorithm, this

paper will also compare FE under different congestion
conditions.

According to the RLMR and SDN network topology, the
network link bandwidth is set to 200. *e sending end is set
to h1∼h5, and the receiving end is set to h1∼h5. Five sending
ends randomly send data to other receiving ends with a
probability of 20%. All hosts totally send 30 static flows.
Static flow refers to the flow that, once injected into the
network, it will occupy the link bandwidth until the end of
the simulation.

According to the scheme in this paper, the algorithm will
distribute flow based on the current network bandwidth
status. If the available bandwidth of the currently planned
path is greater than the size of the flow to be distributed, the
flow is forwarded. Otherwise, the flow is divided into
multiple small flows, the small bandwidth is reasonably used,
and the path is planned until all the flows are sent. Flow FE is
shown in Figure 8 and Figure 9.

In Figures 8 and 9, the x-axis represents network
topology link bandwidth congestion. *e y-axis repre-
sents flow FE. *e triangle in the figure represents the
average flow FE for the 100 rounds of simulation. Under
the same circumstances, the greater the FE, the greater
the network LBU. Combined with Figure 10, it is shown
that under the same conditions, the flow FE of RLMR is
greater than that of DjSP. It shows that the algorithm can
divide a large flow into multiple small flows, reasonably
use links with small bandwidth, and find different for-
warding paths for small flows, thereby improving net-
work LBU.

H4

H3 H2

H5

S3

S6 S5 S4

S8 S7S9

S2 S1

H1

Figure 4: SDN network topology.
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4.4. QoS Verification Simulation. ECMP algorithm can
evenly distribute traffic over multiple equivalent links.
Compared with DjSP, this algorithm can greatly improve
network throughput and LBU. *e disadvantage of this
algorithm has a bad LBU when the difference between
network paths is large. To compare the three schemes for
flow’s QoS guarantee, this paper expects to use packet loss
rate and jitter as descriptors to measure QoS where jitter
represents the difference in delay between packets.

*e simulation topology is shown in Figure 4. Each link
bandwidth is set to 100Mb/s, and the delay is 2ms. Data

source is h3, and data destination is h1. Flow size increases
from 10Mb/s to 60Mb/s at intervals of 5Mb/s.

*e result of packet loss rate is shown in Figure 11.
When the data source sending rate is lower than 30Mb/s,
no packet loss in all three policies. Dijkstra algorithm
begins to lose when the sending rate is greater than
30Mb/s, and the ECMP algorithm begins to lose when the
rate is greater than 45Mb/s. *e algorithm in this paper
has no packet loss. Additional simulation proof that this
algorithm had a slight packet loss until the packet sending
rate was 80Mb/s.
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Wireless Communications and Mobile Computing 9



Figure 12 shows the comparison of three routing al-
gorithms’ jitter (inconsistent latency between packets).
According to the results, Dijkstra’s jitter is the largest overall,
followed by ECMP’s. In contrast, the algorithm in this paper
can control the delay within a certain range and has a lower
jitter.

As shown above, RLMR can indeed divide flow into
multiple small flows when the link bandwidth is not enough,
use the small bandwidth to forward flow. *e simulation
results show that this scheme can effectively improve the link
utilization LBU. Compared with Dijkstra algorithm and
ECMP algorithm, this algorithm has some advantages in
terms of jitter and packet loss rate.
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5. Conclusion

To improve LBU, RLMR applies RL to SDN network routing
planning and focuses on the analysis of the construction of
the routing planning and the design of reward functions.*e
result of the simulation shows that after training the model,
this algorithm can provide different QoS routes for different
services, and when the link bandwidth is not enough, it can
divide a large flow into multiple small flows, thereby im-
proving the LBU.

It is necessary to verify the performance of this algorithm
in a larger and more complex network in the future. In the
simulation, this paper uses a simple network topology to
verify the effectiveness and superiority of this algorithm.
However, in the actual network, the network state is

complicated and changeable. Simulation verification in the
actual network can better illustrate the effectiveness and
rationality of this algorithm.

It would be interesting to compare our scheme with
these existing ones [9, 21] via simulation or in the testbed
with realistic traffic traces. However, due to the time limi-
tation, we leave it to future work.
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