
RM-ODP: The Architecture 

P.F. Linington 

Computing Laboratory, University of Kent, 

Canterbury, Kent Cf2 7NF, United Kingdom 

2 

The Reference Model for Open Distributed Processing is a joint ISO/ITU Standard 

which provides a framework for the specification of large scale, heterogeneous distributed 

systems. It defines a set of five viewpoints concentrating on different parts of the distribution 

problem and a set of functions and transparency mechanisms which support distribution. The 

resulting framework is being populated by more detailed standards dealing with specific 

aspects of the construction and operation of distributed systems. 

Keyword Codes: C.2.4 

Keywords: Distributed Systems 

1. INTRODUCTION 

The Reference Model for Open Distributed Processing is a standard produced jointly by 

the International Organization for Standardization (ISO) and the International 

Telecommunications Union (ITU). Experts from these two organizations have been working 

together on this framework for Open Distributed Processing (ODP) for some seven years, and 

the resulting architecture has recently been approved for publication by ISO; ITU approval is 
expected at a meeting later in 1995. 

This work is based on recent research and best practice; it has drawn upon a wide range 

of experience in the implementation of distributed systems and the formulation of a general 

architecture. Input has been taken from advanced industrial research, such as that in the 

ANSA consortium, from various ESPRIT and RACE activities, and from practical experience 

with platforms such as the OSF-DCE. In the standards world, ideas from OSI management 

and the security frameworks have been incorporated. Major input from the ITU has 

introduced the requirements from TMN, INA and TINA. More recently, the work has 

benefited from a strong, two-way liaison with the Object Management Group. 

The resulting standard is a framework, which documents key decisions, relates 

components and sets the technical agenda for future, more detailed, standardization. The 

Reference Model for Open Distributed Processing (RM-ODP) is made up of four pans [1-4]. 

K. Raymond et al. (eds.), Open Distributed Processing

© Springer Science+Business Media Dordrecht 1995



16 Part One Invited Presentations 

These are 

Part 1: Overview: this contains a motivational overview of ODP, g1vmg scoping, 

justification and explanation of key concepts, and an outline of the ODP architecture. 

It contains explanatory material on how the RM-ODP is to be interpreted and applied 

by its users, who may include standards writers and architects of ODP systems. It 

also includes a categorization of required areas of standardization, expressed in terms 

of the reference points for conformance identified in Part 3. 

Part 2: Foundations: this contains the definition of the concepts and analytical framework 

for the description of arbitrary distributed processing systems. It introduces the 

principles of conformance to ODP standards and the way in which they are applied. 

Part 3: Architecture: this contains the specification of the required characteristics that 

qualify distributed processing as open. These are the constraints to which ODP 

standards must conform. 

Part 4: Architectural semantics: this contains a formalization of the ODP basic modelling 

concepts defined in Part 2. The formalization is· achieved by interpreting each 

concept in terms of constructs of the different standardized formal description 

techniques. 

The current paper concentrates on Part Three of the RM-ODP- the architecture which 

makes a distributed system be specifically an ODP system. 

2. MODELLING FOUNDATIONS 

The architecture is supported by a set of modelling concepts which provide the 
foundation for expressing it. These concepts are object based, and are very general; they can 

be applied in many different areas of the architecture. 

The most basic concepts defined are those of object, action and interaction; an object 

encapsulates its state, and this state can only be modified by interaction with other objects or 

by the internal actions of the object. The interactions between objects take place at interfaces; 

an object can have any number of interfaces. Interfaces can be located at particular points in 

space. These interfaces are the basis for the description of configurations of objects and the 

transfer of information about the availability of objects. 

A second set of concepts supports the structuring of specifications, introducing ideas of 

composition and refinement, type and class and of the instantiation of objects or interfaces 

from templates which describe them. Following this, a variety of more abstract 

organizational concepts, such as domain, contract and liaison are introduced to express 
relationships between objects. 

Finally, there is a basic framework for the definition of conformance to the ODP 

specifications, and for the statement of where such conformance applies. The conformance of 

implementations to ODP standards can be tested in a number of ways, depending on whether 

the requirement is for interworking, software portability, correct generation of interchange 

media (such as removable discs), or correct interaction with human users and the outside 
world in general. 



RM-ODP: the architecture 17 

3. ARCHITECTURAL FRAMEWORK 

Distributed systems can be very large and complex, and the many different 

considerations which influence their design can result in a substantial body of specification, 

which needs to be given structure if it is to be managed successfully. A good framework 

should allow different parts of the design to be worked on separately if they are independent, 

but should identify clearly those places where different aspects of the design constrain one 

another. There are two main structuring approaches used in the ODP architecture: the 

definition of viewpoints and the definition of transparencies. 

3.1. Viewpoints 

The RM-ODP defines five viewpoints. A viewpoint is a subdivision of the specification 

of a complete system, established to bring together those particular pieces of information 

relevant to some particular area of concern during the design of the system. The viewpoints 

are not completely independent; key items in each are identified as related to items in the 

other viewpoints. However, the viewpoints are sufficiently independent to simplify reasoning 

about the complete specification. 

Each of the viewpoints in the set can be related to all the others. They do not form a 

fixed sequence like a set of protocol layers, nor are they created in a fixed order according to 

some design methodology. The architecture is expressed in terms of the complete set of 

related viewpoints, without laying down how this complete specification is to be constructed. 

The five viewpoints defined are: 

a) the enterprise viewpoint: a viewpoint on the system and its environment that focuses on 

the purpose, scope and policies for the system. 

b) the information viewpoint: a viewpoint on the system and its environment that focuses 

on the semantics of the information and information processing performed. 

c) the computational viewpoint: a viewpoint on the system and its environment that enables 

distribution through functional decomposition of the system into objects which interact 
at interfaces. 

d) the engineering viewpoint: a viewpoint on the system and its environment that focuses 

on the mechanisms and functions required to support distributed interaction between 
objects in the system. 

e) the technology viewpoint: a viewpoint on the system and its environment that focuses on 
the choice of technology in that system. 

In each viewpoint, key terminology is established and constraints expressed which 

characterize the architecture, making the systems described distinctively ODP systems, not 
just any distributed systems. These terms and constraints are expressed as the initial terms and 

grammar of a set of abstract viewpoint languages. Specifications expressed in these languages 

conform to their grammar, and so the systems designed are ODP systems, at least from an 
architectural point of view. 



18 Part One Invited Presentations 

The various viewpoint languages differ in the strengths of the constraints their use 

implies. Those concerned with organizing distribution and providing common solutions to its 
problems (the computational and engineering viewpoints) place a significant number of 

constraints that must be observed, and in so doing give guarantees of interworldng between 

and portability of components. Those which express requirements for the system as a whole 

(the enterprise and information viewpoints) place fewer constraints. Constraints on the 

complete system effectively limit its scope, and so make the architecture less general-purpose. 

Therefore few language constraints have been defined in these viewpoints in order to support 

as wide a range of applications as possible. 

It should be noted that the expression of the architectural constraints in the form of an 

abstract language does not imply any particular syntax or notation; there may be many 

notations consistent with the architecture, derived from a variety of programming practices or 

development methods, and embodying choices not expressed in the ODP architecture itself. 

3.2. Transparencies 

The second structuring approach taken is to identify a number of transparencies. When 

contemplating a distributed system, a number of problems become apparent which are a direct 

result of the distribution: the systems components are heterogeneous, they can fail 

independently, they are at different and, possibly, varying locations, and so on. These 
problems can either be solved directly as part of the application design, or standard solutions 

can be selected, based on best practice. 

If standard mechanisms are chosen, the application designer works in a world which is 

transparent to that particular problem; the standard mechanism is said to provide a 

transparency. Application designers simply select which transparencies they wish to assume, 
and where in the design they are to apply. 

The transparency approach can lead directly to software reuse. Selection of 

transparencies in the system specification can lead to the automatic incorporation of well

established implementations of the standard solutions by the system building tools in use, 
such as compilers, linkers and configuration managers. The designer expresses system 

requirements in the form of a simplified statement of the interactions required and the 

transparency properties that they should possess. 

The transparencies defines in the RM-ODP are 

a) access transparency, which masks differences in data representation and invocation 

mechanisms to enable interworking between objects. This transparency solves many of 

the problems of interworking between heterogeneous systems, and will generally be 

provided by default. 

b) failure transparency, which masks from an object the failure and possible recovery of 

other objects (or itself), to enable fault tolerance. When this transparency is provided, 
the designer can work in an idealized world in which the corresponding class of failures 
does not occur. 

c) location transparency, which masks the use of information about location in space 

when identifying and binding to interfaces. This transparency provides a logical view of 

naming, independent of actual physical location. 



RM-ODP: the architecture 19 

d) migration transparency, which masks from an object the ability of a system to change 

the location of that object. Migration is often used to achieve load balancing and reduce 

latency. 

e) relocation transparency, which masks relocation of an interface from other interfaces 
bound to it. Relocation allows system operation to continue even when migration or 

replacement of some objects creates temporary inconsistencies in the view seen by their 

users. 

f) replication transparency, which masks the use of a group of mutually behaviourally 

compatible objects to support an interface. Replication is often used to enhance 
performance and availability. 

g) persistence transparency, which masks from an object the deactivation and 
reactivation of other objects (or itself). Deactivation and reactivation are often used to 
maintain the persistence of an object when the system is unable to provide it with 

processing, storage and communication functions continuously. 

h) transaction transparency, which masks coordination of activities amongst a 

configuration of objects to achieve consistency. 

In each case, the definition of the transparency involves both a set of requirements and a 

solution that satisfies it. The set of requirements states where the transparency is needed (i.e. 
which interactions it affects). This may simply be a statement that it applies throughout a 

system, or may be a more selective statement involving specific interfaces, defining, for 
example, the interactions which make up a transaction or selecting the objects and interfaces 
to be supported by replication. The solution takes the form of specific rules for the 
transformation from a specification in which the transparency is requested to a more detailed 

one which expands selected interaction or objects so as to include mechanisms which provide 
a means of interaction with the requested properties. 

4. THE ENTERPRISE LANGUAGE 

The aim of an enterprise specification is to express the objectives and policy constraints 
on the system of interest. This involves the identification of the main roles involved in the 
system. These roles represent, for example, the users, owners and providers of information 
processed by the system. Creating a separate viewpoint to convey this information decouples 

the objectives set for the system from the way it is to be realized. 

One of the key ideas in the enterprise language is that of a contract, linking the 
performers of the various roles and expressing their mutual obligations. A contract can 

express the common goals and responsibilities which distinguish roles in a community, such 
as a business and its customers or an government organization and its clients, as being related 
in particular ways in a single activity or enterprise. 

A federation is one particular kind of community; a federation is a coming-together of a 
number of groups answering to different authorities (and thus representable as distinct 

domains) in order that they may jointly cooperate to achieve some objective. Since the 

evolution of distributed systems will repeatedly result in the merging of existing, separately 
managed sub-systems to share information or support commercial interests, the creation of 



20 Part One Invited Presentations 

federations and the expression of the rules which are to govern them forms an important part 
of system specification in the enterprise viewpoint 

Where appropriate, an enterprise specification will also express aspects of ownership of 
resources and responsibility for payment for goods and services in order to identify, for 
example, constraints on accounting and security mechanisms within the infrastructure which 

supports the system. 

Different notations for enterprise specification can be expected to support specific 
organizational structures and business practices, but architecturally, ODP is neutral, requiring 
only that an appropriate specification be generated; few constraints are placed on the form 
that organizations should take. 

S. THE INFORMATION LANGUAGE 

The individual components of a distributed system must share a common understanding 
of the information they communicate when they interact, or the system will not behave as 
expected. Some of these items of information are handled, in one way or another, by many of 
the objects in the system. To ensure that the interpretation of these items is consistent, the 
architecture identifies the information viewpoint to specify the information to be handled, 
independently of the way the information processing functions themselves are to be 
distributed. 

The information specification consists of a set of related schemata, just as in familiar 
data modelling activities. In the RM-ODP, a distinction is made between invariant, static and 
dynamic schemata. An invariant schema expresses relationships between information objects 
which must always be true, for all valid behaviour of the system. A static schema expresses 
assertions which must be true at a single point in time, and a dynamic schema specifies how 
the information can evolve as the system operates. 

These schemata may apply to the whole system, or they may apply to particular domains 
within it. Particularly in large and rapidly evolving systems, the reconciliation and federation 
of separate information domains will be one of the major tasks to be undertaken in order to 
manage information. 

Different information specification notations model the properties of information in 
different ways. Emphasis may be placed on classification and reclassification of information 
types, or on the states and behaviour of information objects. The approach to be taken will 
depend on the modelling technique and notation being used. 

Since both the information and enterprise viewpoints consider the system as a whole, 
conformance to them must be assessed as a whole. Sets of observations at any of the points 
where system components are defined to interact should all be consistent with the 
requirements expressed in these viewpoints. If a set of observations is not consistent with the 
requirements of, for example, an invariant information schema, the implementation of the 
system does not conform to that part of its specification. 



RM-ODP: the architecture 21 

6. THE COMPUTATIONAL LANGUAGE 

In distinction to the two viewpoints described so far, which consider the distributed 

system as a whole, the computational viewpoint is directly concerned with distribution. It 

does not address interaction mechanisms, but it does decompose the system into objects 

performing individual functions and interacting at well-defined interfaces. The computational 

specification thus provides the basis for decisions on how to distribute the jobs to be done, 

because objects can be located independently and communications mechanisms can be 

defined to support the behaviour at their interfaces. 

The heart of the computational language is the object model which defines the form of 

interface an object can have, the way that interfaces can be bound and the forms of interaction 

which can take place at them. The computational language also defines the actions an object 

can perform, so that new objects and interfaces can be created and bindings established. This 

model provides the basis for specification languages, programming languages and 

communication mechanisms all to perform in a consistent way, thus allowing open 

interworking and portability of components. 

6.1. Object interaction 

There are two basic kinds of computational interface: operation interfaces, which 

support discrete interactions, and stream interfaces, which support continuous flows. Often, 

these interactions can be considered as indivisible, and nothing further needs to be said about 

how the interactions take place. 

If, however, details of the progress of the interaction need to be expressed, for example, 

to define time delays or other aspects of quality of service, then the interactions can be 

structured into a sequence of signals, each of which has a precise location and time of 

occurrence. Timing requirements can then be stated in terms of the delay between particular 

pairs of signals or by more complex timing statements, as necessary. This use of signals as a 

common representation may in future be used to define new interaction types. 

For the present, however, the kinds of interaction supported are strictly limited to those 

for which efficient communication mechanisms are known to exist. Thus there are only two 

kinds of operation interaction: interrogations, in which there is a request followed by a reply, 

and announcements, in which there is a single unidirectional transfer of information. More 

complex forms, such as rendezvous, which are expensive to provide in practice, are not 

supported. 

Stream interfaces can be made up of a number of independent flows, each with a 

specified direction, so that a stream might consist of linked audio and video flows, or paired 

audio flows in opposite directions. Streams were introduced into the architecture primarily to 

support multimedia interactions, but they can also be used to represent other forms of 

unstructured information transfer, such as sequences of announcements giving regular updates 

from some sensor, if the exact repetition rate of the readings is not of major concern in the 

application design. 



22 Part One Invited Presentations 

6.2. Binding 

Before two objects can interact, the interfaces to be involved must be associated by 

creating a binding. In simple cases, one of the objects involved can perform a primitive 

binding action, linking it to another object. This is adequate for the expression of, for 

example, a straightforward client-server binding. However, in other situations, it may be 

necessary to model the binding process in more detail. This requirement may arise, for 

example, if there is a need to manage the quality of service of the expected interactions, or if 

the binding is to link more than two objects, supporting some sort of group or multicast 

interaction. In particular, stream bindings are often set up by third parties, and generally 

require some kind of explicit control during their lifetime. 

To give the necessary control, the notion of a compound binding is introduced. In this 

form of binding (which can be expressed in terms of some piece of object behaviour 
involving primitive bindings), the originator of the binding instantiates a binding object, 

which, in turn, is bound to the set of objects which are to interact. The required rules 

associated with the interactions to be performed are then expressed via the behaviour of the 

binding object. Whenever a binding object is created, knowledge of a control interface is 

returned to its creator, so that changes in behaviour or configuration can be requested, or the 

binding object asked to terminate itself. Apart from the way its creation is parameterized by 

the set of interfaces to be bound, and its special status in encapsulating and controlling part of 

the communication function, a binding object is just an ordinary computational object. 

Figure 1 - An example of a compound binding 

The behaviour required from a binding object can be quite complex. For example, a 

number of full duplex interfaces may be linked by a binding object which encapsulates the 

rules of a conference system for allowing the audio flow from a selected producer (the current 

talker) to be delivered to all consumers. Varying degrees of application control might be 



RM-ODP: the architecture 23 

exercised via the binding control interface to provide explicit floor control. Simpler binding 

objects might represent full duplex audio links or synchronized audio and video flows. 

However, in the simple client-server case, using a default quality of service, the 

visibility of the binding adds little to, and may complicate, the specification. In such cases, 

the designer of a computational notation may opt to conceal the whole binding process, 

providing implicit binding. If so, the notation specifies with each interaction being invoked 

the identity of the other interface involved; it is then left up to the supporting infrastructure to 

create any necessary binding and either to discard it after the interaction completes or to 

retain it, for a while, for possible reuse. Some notations may support a mixture of implicit and 

explicit binding for different interfaces. 

6.3. Interface types and subtyping 

Every interface has an associated type which characterizes it. One important component 

of this type is the interface signature, which expresses the static aspects of the interface - the 

operations available and their associated parameter types (or, for a stream, its flow types), 

together with the interface's role in the cause and effect sequence of interaction. 

The computational language does not require that interfaces participating in a binding be 

of identical types. To do so would create a barrier to system evolution by making the phased 

introduction of new services and functions more difficult. Instead, a set of subtyping rules is 

defined, and the constraints on interface binding expressed in terms of them. 

The computational language specifies appropriate type matching rules for each of the 

kinds of interface defined. The rules are in terms of signatures because they are easy to check 

during the interaction; behavioural aspects of the interface type may require much more 

knowledge of the previous history than is available. For operation and signal interfaces, a "no 

surprises" rule is applied. Interfaces can be bound only if none of the interactions involved 

introduce unexpected behaviour or fail to supply expected information. However, not all 

features of the responding party in the interaction need be exercised. Thus, in a client-server 

interaction, for example, the server may support operations unknown to the client, and thus 

not used, but the client must not invoke operations which are unknown to the server. 

The situation for stream bindings is more complex, because there is an element of 

application choice in the selection of the binding rules. The computational language requires 

that flows be coupled only if they are compatible, but admits the possibility of applications in 

which some flows may be left without a matching counterpart. Thus, for example, one might 

choose to allow participation in a video conference from a mobile (non-video) 'phone. 

6.4. Support for portability 

Further definitions are provided so that the computational language stipulates which 

actions an object can perform (effectively defining an object based virtual machine) and 

enumerating the possible failure modes of these actions. 

A set of portability rules, using the actions defined, identifies the requirements on a 

computational notation which is to be used to support the portability of objects between 

different environments. Notations may be referred to as basic or complete, depending on the 

sets of actions they support. 



24 Part One Invited Presentations 

7. THE ENGINEERING LANGUAGE 

The engineering language focuses on the way object interaction is achieved and with the 

resources needed to do so. Thus the computational viewpoint was concerned with when and 

why objects interact, but the engineering viewpoint is concerned with how they interact. In 

the engineering language, the main concern is with the support of the individual interactions 

between computational objects. It is here that one of the most direct links between viewpoints 

is found; computational objects are visible in the engineering viewpoint as basic engineering 

objects and primitive computational bindings are visible as channels or local bindings. 

7.1. Clusters, capsules and nodes 

The engineering language deals with the basic engineering objects and with various 

other engineering objects which support them. It relates these objects to the available system 

resources by identifying a nested series of groupings. 

At the outer level, objects are physically located and associated with processing 

resources by grouping them into nodes, which can be thought of as representing 

independently managed computing systems. A node can be anything which has a strongly 

integrated view of resources, as long as the system designer can consider it as a whole. Thus a 
tightly coupled parallel processing system can be considered a node, so long as it has one 

scheduling and allocation policy - one operating system. 

The node is under the control of a nucleus which is responsible for initialization, for 

creating groups of objects, for making communications facilities available, and for providing 

basic services like timing and the source of unique identifiers. 

Within a node, there may be a number of capsules. A capsule owns stomge and a share 

of the node's processing resources. It can be thought of in terms of a traditional protected 

process, with its own address space. A capsule is thus the unit of protection and is generally 

the smallest unit of independent failure supported by the opemting system. There is a special 

object, called the capsule manager, associated with each capsule, and for descriptive purposes, 

a capsule is controlled by intemctions with this manager. 

A capsule will typically contain many objects; the grouping of objects into capsules is 

done to reduce the cost of object interaction. This is because communication between 

traditional processes is slow and expensive, because of the checks which need to be 

performed; however, the compiling tools that build capsules can be trusted to validate and 

structure the interactions between closely related objects to a sufficient extent to let them 

share resources. Resources within a capsule will be controlled by some kind of language
specific run-time system. 

The smallest grouping of objects is into a set of clusters within a capsule. The objects in 

a cluster are grouped together in order to reduce the cost of manipulating them. The objects in 

a cluster can be checkpointed together, transferred to persistent storage, reactivated or moved 

to another node altogether. This manipulation of complete clusters as a single operation opens 

the way to the management of very fine-gmin object-based systems at reasonable cost. For 

example, a geographical information system might consider data about individual points on a 

map to be objects, but could not sustain the cost of giving each of these objects a completely 

separate existence. Communication between objects in a cluster can be highly optimized, 

since the objects are created together, in the same language, and are expected to stay together. 



RM-ODP: the architecture 25 

node----

- - - - capsule 

capsule -----

8 
Figure 2 - Clusters, capsules and nodes 

Interaction within a cluster might therefore be supported by a simple local method invocation 

or equivalent 

Clusters are controlled and actions on them initiated by interaction with an associated 

cluster manager object. 

7 .2. Channels 

When objects in different clusters interact, there is a need for a good deal of supporting 

mechanism. Even if the objects are currently within the same capsule or node, mechanisms 

are needed to cope with the possibility of one or other of them terminating, failing or moving 

elsewhere. The set of mechanisms needed to do this constitute a channel, which is made up of 

a number of interacting engineering objects. 

The objects within a channel can be divided into three types, based on the job that they 

do. Stubs are concerned with the information conveyed in an interaction, binders are 

concerned with maintaining the association between the set of basic engineering objects 

linked by the channel, and protocol objects manage the actual communication. 

Stubs interact directly with the basic engineering objects they support, and perform 

functions such as the marshalling and unmarshalling of parameter, or the logging of 

information about the interaction being performed. Thus the stubs need access to information 

about the type of the interaction, or, more generally, the type of the interface that is being 

supported. This distinguishes them from binders and protocol objects, which transfer 

complete messages without concern for their internal structure. 



26 Part One Invited Presentations 

client basic server basic 
engineering engineering 

object object 

I I 
client server 
stub stub 

I I 
client server 
binder binder 

I I 
client server 

protocol interceptor protocol 
object object 

client half server half 

Figure 3 - An example of a client-server channel 

Depending on the design of the system, a stub may be directly associated with a 

particular basic engineering object, or it may be shared between a number of such objects. 

Sharing will generally imply the need to transfer some additional information to identify, and 

thus distinguish between, the objects being supponed. 

Binders need to solve many of the problems of distribution. They are responsible for 

maintaining the end-to-end integrity of the channel, and so have to handle changes of 

configuration and communication or object failures. The binder has to establish the binding 

when the channel is created, and has to keep track of the other endpoints if objects move or 

fail and are replaced; this is the process of object relocation. The binders are thus involved in 

the provision of many of the distribution transparencies. 

The protocol objects provide for communication of sufficient quality and reliability 

between the binders they serve. In addition to handling whatever peer protocols are in use, 

they will provide access to supporting services, such as directory services for translating 
addresses, where necessary. 



RM-ODP: the architecture 27 

Any of these three kinds of engineering object may itself need to communicate with 

other parts of the system, in order to obtain the information it needs to do its job, or to supply 

management information to other objects. Such communication may itself need the various 

distribution transparencies, and so the communication from these objects to elsewhere is by 

means of a channel; from this point of view, the objects within one channel can play the role 

of basic engineering objects in another. Similarly, any of these objects can support control 

interfaces, via which they can be managed. For example, a protocol object may provide a 

control interface through which the target quality of service for the channel can be adjusted. 

In cases where the channel crosses some technical or organizational boundary, there may 

be a need for additional checks or transformations to match the requirements on the two sides. 

These functions are performed by interceptors, which form part of the channel. They may 

need to perform format or protocol conversion, or may provide accounting or access control 

checks. An interceptor may be built up from protocol objects, binders and stubs, depending on 

the nature of the job it has to do. 

For simplicity, channels have been described here as linking two basic engineering 

objects. However, channels with many endpoints can be defined, supporting various forms of 

group communication or multicast In such channels, the binders are responsible for 

coordinating communication, but the multicast mechanisms may be provided by either binder 

or protocol, depending on the technology available. Multi-endpoint channels are used to 

support replication transparency. 

7.3. Interface references 

When an interface is created, an interface reference for it is generated. The nucleus is 

involved in this process, so as to make the reference unambiguous, and sufficient resources 

are allocated and initialized for the objects in that node to participate in bindings if asked to 

do so. 

The interface reference is the key for access to a large amount of information. Given 

such a reference, it is possible to discover the type of the interface, a communications address 

at which binding to it can be initiated, and other information about the expected behaviour of 

stubs, binders and protocol objects within the channel, which is needed for a subsequent 

binding to succeed. It is also the starting point for calling upon the functions needed to 

handle errors; knowledge of an interface reference makes it possible to contact an appropriate 
relocator. 

This does not imply, however, that the information is all encoded as part of the interface 

reference; to do so might make it a very big item to manipulate. The architectural requirement 

is that there should be some prescription for obtaining the necessary information, starting 

from the interface reference, but the exact prescription, in terms of decoding and enquiry from 

other objects, can be chosen differently in different system designs. 

In addition to these design variations, there will also be variations arising from the 

existence of multiple naming domains and the allocation of references with respect to these 

domains. For both these reasons, it will be necessary for interceptors, or other objects in the 

channel, to transform interface references when they are passed across domain boundaries. 



28 Part One Invited Presentations 

7.4. Binding 

There are two kinds of engineering binding. Within a cluster, or between the objects 

which cooperate within a node to provide a channel, there are local bindings, which are 

provided by system-specific mechanisms. Such bindings are regarded as primitive in the 

architecture. On the other hand, the bindings supported by channels provide appropriate 

distribution transparencies; these are called distributed bindings, and creating them will 

generally involve some interaction between a number of nodes to establish the channel. 

7.5. Conformance 

The structuring of the engineering specification into clusters, capsules and nodes, and the 

support of interaction by structured channels gives rise to a large number of interfaces, any of 

which can be selected as a conformance point, allowing for observation and conformance 

testing. 

The various interfaces can be used to provide the different kinds of conformance. The 

interface between protocol objects is an interworking conformance point, providing for 

familiar methods, like OSI testing, based on observation of the communication behaviour. 

Most of the other interfaces are internal to a node, and represent boundaries between software 

modules; they are programmatic reference points and allow testing for software compatibility 

and portability. Some of the interfaces to basic engineering objects may allow other forms of 

conformance testing, for interchange or perceptual conformance (correct interaction with the 

real world). 

S.THETECHNOLOGYLANGUAGE 

The technology viewpoint provides a link between the set of viewpoint specifications 

and the real implementation, by listing the standards used to provide the necessary basic 

operations in the other languages. The aim of the technology language is thus to provide the 

extra information needed for implementation and testing by selecting standard solutions for 

basic components and communication mechanisms. Such a selection is necessary to complete 

the system specification, but is largely divorced from the rest of the design process. 

There are consequences of the technology selection, however. One area in which the 

selections in the technology viewpoint feed back to other aspects of the system design is in 

the provision of a specific quality of service. The selections in the technology viewpoint 

determine the performance costs of interactions and thus, indirectly, the quality of service 

which can be achieved by the behaviour defined in other viewpoints. 

The technology language plays a major role in the conformance testing process. It 

supplies the information needed to interpret the observations a tester can make in terms of the 

vocabulary and concepts used in the other viewpoints of the system specifications. For 

example, it allows valid interactions to be recognized, so that their appropriateness can be 

checked against some specified object behaviour. 



RM-ODP: the architecture 29 

9. CONSISTENCY BETWEEN VIEWPOINTS 

The five viewpoint specifications constructed must be linked by defining the relations 

between key terms in them. It is these statements of the relationships between viewpoints that 

make them specify a single system, rather than being completely independent documents. 

See [5] for some examples of demonstration of viewpoint consistency. 

Many of the links needed will be provided implicitly by the notations used, resulting 

from correspondences between names_ However, some of the key constraints need to be 

stated explicitly. In the architecture, constraints are placed on the relations between terms in 

the viewpoint languages themselves, establishing some limits on the mappings which can be 

established. Most of the constraints placed are between terms in the computational and 

engineering languages, and are defined so as to creare consistent interpretations when system 

components, such as those supporting the ODP functions, are specified separately. 

Clear mappings between viewpoints are necessary if the processes of identifying 

interfaces and of providing transparencies are to be supponed automatically by development 

tools. For example, a computational object may be realized as a ser of linked engineering 

objects, but a single engineering object cannot represent multiple computational object; a 

computational interface cannot be divided into separate engineering interfaces supported by 

unconnected channel structures; computational interfaces can always be identified 

unambiguously by engineering identifiers. These kinds of constraint help to ensure that 

common engineering mechanisms will be able to support the full range of possible 

computational behaviours. 

10. ODP FUNCTIONS 

In addition to the five viewpoint languages, the RM-ODP gives brief definitions of a 

number of common functions. Most of these are either introduced in the engineering language 

to provide support needed for its structures, or form convenient building blocks for the 

provision of transparencies. Functions are provided by objects, although it is generally left 

for more detailed standards or individual implementors to dec1<ie whether each function is 

provided by a single object, or several functions by one object, or a function provided by a set 

of interacting objects. 

The specification of how one of these functions is to be provided may be complex and 

may itself needs to structured. It amounts to the design of a small, special purpose distributed 

system, in which the interactions between the object providing the function and objects 

having roles which relate to it are defined. It is natural, therefore, to structure the 

specifications by using the RM-ODP frfu"'llework, considering the provision of the function as 

a small enterprise with its own information and computational models. 

10.1. Management functions 

Management functions are needed to control the lifecycle of objects and of the various 

groupings of objects identified in the engineering language. For each of the management 

functions, there will be a corresponding management interface type, the details of which will 

depend on the kind of grouping being managed. Management functions exist to control 

individual objects, clusters, capsules and nodes. 



30 Part One Invited Presentations 

For individual objects, a management function can request checkpointing of the object's 

internal state or deletion of the object. Object checkpoints are combined into cluster 

checkpoints, which are essentially templates for recreating the cluster in the state it had when 

the checkpoint was taken, if necessary. Ouster management is primarily concerned with 

using this information to deactivate, move, reactivate or recover clusters. These activities 

form the basis of a numoor of the ttansp!II'eHcy mechanisms. 

The capsule management functions perform a similar job, but at a coarser level of 

granularity, controlling the resources of the cluster as a whole and instructing the capsule 

managers to create or remove their clusters. 

At the coarsest level, the node manager controls the basic resources of the node, and 

makes allocations from them on request. It handles execution resources such as threads and 

timers, communication resources and naming responsibilities. It creates new capsules when 

necessary. 

10.2. Coordination functions 

The second class of functions is concerned with the coordination of distributed activities 

and the management of distributed groups of objects. These functions support various kinds 

of consistency and information dissemination mechanisms. 

The first coordination function deals with event notification - the establishment of 

objects which maintain historical records of which events have happened and take 

responsibility for informing other objects of when events occur. The event notification 
function thus makes it possible for a coordinated group of objects to maintain an interest in 

the occurrence of selected events in a consistent way. 

The next set of functions is concerned with the coordinated maintenance of checkpoint 

records of the state of the clusters which an application depends on. The architecture 
distinguishes checkpointing and recovery functions, which are concerned with keeping and 

using records, from deactivation and reactivation functions, which control the activity of 

interest directly. 

The group function coordinates some number of objects which are participants in a 

multi-party binding; it is concerned with group membership, distributed management of 

group interactions, and combination of results to ensure a consistent outcome. It has a 

specialized form supporting exact replication of a number of objects, coordinating their 

interactions such that they remain replicas of each other at all times. 

Built on these is the migration function, which supports the movement of a cluster from 

one capsule to another. Migration can be achieved in one of two ways, depending on the 

performance requirements. It can be achieved by deactivation followed by reactivation in the 

new location, or it can be achieved by replication of a new copy in the desired location, 

followed by deletion of the original copy. The first involves less communication, but the 
second provides a more continuous service. 

Sequences of actions can be coordinated to achieve a consistent result by using the 

transaction functions. Both a general transaction function and a specialization of it to provide 
ACID properties are defined. 



RM-ODP: the architecture 31 

Finally, an interface reference tracking function is defined to maintain records of what 
interface references exist and where copies of references are held, and to support whatever 
garbage collection policy the system designer selects. 

10.3. Repository functions 

The repository functions are all concerned with persistent storage. There is a general 
storage function and then a number of specializations of it, supporting different types of 
repository. The basic storage function just allows an object using it to make any data item 
persistent, that is, to have a longer lifetime than the object itself. 

The information organization function stores information about the various objects and 
interfaces in the system, and supports structured queries on the information stored. It can be 
used to maintain information about relationships between and attributes of objects. 

The relocation function provides a specialized store of information about interface 
references, which can be used to update an interface reference if the object concerned moves, 
of fails and is restarted. For this mechanism to work, it is necessary for each of the 
mechanisms which might be involved in altering the interface reference data to record the 
appropriate information with the relocator. 

The type repository function provides a source of information about the various type 
definitions supporting the system, particularly interface types, and can record type identifiers, 
type definitions and assertions of subtyping relationships between them. 

In contrast, the trader stores information about interface instances and properties 
associated with them. These properties can give information both about the expected 
behaviour at an interface and less tangible properties of the service available from it. The 
trader can be queried for services by type and by properties, allowing suitable instances of the 
service to be discovered. Service offers are placed in the trader's records by a service 
exporter and queries performed by an importer, which intends to use or pass on knowledge of 
the service. The trader is one of the most important ODP functions, because it allows the 
dynamic configuration and evolution of distributed systems. Objects using it can seek out the 
services they need. Because of its importance, it is the first of the ODP functions to be the 
subject of formal standardization. 

10.4. Security functions 

The RM-ODP identifies a full range of security functions, largely by reference to the 
established standard security frameworks. It identifies functions for access control, security 
audit, authentication, integrity, confidentiality, non-repudiation and key management. 

11. ODPTRANSPARENCIES 

The ODP transparencies are defined by giving a prescription for translating from a set of 
system specifications in the computational, information and enterprise viewpoints to an 
engineering specification which incorporates the various ODP functions needed; the functions 
are used in a coordinated way so as to provide the necessary transparency. The 
transformation may result in changes to the original object's behaviour and interface 



32 Part One Invited Presentations 

signatures, in order to incorporate any control interactions and information needed to 
guarantee the transparency. Thus, for example, the transaction transparency may require 
additional commit interactions and the addition of transaction identifiers to the parameters 
carried by existing interactions. 

11.1. Access and location transparencies 

Access transparency is normally provided as part of the basic function of the engineering 
stub object, and so the transformation to be performed to provide it is a straightforward 
refinement to introduce the channel structure. 

In a similar way, location transparency will be provided by some combination of the 
stubs and protocol objects. 

11.2. Failure transparency 

Failure transparency is requested in terms of the kinds of failure that should not be 
allowed to disrupt the application. It can be provided in a number of ways. Firstly, the objects 
involved can be placed in an environment which is inherently sufficiently reliable, such as a 
non-stop system. Secondly, the checkpointing and recovery mechanisms can be used to 
overcome faults when the occur. Thirdly, the replication mechanisms can be used to make 
faults non-damaging to the application. 

Which of these approaches is to be taken will depend on the relative cost and 
performance objectives to be met, particularly whether the system has to give real-time 
guarantees. These choices will be made on the basis of the enterprise policies which have 
been established. 

11.3. Migration transparency 

The migration transparency is expected to minimize the effect of movement of objects. 
One part of the information needed to determine the support needed for migration is the set 
enterprise policies which constrain object mobility, since if the objects do not move, there is 
no problem. 

The decision as to whether objects should be moved will have to take into account issues 
of resource management, performance targets and security. Once the mobility constraints are 
established, suitable migration strategies can be determined and the mechanisms needed to 
support them incorporated. 

11.4. Persistence and relocation transparencies 

Both the persistence and relocation transparencies will involve the use of the relocation 
function. This is because they are both involved in changes which may invalidate current 
interface references, causing subsequent attempts to create a binding to fail. 

In both cases, the relocation function will need to be used in a way which is coordinated 

with the resource management and recovery activities, to ensure that sufficient information is 
provided for the relocator to do its job. 



RM-ODP: the architecture 33 

11.5. Replication transparency 

The provision of replication transparency is potentially complex because of the need to 
consider both the client and server roles of any object being replicated, to ensure that the 

behaviour of the system as a whole remains consistent. 

The transformations involved to support replication are therefore potentially less 

localized than in some of the other transparencies. The cluster managers supporting the 

replica copies, at least, will need to be involved in the coordination. 

Similar concerns also apply to transaction transparency. 

12. CONCLUSIONS 

The reference model described in this paper provides a firm basis for the construction of 

families of open distributed processing systems, capable of supporting a wide range of 

applications. 

ISO and the ITU now plan to populate this framework, drawing on the work of the more 

forward looking of the industry consortia, where appropriate, to speed the process. The 

framework is now stable, and has been defined with sufficient flexibility and with a broad 
enough scope to satisfy the needs of distributed system builders for many years to come. 

REFERENCES 

[1] ITU Recommendation X.901 I ISO/.IEC CD 10746-1, Open Distributed Processing -
Reference Model- Part 1: Overview (1994). 

[2] ITU Recommendation X.902 I ISO/.IEC 10746-2: 1995, Open Distributed Processing
Reference Model - Part 2: Overview. 

[3] ITU Recommendation X.903 I ISO/.IEC 10746-3: 1995, Open Distributed Processing

Reference Model- Part 3: Overview. 

[4] ITU Recommendation X.904 I ISO/.IEC CD 10746-4, Open Distributed Processing -
Reference Model- Part 4: Overview (1994). 

[5] Bowman, H., Derrick, J., Steen, M., "Some Results on Cross Viewpoint Consistency 

Checking", Proc. ICODP'95, Brisbane, Australia, February 1995 


