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SPICE2: Spatial Processors Interconnected
for Concurrent Execution for accelerating the

SPICE Circuit Simulator using an FPGA
Nachiket Kapre, Member, IEEE, André DeHon, Member, IEEE

Abstract—Spatial processing of sparse, irregular, double-
precision floating-point computation using a single FPGA enables
up to an order of magnitude speedup (mean 2.8× speedup) over
a conventional microprocessor for the SPICE circuit simulator.
We develop a parallel, FPGA-based, heterogeneous architecture
customized for accelerating the SPICE simulator to deliver this
speedup. To properly parallelize the complete simulator, we
decompose SPICE into its three constituent phases – Model-
Evaluation, Sparse Matrix-Solve, and Iteration Control – and
customize a spatial architecture for each phase independently.
Our heterogeneous FPGA organization mixes VLIW, Dataflow
and Streaming architectures into a cohesive, unified design to
match the parallel patterns exposed by our programming frame-
work. This FPGA architecture is able to outperform conventional
processors due to a combination of factors including high uti-
lization of statically-scheduled resources, low-overhead dataflow
scheduling of fine-grained tasks, and streaming, overlapped
processing of the control algorithms. We demonstrate that we
can independently accelerate Model-Evaluation by a mean factor
of 6.5×(1.4–23×) across a range of non-linear device models
and Matrix-Solve by 2.4×(0.6–13×) across various benchmark
matrices while delivering a mean combined speedup of 2.8×(0.2–
11×) for the composite design when comparing a Xilinx Virtex-6
LX760 (40nm) with an Intel Core i7 965 (45nm). We also estimate
mean energy savings of 8.9×(up to 40.9×) when comparing a
Xilinx Virtex-6 LX760 with an Intel Core i7 965. With our high-
level framework, we can also accelerate Single-Precision Model-
Evaluation on NVIDIA GPUs, ATI GPUs, IBM Cell, and Sun
Niagara 2 architectures.

I. INTRODUCTION

SPICE (Simulation Program with Integrated Circuit Em-
phasis) is an analog circuit simulator used extensively in
industry to simulate and verify operation of silicon circuits.
It models the analog behavior of semiconductor circuits using
a compute-intensive, non-linear, differential equation solver.
This can take days or weeks of runtime on real-world circuits.
SPICE is notoriously difficult to parallelize due to its irregular
compute structure, and a sloppy sequential description [36].
It has been observed that less than 7% of the floating-point
operations in SPICE are automatically vectorizable [18].

Spatial parallelism provides a suitable framework for con-
structing accelerators for challenging problems like SPICE.
It offers a natural way to express the heterogeneous compu-
tational structure in SPICE and exposes the inherent paral-
lelism available in the problem. Furthermore, modern FPGAs
can configured to efficiently support spatial parallelism with
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Fig. 1: Flowchart of a SPICE Simulator

multiple floating-point operators coupled to hundreds of dis-
tributed, on-chip memories and interconnected by a flexible
routing network. In Table I, we observe that modern FPGAs
can match and even surpass the peak floating-point capacity
of modern multi-core processors while dissipating far less
power. Spatial parallelism allows us to configure the FPGA
to deliver a higher fraction of this floating-point peak through
a combination of careful static scheduling and low-overhead
distributed processing.

As shown in Figure 1, a SPICE simulation accepts a netlist
description of the circuit to be simulated along with input
stimulus and returns the response of the circuit in the form of
output analog waveforms. The simulation algorithm discretizes
circuit response and repeatedly solves circuit equations at
each discrete step to generate output waveforms. We also
show an abstract internal representation of the simulation
algorithm in Figure 1. This iterative simulation consists of
two key computationally-intensive phases per iteration: Model
Evaluation ( 2© in Figure 1) followed by Matrix Solve ( 3© in
Figure 1). This organization allows the non-linear, differential
equation solver to be simplified to a system of linear equations
A~x = ~b which is handled in the Matrix Solve phase. The
non-linear, time-varying circuit elements are linearized using
a Newton-Raphson loop and discretized using Trapezoidal
integration in the Model-Evaluation phase. These two loops
are managed in the third phase of SPICE which is the Iteration

1
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Chip Tech. Clock Peak GFLOPS Power
(nm) (GHz) (Double) (Watts)

Intel Core i7 965 45 3.2 25 130
Xilinx Virtex-6 LX760 40 0.2 26 20–30

TABLE I: Peak Floating-Point Throughputs
(Double-Precision)

Controller ( 1© in Figure 1). A well-balanced, scalable, parallel
architecture must accelerate all three phases of SPICE.

This paper reviews and expands on our previous re-
search [23]–[25]. We expand on the previous publications by
delivering a parallel solution for the Iteration Control phase
and integrating the complete solver. Our integrated SPICE
simulator is mapped onto a heterogeneous parallel architecture
using a high-level, domain-specific framework that combines
parallel descriptions in Verilog-AMS and SCORE [7], [13]
while extracting static dataflow graph from the KLU [37]
Matrix-Solve package.
• We show how to accelerate the Model-Evaluation phase
of SPICE using an FPGA [23]. We also perform a quan-
titative empirical comparison of Model-Evaluation on a
Xilinx V5LX330T and V6LX760T, NVIDIA GT9600 and
GT285 GPUs, ATI FireGL 5700 and Firestream 9270 GPUs,
IBM PS3 Cell, Sun Niagara 2, and Intel Xeon 5160 and
Core i7 965 across different Verilog-AMS models [25].
• We show how to implement the Sparse Matrix-Solve
phase of SPICE on an FPGA [24] when using the KLU
solver. Additionally, we perform a quantitative empirical
comparison of Matrix Solve on a Xilinx V6LX760 and an
Intel Core i7 965 on a variety of benchmark matrices (45nm
and 40nm process).
• We show how to design a parallel architecture for im-
plementing the Iteration Controller phase of SPICE. We
quantify the performance of the Iteration Control phase
implemented on a Microblaze with a spatial hybrid VLIW
implementation on a Xilinx V6LX760 FPGA for a variety
of SPICE circuits.
• We compose and integrate the complete SPICE solver
using a Xilinx Virtex 6 LX760 FPGA and compare it to
an Intel Core i7 965 processor for performance and energy.
The rest of this paper is organized as follows. We explain

the underlying computational characteristics of SPICE in Sec-
tion II. Next, we discuss suitable FPGA compute organizations
for implementing the SPICE computation in Section III. In
Section IV we provide details about our FPGA compilation
framework and cost model. We then outline the experimental
framework used to perform a fair and robust comparison of
multiple implementations in Section V. We present results
of our experimental evaluation in Section VI. Finally we
identify opportunities for future work and wrap up with some
key insights and lessons in Section VII and Section VIII
respectively.

II. BACKGROUND

A. Summary of SPICE Algorithms

SPICE simulates the dynamic analog behavior of a circuit
described by non-linear differential equations. SPICE solves
the non-linear differential circuit equations by computing
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Fig. 3: Sequential Runtime Distribution of SPICE Simulator

small-signal linear operating-point approximations for the non-
linear and time-varying elements until termination ( 1© in
Figure 1). The linearized system of equations is represented
as a solution of A~x = ~b handled in the Matrix-Solve phase (
3© in Figure 1), where A is the matrix of circuit conductances,
~b is the vector of known currents and voltage quantities and
~x is the vector of unknown voltages and branch currents. The
simulator calculates entries in A and ~b from the device model
equations that describe device transconductance (e.g., Ohm’s
law for resistors, transistor I-V characteristics) in the Model-
Evaluation phase ( 2© in Figure 1).

B. SPICE Performance Analysis

Since the SPICE simulation is an iterative algorithm, we
can understand key characteristics of the complete simulation
by analyzing a single iteration. In Figure 2a, we show per-
formance scaling trends for a single iteration of the SPICE
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solver for two scenarios. First we show data for sequential
implementation of the open-source spice3f5 package on an
Intel Core i7 965 across a range of benchmark circuits shown
later in Appendix A. We also show data for our parallel FPGA
implementation across the same benchmarks. We observe that
sequential runtime for one iteration scales as O(N1.2) as we
increase circuit size, N , while parallel runtime scales faster
as O(N0.7). In Figure 2b, we show the peak floating-point
scaling trends of Intel CPUs obtained from Intel datasheets to
contrast against SPICE runtime trends. We observe that the
sequential CPU FLOPS (peak) have barely scaled as O(N)
while spice3f5 runtimes have scaled faster as O(N1.2).
While Moore’s Law continues to deliver increasing circuit
sizes (for both circuit simulation and CPU processing), the
CPU floating-point peaks have been unable to keep up with the
super-linear scaling rate of simulation times. This means there
is a widening performance gap between CPU capacity and
SPICE runtime. In contrast, the FPGA processing capabilities
shown in Table I can be organized entirely in parallel thereby
allowing performance to scale as the critical latency of the
computation O(N0.7) as shown in Figure 2a.

To further understand SPICE performance trends, we break
down the contribution to total runtime from the different
phases of SPICE in Figure 3. We observe that Model-
Evaluation and Sparse Matrix-Solve phases account for over
90% of total SPICE runtime across the entire benchmark
set. For circuits dominated by non-linear devices, Model-
Evaluation phase accounts for as much as 90% (55% average)
of total runtime since the runtime of this phase scales linearly
with the number of non-linear devices in the circuit. Simula-
tions of circuits with a large number of resistors and capacitors
(i.e. linear elements) generate large matrices and consequently
the Sparse Matrix-Solve phase accounts for as much as 70%
of runtime (38% average). This phase empirically scales as
O(N1.2) which explains the super-linear scaling of overall
SPICE runtime. Finally, the Iteration Controller phase of
SPICE comprises a small but non-trivial fraction (≈7%) of
total runtime. Thus, our parallel FPGA architecture must
parallelize all three phases of SPICE.

C. SPICE Model-Evaluation

In the Model-Evaluation phase, the simulator computes
conductances and currents through different elements of the
circuit and updates corresponding entries in the matrix with
those values. For resistors this needs to be done only once
at the start of the simulation. For non-linear elements, the
simulator must search for an operating-point using Newton-
Raphson iterations that requires repeated evaluation of the
model equations and a linear solve multiple times per time-
step as shown by the innermost loop in step 1© of Figure 1. For
time-varying components, the simulator must recalculate their
contributions at each timestep based on voltages at several
previous timesteps in the outer loop in step 1© of Figure 1.
We compile the device equations from a high-level domain-
specific language called Verilog-AMS [29] which is more
amenable to parallelization and optimization than existing C
description in spice3f5. Verilog-AMS descriptions clearly

identify the inputs and outputs for the device equations and
also provide a mechanism to specify constant parameters
easily. In contrast, the spice3f5 descriptions make extensive
use of pointers into shared data-structures that are harder to
analyze and do no provide a clean way to separate variables
from constants. The Verilog-AMS compilation also allows
us to capture the device equations in an intermediate form
suitable for performance optimizations and parallel mapping
to many potent target architectures.

The SPICE Model-Evaluation phase has high data paral-
lelism consisting of thousands of independent device evalu-
ations each requiring hundreds of floating-point operations.
The simulator evaluates all devices in each iteration thereby
generating a fixed-sized workload. In Figure 4, we plot the
number of floating-point operations and the latency of evalu-
ation (floating-point operations along critical path from input
to output) as a function of the number of non-linear elements
in the circuit. Since each device contributes a fixed number
of floating-point operations per instance, we see a linear
growth in the number of operations. However, the latency of
evaluation stays constant since each evaluation is completely
independent and can be evaluated simultaneously. This highly
data-parallel computations is suitable for implementation on
FPGAs, GPUs, as well as multi-cores. We compare these
implementations later in Section VI. Additionally, we make
other structural observations that will help simplify and en-
hance our FPGA mapping. We note that there is a limited
diversity in the number of non-linear device types in a
simulation (e.g. typically only diode and transistors
models). There is high pipeline parallelism within each device
evaluation as operations can be represented as an acyclic
feed-forward dataflow graph (DAG) with nodes representing
operations and edges representing dependencies between the
operations. These DAGs are static graphs that are known
entirely in advance and do not change during the simulation
enabling efficient offline scheduling of instructions. Individual
device instances are predominantly characterized by constant
parameters (e.g. Vth, Temperature, Tox) that are determined by
the CMOS process leaving only a handful of parameters that
vary from device to device (e.g. W, L of device). This suggests
specialization potential through constant-folding, identity sim-
plification and other compiler optimizations that can eliminate
repeated, unnecessary work. We later show the optimized
instruction counts for different non-linear device models in
Table IV.

D. SPICE Matrix Solve (A~x = ~b)

Modern SPICE simulators use Modified Nodal Analysis
(MNA) [8] to assemble circuit equations into the matrix A.
This generates highly-sparse, asymmetric matrices which are
processed using sparse, direct LU factorization techniques to
deliver robust simulation results. A parallel implementation of
Matrix Solve should avoid dynamic changes to the matrix data-
structures to enable an efficient mapping. Large, dynamically-
changing compute structures are difficult to distribute for
parallel evaluation. Unfortunately, the default matrix package
in spice3f5, Sparse 1.3, has a highly-dynamic nature which

3
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Fig. 4: Work vs. Latency for Model-Evaluation

changes the factorization compute structure at each SPICE
iteration. We are forced to sequentially discover suitable pivot
positions that may change in each iteration. Our approach
uses the state-of-the-art KLU matrix solver [37] optimized
for SPICE circuit simulation and avoids per-iteration changes
to the matrix structures. The static non-zero pattern enables
reuse of the matrix factorization graph across all SPICE
iterations and allows us to perform a one-time distribution of
computation across a parallel architecture. The solver reorders
the matrix A to minimize fillin using Block Triangular Fac-
torization (BTF) and Column Approximate Minimum Degree
(COLAMD) techniques. It then uses the left-looking Gilbert-
Peierls [16] algorithm to compute the LU factors of the matrix
column-by-column such that A = LU . Finally, it calculates
the unknown ~x using Front-Solve L~y = ~b and Back-Solve
U~x = ~y operations. The KLU approach uses the partial
pivoting technique to generate a fixed non-zero structure in
the LU factors at the start of the simulation (during first
factorization). This is followed by preordering and symbolic
analysis phase to compute non-zero positions of the LU
factors. For subsequent iterations we perform refactorization
which reuses the non-zero position information to perform a
numerical factorization.

The Matrix-Solve phase of the KLU Gilbert-Peierls algo-
rithm has irregular, fine-grained task parallelism during LU
factorization. Since circuit elements tend to be connected to
only a few other elements, the MNA circuit matrix is highly
sparse (except high-fanout nets like power lines, etc). The
underlying non-zero structure of the matrix is defined by the
topology of the circuit and consequently remains unchanged
throughout the duration of the simulation. We extract the static
dataflow graph at the beginning of the simulation and exploit
parallelism within the branches of the dataflow graph. Upon
analysis, we observe that there are two forms of parallel
structure in the Matrix-Solve dataflow graph that we can
exploit in our parallel design: (1) factorization of independent
columns organized into parallel subtrees and (2) fine-grained
dataflow parallelism within the column. In Figure 5, we plot
the number of floating-point operations in the factorization and
latency of evaluation as a function of the size of the circuit.
We observe that the number of floating-point operations in
the Matrix-Solve computation scale as O(N1.4) while the
latency of the critical path through the compute graph scales
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as O(N0.7). This suggests a parallel potential of O(N0.7)
which can be realized by distributing the dataflow graph across
ideal parallel hardware (e.g. no communication delays, perfect
distribution, unlimited internal processing bandwidth).

E. SPICE Iteration Controller

The SPICE iteration controller shown in Figure 1 is respon-
sible for two kinds of iterative loops: (1) inner loop: Newton-
Raphson linearization iterations for non-linear devices and (2)
outer loop: adaptive time-stepping for time-varying devices.
The Newton-Raphson algorithm is responsible for comput-
ing the linear operating-point for the non-linear devices like
diodes and transistors. Additionally, an adaptive time-stepping
algorithm based on truncation error calculation (Trapezoidal
approximation, Gear approximation) is used for handling
the time-varying devices like capacitors and inductors. The
controller implements customized convergence conditions and
local truncation error estimations that determine how the
transient analysis state machines are advanced at runtime in
a data-dependent manner. The state-machine and breakpoint-
processing logic are highly data-dependent and determine the
total number of SPICE iterations required for the complete
simulation.

As we saw earlier in Figure 3, the Iteration Control phase
only accounts for ≈7% of total sequential runtime. However,
our parallel SPICE implementation takes care to efficiently
implement this portion to avoid an Amdahl’s Law bottleneck.
We show the danger of ignoring this phase for parallelization
in Figure 6 which shows the runtime breakdown for the r4k
netlist in different implementation scenarios. We observe that
we can get a speedup of ≈6× when parallelizing the Model-
Evaluation and Sparse Matrix-Solve phase of SPICE (parallel
FPGA runtimes obtained from Section VI). If we parallelize
the Iteration Control phase, we can improve overall speedup
to ≈9×. The Iteration Control phase of SPICE is dominated
by data-parallel operations in convergence detection and
truncation error-estimation which can be described effectively
in a streaming fashion. The loop management logic for
the Newton-Raphson and Timestepping iterations is control-
intensive and highly irregular. We can capture this structure
effectively using a streaming framework that can represent the
data-parallel as well as control-intensive computation simulta-
neously.
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F. Historical Review

We now review the various studies and research projects
in the past three and a half decades that have attempted to
build parallel SPICE systems. Some of these studies accel-
erate SPICE by devoting expensive hardware resources to
squeeze additional performance while others reorganize the
computation to use lower-precision evaluation that is easier to
parallelize. Our approach expands on certain ideas from the
past while delivering a cheaper, SPICE-accurate accelerator.

One of the earliest SPICE parallelization studies [19] ex-
tracts the static triangulation graph of the tiny circuit matrices
from that era and does not consider communication costs
when exploiting parallelism. Awsim-3 [30], [31] uses a com-
piled code approach and a special-purpose system with lower-
precision, table-lookup Model-Evaluation to provide a speedup
of 560× over a Sun 3/60. However, a bulk of these speedups
are due to dedicated hardware floating-point unit since the Sun
3/60 implements floating-point in software (tens of cycles/-
operation). Additionally, table-lookup approximations avoid a
large fraction of floating-point work resulting in a simulation
with accuracy tradeoffs. A message-passing, parallel SPICE
implementation [20] on an expensive, 40-node SGI Origin
2000 supercomputer (MIPS R10K processors) was able to
speedup SPICE for certain specialized benchmarks by 24×.
More recently, in [28], a multi-threaded version of SPICE is
developed using PThreads. It achieves a speedup of 5× using 8
SMP (Symmetric Multi-Processors) on a small benchmark set
which is amenable to parallel matrix factorization. GPUs have
been used to speedup the data-parallel Model-Evaluation phase
of SPICE by 50× [2] (double-precision on ATI GPU) or 32×
[17] (lower-accuracy, single-precision on NVIDIA GPU) but
can accelerate the complete SPICE simulator in tandem with
the CPU by 3× for the 2-chip GPU-CPU processing system.
FPGAs have enjoyed limited use for accelerating SPICE due to
scarce FPGA resources and lack of tools and methodology for
attacking a problem of this magnitude. A compiled code, par-
tial evaluation approach for timing simulation (lower precision
than SPICE) using FPGAs was demonstrated in [46] where the
processing architecture was customized for each SPICE circuit
using fixed-point computation. Recent approaches [40] have
use coarse-grained domain-decomposition techniques shown
how to parallelize SPICE by 31×–870×(mean 119×) across
a 32 processor grid at SPICE-level accuracy.

Our FPGA-based approach accelerates the SPICE compu-
tation while retaining the accuracy of spice3f5 and de-

Model
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Device parameters 
and state
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Dataflow Graph
Structure

Iteration Controller

2 3

1Options

Off-chip DRAM
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Fig. 7: FPGA Organization

veloping an economical single-FPGA system for accelerating
SPICE. We reuse the idea of compiled-code methodology
popularized by many previous approaches. We can compose
our technique with KLU-based domain-decomposition ap-
proaches [40] to scale to even large problems and system
sizes e.g. multi-FPGA systems. Additionally, we can integrate
lower-precision techniques e.g. table-lookup into our mapping
flow to get cumulative benefits.

III. FPGA ARCHITECTURE

As discussed earlier, we must parallelize all three phases
of SPICE to get balanced total speedup. At a high-level we
organize our parallel FPGA architecture into three blocks
as shown in Figure 7. We develop a custom processing
architecture for each phase of SPICE tailored to match the
nature of parallelism in that phase. In Figure 8 we show a
cartoon internal representation of the different compute orga-
nizations in each phase. We note that the Model-Evaluation
and Iteration-Control organizations are statically scheduled
and store the statically generated program context. In contrast,
the Sparse Matrix-Solve organization is dynamically scheduled
and routes data between the floating-point operators using a
dynamic packet-switched network. Furthermore, our Iteration
Control architecture support streams for interconnecting the
complete design. We now look at each design style and show
how we selected and configured this compute organization.

A. VLIW Architecture for Model-Evaluation

The device equations can be represented as static,
feed-forward dataflow graphs. Fully-spatial implementations
(circuit-style implementation of dataflow graphs) are too large
to fit on current FPGAs and computation must be time-shared
over limited resources. These graphs contain a diverse set
of floating-point operators such as adds, multiplies, divides,
square-roots, exponentials and logarithms. We map these
graphs to custom VLIW “processing tiles” with spatial im-
plementation of the floating-point operators. Pipelined, spatial
FPGA implementations of elementary functions like log,
exp operate at a high throughput of one evaluation/cycle
(250 MHz) while the processor implementations require 100s
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of cycles (3 GHz). Additionally, we support these spatial op-
erators by coupling them to local, distributed, high-bandwidth
memories, as shown in Figure 9, which is not possible with
fixed-function CPUs or GPUs. An FPGA can deliver ≈10×
higher onchip bandwidth compared to a processor [14]. We
statically schedule these resources offline in VLIW [15] fash-
ion and perform loop-unrolling, tiling and software pipelining
optimizations to improve performance. Each tile in the time-
shared architecture consists of a heterogeneous set of floating-
point operators coupled to local, high-bandwidth memories
and interconnected to other operators through a communica-
tion network as shown in Figure 8. In each tile, we choose
an operator mix per tile proportional to the frequency of
occurrence of those floating-point operations in the graph.
Since we use a statically-scheduled fat tree [26] to connect

All Floating-Point
Operators

in

out

Data Memory

Graph Memory

Node 

Dataflow
Trigger

Self-Edge

Address

Send 
Logic

Operand
A

Result

Operand
B

D
yn

am
ic

al
ly

 S
ch

ed
ul

ed

State

Edge 

Fig. 10: Dataflow Matrix-Solve Architecture

these operators, we also tune the interconnect bandwidth to
reflect communication requirements between the operators.
Later in Section VI, we observe floating-point utilization as
high as 70% for this customized VLIW architecture.

B. Token-Dataflow Architecture for Matrix-Solve

The Sparse Matrix-Solve computation can be represented
as a sparse, irregular dataflow graph that is fixed at the
beginning of the simulation. We recognize that static online
scheduling of this parallel structure may be infeasible due to
the prohibitively large size of these sparse matrix factorization
graphs (millions of nodes and edges where nodes are floating-
point operations and edges are dependencies). Hence, we
organize our architecture as a dynamically-scheduled Token
Dataflow [39] machine. This organization is capable of ex-
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ploiting parallelism across a sparse, irregular graph with fully
decentralized, distributed control. The architecture consists
of multiple interconnected “Processing Elements” (PEs) each
holding hundreds to thousands of graph nodes as shown in
Figure 8. Each PE, as shown in Figure 10, can fire a node
dynamically based on a fine-grained dataflow triggering rule.
This allows parallel evaluation of multiple graph nodes which
have received their inputs as computation proceeds down the
graph. The Dataflow Trigger in the PE keeps track of ready
nodes and issues operations when the nodes have received
all inputs. Tokens of data representing dataflow dependencies
are routed between the PEs over a packet-switched network.
The Send Logic in the PE injects messages into the network
for nodes that have already been processed. For very large
graphs, we partition the graph and perform static prefetch of
the subgraphs from external DRAM. This is possible since the
graph is completely feed forward. We show the performance
possible with this architecture in Section VI.

C. Hybrid VLIW Architecture for Iteration Control

Traditionally, FPGA designs offload the sequential control
portion of a spatial design either to host CPUs or embedded
Microblaze [49] controllers. Such techniques are unsuitable
for stand-alone accelerator systems (no host CPU) or double-
precision floating-point computation (poor support on Microb-
laze). Hence, we consider spatial designs that can implement
this computation in the FPGA fabric directly. We observe
that the computation is a combination of (1) data-parallel
convergence detection and truncation error calculation and
(2) sparsely activated, control-intensive SPICE analysis state-
machine logic. The underlying FPGA architecture is organized
as “Hybrid VLIW tiles” shown in Figure 8 interconnected
through streams. Each tile is a collection of floating-point oper-
ators (limited to add, multiply, divide and square-root) that are
internally connected with a time-multiplexed network. Each
operator is managed by a hybrid controller that dynamically
selects between statically-scheduled configurations as shown
in Figure 11. We allocate the number and type of floating-
point units to each SCORE operator as well as pick a suitable
unroll factor for best performance. The spatial mapping flow
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Fig. 12: FPGA SPICE Mapping Toolflow

combines loop-unrolled, software-pipelined scheduling for
data-parallel components like truncation error calculation and
convergence detection logic along with dataflow scheduling
for sparsely activated state-machine logic. The hybrid VLIW
architecture is mostly similar to the Model-Evaluation design
and we reuse its backend scheduling framework.

IV. FPGA IMPLEMENTATION METHODOLOGY

We now explain the methodology and framework for map-
ping SPICE simulations to FPGAs. In our compilation flow,
we first generate a single FPGA bitstream for the SPICE
architecture in order to simplify the configuration flow for
each circuit to a memory generation step. Thus, we do not
need to invoke the FPGA CAD flow for each circuit instance.
We show the complete FPGA mapping flow in Figure 12. At
a high level, our FPGA flow is organized into different paths
that are customized for the specific SPICE phase. Our mapping
flow is further decomposed into three key stages: Input,
Compilation/CAD and Hardware. Additionally, we separate
the steps into offline and runtime operations depending on the
data binding time. We map this parallelism to the FPGA using
customized compute organizations described in Section III.

A. Offline Logic Configuration

We generate the logic for implementing the VLIW, Dataflow
and Streaming architectures by choosing an appropriate bal-
ance of area and memory resources through an area-time
tradeoff analysis. In Table III, we show a distribution of
resources among the three SPICE phases for the Xilinx Virtex-
6 LX760 device. The FPGA logic configuration includes the
VLIW programming for the PEs and switches of the Model-
Evaluation and Iteration Control processing elements (output
of the “Static Scheduler” block shown in Figure 12).

B. Runtime Memory Configuration

For each circuit, we must program memory resources to
store the circuit-specific variables and data-structures relevant
for the simulation. This is primarily necessary to support
the circuit-specific matrix factorization graph required for the
Sparse Matrix Solve phase. For the non-linear devices and
independent sources, we store the device-specific constant
parameters from the circuit netlist in FPGA onchip memory or
offchip DRAM memory if necessary. We load a few simulation
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control parameters (e.g. abstol, reltol, final_time)
to help the Iteration Control phase declare convergence and
termination of the simulation. We also need to generate a
static dataflow graph for the Matrix-Solve phase at the start
of the simulation through symbolic analysis. We distribute
the sparse dataflow graph across the Matrix-Solve processing
elements (shown by the “Placement” block in Figure 12) and
store the graph in offchip DRAM memory when it does not fit
onchip capacity. We compute a static ordering of loads from
the offchip memory to appropriately stream the graph structure
onchip. Once we have the dataflow graphs, we assign nodes
to PEs of our parallel architecture using placement for locality
with MLPart [6] with fanout decomposition.

C. Hardware Library and Cost Model

We tabulate the resource requirements and performance
characteristics of the hardware elements used to compose the
system in Table II. We use spatial implementations of individ-
ual floating-point add, multiply, divide and square-root oper-
ators from the Xilinx Floating-Point library in CoreGen [48].
For the exponential and logarithm operators we use FPLibrary
from Arénaire [12] group. For the Model-Evaluation and
Iteration Control architectures, we interconnect the opera-
tors using a time-multiplexed butterfly-fat-tree (BFT) network
that routes 64-bit doubles (or 32-bit floats when consider-
ing Single-Precision implementation) using time-multiplexed
switches. For the Matrix-Solve architecture, we interconnect
the floating-point operators using a bidirectional mesh packet-
switched network that routes 84-bit 1-flit packets (64-bit dou-
ble and 20-bit node address) using Dimension-Ordered Rout-
ing. We use a hardware generation framework to automatically
generate structural VHDL code for the system based on se-
lected implementation parameters such as system size, network
topology, and network bandwidth. The software infrastructure
to support time-multiplexed scheduling and packet-switched
simulation is extended to provide this hardware generation
functionality. We store the static schedules as read-only con-
stants in local onchip distributed memories. We implement
a sample double-precision 8-operator design for the bsim3
model (250 MHz) and a double-precision 4-PE Matrix-Solve
design (250 MHz) on a Xilinx Virtex-5 device using Synplify
Pro 9.6.1 and Xilinx ISE 10.1.

D. FPGA Cycle Measurement

We express the total number of cycles required by our
FPGA implementation as shown in Figure 13. This model
assumes we must fit all three phases of the SPICE solver
on the FPGA simultaneously while overlapping of a part
of the Iteration Control phase with the other two phases
of SPICE. Unfortunately, for this implementation we must
execute the Model-Evaluation and Matrix-Solve phases one
after another (See Section VII for ideas to eliminate this
limitation). The state-machine control logic for advancing the
simulation cannot be overlapped and must be run in sequence.

We report cycle counts from time-multiplexed schedule
(Model-Evaluation and Iteration Controller) and a cycle-
accurate simulation (Matrix-Solve). In some cases, when the

Block Area Latency Speed Ref.
(Slices) (clocks) (MHz)

Double-Precision Floating-Point Operators
Add 334 8 344 [47]
Multiply 131 10 294 [47]
Divide 1606 57 277 [47]
Square Root 822 57 282 [47], [48]
Exponential 1022 30 200 [12]
Logarithm 1561 30 200 [12]

Network Elements
TM BFT T-Switch 48 2 300 [26], [33]
TM BFT Pi-Switch 64 2 300 [26], [33]
PS Mesh Switch 642 4 312 -
Switch-Switch 32 2 300 -

Processing Elements and Miscellaneous
VLIW Tile Ctrl. 82 - 300 -
Dataflow PE Ctrl. 297 - 270 -
Microblaze Ctrl. - - - -
DDR2 Ctrl. 1892 - 250 [34]

TABLE II: Area and Latency model for SPICE Hardware
(Virtex-6 LX760), Multiply block also uses 11 DSP48 units

SPICE Phase Area Memory
Slices % BRAMs %

Model-Evaluation (bsim4) 62512 53 448 62
Sparse Matrix-Solve 27090 23 180 25

Iteration Control 17848 15 32 5
Total 107450 91 660 92

TABLE III: FPGA Resource Distribution for complete
SPICE Solver (Virtex-6 LX760)

Sparse Matrix-Solve factorization graph will not fit entirely
in the FPGA onchip memories, we statically stream portions
of the dataflow graph from an offchip DRAM memory. We
estimate memory load time for large matrices using streaming
loads over the external DDR2-500 MHz memory interface
using lowerbound bandwidth calculations. To help compute
circuit-specific FPGA cycles required for the Iteration-Control
phase of the FPGA SPICE solver, we measure the state activa-
tions corresponding to the high-level SCORE operator graph
for each benchmark. When we multiply these frequencies with
the statically-scheduled cycle count per state, we can compute
the total cycles required for the Iteration Control phase.

V. EXPERIMENTAL FRAMEWORK

We now explain our experimental framework that allows us
to compare the performance and energy requirements of the
parallel FPGA SPICE mapping with a sequential CPU imple-
mentation along with some comparisons with other parallel
organizations. For overall speedup calculations, we compare

Cycles = max(Tmodeleval + Tmatsolve, Titerctrl(dp))
+Titerctrl(stmc)

Tmodeleval = VLIW Model-Evaluation cycles
Tmatsolve = Dataflow Matrix-Solve cycles

Titerctrl(dp) = Data-Parallel VLIW Iteration-Control
cycles

Titerctrl(stmc) = State-Machine Iteration-Control cycles

Fig. 13: Measuring FPGA cycle count
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Model Instruction Distribution (Optimized)
Add Mult. Divide Sqrt. Exp. Log. Rest

bjt 22 30 17 0 2 0 8
diode 7 5 4 0 1 2 9
jfet 13 31 2 0 2 0 8
mos1 24 36 7 1 0 0 21
vbic 36 43 18 1 10 4 9
mos3 46 82 20 4 3 0 38
hbt 112 57 51 0 23 18 60
bsim4 222 286 85 16 24 9 137
bsim3 281 629 120 9 8 1 117
mextram 675 1626 397 22 52 37 238
psp 1345 2319 247 30 19 10 263

TABLE IV: Device model instruction counts
Column Rest includes MUX, BOOL and INT operations

the FPGA implementation with Intel Core i7 965 CPU run-
times for the open-source spice3f5 package coupled with
the KLU Solver. When comparing performance for the Model-
Evaluation phase, we also consider several parallel software
implementations running on Intel multi-core, NVIDIA and
ATI GPUs, IBM Cell and Sun Niagara2 processors. For the
Sparse Matrix-Solve phase, we only consider a single-core
sequential implementation running on an Intel Core i7 965 as
the multi-core implementation of the fine-grained, irregular
computation extracted from this direct LU solver does not
deliver meaningful performance benefits. Finally, we explore
a few implementation alternatives for mapping the sequential
Iteration Control phase of SPICE.

A. Model-Evaluation Phase

As mentioned earlier, we compile Verilog-AMS descriptions
of non-linear device models using our own compilation frame-
work. We generate optimized dataflow graphs that are 3–7×
smaller than the raw, unoptimized equations. We use open-
source Verilog-AMS non-linear models from Simucad ranging
from the small, simple diode model to the large, complex
bsim3, psp models. We tabulate the optimized instruction
counts for the different device models in Table IV.

We map the data-parallel model equations to a variety of
parallel architectures. To target this diversity of architectures
we use a combination of automated code-generation and auto-
tuning to generate optimized implementations across these
different systems. Our code-generator writes out multiple
configurations of data-parallel code based on architecture-
specific templates. Our auto tuner exhaustively explores sev-
eral implementation parameters for the different architectures
as shown in Table VII. Such an exhaustive approach is possible
in our case since the Model Evaluation graphs are completely
known in advance and the design space is small.

B. Sparse Matrix-Solve Phase

In our Matrix-Solve experimental flow, we use spice3f5
simulator with its Sparse 1.3 [27] solver to obtain a reference
functional baseline for comparison. We the replace Sparse 1.3
with the new KLU solver to measure optimized sequential per-
formance. We use a rich and diverse set of benchmark circuit-
simulation matrices detailed later in Appendix A (Table VIII).

Arch. Compiler Libraries Timing
Intel CPUs gcc-4.4.3

(-O3)
OpenMP
3.0 [10],
GNU libm,
Intel MKL
10.1

PAPI
4.0.0 [35],
PAPI flops()

Nvidia GPUs nvcc, CUDA
SDK 2.3 [38]

CUDA
libraries

cudaEventRecord()

ATI GPUs brcc
g++-4.1.2,
ATI Stream CAL
1.4beta [1]

ATI Brook li-
braries

gettimeofday()

IBM Cell spu-gcc,
ppu-gcc, Cell
SDK 3.1 [21]

Simdmath,
MASS

gettimeofday()

Sun Niagara2 cc, Sun Studio
12.1 [43]

OpenMP [10],
libm

PAPI
3.7.0 [35],
PAP flops()

Xilinx FPGA Synplify Pro
9.6.1, Xilinx ISE
10.1

Xilinx Core-
gen [47],
Arénaire [12]

-

TABLE V: Parallel Software Environments

Family Chip Peak GFLOPS GFLOPs
Double Single per Watt

65nm Architectures
Intel Xeon 5160 12 24 0.3
Xilinx Virtex-5 LX330T 11 33 1.1
IBM Cell PS3 10 204 1.5
Sun Niagara Ultrasparc T2 8 9.6 0.1
NVIDIA GPU 9600GT - 312 3.2
AMD FireGL GPU 5700 120 144 -

45nm Architectures
Intel Core i7 965 25 51 0.4
Xilinx Virtex-6 LX760 26 75 2.5
NVIDIA GPU GTX285 132 1062 5.2
AMD Firestream GPU 9270 240 1200 5.4

TABLE VI: Peak Floating-Point Throughput
(GFLOPs per Watt is for Single-Precision)

C. Iteration Control

We generate multi-threaded C++ code from the SCORE
compiler [7], [13] to obtain a software implementation for
functional verification with spice3f5. We use PAPI to
measure the CPU runtime of the Iteration Control phase in
spice3f5. We develop a SCORE runtime customized for the
Microblaze soft processor to support Iteration Control com-
putation on the Microblaze. This is done through automated
code-generation in a flavor of C suitable for use with a light-
weight embedded operating system running on the Microblaze

Architecture Parameter Range Increment

Intel Loop-Unroll Factor 1–5 +1
MKL Vector true/false

NVIDIA GPU Loop-Unroll Factor 1–2 +1
Threads per block 8–512 ×2
Registers/Thread 16–128 ×2

ATI GPU Loop-Unroll Factor 1–2 +1
IBM Cell Loop-Unroll Factor 1–3 +1

MASS Vector true/false
Sun Niagara2 Loop-Unroll Factor 1–3 +1

Number of Threads 1–64 ×2

FPGA

Loop-Unroll Factor 1–15 +1
Operators per PE 8–64 ×2
BFT Rent Parameter 0.0–1.0 +0.1

TABLE VII: Auto-Tuning Parameters
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Fig. 14: Comparing Xilinx Virtex-6 LX760 FPGA (40nm)
and Intel Core i7 965 (45nm) Implementations

(Xilkernel [50]). We measure the number of Microblaze clock
cycles to implement each state of every SCORE operator using
a hardware counter. The Xilinx Microblaze controller along
with supporting logic is designed to operate at 100 MHz by
Xilinx Core Generator [47].

VI. EVALUATION

We now report the achieved performance and energy re-
quirements of our parallel SPICE implementation. We show
total speedups for the SPICE solver when comparing an Intel
Core i7 965 with a Virtex-6 LX760 FPGA in Figure 14a. We
observe a mean speedup of 2.8× across our benchmark set
with a peak speedup of 11× for the largest benchmark. We
also show the ratio of energy consumption between the two
architectures in Figure 14b. We estimate power consumption
of the FPGA using the Xilinx XPower tool assuming 20%
activity on the Flip-Flops, onchip memory ports and external
IO ports. When comparing energy consumption, the FPGA
is able to deliver these speedups while consuming much
less energy. We observe that the FPGA consumes up to
40.9×(geomean 8.9×) lower energy than the microprocessor
implementation.

A. Model-Evaluation

In Figure 15a, we compare the performance achieved for
a double-precision implementation of Model-Evaluation on
45nm parallel architectures which include a quad-core Intel
Core i7 965 (loop-unrolled and multi-threaded) and a Xilinx
Virtex-6 LX760T FPGA (loop-unrolled, tiled and statically
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Fig. 15: Speedups for Model-Evaluation

scheduled). We observe speedups between 1.4×–23× (mean
6.5×) across our non-linear device model benchmarks. We
are able to deliver these speedups due to higher utilization
of statically-scheduled floating-point resources, explicit rout-
ing of graph dependencies over physical interconnect and
spatial implementation of elementary floating-point functions
(e.g. exp, log). The FPGA is able to achieve higher speedups
for smaller, simpler devices than larger, complex ones. Smaller
compute graphs have fewer edges requiring smaller intercon-
nect context and a lower memory footprint per unroll. We
compare single-precision implementations on 65nm generation
devices in Figure 15b and observe much higher speedups of
4.5–123× for a Virtex-5 LX330, 10–64× for an NVIDIA

10

Page 10 of 14

http://mc.manuscriptcentral.com/tcad

Submitted for Review to Transactions on Computer-Aided Design of Integrated Circuits and Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

Special Section on PAR-CAD 2011

 0.1

 1

 10

 100

 1000

s
u

n

in
te

l
x
il
in

x

a
ti

c
e

ll

n
v
id

ia

 0.1  1  10  100  1000

A
c
tu

a
l 
G

F
L

O
P

S

Peak GFLOPS

(a) 65nm Architectures

 0.1

 1

 10

 100

 1000

in
te

l
x
il
in

x

n
v
id

ia a
ti

 0.1  1  10  100  1000

A
c
tu

a
l 
G

F
L

O
P

S

Peak GFLOPS

(b) 45nm Architectures

Fig. 16: Actual vs. Peak Single-Precision Throughputs

9600GT GPU, 0.4–6× for an ATI FireGL 5700 GPU, 3.8–
16× for an IBM Cell and 0.4–1.4× for a Sun Niagara 2.
The increased FPGA speedups are due to higher floating-
point processing capacity made possible by smaller single-
precision FPGA operators, smaller network and lower storage
requirements. This additional speedup is only possible if we
relax the SPICE convergence conditions by reducing toler-
ances (acceptable for many scenarios). In Figure 16a we plot
the mean floating-point utilization across all non-linear devices
when considering parallel architectures at 65nm. At 65nm
architectures, we observe that the FPGA is able to achieve
the highest actual floating-point throughput (≈40% utilization
of peak) compared to all other architectures despite not having
the highest peak floating-point throughput (NVIDIA 9600
GT GPU with ≈3% utilization of peak). Similarly for 45nm
architectures, compared in Figure 16b, we observe that the
FPGA delivers a large fraction of its peak throughput (mean
≈50% utilization of peak) but delivers fewer total FLOPS as
compared to the GPUs (mean 10% utilization of peak) which
require ≈5× higher peak throughput to outperform the FPGA.

B. Matrix-Solve

When we integrate the KLU matrix-solver in spice3f5
instead of the default Sparse 1.3 solver, we are able to
speedup the software implementation by ≈35% across our
benchmark circuits as shown in Figure 17. We achieve higher
improvements for larger benchmarks since the symbolic anal-
ysis overheads can be amortized easily for large matrices.
We use this as our software baseline for comparing with the
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FPGA implementation. In Figure 18, we compare double-
precision performance of our FPGA architecture implemented
on a Virtex-6 LX760 with an Intel Core i7 965. We observe
speedups of 0.6–13.4× (geomean 2.4×) for the 25-PE Virtex-
6 LX760 mapping over a range of benchmark matrices. Our
FPGA implementation allows efficient processing of the fine-
grained factorization operations which can be synchronized
at the granularity of individual floating-point operations. To
better understand the speedups we plot the distribution of
parallel runtime across the different steps of the matrix-solve
implementation in Figure 19. We observe that performance is
dominated by the cost of loading the large dataflow graph from
offchip memory. We may be able to reduce this overhead with
better DRAM memory interfaces and higher onchip capacity.
In Figure 20, we look at the scaling trends of the dataflow
architecture as we increase the number of PEs in the system.
We see varied scaling trends for our benchmark set with some
matrices scaling well (medium sized matrices or those with
low circuit fanout i.e. small critical paths) whereas others scale
very poorly (small sized matrices or those with high circuit
fanout i.e. long critical paths). To improve scaling, we will
need to consider decomposing the performance-limiting long
critical paths through coarse-grained matrix decomposition
approaches [40] or through associative reformulation [22].

C. Iteration Control

We now consider the impact of parallelizing the Iteration
Control phase on the overall speedups of the FPGA system.
In Figure 21, we now show the overall SPICE speedups under
three implementation scenarios (1) offload to sequential host
CPU over PCI (2) offload to Microblaze soft-processor (3)
spatial implementation over hybrid VLIW design. We observe
that the spatial implementation can deliver modest improve-
ments of 2.6×(mean) over the sequential CPU implementation.
We can show this benefit by localizing all communication
within the FPGA system and exploiting data parallelism in the
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convergence detection and truncation error calculation steps.
However the amount of overall improvement is not very high
since the Iteration Control phase accounts for merely ≈7%
of sequential SPICE runtime. Other FPGA studies [41] prefer
to implement such sequential fraction of the application on
embedded soft-processors like the Xilinx Microblaze. We see
the limits of using the Microblaze (1.9× mean speedup) to
implement this sequential computation as it can be worse than
even offloading the processing to the host CPU over PCI (2.4×
mean speedup). The Microblaze soft-processor offers poor
double-precision floating-point support and schedules compu-
tation sequentially over the ALU thereby limiting potential
performance. In contrast, the spatial VLIW design exploits the
available data parallelism and implements the state-machine
processing with lightweight decision-making hardware thus
delivering better performance at modest cost.

VII. FUTURE WORK

We now identify additional opportunities for improving the
performance of the parallel FPGA design.

1) The key performance bottleneck of the current design
is the Dataflow implementation of the Sparse Matrix-
Solve phase of SPICE. We will explore newer domain-
decomposition [40] approaches for exposing more coarse-
grained parallelism and associative reformulation [22]
for improved scalability. With domain-decomposition, we
can break up the large matrix into multiple submatrices
that can be solved independently and possibly even
distributed across multiple FPGAs.

2) Double-precision floating-point operators consume a
large amount of area on FPGAs. Custom floating-point
or fixed-point operators that operate at just enough
precision might provide an opportunity for improving
the compute density on FPGAs. We can redesign the
Model-Evaluation datapaths with lower precision while
satisfying accuracy requirements by adapting existing
techniques [4], [32] to obtain additional acceleration at
lower cost.

3) Sparse matrix solve operations on large matrices can
generate large dataflow graphs with millions of nodes
and edges. These large graphs can take be challenging
to place and distribute across parallel compute elements
if we want to maximize locality. We can accelerate the
placement algorithm itself using parallelism to minimize
the one-time setup cost of the parallel simulation.

Our current design exposes most, but not all, of the paral-
lelism available in the SPICE simulator. We must investigate
the following key opportunities for additional improvement in
parallel SPICE performance:

1) We can overlap the Model-Evaluation phase with the
Sparse Matrix-Solve phase of SPICE. Our streaming
high-level capture in SCORE offers the ability to integrate
a scheduler that can facilitate this overlap. The sched-
uler needs to statically compute a suitable ordering of
the device evaluation in Model-Evaluation to match the
dataflow ordering in the Sparse Matrix-Solve computa-
tion.

2) Additionally, we can improve the performance of the
Model-Evaluation phase with extra loop-unrolling and
the use of offchip memory capacity. We need to develop
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an extension to our VLIW architecture to migrate data
offchip when necessary.

3) Apart from these approaches, it may be useful to con-
sider completely different algorithms (iterative matrix-
free fixed-point simulation [9] or constant-Jacobian [51];
for SPICE simulations that completely eliminate the need
for performing per-iteration matrix factorization.

VIII. CONCLUSIONS

We show how to use FPGAs to accelerate the SPICE
circuit simulator up to an order of magnitude (mean 2.8×)
when comparing a Xilinx Virtex-6 LX760 with an Intel
Core i7 965. We were able to deliver these speedups by
exposing available parallelism in all phases of SPICE using a
high-level, domain-specific framework and customizing FPGA
hardware to match the nature of parallelism in each phase.
The tools and techniques we develop for mapping SPICE
to FPGAs are general and applicable to a broader range
of designs. We note that GPU implementation of Model-
Evaluation manages to outperform the FPGA mapping by 2–
3× in a few cases but is incapable of accelerating the irregular
Matrix-Solve phase thereby limiting total system speedup. We
observe that fine-grained, parallel dataflow evaluation of large
sparse matrix factorization graphs does not deliver a large
speedup suggesting further investigation into coarse-grained
matrix factorization techniques. We were able to compose the
overall heterogeneous design that mixes VLIW, Dataflow and
Streaming organizations into a unified implementation with
the assistance of suitable SCORE composition framework.
We believe the ideas explored in this research are relevant
across an important class of problems where computation is
characterized by static, data-parallel processing and where the
algorithm operates on sparse, irregular data structures. We
expect such high-level approaches based on exploiting spatial
parallelism to become important for improving performance
and energy-efficiency of general-purpose computation.

REFERENCES

[1] AMD. Programming Guide ATI Stream Computing, 2010.
[2] A. M. Bayoumi and Y. Y. Hanafy. Massive parallelization of SPICE

device model evaluation on GPU-based SIMD architectures. In Pro-
ceedings of the 1st international forum on Next-generation multicore/-
manycore technologies, pages 1–5, Cairo, Egypt, 2008. ACM.

[3] R. Boisvert, R. Pozo, K. Remington, R. Barrett, and JJ. The Matrix
Market: A web resource for test matrix collections. Quality of Numerical
Software: Assessment and Enhancement, pages 125–137, 1997.

[4] D. Boland and G. A. Constantinides. Automated Precision Analysis:
A Polynomial Algebraic Approach. In IEEE International Symposium
on Field-Programmable Custom Computing Machines, pages 157–164,
May 2010.

[5] F. Brglez, D. Bryan, and K. Kozminski. Combinational profiles of
sequential benchmark circuits. IEEE International Symposium on
Circuits and Systems, 3(May 1989):1929–1934, 1989.

[6] A. Caldwell, A. Kahng, and I. Markov. Improved algorithms for
hypergraph bipartitioning. Proceedings of the 2000 Asia and South
Pacific Design Automation Conference, pages 661–666, 2000.

[7] E. Caspi. Design Automation for Streaming Systems. Phd, University
of California, Berkeley, 2005.

[8] Chung-Wen Ho, A. Ruehli, and P. Brennan. The modified nodal
approach to network analysis. IEEE Transactions on Circuits and
Systems, 22(6):504–509, 1975.

[9] B. Conn. XPICE Circuit Simulation Software. (unpublished), 2008.

[10] L. Dagum and R. Menon. OpenMP: an industry standard API for shared-
memory programming. IEEE Computational Science and Engineering,
5(1):46–55, 1998.

[11] T. Davis. The University of Florida Sparse Matrix Collection. (unpub-
lished) ACM Transactions on Mathematical Software, 2007.

[12] F. de Dinechin, J. Detrey, O. Cret, and R. Tudoran. When FPGAs
are better at floating-point than microprocessors. Proceedings of the
International ACM/SIGDA Symposium on Field-Programmable Gate
Arrays, page 260, 2008.

[13] A. Dehon, Y. Markovsky, E. Caspi, M. Chu, R. Huang, S. Perissakis,
L. Pozzi, J. Yeh, and J. Wawrzynek. Stream computations orga-
nized for reconfigurable execution. Microprocessors and Microsystems,
30(6):334–354, Sept. 2006.

[14] M. DeLorimier, N. Kapre, N. Mehta, D. Rizzo, I. Eslick, R. Rubin,
T. E. Uribe, T. F. J. Knight, and A. DeHon. GraphStep: A System
Architecture for Sparse-Graph Algorithms. In IEEE Symposium on
Field-Programmable Custom Computing Machines, pages 143–151,
2006.

[15] J. A. Fisher. The VLIW Machine: A Multiprocessor for Compiling
Scientific Code. IEEE Computer, 17(7):45–53, 1984.

[16] J. Gilbert and T. Peierls. Sparse Partial Pivoting in Time Proportional
to Arithmetic Operations. SIAM Journal on Scientific and Statistical
Computing, 9(5):862–874, 1988.

[17] K. Gulati, J. F. Croix, S. P. Khatri, and R. Shastry. Fast circuit simulation
on graphics processing units. In Proceedings of the Asia and South
Pacific Design Automation Conference, pages 403–408, 2009.

[18] J. Hennesey and D. Patterson. Computer Architecture A Quantitative
Approach. Morgan Kauffman, 2nd edition, 1996.

[19] J. Huang and O. Wing. Optimal parallel triangulation of a sparse matrix.
IEEE Transactions on Circuits and Systems, 26(9):726–732, 1979.

[20] S. Hutchinson, E. Keiter, R. Hoekstra, H. Watts, A. Waters,
R. SCHELLS, and S. WIX. The Xyce Parallel Electronic Simulator -
An Overview. IEEE International Symposium on Circuits and Systems,
2000.

[21] IBM. Software Development Kit for Multicore Acceleration Version
3.1: Programmer’s Guide, 2008.

[22] N. Kapre and A. DeHon. Optimistic parallelization of floating-point
accumulation. IEEE Symposium on Computer Arithmetic, pages 205–
216, 2007.

[23] N. Kapre and A. DeHon. Accelerating SPICE Model-Evaluation using
FPGAs. In IEEE Symposium on Field Programmable Custom Computing
Machines, pages 37–44. IEEE, 2009.

[24] N. Kapre and A. DeHon. Parallelizing Sparse Matrix Solve for SPICE
Circuit Simulation using FPGAs. In International Conference on Field-
Programmable Technology, pages 190–198, 2009.

[25] N. Kapre and A. DeHon. Performance comparison of single-precision
SPICE Model-Evaluation on FPGA, GPU, Cell, and multi-core proces-
sors. In International Conference on Field Programmable Logic and
Applications, pages 65–72, 2009.

[26] N. Kapre, N. Mehta, M. Delorimier, R. Rubin, H. Barnor, M. Wilson,
M. Wrighton, and A. DeHon. Packet switched vs. time multiplexed
FPGA overlay networks. In IEEE Symposium on Field-Programmable
Custom Computing Machines, pages 205–216, 2006.

[27] K. S. Kundert and A. Sangiovanni-Vincentelli. Sparse User’s Guide: A
Sparse Linear Equation Solver, 1988.

[28] P. Lee, S. Ito, T. Hashimoto, J. Sato, T. Touma, and G. Yokomizo.
A parallel and accelerated circuit simulator with precise accuracy. In
Proceedings of the 2002 Asia and South Pacific Design Automation
Conference, pages 213–218, 2002.

[29] L. Lemaitre, G. Coram, C. McAndrew, K. Kundert, M. Inc, and
S. Geneva. Extensions to Verilog-A to support compact device modeling.
In Proceedings of the Behavioral Modeling and Simulation Conference,
pages 7–8, 2003.

[30] D. Lewis. A programmable hardware accelerator for compiled electrical
simulation. In Proceedings of the 25th ACM/IEEE Design Automation
Conference, pages 172–177, 1988.

[31] D. Lewis. A compiled-code hardware accelerator for circuit simulation.
In IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, pages 555 – 565, 1992.

[32] M. Linderman, M. Ho, D. Dill, T. Meng, and G. Nolan. Towards pro-
gram optimization through automated analysis of numerical precision.
In Proceedings of the IEEE/ ACM international symposium on Code
Generation and Optimization, pages 230–237, New York, New York,
USA, 2010. ACM.

[33] N. Mehta. Time-Multiplexed FPGA Overlay Networks On Chip. Master’s
thesis, California Institute of Technology, 2006.

[34] Microsoft Research. DDR2 DRAM Controller for BEE3, 2008.

13

Page 13 of 14

http://mc.manuscriptcentral.com/tcad

Submitted for Review to Transactions on Computer-Aided Design of Integrated Circuits and Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

Special Section on PAR-CAD 2011

Bmarks. Matrix Size Sparsity (%) Mult. Sub. Divide Total Ops. Fanout (DFG) Fanin (NZ) Latency (cycles)
spice3f5, Simucad [42]

mux8 42 15.0793 488 138 626 8 20 1.9K
ringosc 104 6.4903 1.3K 351 1.6K 4 92 3.7K
dac 654 1.5849 20.2K 3.3K 23.6K 10 1136 7.7K
ram2k 4875 0.3107 1.0M 38.5K 1.0M 137 9618 62.2K

spice3f5, Clocktrees [44]
r4k1 39948 0.0131 390.3K 125.1K 515.5K 6 29910 127.8K

spice3f5, Wave-pipelined Interconnect [45]
10stages 3920 0.1753 57.8K 14.8K 72.7K 8 2384 18.6K
20stages 11225 0.0618 174.8K 44.4K 219.2K 9 9442 46.2K
30stages 16815 0.0410 244.3K 61.7K 306.0K 11 4688 88.6K
40stages 22405 0.0307 316.1K 79.5K 395.7K 9 600 134.2K
50stages 27995 0.0245 394.7K 99.2K 493.9K 10 484 169.7K

spice3f5, ISCAS89 Netlists [5]
s27 189 3.4405 2.1K 573 2.7K 6 50 3.6K
s208 1296 0.5277 19.7K 4.9K 24.6K 11 1414 11.3K
s298 1801 0.4026 32.6K 7.3K 40.0K 13 1938 13.1K
s344 1992 0.3522 32.3K 7.8K 40.1K 12 2178 14.7K
s349 2017 0.3512 33.9K 8.0K 41.9K 14 2218 14.7K
s382 2219 0.3184 37.2K 8.7K 45.9K 16 2358 16.1K
s444 2409 0.2952 41.4K 9.6K 51.1K 16 2526 16.6K
s386 2487 0.2927 46.4K 10.0K 56.5K 20 2626 15.7K
s510 2621 0.3124 105.3K 11.9K 117.2K 54 2722 21.4K
s526n 3154 0.2362 66.1K 13.0K 79.2K 25 3280 21.9K
s526 3159 0.2376 68.1K 13.3K 81.4K 26 3294 20.7K
s641 3740 0.2000 100.2K 15.6K 115.9K 39 4066 26.5K
s713 4040 0.1890 126.4K 17.1K 143.5K 47 4380 30.3K
s820 4625 0.1655 103.2K 19.6K 122.8K 29 4766 26.1K
s832 4715 0.1629 105.7K 20.0K 125.8K 29 4846 26.6K
s953 4872 0.1876 353.9K 24.3K 378.2K 85 5212 37.9K
s1196 6604 0.1399 475.3K 33.0K 508.3K 83 7146 46.4K
s1238 6899 0.1325 457.9K 34.2K 492.2K 78 7454 46.6K
s1423 9304 0.0820 296.0K 39.4K 335.4K 64 10384 64.5K
s1488 9849 0.0827 354.7K 44.7K 399.4K 49 10606 54.8K
s1494 9919 0.0817 352.4K 44.8K 397.3K 50 10646 54.6K

TABLE VIII: Circuit Simulation Benchmark Matrices
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APPENDIX A
CIRCUIT BENCHMARKS

We show the matrix characteristics of the circuit bench-
marks used in our experiments in Table VIII. We use circuit-
simulation matrices from the University of Florida Sparse-
Matrix Collection [11] as well as Power-system matrices
from the Harwell-Boeing Matrix-Market Suite [3]. For matri-
ces generated from spicef5, we use RAM netlist bench-
marks provided by Simucad [42], clocktrees from Univer-
sity of Michigan [44], wave-pipelined circuits obtained from
UBC [45] and the ISCAS 1989 benchmark set from IBM [5].
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