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Fig. 1: We demonstrate the performance of RMA on several challenging environments. The robot is successfully able to walk on

sand, mud, hiking trails, tall grass and dirt pile without a single failure in all our trials. The robot was successful in 70% of the

trials when walking down stairs along a hiking trail, and succeeded in 80% of the trials when walking across a cement pile and

a pile of pebbles. The robot achieves this high success rate despite never having seen unstable or sinking ground, obstructive

vegetation or stairs during training. All deployment results are with the same policy without any simulation calibration, or

real-world fine-tuning. Videos at https://ashish-kmr.github.io/rma-legged-robots/

Abstract—Successful real-world deployment of legged robots
would require them to adapt in real-time to unseen scenarios
like changing terrains, changing payloads, wear and tear. This
paper presents Rapid Motor Adaptation (RMA) algorithm to
solve this problem of real-time online adaptation in quadruped
robots. RMA consists of two components: a base policy and an
adaptation module. The combination of these components enables
the robot to adapt to novel situations in fractions of a second.
RMA is trained completely in simulation without using any
domain knowledge like reference trajectories or predefined foot
trajectory generators and is deployed on the A1 robot without
any fine-tuning. We train RMA on a varied terrain generator
using bioenergetics-inspired rewards and deploy it on a variety of
difficult terrains including rocky, slippery, deformable surfaces
in environments with grass, long vegetation, concrete, pebbles,
stairs, sand, etc. RMA shows state-of-the-art performance across
diverse real-world as well as simulation experiments. Video
results at https://ashish-kmr.github.io/rma-legged-robots/.

I. INTRODUCTION

Great progress has been made in legged robotics over the last

forty years through the modeling of physical dynamics and the

tools of control theory [35, 42, 45, 16, 54, 61, 48, 25, 27, 2, 23].

These methods require considerable expertise on the part of

the human designer, and in recent years there has been much

interest in replicating this success using reinforcement learning

and imitation learning techniques [22, 18, 40, 53, 31] which

could lower this burden, and perhaps also improve performance.

The standard paradigm is to train an RL-based controller in a

physics simulation environment and then transfer to the real

world using various sim-to-real techniques [50, 39, 22]. This

transfer has proven quite challenging, because the sim-to-real

gap itself is the result of multiple factors: (a) the physical robot

and its model in the simulator differ significantly; (b) real-

world terrains vary considerably (Figure 1) from our models

of these in the simulator; (c) the physics simulator fails to

accurately capture the physics of the real world – we are

dealing here with contact forces, deformable surfaces and the

like – a considerably harder problem than modeling rigid bodies

moving in free space.

In this paper, we report on our progress on solving this
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Fig. 2: RMA consists of two subsystems - the base policy π and the adaptation module φ. Top: RMA is trained in two phases.

In the first phase, the base policy π takes as input the current state xt, previous action at−1 and the privileged environmental

factors et which is encoded into the latent extrinsics vector zt using the environmental factor encoder µ. The base policy is

trained in simulation using model-free RL. In the second phase, the adaptation module φ is trained to predict the extrinsics ẑt
from the history of state and actions via supervised learning with on-policy data. Bottom: At deployment, the adaptation module

φ generates the extrinsics ẑt at 10Hz, and the base policy generates the desired joint positions at 100Hz which are converted to

torques using A1’s PD controller. Since the adaptation module runs at a lower frequency, the base policy consumes the most

recent extrinsics vector ẑt predicted by the adaptation module to predict at. This asynchronous design was critical for seamless

deployment on low-cost robots like A1 with limited on-board compute. Videos at: https://ashish-kmr.github.io/rma-legged-robots/

challenge for quadruped locomotion, using as an experimental

platform the relatively cheap A1 robot from Unitree. Figure 1

shows some sample examples with in-action results in the video.

Before outlining our approach (Figure 2), we begin by noting

that human walking in the real world entails rapid adaptation as

we move on different soils, uphill or downhill, carrying loads,

with rested or tired muscles, and coping with sprained ankles

and the like. Let us focus on this as a central problem for

legged robots as well, and call it Rapid Motor Adaptation

(RMA). We will posit that RMA has to occur online, at a time

scale of fractions of a second, which implies that we have no

time to carry out multiple experiments in the physical world,

rolling out multiple trajectories and optimizing to estimate

various system parameters. It may be worse than that. If we

introduce the quadruped onto a rocky surface with no prior

experience, the robot policy would fail often, causing serious

damage to the robot. Collecting even 3-5 mins of walking

data in order to adapt the walking policy may be practically

infeasible. Our strategy therefore entails that not just the basic

walking policy, but also RMA must be trained in simulation,

and directly deployed in the real world. But, how?

Figure 2 shows that RMA consists of two subsystems: the

base policy π and the adaptation module φ, which work

together to enable online real time adaptation on a very

diverse set of environment configurations. The base policy is

trained via reinforcement learning in simulation using privileged

information about the environment configuration et such as

friction, payload, etc. Knowledge of the vector et allows the

base policy to appropriately adapt to the given environment.

The environment configuration vector et is first encoded into a

latent feature space zt using an encoder network µ. This latent

vector zt, which we call the extrinsics, is then fed into the

base policy along with the current state xt and the previous

action at−1. The base policy then predicts the desired joint

positions of the robot at. The policy π and the environmental

factor encoder µ are jointly trained via RL in simulation.

Unfortunately, this policy cannot be directly deployed

because we don’t have access to et in the real world. What
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we need to do is to estimate the extrinsics at run time, which

is the role of the adaptation module φ. The key insight is that

when we command a certain movement of the robot joints, the

actual movement differs from that in a way that depends on the

extrinsics. So instead of using privileged information, we might

hope to use the recent history of the agent’s state to estimate this

extrinsics vector, analogously to the operation of a Kalman filter

for state estimation from history of observables. Specifically,

the goal of φ is to estimate the extrinsics vector zt from the

robot’s recent state and action history, without assuming any

access to et. That is at runtime, but at training time, life is easier.

Since both the state history and the extrinsics vector zt
can be computed in simulation, we can train this module

via supervised learning. At deployment, both these modules

work together to perform robust and adaptive locomotion. In

our experimental setup with its limited on-board computing,

the base policy π runs at 100 Hz, while the adaptation module

φ is slower and runs at 10Hz. The two run asynchronously in

parallel with no central clock to align them. The base policy

just uploads the most recent prediction of the extrinsics vector

zt from the adaptation module to predict action at.

Our approach is in contrast to previous learning-based work

in locomotion that adapt learned policies via inferring the key

parameters about the environment from a small dataset collected

in every new situation to which the robot is introduced. These

could either be physical parameters like friction, etc. [7] or

their latent encoding [40]. Unfortunately, as mentioned earlier,

collecting such a dataset, when the robot hasn’t yet acquired

a good policy for walking, could result in falls and damage

to the robot. Our approach avoids this because RMA, through

the rapid estimation of zt permits the walking policy to adapt

quickly 1 and avoid falls.

Training of a base policy using RL with an extra argument for

the environmental parameters has also been pursued in [55, 40].

Our novel aspects are the use of a varied terrain generator

and “natural” reward functions motivated by bioenergetics

which allows us to learn walking policies without using any

reference demonstrations [40]. But the truly novel contribution

of this paper is the adaptation module, trained in simulation,

which makes RMA possible. This, at deployment time, has the

flavor of system identification, but it is an on-line version of

system identification, based just on the single trajectory that

the robot has seen in the past fraction of a second. One might

reasonably ask why it should work at all, but we can offer a

few speculations:

• System identification is traditionally thought of as an

optimization problem. But in many settings researchers

have found that given sample (input, output) pairs of

optimization problems with their solutions, we could use

a neural network to approximate the function mapping the

problem to its solution [1, 17]. Effectively that is what φ

is learning to do.

• We don’t need perfect system identification for the

1RMA takes less than 1s, whereas Peng et al. [40] need to collect 4−8mins
(50 episodes of 5− 10s) of data.

approach to work. The vector of extrinsics zt is a lower-

dimensional nonlinear projection of the environmental

parameters. This takes care of some identifiability issues

where some parameters could covary with identical effects

on observables. Secondly, we don’t need this vector of

extrinsics to be correct in some “ground truth” sense.

What matters is that it leads to the “right” action, and the

end-to-end training optimizes for that.

• The range of situations seen in training should encompass

what the robot will encounter in the real world. We use

a fractal terrain generator which accompanied by the

randomization of parameters such as mass, friction etc.

creates a wide variety of physical contexts in which the

walking robot has to react.

The most comparable work in terms of robust performance

of RL policies for legged locomotion in the real-world is that

of Lee et al. [31] which, unlike our work, relies on hand-coded

domain knowledge of predefined trajectory generator [24] and

motor models [22]. We evaluated RMA across a wide variety

of terrains in the real world (Figure 1). The proposed adaptive

controller is able to walk on slippery surfaces, uneven ground,

deformable surfaces (such as foam, mattress, etc) and on rough

terrain in natural environments such as grass, long vegetation,

concrete, pebbles, rocky surfaces, sand, etc.

II. RELATED WORK

Conventionally, legged locomotion has been approached

by using control-based methods [35, 42, 16, 54, 48, 25, 27,

2, 23, 4]. MIT Cheetah 3 [5] can achieve high speed and

jump over obstacles by using regularized model predictive

control (MPC) and simplified dynamics [12]. The ANYmal

robot [20] locomotes by optimizing a parameterized controller

and planning based on an inverted pendulum model [15].

However, these methods require accurate modeling of the real-

world dynamics, in-depth prior knowledge of the robots, and

manual tuning of gaits and behaviors. Optimizing controllers,

combined with MPC, can mitigate some of the problems

[29, 8, 9], however they still require significant task-specific

feature engineering [11, 15, 3].

Learning for Legged Locomotion Some of the earliest

attempts to incorporate learning into locomotion can be dated

back to DARPA Learning Locomotion Program [61, 62, 43, 60,

26]. More recently, deep reinforcement learning (RL) offered

an alternative to alleviate the reliance on human expertise and

has shown good results in simulation [46, 32, 36, 14]. However,

such policies are difficult to transfer to the real world [30, 38, 6].

One approach is to directly train in the real world [18, 53].

However, such policies are limited to very simple setups, and

scaling to complex setups requires unsafe exploration and a

large number of samples.

Sim-to-Real Reinforcement Learning To achieve complex

walking behaviours in the real world using RL, several methods

try to bridge the Sim-to-Real gap. Domain randomization is a

class of methods in which the policy is trained with a wide

range of environment parameters and sensor noises to learn
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behaviours which are robust in this range [49, 50, 39, 52,

37]. However, domain randomization trades optimality for

robustness leading to an over conservative policy [33].

Alternately, the Sim-to-Real gap can also be reduced by

making the simulation more accurate [22, 49, 19]. Tan et al.

[49] improve the motor models by fitting a piece-wise linear

function to data from the actual motors [49]. Hwangbo et al.

[22], instead, use a neural network to parameterize the actuator

model [22, 31]. However, these approaches require initial data

collection from the robot to fit the motor model, and would

require this to be done for every new setup.

System Identification and Adaptation Instead of being

agnostic to physics parameters, the policy can condition on

these parameters via online system identification. During

deployment in the real world, physics parameters can either

be inferred through a module that is trained in simulation [55],

or be directly optimized for high returns by using evolutionary

algorithms [56]. Predicting the exact system parameters is

often unnecessary and difficult, leading to poor performance

in practice. Instead, a low dimensional latent embedding can

be used [40, 59]. At test time, this latent can be optimized

using real-world rollouts by using policy gradient methods [40],

Bayesian optimization [57], or random search [58]. Another

approach is to use meta learning to learn an initialization of

policy network for fast online adaptation [13]. Although they

have been demonstrated on real robots [47, 10], they still

require multiple real-world rollouts to adapt.

III. RAPID MOTOR ADAPTATION

We now describe each component of the RMA algorithm

introduced in the third paragraph of Section I and summarized

in Figure 2. Following sections discuss the base policy, the

adaptation module and the deployment on the real-robot in

order. We will use the same notation as introduced in Section I.

A. Base Policy

We learn a base policy π which takes as input the current

state xt ∈ R
30, previous action at−1 ∈ R

12 and the extrinsics

vector zt ∈ R
8 to predict the next action at. The predicted

action at is the desired joint position for the 12 robot joints

which is converted to torque using a PD controller. The

extrinsics vector zt is a low dimensional encoding of the

environment vector et ∈ R
17 generated by µ.

zt = µ(et) (1)

at = π(xt, at−1, zt) (2)

We implement µ and π as MLPs (details in Section IV-B).

We jointly train the base policy π and the environmental factor

encoder µ end to end using model-free reinforcement learning.

At time step t, π takes the current state xt, previous action

at−1 and the extrinsics zt = µ(et), to predict an action at. RL

maximizes the following expected return of the policy π:

J(π) = Eτ∼p(τ |π)

[

T−1
∑

t=0

γtrt

]

,

where τ = {(x0, a0, r0), (x1, a1, r1)...} is the trajectory of

the agent when executing policy π, and p(τ |π) represents the

likelihood of the trajectory under π.

Stable Gait through Natural Constraints: Instead of adding

artificial simulation noise, we train our agent under the

following natural constraints. First, the reward function is

motivated from bioenergetic constraints of minimizing work

and ground impact [41]. We found these reward functions to

be critical for learning realistic gaits in simulation. Second, we

train our policies on uneven terrain (Figure 2) as a substitute

for additional rewards used by [22] for foot clearance and

robustness to external push. A walking policy trained under

these natural constraints transfers to simple setups in the real

world (like concrete or wooden floor) without any modifications.

This is in contrast to other sim-to-real work which either

calibrates the simulation with the real world [49, 22], or fine-

tunes the policy in the real world [40]. The adaptation module

then enables it to scale from simple setups to very challenging

terrains as shown in Figure 1.

RL Rewards: The reward function encourages the agent to

move forward with a maximum speed of 0.35 m/s, and penalizes

it for jerky and inefficient motions. Let’s denote the linear

velocity as v, the orientation as θ and the angular velocity as

ω, all in the robot’s base frame. We additionally define the joint

angles as q, joint velocities as q̇, joint torques as τ , ground

reaction forces at the feet as f , velocity of the feet as vf and

the binary foot contact indicator vector as g. The reward at

time t is defined as the sum of the following quantities:

1) Forward: min(vtx, 0.35)
2) Lateral Movement and Rotation: −‖vty‖

2 − ‖ωt
yaw‖

2

3) Work: −|τT · (qt − qt−1)|
4) Ground Impact: −‖f t − f t−1‖2

5) Smoothness: −‖τ t − τ
t−1‖2

6) Action Magnitude: −‖at‖2

7) Joint Speed: −‖q̇t‖2

8) Orientation: −‖θt
roll, pitch‖

2

9) Z Acceleration: −‖vtz‖
2

10) Foot Slip: −‖diag(gt) · vf
t‖2

The scaling factor of each reward term is 20, 21, 0.002, 0.02,

0.001, 0.07, 0.002, 1.5, 2.0, 0.8 respectively.

Training Curriculum: If we naively train our agent with the

above reward function, it learns to stay in place because of

the penalty terms on the movement of the joints. To prevent

this collapse, we follow the strategy described in [22]. We

start the training with very small penalty coefficients, and then

gradually increase the strength of these coefficients using a

fixed curriculum. We also linearly increase the difficulty of

other perturbations such as mass, friction and motor strength

as the training progresses. We don’t have any curriculum on

the terrains and start the training with randomly sampling the

terrain profiles from the same fixed difficulty.
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B. Adaptation Module

The knowledge of privileged environment configuration et
and its encoded extrinsics vector zt are not accessible during

deployment in the real-world. Hence, we propose to estimate

the extrinsics online using the adaptation module φ. Instead

of et, the adaptation module uses the recent history of robot’s

states xt−k:t−1 and actions at−k:t−1 to generate ẑt which is

an estimate of the true extrinsics vector zt. In our experiments,

we use k = 50 which corresponds to 0.5s.

ẑt = φ
(

xt−k:t−1, at−k:t−1

)

Note that instead of predicting et, which is the case in typical

system identification, we directly estimate the extrinsics zt that

only encodes how the behavior should change to correct for

the given environment vector et.

To train the adaptation module, we just need the state-action

history and the target value of zt (given by the environmental

factor encoder µ). Both of these are available in simulation, and

hence, φ can be trained via supervised learning to minimize:

MSE(ẑt, zt) = ‖ẑt − zt‖
2, where zt = µ(et). We model φ as

a 1-D CNN to capture temporal correlations (Section IV-B).

One way to collect the state-action history is to unroll the

trained base policy π with the ground truth zt. However, such

a dataset will contain examples of only good trajectories where

the robot walks seamlessly. Adaptation module φ trained on

this data would not be robust to deviations from the expert

trajectory, which will happen often during deployment.

We resolve this problem by training φ with on-policy data

(similar to Ross et al. [44]). We unroll the base policy π with

the ẑt predicted by the randomly initialized policy φ. We then

use this state action history, paired with the ground truth zt
to train φ. We iteratively repeat this until convergence. This

training procedure ensures that RMA sees enough exploration

trajectories during training due to a) randomly initialized φ,

and b) imperfect prediction of ẑt. This adds robustness to the

performance of RMA during deployment.

C. Asynchronous Deployment

We train RMA completely in simulation and then deploy it in

the real world without any modification or fine-tuning. The two

subsystems of RMA run asynchronously and at substantially

different frequencies, and hence, can easily run using little

on-board compute. The adaptation policy is slow because it

operates on the state-action history of 50 time steps, roughly

updating the extrinsic vector ẑt once every 0.1s (10 Hz).

The base policy runs at 100 Hz and uses the most recent

ẑt generated by the adaptation module, along with the current

state and the previous action, to predict at. This asynchronous

execution doesn’t hurt performance in practice because ẑt
changes relatively infrequently in the real world.

Alternately, we could have trained a base policy which

directly takes the state and action history as input without

decoupling them into the two modules. We found that this (a)

leads to unnatural gaits and poor performance in simulation,

(b) can only run at 10Hz on the on-board compute, and (c)

lacks the asynchronous design which is critical for a seamless

Parameters Training Range Testing Range

Friction [0.05, 4.5] [0.04, 6.0]

Kp [50, 60] [45, 65]

Kd [0.4, 0.8] [0.3, 0.9]

Payload (Kg) [0, 6] [0, 7]

Center of Mass (cm) [-0.15, 0.15] [-0.18, 0.18]

Motor Strength [0.90, 1.10] [0.88, 1.22]

Re-sample Probability 0.004 0.01

TABLE I: Ranges of the environmental parameters.

deployment of RMA on the real robot without the need for

any synchronization or calibration of the two subsystems.

This asynchronous design is fundamentally enabled by the

decoupling of the relatively infrequently changing extrinsics

vector with the quickly changing robot state.

IV. EXPERIMENTAL SETUP

A. Environment Details

Hardware Details: We use A1 robot from Unitree for all our

real-world experiments. A1 is a relatively low cost medium

sized robotic quadruped dog. It has 18 degrees of freedom out

of which 12 are actuated (3 motors on each leg) and weighs

about 12 kg. To measure the current state of the robot, we

use the joint position and velocity from the motor encoders,

roll and pitch from the IMU sensor and the binarized foot

contact indicators from the foot sensors. The deployed policy

uses position control for the joints of the robots. The predicted

desired joint positions are converted to torque using a PD

controller with fixed gains (Kp = 55 and Kd = 0.8).

Simulation Setup: We use the RaiSim simulator [21] for

rigid-body and contact dynamics simulation. We import the

A1 URDF file from Unitree [51] and use the inbuilt fractal

terrain generator to generate uneven terrain (fractal octaves

= 2, fractal lacunarity = 2.0, fractal gain = 0.25, z-scale =

0.27). Each RL episode lasts for a maximum of 1000 steps,

with early termination if the height of the robots drops below

0.28m, magnitude of the body roll exceeds 0.4 radians or the

pitch exceeds 0.2 radians. The control frequency of the policy

is 100 Hz, and the simulation time step is 0.025s.

State-Action Space: The state is 30 dimensional containing

the joint positions (12 values), joint velocities (12 values), roll

and pitch of the torso and binary foot contact indicators (4
values). For actions, we use position control for the 12 robot

joints. RMA predicts the desired joint angles a = q̂ ∈ R
12,

which is converted to torques τ using a PD controller: τ =

Kp (q̂− q)+Kd

(

ˆ̇q− q̇
)

. Kp and Kd are manually-specified

gains, and the target joint velocities ˆ̇q are set to 0.

Environmental Variations: All environmental variations with

their ranges are listed in Table I. Of these, et includes mass and

its position on the robot (3 dims), motor strength (12 dims),

friction (scalar) and local terrain height (scalar), making it a

17-dim vector. Note that although the difficulty of the terrain

profile is fixed, the local terrain height changes as the agent
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Fig. 3: We evaluate RMA in several out-of-distribution setups in the real world. We compare RMA to A1’s controller and

RMA without the adaptation module. We find that RMA steps down a height of 15cm with 80% success rate and walks over

unseen deformable surfaces, such as a memory foam mattress and a slightly uneven foam with 100% success rate. It is also

able to successfully climb inclines and steps. A1’s controller fails to walk over uneven foam. At the bottom, we also analyze

the payload carrying limits of the three methods. We see that the A1 controller’s performance starts degrading at 8Kg payload

capacity. RMA w/o adaptation fails to move for payloads more than 8Kg, but rarely falls. For reference, A1 robot weights 12Kg.

Overall, the proposed method consistently dominates the baseline methods. The numbers reported are averaged over 5 trials.

moves. We discretize the terrain height under each foot to the

first decimal place and then take the maximum among the four

feet to get a scalar. This ensures that the controller does not

critically depend on a fast and accurate sensing of the local

terrain, and allows the base policy to use it asynchronously at

a much lower update frequency during deployment.

B. Training Details

Base Policy and Environment Factor Encoder Architecture:

The base policy is a 3-layer multi-layer perceptron (MLP)

which takes in the current state xt ∈ R
30, previous action

at−1 ∈ R
12 and the extrinsics vector zt ∈ R

8, and outputs

12-dim target joint angles. The dimension of hidden layers is

128. The environment factor encoder is a 3-layer MLP (256,

128 hidden layer sizes) and encodes et ∈ R
17 into zt ∈ R

8.

Adaptation Module Architecture: The adaptation module

first embeds the recent states and actions into 32-dim repre-

sentations using a 2-layer MLP. Then, a 3-layer 1-D CNN

convolves the representations across the time dimension to

capture temporal correlations in the input. The input channel

number, output channel number, kernel size, and stride of each

layer are [32, 32, 8, 4], [32, 32, 5, 1], [32, 32, 5, 1]. The flattened

CNN output is linearly projected to estimate ẑt.

Learning Base Policy and Environmental Factor Encoder

Network: We jointly train the base policy and the environment

encoder network using PPO [46] for 15, 000 iterations each

of which uses batch size of 80, 000 split into 4 mini-batches.

The learning rate is set to 5e−4. The coefficient of the reward

terms are provided in Section III. Training takes roughly 24
hours on an ordinary desktop machine, with 1 GPU for policy

training. In this duration, it simulates 1.2 billion steps.

Learning Adaptation Module: We train the adaptation mod-

ule using supervised learning with on-policy data. We use

Adam optimizer [28] to minimize MSE loss. We run the

optimization process for 1000 iterations with a learning rate of

5e−4 each of which uses a batch size of 80, 000 split up into

4 mini-batches. It takes 3 hours to train this on an ordinary

desktop machine, with 1 GPU for training the policy. In this

duration, it simulates 80 million steps.
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Fig. 4: We analyze RMA as the robot walks over an oily plastic sheet with additional plastic covering on its feet. We plot

the torque of the knee and the gait pattern which indicates the contact of the four feet (F/R denotes Front/Rear and R/L

denotes Right/Left). The bottom plot shows median filtered 1st and 5th components of the extrinsics vector ẑ predicted by the

adaptation module. When the robot enters the slippery patch we see a change in the two components of the extrinsics vector ẑ,

indicating that the slip event has been detected by the adaptation module. Note that post adaptation, the recovered gait time

period is similar to the original, the torque magnitudes have increased and ẑ continues to capture the fact that the surface is

still slippery. RMA was successful in 90% of the runs over oily patch.

V. RESULTS AND ANALYSIS

We compare the performance of RMA with several base-

lines in simulation (Table II). We additionally compare to

the manufacturer’s controller, which ships with A1, in the

real world indoor setups (Figure 3) and run RMA in the

wild in a very diverse set of terrains (Figure 1). Videos

at https://ashish-kmr.github.io/rma-legged-robots/

Baselines: We compare to the following baselines:

1) A1 Controller: The default robot manufacturer’s controller

which uses a force-based control scheme with MPC.

2) Robustness through Domain Randomization (Robust): The

base policy is trained without zt to be robust to the

variations in the training range [50, 39].

3) Expert Adaptation Policy (Expert): In simulation, we can

use the true value of the extrinsics vector zt. This is an

upper bound to the performance of RMA.

4) RMA w/o Adaptation: We can also evaluate the perfor-

mance of the base policy without the adaptation module

to ablate the importance of the adaptation module.

5) System Identification [55]: Instead of predicting ẑt, we

directly predict the system parameters êt.

6) Advantage Weighted Regression for Domain Adaptation

(AWR) [40]: Optimize ẑt offline using AWR by using

real-world rollouts of the policy in the testing environment.

Learning baselines were trained with the same architecture,

reward function and other hyper-parameters.

Metrics: We compare the performance of RMA against

baselines using the following metrics: (1) time-to-fall divided

by maximum episode length to get a normalized value between

0− 1 (TTF); (2) average forward reward, (3) success rate, (4)

distance covered, (5) exploration samples needed for adaptation,

(6) torque applied, (7) smoothness which is derivative of torque

and (7) ground impact (details in the supplementary).

A. Indoor Experiments

In the real world, we compare RMA with A1’s controller

and with RMA without the adaptation module (Figure 3). We

limit comparison to these two baselines to avoid damage to the

 ���

https://ashish-kmr.github.io/rma-legged-robots/


Success (%) TTF Reward Distance (m) Samples Torque Smoothness Ground Impact

Robust [50, 39] 62.4 0.80 4.62 1.13 0 527.59 122.50 4.20

SysID [55] 56.5 0.74 4.82 1.17 0 565.85 149.75 4.03

AWR [40] 41.7 0.65 4.17 0.95 40k 599.71 162.60 4.02

RMA w/o Adapt 52.1 0.75 4.72 1.15 0 524.18 106.25 4.55

RMA 73.5 0.85 5.22 1.34 0 500.00 92.85 4.27

Expert 76.2 0.86 5.23 1.35 0 485.07 85.56 3.90

TABLE II: Simulation Testing Results: We compare the performance of our method to baseline methods in simulation. Our

train and test settings are listed in Table I. We resample the environment parameters within an episode with a re-sampling

probability of 0.01 per step during testing. Baselines and metrics are defined in Section V. The numbers reported are averaged

over 3 randomly initialized policies and 1000 episodes per random initialization. RMA beats the performance of all the baselines,

with only a slight degradation in performance compared to the Expert.

robot hardware. We run 5 trials for each method and report the

success rate, time to fall (TTF), and distance covered. Note that

if a method drastically failed at a task, we only run two trials

and then report a failure. This is done to minimize damage to

the robot hardware. We have the following indoor setups:

• n-kg Payload: Walk 300cm with n-kg payload on top.

• StepUp-n: Step up on an n-cm high step.

• Uneven Foam: Walk 180cm on a center elevated foam.

• Mattress: Walk 60cm on a memory foam mattress.

• StepDown-n: Step down an n-cm high step.

• Incline: Walk up on a 6-degrees incline.

• Oily Surface: Cross through an an oily patch.

Each trial of StepUp-n and StepDown-n is terminated after

a success or a failure. Thus, we only report the success rate

for these tasks because other metrics are meaningless.

We observe that RMA achieves a high success rate in

all these setups, beating the performance of A1’s controller

by a large margin in some cases. We find that turning off

the adaptation module substantially degrades performance,

implying that the adaptation module is critical to solve these

tasks. A1’s controller struggled with uneven foam and with a

large step down and step up. The controller was destabilized

by unstable footholds in most of its failures. In the payload

analysis, the A1’s controller was able to handle higher than the

advertised payload (5Kg), but starts sagging, and eventually

falls as the payload increases. In contrast, RMA maintains

the height and is able to carry up to 12Kg (100% of body

weight) with a high success rate. RMA w/o adaptation mostly

doesn’t fall, but also doesn’t move forward. We also evaluated

RMA in a more challenging task of crossing an oily path with

plastic wrapped feet. The robot successfully walks across the

oily patch. Interestingly, RMA w/o adaptation was able to

walk successfully on wooden floor without any fine-tuning or

simulation calibration. This is in contrast to existing methods

which calibrate the simulation [49, 22] or fine-tune their policy

at test time [40] even for flat and static environments.

B. Outdoor Experiments

We demonstrate the performance of RMA on several

challenging outdoor environments as shown in Figure 1. The

robot is successfully able to walk on sand, mud and dirt without

a single failure in all our trials. These terrains make locomotion

difficult due to sinking and sticking feet, which requires the

robot to change the footholds dynamically to ensure stability.

RMA had a 100% success rate for walking on tall vegetation

or crossing a bush. Such terrains obstruct the feet of the robot,

making it periodically unstable as it walks. To successfully

walk in these setups, the robot has to stabilize against foot

entanglements, and power through some of these obstructions

aggressively. We also evaluate our robot on walking down

some stairs found on a hiking trail. The robot was successful

in 70% of the trials, which is still remarkable given that the

robot never sees a staircase during training. And lastly, we

test the robot over construction debris, where it was successful

100% of the times when walking downhill over a mud pile

and 80% of the times when walking across a cement pile and

a pile of pebbles. The cement pile and pebbles were itself on

a ground which was steeply sloping sideways, making it very

challenging for the robot to go across the pile.

C. Simulation Results

We compare the performance of our method to baseline

methods in simulation (Table II). We sample our training and

testing parameters according to Table I, and resample them

within an episode with a resampling probability of 0.004 and

0.01 per step respectively for training and testing. The numbers

reported are averaged over 3 randomly initialized policies

and 1000 episodes per random initialization. RMA performs

the best with only a slight degradation compared to Expert’s

performance. The constantly changing environment leads to

poor performance of AWR which is very slow to adapt. Since

the Robust baseline is agnostic to extrinsics, it learns a very

conservative policy which loses on performance. Note that the

low performance of SysID implies that explicitly estimating et
is difficult and unnecessary to achieve superior performance.

We also compare to RMA w/o adaptation, which shows a

significant performance drop without the adaption module.

D. Adaptation Analysis

We analyze the gait patterns, torque profiles and the estimated

extrinsics vector ẑt for adaptation over slippery surface (Figure
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4). We pour oil on the plastic surface on the ground and

additionally cover the feet of the robot in plastic. The robot

then tries to cross the slippery patch and is able to successfully

adapt to it. We found that RMA was successful in 90% of the

runs over oily patch. For one such trial, we plot the torque

profile of the knee, the gait pattern, and median filtered 1st

and 5th components of the extrinsics vector ẑt in Figure

4. When the robot first starts slipping somewhere around

2s, the slip disturbs the regular motion of the robot, after

which it enters the adaptation phase. This is noticeable in the

plotted components of the extrinsics vector which change in

response to the slip. This detected slip enables the robot to

recover and continue walking over the slippery patch. Note

that although post adaptation, the torque stabilizes to a slightly

higher magnitude and the gait time period is roughly recovered,

the extrinsics vector does not recover and continues to capture

the fact that the surface is slippery. See supplementary more

such analysis.

VI. CONCLUSION

We presented the RMA algorithm for real-time adaptation

of a legged robot walking in a variety of terrains. No

demonstrations or predefined motion templates were needed.

Despite only having access to proprioceptive data, the robot

can also go downstairs and walk across rocks. However, a blind

robot has limitations. Larger perturbations such as sudden falls

while going downstairs, or due to multiple leg obstructions

from rocks, sometimes lead to failures. To develop a truly

reliable walking robot, we need to use not just proprioception

but also exteroception with an onboard vision sensor. The

importance of vision in guiding long range, rapid locomotion

has been well studied, e.g. by [34], and this is an important

direction for future work.
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