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Abstract

The RMG-database for chemical property prediction is presented. The RMG-

database consists of curated datasets and estimators for accurately predicting pa-

rameters necessary for constructing a wide variety of chemical kinetic mechanisms,

including thermodynamics, kinetics, solvation effects, and transport properties. For

thermochemistry prediction, the RMG-database contains 45 libraries of thermochemi-

cal parameters with a combined 4564 entries, a group additivity scheme with nine types
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of corrections including radical, polycyclic and surface absorption corrections with 1580

total curated groups and parameters for a graph convolutional neural net trained us-

ing transfer learning from a set of >130,000 DFT calculations to 10,000 high-quality

values. Correction schemes for solvent-solute effects, important for thermochemistry

in the liquid phase, are available. They include tabled values for 195 pure solvents

and 152 common solutes and a group additivity scheme for predicting the properties of

arbitrary solutes. For kinetics estimation the database contains 92 libraries of kinetic

parameters containing a combined 21,000 reactions and contains rate rule schemes for

87 reaction classes trained on 8655 curated training reactions. Additional libraries and

estimators are available for transport properties. All of this information is easily acces-

sible through the graphical user interface at https://rmg.mit.edu. Bulk or on-the-fly

use can be facilitated by interfacing directly with the RMG Python package which can

be installed from Anaconda. The RMG-database provides kineticists with easy access

to estimates of the many parameters they need to model and analyze kinetic systems.

This helps speed up and facilitate kinetic analysis by enabling easy hypothesis test-

ing on pathways, by providing parameters for model construction and by providing

information to check other kinetic parameters against.

Introduction

Understanding and optimization of many important chemical processes such as combustion,

polymerization, electrochemistry, pyrolysis, and oxidation can benefit from detailed and

predictive chemical kinetic mechanisms. In many of these cases, to accurately represent the

chemistry involved mechanisms need to include hundreds to thousands of species and tens

to hundreds of thousands of reactions.

In these cases, we need to assign a rate coefficient to each reaction in the model and

often even to many reactions outside the model to determine they should remain outside

the model. Additionally, a reverse rate needs to be available for most reactions either by
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explicitly specifying it or by defining the thermochemistry of the species involved. For larger

models the latter is typically preferred because it guarantees thermodynamic consistency,

because thermochemistry is easier to estimate than kinetics, and because there are typically

far fewer species in a model than reactions.

The stakes for these estimations are highly variable. Some reactions that are non-limiting

and don’t impact any important branching can tolerate several orders of magnitude of error,

while others may drastically change the chemistry when their rate coefficient is adjusted

by as little as 25%. Sensitivity to thermochemical parameters may also vary significantly,

although large underestimates of any species’ Gibbs free energy will almost always have a

drastic effect.

Typically databases, property estimators, and quantum chemistry methods are used to

estimate these parameters. While many advances have been made recently in on-the-fly

quantum chemistry calculations, in most cases these systems are too computationally ex-

pensive or not robust enough to use for every parameter in a mechanism. For this reason we

will focus our review on databases and property estimators.

Some of the most popular databases are those archived by NIST containing experimental

and quantum chemical rate coefficients and thermodynamic properties.1 The NIST databases

are very extensive although the data quality can be highly variable. While this makes

NIST a great place to search for parameters it also makes it not ideal for applications

where there is no human in the loop. The active thermochemical tables (ATcT) database

provides high accuracy values for a limited number of species.2 Many databases such as

PriMe, ChemKED, CloudFlame and ReSpecTh exist for storing experimental measurements

that may be relevant.3–6 The MolSSI QC Archive project is a quantum chemistry specific

database intended to help supply homogeneous data sets.7

There are many ways of estimating thermochemical and kinetic parameters. By far the

most common way of estimating thermochemical parameters is the Benson type group ad-

ditivity method.8,9 Implementations of this method are used in THERM and Genesys.10,11
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Graph convolutional neural net methods are beginning to emerge as an alternative.12–15 Ki-

netics estimators typically rely on either use of rate rules assigning specific rates to reactions

matching specific templates or on reaction group additivity.16–18 Recent machine learning

approaches using hierarchical decision trees have been found to be effective for predicting

rate coefficients and reactivity.19,20

The RMG-database was primarily created to supply the Reaction Mechanism Generator

software (RMG) with good estimates for key species and kinetic properties.21 RMG is a

rate-based mechanism generation software. This means that RMG selects species based

on their computed production rates during simulations. During mechanism generation at

each iteration RMG simulates the set of species and reactions it has already chosen to

include in the model, referred to as the ”core”. During this simulation it calculates fluxes

through a set of reactions that are under consideration to enter the core, referred to as the

”edge”. If the flux toward a species in the edge is high enough it is added to the core.

This means that unlike kinetic models constructed by hand or using rule-based mechanism

generation, RMG needs to estimate properties for all the species and reactions in the edge,

which are typically 100x and 10x larger, respectively, than the core. Furthermore, these

estimations are much higher stakes. This is because unlike in other mechanism construction

methods, the decisions of whether or not species and reactions are included in the resulting

mechanism are directly based on their estimated properties. Poor thermochemistry and

kinetic estimation in RMG can therefore cause model generation to miss the real pathways

in a kinetic system, highlighting the important role the RMG database has in providing

reasonable data estimation schemes.

As far as the authors are aware, RMG is the only publicly available automatic mecha-

nism generation tool that can automatically handle pressure dependence including chemical-

activation. It does this by drawing on automatically formulating and solving the master

equation using Arkane22,23 for each pressure-dependent reaction network on the fly. This

requires estimation of E0 and frequencies for each species in the network and k(E) for each
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reaction.

To facilitate automated model generation in RMG, the RMG-database provides a robust

set of estimators for thermochemistry, rates, and many other relevant properties. It also

provides a database of reactions suitable for small scale machine learning applications and

includes many mechanisms and submechanisms from literature. These estimators, data,

and submechanisms have been tempered and refined during the creation of many RMG

mechanisms.24–29

Theory

Thermo Group Additivity

Figure 1: Example segment of a group additivity correction tree.

RMG’s group additivity scheme is broadly based on that developed by Benson et al.8

Hf298, Sf298 and Cp(T ) at a set of temperatures for a given molecule are defined by summing

a contribution from each heavy atom in the molecule. In the 20th century, most of these

group values were derived from experimental data, but in the last 20 years a much larger set

of group values has been derived from quantum chemical calculations.30–33 RMG’s scheme

also integrates several advanced corrections to the ordinary Benson groups:
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• radical corrections using the hydrogen bond increment (HBI) method adopted from

Lay et al. 1995.34

• ring and polycyclic strain corrections using the method of Han et al. 2018.35,36

• long distance interaction corrections for non-cyclic gauche 1,4 and 1,5 interactions.

• long distance interaction corrections for halogenated molecules.33

• ortho, para, and meta cyclic non-nearest neighbor interactions using values from Ince

et al. 2015 and Ince et al. 2017.37,38

• ketene corrections.30

• surface adsorption corrections for absorbed species on nickel and platinum.39,40

Each correction is chosen using tree structures like those shown in Figure 1. Starting from

the top of the tree, the algorithm descends to matching child nodes until it finds the most

specific correction that matches the actual structure.

Readily available and reliable values for each group are critical to efficient and accurate

estimation of thermodynamic parameters using group additivity schemes. Unfortunately,

given the diversity of chemical space,41 it is challenging to construct a scheme that com-

prehensively covers all chemistries that may be of interest. With this in mind, it is vital

to have efficient workflows for continually extending this group additivity scheme. For this

purpose we provide scripts and notebooks for generating new groups from a set of species of

interest, proposing species to calculate thermochemistry for, and fitting the new groups to

the calculated species.

Thermodynamic Property Neural Network Estimator

The main thermodynamic property neural network estimator is based on the work from Li

et al. 2019 and Grambow et al. 2019.12,42 It uses a graph convolutional neural network to
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predict thermochemistry parameters. The model was trained using transfer learning from

130,000 calculations at the B3LYP/6-31G(2df,p) level to around 10,000 high-quality data

points at CCSD(T)-F12/cc-pVDZ-F12//B3LYP/6-31G(2df,p) or better (including accurate

experimental values). The low level calculations were drawn heavily from HCNO species in

the QM9 data set. For Hf298 predictions the high level calculations were selected species from

that same subset, plus some molecules with high accuracy experimental data. The high-level

training data for the entropy and heat capacity estimators were a mix of experimental data

and 900 ωB97X-D3/def2TZVP calculations from the same subset of molecules. The details

are available in Grambow et al. 2019.42

An additional neural network based thermochemistry estimator specific for halogenated

species was trained off of G4 data from Farina et al. 2021 recently.15,33,43 While not yet

added to the RMG-database this neural network will be available in the near future.

Both the group additivity and neural net approaches give usefully-accurate estimates of

the thermochemistry of hundreds of thousands of molecules. But neither is perfectly reliable,

and there are no error bars on the estimates. An important challenge for the future is reliably

identifying the uncertainties in the estimates, even for strange molecules.

Rate Coefficient Estimation Rules

RMG’s rate rule based estimator uses tree structures similar to those used by group addi-

tivity. An example for the R Addition MultipleBond reaction family is shown in Figure 2.

The template for this reaction family is available in Figure 3. Much like traditional rate

rule schemes, when a reaction is proposed it descends down the tree to find the best corre-

sponding rate rule. The rule typically gives Arrhenius parameters as log(A) and Ea which

can be used to compute the desired k(T). Note that this is typically a two-dimensional (as

shown in Figure 2) or three-dimensional tree space. If there is no estimation rule for the

rate coefficient where the reaction lands, the algorithm searches the tree upwards to find and

average the rules closest in Euclidean distance within the tree space.
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Figure 2: Portion of the RMG rate rule trees for the R Addition MultipleBond family, with
separate trees for the double bond and the attacking radical.

Figure 3: RMG reaction template for R Addition MultipleBond family.
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Unlike traditional rate rule estimators, however, nearly all rules are defined by descending

a set of training reactions whose rate parameters are known down the tree and placing those

parameters as a rule in the tree. More general rules are then generated by averaging all of

the rules one Euclidean distance step below each point in the tree space and so on up the

tree. These trees are quite sparsely populated as a result of the combinatorically large tree

spaces.

These trees described in this section are designed to estimate ”high-pressure limit” gas

phase rate coefficients k(T), the quantities typically computed using Transition State Theory

from quantum chemical calculations. Due to fall-off and chemical-activation the actual

pressure-dependent rate coefficients can be very different. Also, in liquid phase the rate

coefficients are different due to solvent effects. The way RMG implements the corrections

needed to obtain the actual rate coefficients in the environment of interest are discussed in

later sections.

Automatic Tree Generation

Automated tree-generation methods in the RMG-database can automatically generate the

nodes and rules from the training data using the Subgraph Isomorphic Decision Tree (SIDT)

training algorithm developed by Johnson and Green 2021.19 Many of the families already

use these automatically generated trees. Work is in progress on switching all families to use

automatically generated trees.

Vibrational Frequency Estimation for Estimating ρ(E)

RMG estimates the vibrational frequencies of each molecule as one step in predicting the

density of states, ρ(E), for pressure-dependent rate calculations.22,44 For this purpose the

RMG-database contains parameters for a group contribution scheme for estimating vibra-

tional frequencies of functional groups in a molecule. The details of this scheme are available

in Grinberg Dana et al. 2022.44 Note these frequencies are only intended for and validated
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for estimation of ρ(E) for pressure-dependent rate calculations within this scheme and are

likely not suitable for other purposes. A different scheme, outside of RMG, is available for

those who are interested in predicting IR spectra.45

Liquid Phase Diffusivity Estimation

In liquid phase, it is common for some rate coefficients to be diffusion-controlled. To estimate

these rate coefficients, one needs estimates of molecular diffusivities. These diffusivities are

also needed in liquid phase reaction-diffusion and reacting flow simulations. The RMG-

database can estimate the liquid phase diffusion coefficient D of a molecule using the Stokes-

Einstein equation based on the method of Zhao et al. 2003

D =
kBT

6πηr
(1)

with

r =

(
0.75V

πNA

) 1
3

(2)

V =
Natoms∑

i

(Vi)− 6.56× 10−6Nbonds (3)

where Vi is the McGowan volume46 of a particular atom in m3/mol, η is the viscosity of the

solvent and Nbonds is the number of bonds in the molecule.47 The database also contains sets

of parameters for calculating the pure component viscosity of 150 solvents using the relation

ln(η) = A+
B

T
+ C log(T ) +DTE (4)

where η is the viscosity, T is the temperature and the rest are solvent specific viscosity pa-

rameters. The majority of the viscosity parameters are obtained from the work by Viswanath

et al.48 and some are obtained from DIPPR.49
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Estimating the Lennard-Jones Parameters

Gas phase transport properties are important in many kinetics simulations and they can be

easily calculated by most simulation software from the Lennard-Jones parameters for the

associated species. These are calculated by first estimating the critical temperature and

pressure using the Joback group additivity method

ΣTc =
∑
i

GAVTc,i (5)

ΣPc =
∑
i

GAVPc,i (6)

Tb = 198.2 + ΣTc (7)

Tc =
Tb

0.584 + 0.965ΣTc − Σ2
Tc

(8)

Pc =
1

(0.113 + 0.0032Natoms − ΣPc)
2

(9)

where the summations are over the groups associated with the heavy atoms in the molecule

Tb is the boiling point in K, Tc is the critical temperature in K, Pc is the critical pressure

in bar and Natoms is the number of atoms in the molecule.50,51 For halogenated molecules, a

boiling point correction derived by Devotta and Pendyala52 is applied. We are then able to

estimate the Lennard-Jones parameters using empirical correlations from Tee et al.

σ = 2.44
(Tc
Pc

) 1
3

(10)

ε = 0.77kBTc (11)

where σ and ε are the Lennard-Jones parameters

V (r) = 4ε
[(σ
r

)12
−
(σ
r

)6]
(12)
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in Angstroms and Joules respectively, where kB is the Boltzmann constant.53 As a fallback

the Lennard Jones parameters can be estimated simply based on the number of atoms in

the molecule.

Solvent and Solute property estimation

Within the RMG-database liquids are largely assumed to be dilute. The Gibbs free energy

of a solute in solution (∆G∗liq) is defined using the standard state of a solute dissolved in an

ideal solution at a concentration of 1 mol/L and can be calculated from the relationship

∆G∗liq = ∆Go
f,gas + ∆G∗solv + ∆Go→∗ (13)

with

∆Go→∗ = −RT ln
V ∗

V o
= 1.9 kcal/mol at 298K (14)

where ∆Go
f,gas is derived from gas phase values with the standard state of an ideal gas

at 1 bar, ∆G∗solv is the solvation free energy with the standard state of an ideal gas at a

concentration of 1 mol/L dissolving into an ideal solution at a concentration of 1 mol/L,

V ∗ = 1 `/mol and V o = RT
1 bar

. ∆Go→∗ corrects for the difference between the gas-phase and

liquid-phase standard states. The partition coefficient for a given solute and solvent can be

defined as

K =
cliq
cgas

(15)

where c is the concentration of solute in the appropriate phase at equilibrium. This K is

directly related to ∆G∗solv by

∆G∗solv = −RT ln(K) (16)

thus ∆G∗solv,298K can be calculated using the Abraham linear solvent energy relationship

(LSER)

log10(K298K) = c+ eE + sS + aA+ bB + lL (17)
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where the lower case parameters are Abraham solvent parameters and the upper case pa-

rameters are solute parameters.54 The solvent and solute parameters are independent of each

other. The similar Mintz LSER can be used to calculate the enthalpy of solvation at 298 K

∆H∗solv,298K (kJ/mol) = c′ + e′E + s′S + a′A+ b′B + l′L (18)

where the lower case are Mintz solvent parameters and the upper case are the same solute

parameters as those used in Equation 17.55 The RMG-database can then calculate ∆S∗solv,298K

using

∆S∗solv,298K =
∆H∗solv,298K −∆G∗solv,298K

298 K
(19)

and then linearly extrapolate the temperature to estimate ∆G∗solv

∆G∗solv = ∆H∗solv,298K − T∆S∗solv,298K (20)

providing an algorithm to calculate ∆G∗solv for solute-solvent pairs with known parameters.

More accurate temperature-dependent ∆G∗solv prediction using the method of Chung et al.56

is available within the RMG-database for a limited number of solvents. This method can

estimate ∆G∗solv at elevated temperatures along the solvent’s saturation pressure based on

G∗solv,298K, H∗solv,298K and the solvent’s temperature-dependent density, and gives a mean

absolute error of approximately 0.4 kcal/mol.56 The density can be computed for 23 solvents

in the RMG-database using an open source package CoolProp.57

The Abraham and Mintz solvent parameters are available for 195 and 66 common solvents

respectively in the RMG-database. The solute parameters are calculable for neutral species

using the group additivity method from Chung et al. 2022.58 The group additivity scheme

for the solute parameters largely follows that of gas phase thermo but uses a slightly different

approach for halogenated species. If a compound contains any halogens, RMG first computes

the solute parameters for a molecule with all the halogens replaced by hydrogen atoms and
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then adds corrections for each halogen atom. This approach is used because it allows RMG

to pull more accurate values from libraries for the de-halogenated species improving accuracy

on the halogenated compounds after correction.

Forbidden Structures

The RMG-database tabulates types of species and also specific subtemplates for reaction

families that are forbidden. These groups of species are generally either species that RMG’s

templates may try to create but don’t really exist, or particular chemistries that RMG can’t

represent well yet such as ozonides. The subtemplates are most typically reactions that

shouldn’t be able to happen or unimportant reactions that RMG severely overestimates. As

a result of these forbidden structures the RMG-database may occasionally not predict the

existence of certain reactions that a user might expect it to based on the reaction templates.

Atom Energy Corrections and Bond Additivity Corrections

The RMG-database includes Atom Energy Corrections (AECs) and Bond Additivity Cor-

rections (BACs). AECs and BACs are empirical corrections to systematic errors in quantum

chemistry calculations that can be used to improve the accuracy of species thermochem-

istry calculations. AECs are energy corrections to the atomization energies associated with

each atom in a molecule. Most AECs in the RMG-database are obtained from fitting to

a high-accuracy experimental dataset in the database containing 16 small molecules. The

experimental atomization energies come from CCCBDB,59 and all have uncertainty values

less than 0.2 kcal mol−1. However, at most levels of theory, AECs alone are insufficient to

estimate enthalpies of formation accurately enough for most kinetics applications. BACs add

an additional correction associated with each bond. They are fit using a dataset of about 400

species with well-known heats of formation, primarily drawn from ATcT60 and CCCBDB.59

Figure 4 shows a histogram of the residuals before and after applying BACs; errors are rel-

ative to the reliable set of experimental enthalpies used for fitting. Although using a more
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accurate level of theory can reduce the errors before fitting BACs, the residuals are always

centered around zero after applying BACs The RMG-database stores two types of BACs.
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Figure 4: Histogram of fitting errors (corrected minus experimental enthalpies) for Petersson-
type BACs for a) ωB97X-D3/def2-TZVP and b) CCSD(T)-F12a/cc-pVDZ-F12//ωB97X-
D3/def2-TZVP. Using a higher level of theory, such as coupled cluster calculations, give
lower errors both before and after applying the fitted BACs.

Petersson-type BACs61 apply a correction to ∆fH(298) for each bond type defined by the

two atoms and the bond order. Melius-type BACs62 apply a correction based on bond length

integrating information about the 3D geometry. Our BAC procedure and resulting fitted

parameters generalize well to new molecules. For example, Grambow et al.42 applied fitted

Melius-type BACs at CCSD(T)-F12a/cc-pVDZ-F12//B3LYP/6-31G(2df,p) to a test set of

about 400 molecules from NIST. Although the experimental uncertainties were unknown,

the resulting RMSE of 1.31 kcal mol−1 relative to the experimental values is impressive.

Similarly, Spiekermann et al.63 applied fitted Petersson-type BACs at CCSD(T)-F12a/cc-

pVDZ-F12//ωB97X-D3/def2-TZVP to molecules from the Pedley compilation set64 that

have experimental uncertainty of less than 1 kcal mol−1. The resulting RMSE of 1.24 kcal

mol−1 demonstrates the accuracy of our BACs.
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Content

Thermodynamic parameters

Broadly, RMG’s thermochemical parameter estimation has been designed to accurately han-

dle chemistry containing the elements H,C,O,N, and S. Performance on halogens and metal

adsorbates is rapidly improving as well. However H,C,O molecules are by far the best cov-

ered.

Libraries

RMG has many libraries of accurate experimental and quantum chemistry calcula-

tions for important species. The libraries DFT QCI thermo, CBS QB3 1dHR, and

thermo DFT CCSDTF12 BAC are curated calculated libraries of thermochemistry at the

particular level of theory. For H2 combustion chemistry BurkeH2O2 is recommended while

for C2 chemistry Klippenstein Glarborg2016 is recommended for general purpose use. These

libraries cover common C3 and smaller species quite well.65,66 Many nitrogen species are avail-

able within primaryNS, NitrogenCurran and NOx2018.67,68 Many sulfur species are available

in primaryNS, SulfurGlarborgH2S and SulfurLibrary.69 Species involving both Nitrogen and

Sulfur are available in primaryNS and many important aromatic species are available in

SABIC aromatics. For halogen chemistry, the CHOX G4 (X=F,Cl,Br,FCl,ClBr,FClBr) li-

braries are recommended as they cover a significant portion of their respective chemical

spaces with up to 4 carbons and oxygen atoms.33 Catalyst adsorbates are available in Sur-

faceThermoPt111 and SurfaceThermoNi111.39,40 Many other specialized thermo libraries are

also available within the RMG-database.

Group Additivity

The RMG-database’s group additivity method for estimating gas phase thermochemistry

performs very well on C/H/O species. With some exceptions for heavily oxygenated species,
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the overall accuracy is around on par with that of B3LYP DFT calculations. Nitrogen and

sulfur species are represented within the groups and estimates are reasonable, but accuracy is

variable. For halogens, the groups perform well for sparsely halogenated non-cyclic species,

but often underpredict enthalpies for cyclics and more heavily halogenated molecules. For

C/H/O cyclics the mean absolute error of Hf298 for small cyclics is about 3 kcal/mol while

it is about 5 kcal/mol for large linear cyclics and 10 kcal/mol for fused cyclics.35

Neural Network

The neural network thermochemistry estimator performs well on polycyclics and CHON

species. In practice it is usually superior to the group additivity method on polycyclics

and nitrogen species. Sulfur species were not included in the training set. Aliphatic and

monocyclic oxygenated and hydrocarbon species tend to be better estimated by RMG’s

group additivity method.

Kinetics

Libraries

The RMG-database includes a wide variety of literature mechanisms for different

purposes. For general purpose unfitted chemistries we recommend BurkeH2O2inN2

or BurkeH2O2inArHe and Klippenstein Glarborg2016 for C/H/O molecules, pri-

maryNitrogenLibrary and Nitrogen Dean and Bozzelli for nitrogen species and

First to Second Aromatic Ring for aromatic species. The database also includes the

CurranPentane, JetSurF1.0, JetSurF2.0, and FFCM1(-) libraries. The content of each of

RMG’s kinetic libraries is specified and kept up to date in the RMG documentation online.

Families

RMG contains an extendable set of 87 reaction families. Reaction types common to com-

bustion and pyrolysis are very well covered. Common types important for low temperature
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chemistry and gas-surface chemistry on metal catalysts are covered.

Training Reactions

About half of the RMG-database families have four or fewer training reactions. The num-

ber of training reactions for each of the larger families, with more than 20 training reac-

tions, is available in Table 1. Except for H Abstraction and R Addition MultipleBond the

training reactions for families without loose transition states tend to be mostly CBS-QB3

or similar level of theory calculations. However, there are experimental values and esti-

mates mixed in for most of the families (Table 1). The largest families H Abstraction and

R Addition MultipleBond have about 834 and 430 reactions respectively at CBS-QB3 or

similar levels of theory and are supplemented by 2274 and 2521 reactions respectively es-

timated from reaction group additivity schemes inherited from RMG’s original set of rate

rules.

Table 1: Number of training reactions in families with more than 20 training reactions.

Reaction Family Number of Reactions
H Abstraction 3107

R Addition MultipleBond 2894
Intra R Add Endocyclic 843

intra H migration 431
Intra R Add Exocyclic 371

Cl Abstraction 238
SubstitutionS 148

R Recombination 145
Disproportionation 137

Substitution O 128
Br Abstraction 100
F Abstraction 90

Retroene 65
Disproportionation-Y 42

Cyclic Ether Formation 37
XY Addition MultipleBond 33

1,3 Insertion ROR 22
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Transport

The RMG-database contains four literature libraries of transport parameters: GRI-Mech,

NOx2018, OneDMinN2, and NIST Fluorine and a curated library of species not well ac-

counted for by the groups called primaryTransportLibrary. The Joback groups cover

C/H/O/N/S and halogens fairly well.50,52 In cases where the Joback groups are missing,

RMG makes very rough estimates based on number of atoms in the molecule.

Solvent and Solute Properties

RMG’s solvent library contains 195 pure solvents with known Abraham solvent parameters,

66 of which have Mintz solvent parameters and 150 of which have viscosity parameters.

It also has Abraham solvent parameters for four co-solvents. RMG’s solute library holds

parameters for 310 common solutes and the groups for estimating non-radical neutral solute

parameters cover elements H,C,O,N,S,P,F,Cl,Br, and I. The solute parameters predicted from

the group additivity scheme and the solvent parameters in the library together give a mean

absolute error of approximately 0.6 kcal/mol for both solvation free energy and solvation

enthalpy estimates at 298 K when evaluated on a 10 % test set containing randomly chosen

out-of-sample solute compounds.58 The groups needed to estimate solvation of radicals are

a bit more limited and do not include any groups containing S, P, or halogen atoms.

Atom Energy Corrections and Bond Additivity Corrections

RMG’s database of AECs and BACs covers the elements H,C,O,N and S quite consis-

tently. Newer and more recently updated corrections also cover halogens. Some AECs

in the database that are drawn from literature cover phosphorous.
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Discussion

What is the RMG-database good for doing?

The RMG-database has predictors for many properties as discussed above, but it’s worth

keeping in mind that the RMG-database has been primarily developed to further property

prediction that improves the accuracy of reaction mechanisms produced by the RMG soft-

ware. This means that one should expect the RMG-database to be particularly good at

predicting reaction rates and thermochemistry, and any properties they are sensitive to. In

general the existence of a published, experimentally-validated RMG mechanism involving a

specific chemistry means some care has been taken inside the RMG-database with regards to

those chemistries and that at least the most relevant corrections for those reaction conditions

are present. For example Dana et al. 2018 demonstrated RMG’s capabilities on Nitrogen

compounds, Class et al. 2019 demonstrated RMG’s capabilities on some Sulfur chemistries

and Chu et al. 2019 demonstrated RMG’s capabilities for small aromatic species.25,27,70 How-

ever, the user should keep in mind that all large databases, including the RMG database,

likely include some erroneous values - perfection is hard to achieve, and it is challenging to

check tens of thousands of numbers.

The RMG-database has been repeatedly shown to be sufficiently accurate that it can be

used to build satisfactory higher temperature (> 650 K) models on non-aromatic C/H/O

chemistries for combustion and pyrolysis. It can also handle up to two ring aromatic

chemistries under pyrolysis conditions. In the 400 − 650 K range rate predictions tend

to be less accurate due to higher sensitivity to the errors in estimates of activation barriers

and enthalpies. The lower accuracy makes prediction of product yields and overall reaction

rates much less robust. Most small nitrogen and sulfur functional groups are covered in

the database. RMG can handle their small molecule chemistries quite well, including some

nitrogen – sulfur interactions. However, for more complex hetero-molecules there are gaps

in the rate rules and thermodynamic data groups.
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RMG’s methods for estimating solvation energies for small neutral molecules have been

well-tested against experimental data, and are particularly good for common solvents whose

properties are well-known. RMG’s ability to predict solvent effects on rate coefficients,

transport properties, etc. have not been very extensively tested yet. At present RMG

cannot handle ions.

There are some successful examples of RMG building satisfactory kinetic models for

reactions over metal catalysts, implying that the RMG estimates are accurate enough for

those cases.71 But only a few systems have been studied so far, and it will be some time

before RMG could estimate that parameters needed to predict catalysts over all the metals

of interest.

How can one efficiently use the RMG-database?

The easiest way to access information from the RMG-database is the RMG website, located

at https://rmg.mit.edu/. The web pages provide a graphic user interface (GUI) for browsing

through the database entries and searching for specific properties of a molecule or reaction of

interest, displaying data in both numerical and corresponding graphical form. The Molecule

Search tool enables users to search the database for all thermochemistry and transport

sources for a given species, as well as exploring the resonance structures thereof.70 The

solvation search tool does the same for solvent and solvation parameters for given solute

solvent pairs. The kinetic search tool allows users to search the database for reactions

based on just reactants or reactants and products. It is worth noting that in many cases in

addition to available library data the website will return rate coefficient estimates from both

rate rules and group additivity. The latter are generated using a reaction group additivity

scheme based on the rate tree and training reactions. This group additivity scheme is no

longer maintained as it was found to be appreciably less accurate than rate rules.18

When estimates for many species or reactions are required it becomes much more practical

to directly interface with the RMG software. The RMG Python package can be easily
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installed from Anaconda and can be used to generate bulk or on-the-fly estimates from the

RMG-database.

Conclusions

We have presented the RMG-database for chemical property prediction. The RMG-database

is an ever-expanding database designed for estimating properties important to chemical

kinetics. Over the years, it has been expanded and curated to accurately predict properties

for many chemical kinetic mechanisms.25,27,29,39,72,73 Currently the database is a very solid

foundation for building gas phase mechanisms involving CHONSFClBr species. Property

prediction in the liquid and catalyst phases is state of the art and advancing rapidly. This

suite includes estimators for thermochemistry including solvent and adsorption corrections,

kinetics for 87 different classes of reactions, solvent viscosity, and species diffusivity in both

gas and liquid phases. Every addition to the RMG-database is tested in an automated

workflow to ensure estimator performance is maintained or improved as the RMG-database

is expanded. While there are many databases available today, the RMG-database’s focus

on chemical mechanism generation makes it uniquely suited to for providing properties for

construction of chemical kinetic mechanisms.
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