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Summary 

Envelope equations for a continuous beam with uni­
form charge density and elliptical cross-section were 
first derived by Kapchinsky and Vladimirsky 2 (K-V). In 
fact, the K-V equations are not restricted to uniformly 
charged beams, but are equally valid for any charge dis­
tribution with elliptical symmetry, provided the beam 
boundary and emittance are defined by rms (root-mean­
square) values. This results because (i) the second 
moments of any particle distribution depend only on the 
linear part of the force (determined by least squares 
method), while (ii) this linear part of the force in 
turn depends only on the second moments of the distribu­
tion. This is also true in practice for three-dimen­
sional bunched beams with ellipsoidal symmetry, and 
allows the formulation of envelope equations that in­
clude the effect of space charge on bunch length and 
energy spread. 

The utility of this rms approach was first demon­
strated by Lapostolle 3 for stationary distributions. 
Subsequently, Gluckstern4 proved that the rms version 
of the K-V equations remain valid for all continuous 
beams with axial symmetry. In this report these re­
sults are extended to continuous beams with elliptical 
symmetry as well as to bunched beams with ellipsoidal 
form, and also to one-dimensional motion. 

Moment equations 

Consider an ensemble of particles that obey the 
single-particle equations 

x - p 

p = F(x,t) 
(1) 

where F(x,t) includes both the external force and the 
self-force, F = Fe + Fs. Averaging (1) over an arbi­
trary particle distribution f(x,p,t), we obtain 

(2) 

where the last equation follows because F
6 

= 0 by 

moment equations, namely the equation for each moment 
involves the higher moments in an endless hierarchy. 
However, if the self-force is derived from the free­
space Poisson equation, xFs depends mainly on the 
second moments and very little, if at all, on the higher 
moments. This will be demonstrated in the following 
sections. The remaining term pFs is associated with 
emittance growth; we will avoid considering it by 
asswning that the rms emittance 

(5) 

is either constaUi, or that its time dep~dence is known 
a priori. Then p is given in terms of x ,. xp, and E(t) 
by (S), and the first two equations of (4) form a closed 
set. They can be combined to give the K-V type equation: 

xF 
x + K(t)x - £. - __ s • o , 

- 3 
(6) 

x x 

where x is the rms value, x ~ 

The space-charge term in this equation has an in­
teresting interpretation. If we define the linear part 
of the force Fs(x,t) as c(t)x, where c(t) is determined 
by minimizing the difference 

D = J [c(t)x - Fs(x,t)]2 n(x,t) dx 

for a fixed t, where n(x,t) = J f(x,p,t) dp, then 

xF 
c(t)x = __ s x 

xz 

(7) 

(8) 

In other words, the rms envelope equation depends only 
on the linear part of the forces, determined by least 
squares method. 

It is convenient to put equation (4) into matrix 
form. The assumption of constant rms emittance is 
equivalent to setting pFs • c(t)xp . Then equation (4) 
has the form 

• T 
o • Fo + aF (9) 

Newton's third law. (We neglect the 8mall magnetic self- where a is the covariance matrix 
forces due to internal motion.) If Fe(x,t) is non-linear 
in x, the second equation of (2) involves the higher 
moments XIl of the distribution. However, for linear ex­
ternal forces, Fe.: -K(tl_x, equations (2) involve only 
the first moments x and p, and therefore the centre-of­
mass motion depends only on the external force, 

x + K(t)x • 0 , (3) 

and not on the detailed form of the distribution. In 
the remainder of this paper we consider only linear ex­
ternal forces. 

and F is 

a = (10) 

F = [ 0 

-K(t) + c(t) 

(11) 

The second moments of f(x,p,t) satisfy the equations Equation (9) is equivalent to a(t + dt) = Ma(t)MT where 
M is the infinitesimal transfer matrix M(t + dt, t) a 

x2 
,. 2 xx ~ 2 xp I + F(t) dt. 

xp • ~ + ~ = P2 - K(t)x 2 + xFs 

pi,. 2 pp • -2K(t)xp + 2 pFs 

(4) 

where the terms xFs an~Fs are usually functions of the 
higher moments Xft" and xnp. This is a general feature of 

This procedure is easily extended to two and three 
dimensions. For three dimensions, the 6 x 6 correlation 
matrix includes cross-correlation terms such as xy, 
xy', ••• ,while the 6 x 6 force matrix F may include 
linear coupling terms from both space-charge and external 
forces. The three-dimensional equivalent of (9) has 



been incorporated into program TRANSPORT 5 to investi­
gate both longitudinal and transverse space-charge 
effects in transfer lines 6

• In many cases the external 
forces will not involve coupling and the cross-correla­
tion terms between the different directions will be 
zero or close to zero. In this case the envelope equa­
tions reduce to the K-V form (6) for each direction. 

One-dimensional envelope equations 

For a beam in free space that is very long in the 
z-direction and very wide in the y-direction, only the 
x-component of the self-force is important, and this is 
obtained from the Poisson equation 

8E: 
ax= 41Ten(x,t) (12) 

The envelope equation is 

+ K(t)x - E
2 

....=_ xE: = 0 (13) 
x x3 mN x , 

where N is the number of particles per unit area in ~y 
~z. This equation can be written as 

i + K(t)x - E
2 

- 21Te
2
N A1 = 0 ' 

)(3 m 

where A1 is the dimensionless parameter 
x 

2 J xh(x) dx J h(x 1
) dx 1 

0 

(14) 

(15) 

and where h(x) = (l/N)n(x) specifies the distribution. 
For the four distributions 

a) uniform, h(x) 
1 

for x < 1 =z 

= 0 for x > 1 

b) parabolic h(x) 
3 

= 4(1 - x2) for x < 1 

= 0 for x > 1 

c) gaussian, h(x) 
1 -x2/2 

= 2 e 

d) hollow, 

the values of A1 are given in Table 1. 

Table 1 

Distribution fiA1 1015 A
2 

3 
515 A3 

uniform 1 1.08 1 

parabolic 0.996 1 1.01 

gaussian 0.977 1.05 1.05 

hollow 0.987 1. 37 1.02 

Thus, for the range of distributions likely to be en­
countered in practice, the variation in Ai is negligible 
and the rms envelope motion will be accurately described 
by Eq. (14) with constant A1, for example A1 = l//r:. 

A second type of one-dimensional envelope equation 
arises in the study of longitudinal oscillations of a 
bunched beam inside a conducting pipe 7

• The longitudi­
nal self-field is determined by 

E:(z,t) ~ -eg 8n(z,t) 
az 

(16) 

where g = 1 + 2 ln (pipe radius/beam radius), and the 
corresponding envelope equation is 

z + K(t)z - ~ - ge
2

N ~ = o , 
-3 m -2 
z z 

(17) 

where N is the number of particles per bunch and 

co 1/2 co 

A2 = ~ [ J z 2
h(z) dz J f h

2
(z) dz (18) 

_co -co 

with values of Az listed in Table 1. For this case of 
a shielded electric field, the envelope equation does 
depend on the type of distribution. However, if the 
form of the distribution varies only slightly during its 
evolution, for example remains within the range uniform­
parabolic-Gaussian, then the envelope equation (17) can 
be used with confidence. 

Envelope equations for continuous beams 

In the absence of cross-correlations and coupling 
terms, the envelope equations have the form (13) where 
the space-charge terms involve the average ~x and yt;y. 
These averages will depend only on the second moments 
x and y and not on the higher moments provided the 
charge distribution has the elliptical symmetry 

(

x2 2 ) 
n(x,y,t) = n ~ + ~ , t 

In this case the solution to Poisson's equation is 

where 

with 
fore 

XE: 
x 

which 

E: 
x 

21Teabx J n (T) ds 
3/ 11 • 

(a2 + s) 12(b2 + s) 12 

T = __ x_2_ + ____L_ 

a 2 + s b 2 + s 

a similar expression for E: The term xE: is 
y x 

00 O> 00 

21Teab J ds J x
2 

dx ~ J(b2 d:i [ x2 

+ s ) V2 
n(T)n - + 

(a 2 + s) a2 
0 -co 

suggests the change of variables 

r cos e x 
r sin e = y 

N:;:-; 

(19) 

(20) 

(21) 

there-

y2) 
b2 

(22) 

(23) 

With the new variables, the integration over e can be 
performed giving 

co co 

- 41Tea
3
b

2 f 2 J xE:x = a+ b n(r )21Tr dr n(r
12

)21Tr 1 dr' , (24) 

r 

The remaining integrals can be evaluated with the help 
of the definition 

N = f 00 J n(x,y) dx dy ab~ n(r 2)21Tr dr , 

where N is the number of particle per unit length. 
Then 

r 

(25) 

Q(r) = ab J n(r
12

)21Tr
1 

dr 1 (26) 

0 



is the number of particles within radius r, and Eq. (24) 
becomes 

00 

XE .. ~ 1~ [N - Q(r 1
)] dr 1 

, 

x a + b dr' 
0 

which is easily integrated, 

XE: 
x 

a + b x + y 

(27) 

(28) 

Using this and the expression for y£y' we obtain the 
envelope equations 

E 2 e 2N 1 
x + Kx(t)x - ~ - - - - - - ~ o 

x3 m x + y 

(29) 
E 2 e 2N 1 

y + K (t)y - J_ - - -- = 0 
Y y3 m x + y 

These equations are identical to the K-V equations if 
the rms values x, Ex, y, Ey are replaced by the physi­
cal boundary for a uniform distribution, namely 
X = 2 x, •.•• However, they are not restricted to the 
K-V distribution but are valid for any distribution with 
the elliptical symmetry (19). 

Envelope equations for bunched beams 

The procedure in two-dimensions can be repeated 
for bunched beams with the ellipsoidal symmetry 

(

x2 r._ z2 
n(x,y,z,t) = n - + + -

a2 b2 c2 
(30) 

The electric field is 8 

00 

£ 
x 

21Teabcx f n(T) ds , (31) 

(a2 + s)?'2(b 2 + s)Y2(c2 + s) ~ 

where 

x2 v2 z2 
T = --- + ---L-- + (32) 

a 2 + s b
2 

+ s c 2 + s 

and with analogous expressions for £ and £ • 
z 

The term 
x£ can be reduced to the form y 

x 

- eN
2

A.3 (b c) 
X£X "' --- - gX a' a 

x 

where N is the number of particles per bunch and 

·H x(" t(, r". o (1 + s) 
2 

- + s 
2 .£. + s 

. a2 a2 

(33) 

(34) 

The integral in (34) can be expressed in terms of ellip­
tic integrals of the second kind, but direct numerical 
evaluation with the Gaussian integration method is 
easier and also quick and accurate. The complete en­
velope equation for x is 

Ex

2 

e

2

N)..

3 (xv~ ~~) x + K (t)x - - - -- g ":° _ = 0 , (35) 
x x3 mi2 x 

where 

A3 • -
1 

[/h(r
2
)r

4 
dr J 

3 /3 0 

... 
dr f h(p 2 )p dp 

r (36) 

with the normalization 

f h(r
2
)r

2 
dr 1 . (37) 

The parameter A3 depends only weakly on the type of dis­
tribution as shown in Table 1. Thus for practical distri­
butions, the dependence of the envelope equations on the 
type of distribution can be neglected. The same state­
ment also applies if cross-correlations or linear exter­
nal ~oupling forces are present; in this case the more 
general matrix form (9) of the rrns equations can be used. 

Conclusion 

A rather surprising and useful result has been 
found for beams in free space, namely that the linear 
part of the self-field depends mainly on the rms size 

·of the distribution and only very weakly on its exact 
form. Using this result, envelope equations for the 
rms beam size have been derived that are exact for con­
tinuous beams of elliptical symmetry, and in practice 
also valid for bunched beams of ellipsoidal form. The 
main restriction in applying these equations is that 
the time dependence of the rms emittance must be known 
a priori. 

Possible uses of the equations include the specifi­
cation of stationary or matched states in the presence 
of space charge. For example, the periodic solution of 
Eq. (35) for alternating-gradient structures, including 
radio frequency cavities, specifies the matched beam 
size (both longitudinal and transverse) as a function 
of rms emittances and intensity. The largest matched 
size attainable without exceeding aperture limits or 
bucket size determines a space-charge limit. For a 
beam matched in this way, envelope oscillations about 
the periodic solution are suppressed, although higher 
modes of oscillations (sextupole, octupole, etc.) may 
occur. Suppression of the higher modes will require 
constraints, as yet undetermined, on the higher moments 
of the distribution. Another use is the design of low­
energy beam transfer lines. 
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