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Abstract

In structural equation modeling, application of the root mean square error of approximation (RMSEA), comparative fit index

(CFI), and Tucker–Lewis index (TLI) highly relies on the conventional cutoff values developed under normal-theory maximum

likelihood (ML) with continuous data. For ordered categorical data, unweighted least squares (ULS) and diagonally weighted

least squares (DWLS) based on polychoric correlation matrices have been recommended in previous studies. Although no clear

suggestions exist regarding the application of these fit indices when analyzing ordered categorical variables, practitioners are still

tempted to adopt the conventional cutoff rules. The purpose of our research was to answer the question: Given a population

polychoric correlation matrix and a hypothesized model, if ML results in a specific RMSEAvalue (e.g., .08), what is the RMSEA

value when ULS or DWLS is applied? CFI and TLI were investigated in the same fashion. Both simulated and empirical

polychoric correlation matrices with various degrees of model misspecification were employed to address the above question.

The results showed that DWLS and ULS lead to smaller RMSEA and larger CFI and TLI values than does ML for all

manipulated conditions, regardless of whether or not the indices are scaled. Applying the conventional cutoffs to DWLS and

ULS, therefore, has a pronounced tendency not to discover model–data misfit. Discussions regarding the use of RMSEA, CFI,

and TLI for ordered categorical data are given.

Keywords Structural equation modeling . Ordered categorical data . Diagonally weighted least squares . Unweighted least

squares . Maximum likelihood . Fit index

BDoes the hypothesized model fit the data well?^ This is a

critical question in almost every application of structural equa-

tion modeling (SEM). The model chi-square statistic and sev-

eral fit indices are commonly reported to address this question.

Three model fit indices that are widely applied are considered

in this article, all of which are based on a fit function given a

specific estimation method. They are the root mean square

error of approximation (RMSEA; Steiger, 1990; Steiger &

Lind, 1980), comparative fit index (CFI; Bentler, 1990), and

Tucker–Lewis index (TLI; Bentler & Bonett, 1980; Tucker &

Lewis, 1973). RMSEA is an absolute fit index, in that it as-

sesses how far a hypothesized model is from a perfect model.

On the contrary, CFI and TLI are incremental fit indices that

compare the fit of a hypothesized model with that of a baseline

model (i.e., a model with the worst fit).

The application of RMSEA, CFI, and TLI is heavily con-

tingent on a set of cutoff criteria. Earlier research (e.g.,

Browne & Cudeck, 1993; Jöreskog & Sörbom, 1993) sug-

gested that an RMSEA value of < .05 indicates a Bclose fit,^

and that < .08 suggests a reasonable model–data fit. Bentler

and Bonett (1980) recommended that TLI > .90 indicates an

acceptable fit. However, these suggestions are largely based

on intuition and experience rather than on any statistical jus-

tification (see Marsh, Hau, &Wen, 2004). To address the lack

of statistical justification of these recommendations, Hu and

Bentler (1999) conducted a simulation study to investigate the

rejection rates under correct and misspecified models, by ap-

plying various cutoff values for many fit indices, including

RMSEA, CFI, and TLI. Hu and Bentler suggested that an

RMSEA smaller than .06 and a CFI and TLI larger than .95

* Yan Xia

yxia@asu.edu

Yanyun Yang

yyang3@fsu.edu

1 T. Denny Sanford School of Social and Family Dynamics, Arizona

State University, Tempe, AZ, USA

2 College of Education, Florida State University, Tallahassee, FL, USA

Behavior Research Methods (2019) 51:409–428

https://doi.org/10.3758/s13428-018-1055-2

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-018-1055-2&domain=pdf
mailto:yxia@asu.edu


indicate relatively good model–data fit in general. Hu and

Bentler’s study has become highly influential, and their rec-

ommended cutoffs have been adopted inmany SEMpractices.

However, Hu and Bentler’s study only concerns continuous

data that are analyzed using the normal-theory maximum like-

lihood (ML). Hu and Bentler cautioned that the suggested

cutoff values might not generalize to conditions that were

not manipulated in their study, nor to estimation methods oth-

er than ML.

In psychological research the data are frequently ordered

categorical (e.g., data collected using Likert scales). Applying

the normal-theory ML to the covariance matrix of ordered

categorical data can result in biased parameter estimates, in-

accurate standard errors, and a misleading chi-square statistic,

especially when the number of categories is below five and the

categorical distribution is highly asymmetric (e.g., Beauducel

& Herzberg, 2006; Johnson & Creech, 1983; Rhemtulla,

Brosseau-Liard, & Savalei, 2012). To address the categorical

nature of data, the diagonally weighted least squares (DWLS)

estimator based on the polychoric correlation matrix has be-

come the most popular method (Savalei & Rhemtulla, 2013).

Mplus (L. K.Muthén&Muthén, 2015) by default implements

DWLSwhen variables are specified as being categorical, with

mean- and variance-adjusted chi-square statistics and standard

errors. (DWLS with such robust corrections is termed mean-

and variance-adjusted weighted least squares—i.e.,

WLSMV; B. O. Muthén, du Toit, & Spisic, 1997.)

RMSEA, CFI, and TLI are based on a fit function that is

specific to a chosen estimation method. Because the chi-square

statistic is a function of the fit function, RMSEA, CFI, and TLI

are also functions of the chi-square statistic. When the scaled

chi-square statistic is used in calculating the DWLS fit indices

(e.g., Mplus and lavaan in R; see Eqs. 8–10), we denote the

resulting fit indices as scaled fit indices—that is, RMSEAS,

CFIS, and TLIS. Although the scaled fit indices are widely

applied, no theoretical justification exists for the use of robust

chi-square in calculating the fit indices (Brosseau-Liard &

Savalei, 2014; Brosseau-Liard, Savalei, & Li, 2012). When

the fit indices are calculated as functions of the unscaled chi-

square statistic, we denote the unscaled fit indices as

RMSEAU, CFIU, and TLIU. More details regarding the scaled

and unscaled fit indices are described in the next section.

When DWLS is applied to ordered categorical data, many

studies have questioned whether the conventional cutoff

values for RMSEA, CFI, and TLI suggested by Hu and

Bentler (1999) can be applied similarly. Yu (2002) conducted

a simulation study in which the sample size, type of model

misspecification, and type of variable (i.e., binary, normal, and

nonnormal data) were varied, and she concluded that no uni-

versal cutoff values seem to work across all conditions for

DWLS-scaled model fit indices. Beauducel and Herzberg

(2006) also found that the performance of the DWLS-scaled

model fit indices is not clear and that different cutoff criteria

are needed. Garrido, Abad, and Ponsoda (2016) and Yang and

Xia (2015) investigated the utility of RMSEAS, CFIS, and

TLIS in determining the number of common factors in explor-

atory factor analysis, both suggesting that it is difficult to

develop a set of cutoff values across all simulation conditions

for DWLS. Nye and Drasgow (2011) found that DWLS pro-

duced smaller RMSEAS and larger CFIS and TLIS values than

did the ML-fit indices using an empirical data set with 9,292

observations. Nye and Drasgow’s simulation study showed

similar results, leading them to conclude that the conventional

cutoff values do not work when DWLS is applied. DiStefano

and Morgan (2014) found that RMSEAS and CFIS using

DWLS produce problematic results under highly asymmetric

categorical distributions, small sample sizes, and dichotomous

data. Koziol (2010) found that the differences in RMSEAS and

CFIS between nested models using DWLS do not have suffi-

cient power to detect noninvariance in the measurement invari-

ance testing context. In a similar context, Sass, Schmitt, and

Marsh (2014) suggested that the differences in CFIS and TLIS
between nested models should be applied with caution, partic-

ularly for misspecified models, because these variables’ perfor-

mance is impacted by both sample size and model complexity.

One alternative to DWLS is the unweighted least squares

(ULS) estimator (termed mean- and variance-adjusted un-

weighted least squares—i.e., ULSMV—in Mplus when ro-

bust corrections are implemented; B. O. Muthén et al.,

1997). ULS and DWLS with robust corrections were both

proposed by B. O. Muthén et al., but the former method has

been underutilized, as compared with the latter. We did a

search in Google Scholar and located 16 empirical studies

before 2016 that applied ULS to Likert-scale data (e.g.,

Currier & Holland, 2014; De Beer, Pienaar, & Rothmann,

2014; Stander, Mostert, & de Beer, 2014). Simulation studies

have found that ULS results in higher nonconvergence rates

than does DWLS (Forero, Maydeu-Olivares, & Gallardo-

Pujol, 2009), but that it provides slightly more accurate param-

eter estimates and standard errors than DWLS (Forero et al.,

2009; C. H. Li, 2014; Yang-Wallentin, Jöreskog, & Luo,

2010). Savalei and Rhemtulla (2013) further investigated the

robust chi-square statistics and concluded that ULS with the

mean- and variance-adjusted chi-square statistic outperforms

DWLS regarding Type I error rates and power. The perfor-

mance of RMSEAS, CFIS, and TLIS under ULS has not been

extensively evaluated. We found only one such study, per-

formed by Maydeu-Olivares, Fairchild, and Hall (2017), who

investigated how the number of categories could impact the

ULS-RMSEAS. They found that ULS-RMSEAS decreases,

and thus results in the loss of power, withmore data categories.

On the basis of our literature review, we concluded that the

performance of DWLS-RMSEAS, CFIS, and TLIS is elusive,

and that no clear guideline exists for goodness-of-fit evaluation

for ordered categorical data in SEM. However, researchers in

substantive areas are still tempted to apply the conventional
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cutoff values to DWLS. It is very common to see statements in

published articles like BDWLS [or WLSMV] was applied to

analyze ordered categorical data. A good model–data fit is

indicated by RMSEA < .06, CFI > .95, and TLI > .95 (Hu &

Bentler, 1999).^ All 16 empirical studies that we found that

employed ULS also applied the conventional cutoffs to eval-

uate the model–data fit. Hu and Bentler and other researchers

(e.g., Marsh et al., 2004) have cautioned against the universal

use of conventional cutoff criteria, which, unfortunately, has

not seemed to stop the widespread use of these cutoffs with

other estimation methods such as DWLS and ULS. In this

article we take an alternative perspective, to examine the mod-

el–data fit evaluation under different estimation methods when

ordered categorical data are analyzed. We aimed to show the

consequences for model–data fit evaluation that result from

applying the conventional cutoffs to DWLS and ULS.

Specifically, this article answers the following research ques-

tion:When a hypothesizedmodel is fitted to a population-level

polychoric correlation matrix using ML and results in a spe-

cific RMSEAvalue (e.g., .06), what is the RMSEAvalue if the

same model is fitted to the same matrix using DWLS or ULS?

CFI and TLI were investigated in the same manner.

We conducted a simulation study to answer the above re-

search question. Although in SEM applications fit indices are

commonly used in sample-level SEM analysis, we decided to

conduct the present simulation study at the population level,

so that no confounding due to sample fluctuation would be

introduced. We made this decision for the following two rea-

sons. First, if the samemisspecified model were fit to the same

population data but resulted in different fit indices using dif-

ferent estimation methods, then it would be clear that the same

value of a fit index tells a different story regarding model–data

misfit using different estimation methods. A clear understand-

ing of these fit indices at the population level will be necessary

before the sampling properties can be investigated. All the

simulation studies we reviewed and cited above were conduct-

ed under finite samples; therefore, it is not clear whether the

different performance of the fit indices under different estima-

tion methods was due to their population properties, sampling

error, or both. Second, although the scaled indices are com-

monly reported for sample-level analysis in SEM applications,

they are calculated without theoretical justification, as has

been evidenced by Brosseau-Liard and Savalei (2014) and

Brosseau-Liard et al. (2012). As we will show in formulas

(see Eqs. 8–13), the unscaled fit indices from ULS and

DWLS converge to the theoretical definitions of RMSEA,

CFI, and TLI as the sample size increases to infinity, but the

scaled fit indices converge to distorted asymptotic values.

Therefore, we question the appropriateness of using the scaled

fit indices currently implemented in software programs.

We employed Cudeck and Browne’s (1992) simulation

technique in order to generate population polychoric correla-

tion matrices with predefined ML-RMSEA values as

measures of degrees of model misspecification. The generated

matrices were then fitted using DWLS and ULS in order to

calculate the corresponding scaled and unscaled DWLS and

ULS fit indices. We chose the ML fit indices based on the

polychoric correlation matrices as the benchmark for compar-

ison. At the population level, the polychoric correlation matrix

is essentially the Pearson correlation matrix for generating

continuous data, given that the underlying continuous vari-

ables follow a standard multivariate normal distribution.

Therefore, the population values of the ML fit indices based

on polychoric correlation matrices are the same as those based

on the Pearson correlation matrices of continuous data.

Because Hu and Bentler’s (1999) cutoff values were devel-

oped using the covariance matrices for continuous variables,

the population values of ML fit indices using polychoric cor-

relation matrices are consistent with those in Hu and Bentler’s

study. It is also important to note that robust corrections are

recommended to adjust the chi-square statistic and standard

error when ML is employed for polychoric correlation matri-

ces (e.g., Yang-Wallentin et al., 2010).

The next section briefly summaries the fit functions of ML,

ULS, and DWLS, as well as the population definitions of

RMSEA, CFI, and TLI. Because current software programs

(e.g., Mplus and lavaan in R) scale the fit indices such that the

indices are functions of the scaled chi-square statistics, we will

also compare the scaled fit indices with the unscaled versions.

Thereafter, a comparison of RMSEA, CFI, and TLI across the

ML, ULS, and DWLS methods is presented using the simu-

lation technique outlined in Cudeck and Browne (1992).

Following the simulation study, we take six empirical

polychoric correlation matrices reported in published studies,

analyze the matrices using ML, ULS, and DWLS, and com-

pare the resulting fit indices across the three estimators. We

will show that the conclusions of a model–data fit evaluation

can be dramatically different, depending on which estimation

method is applied. Finally, suggestions and discussions re-

garding the application of RMSEA, CFI, and TLI in SEM

with ordered categorical data are given.

Fit function, RMSEA, CFI, and TLI

In SEM analysis, it is frequently assumed that a continuous

variable underlies an ordered categorical variable (e.g.,

Olsson, 1979; Pearson, 1904; Tallis, 1962). This underlying

continuous variable is categorized into the ordered categorical

variable on the basis of a set of threshold values. Under this

assumption, the measure of association that is of interest in the

modeling is the correlation between the underlying continuous

variables, which is termed the polychoric correlation

(tetrachoric correlation is a special case in which both ordinal

variables have two categories).
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To analyze ordered categorical variables in SEM, a three-

stage procedure can be applied. The first two steps estimate

the thresholds and polychoric correlation matrix, which can be

achieved by Olsson’s (1979) two-step ML method, imple-

mented by default in software programs (e.g., Mplus). In the

third stage, the estimated threshold values and polychoric cor-

relation matrix are fitted to a hypothesized model using an

estimation method (e.g., ML, DWLS, or ULS). The model

parameter estimates are then obtained by minimizing a certain

fit function, as described below.

The general form of a fit function can be written as

F ¼ s−σ ωð Þð Þ′W−1 s−σ ωð Þð Þ: ð1Þ

In Eq. 1, s′ ¼ s′
1; s

′

2

� �
, where s1 is a column vector contain-

ing the thresholds and s2 contains the nonduplicate unstruc-

tured polychoric correlations; σ ′ ωð Þ ¼ σ′

1 ωð Þ;σ′

2 ωð Þ
� �

,

where ω is a vector containing the model parameters and

σ1(ω) and σ2(ω) are the vectors containing the model-

implied thresholds and polychoric correlations, respectively;

and W is a weight matrix that is specific to an estimation

method. The fit function characterizes the discrepancy be-

tween s and σ(ω) . The vectorω is estimated by minimizing

F. This study only considered the models with unstructured

thresholds such that s′1−
σ′

1 ωð Þ ¼ 0.

In Eq. 1, different forms ofW lead to different estimators.

The weight matrices for ULS and DWLS are

WULS ¼ I; ð2Þ

and

WDWLS ¼ N ⋅diag Γð Þ; ð3Þ

respectively. In Eq. 2, I is an identity matrix. In Eq. 3, N is the

sample size, Γ is the asymptotic variance and covariance ma-

trix of thresholds and polychoric correlations, and diag(Γ) is a

diagonal matrix with all the diagonal elements the same as the

diagonal elements in Γ. The detailed calculation of N ⋅

diag(Γ), which is a function of the thresholds and polychoric

correlations, is described in Olsson (1979). AlthoughWDWLS

is expressed as N ⋅ diag(Γ), WDWLS is not a function of N,

because the formula of diag(Γ) has N in the denominator,

and thus N in Eq. 3 is canceled out.

It is also possible to fit the polychoric correlation matrix

using the ML fit function, but there is no theoretical justifica-

tion for the resulting robust standard error and chi-square sta-

tistic (Yang-Wallentin et al., 2010). The fit function ofML can

also be expressed as

FML ¼ log ∑ ωð Þj j þ tr SΣ
−1

ωð Þ
� �

−log Sj j−p; ð4Þ

where S is the unstructured polychoric correlation matrix,

Σ(ω) is the model-implied polychoric correlation matrix,

and p is the number of observed variables.

RMSEA, CFI, and TLI are defined on the basis of

the fit function (Bentler, 1990; Bentler & Bonett, 1980;

Steiger, 1990; Steiger & Lind, 1980; Tucker & Lewis,

1973). Let H and B denote the hypothesized model and

the baseline model (i.e., a model assuming zero corre-

lation between every pair of underlying continuous var-

iables), respectively. fFH and fFB represent the mini-

mized fit functions of H and B at the population level,

respectively, and dfH and dfB are the corresponding

model degrees of freedom. In the population,

RMSEAU ¼

ffiffiffiffiffiffiffiffiffiffi
~FH

df H
;

s

ð5Þ

CFIU ¼ 1−
~FH

~FB

; ð6Þ

and

TLIU ¼ 1−
~FH=d f H
~FB=d f B

: ð7Þ

The subscript U in Eqs. 5–7 means that the indices are

unscaled. Because the mean- and variance-adjusted chi-

square is applied in both WLSMV and ULSMV, current

software programs (e.g., Mplus and lavaan in R) com-

pute the scaled fit indices as functions of the adjusted

chi-square statistic. At the sample level, the scaled in-

dices are calculated as

RMSEAS;N ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
âH N−1ð Þ F̂H þ b̂H

N−1ð Þd f H
−

1

N−1

s

; ð8Þ

CFIS;N ¼ 1−
âH N−1ð Þ F̂H þ b̂H−d f H

âB N−1ð Þ F̂B þ b̂B−d f B
; ð9Þ

and

TLIS;N ¼ 1−
âH N−1ð Þ F̂H þ b̂H−d f H

âB N−1ð Þ F̂B þ b̂B−d f B
⋅
d f B
d f H

: ð10Þ

â and b̂ converge to α and b (i.e., the scaling parameter and

shifting parameter, respectively; Asparouhov & Muthén,

2010), and F̂ converges to ~F as N increases to infinity.

Therefore, Eqs. 8–10 converge to

RMSEAS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aH ~FH

d f H
;

s

ð11Þ

CFIS ¼ 1−
aH ~FH

aB ~FB

; ð12Þ

and

TLIS ¼ 1−
aH ~FH

aB ~FB

⋅
d f B
d f H

: ð13Þ
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Equations 5 to 7 and 11 to 13 show that both scaled

and unscaled RMSEA, CFI, and TLI are functions of the

fit function, whose value is dependent on the chosen

estimation method. Therefore, given a population

polychoric correlation matrix and a hypothesized

misspecified model, different estimators can lead to dif-

ferent values of the fit indices. These equations also

show that even for the same estimator, the scaled fit

indices converge to different population values from

unscaled fit indices. In Study 1, we compared each fit

index across the three estimators using computer-

generated polychoric correlation matrices. In Study 2,

we fit six polychoric correlation matrices reported in em-

pirical research using the three estimators. For both stud-

ies, we highlighted the potential consequence on the

model–data fit evaluation if the conventional cutoffs de-

veloped under ML are applied to DWLS and ULS.

Study 1: Comparing fit indices
across estimators using population matrices

We employed the simulation technique outlined in Cudeck

and Browne (1992) to generate polychoric correlation ma-

trices with target degrees of model misspecification (as

measured by RMSEAU) under ML. We then specified the

thresholds for each variable. For each generated matrix and

threshold condition, we analyzed the same model using

DWLS and ULS to obtain the corresponding model fit

indices.

Generation of polychoric correlation matrices

Cudeck and Browne’s (1992) method was applied in order

to generate the polychoric correlation matrices with

prespecified ML-RMSEAU values. The resulting matrices

had two attributes: When these matrices were analyzed by

ML using a prespecified target model, (1) the resulting

RMSEAU value was the same as the prespecified

RMSEAU, and (2) the parameter estimates were the same

as those in the prespecified target model. Below we de-

scribe the use of this method for generating polychoric

correlation matrices in three steps.

The first step was to specify a target model-implied

polychoric correlation matrixΣ(ω). Four target CFA models

with different numbers of latent factors (one and three) and

observed indicators (9 and 18) were used to specifyΣ(ω) on

the basis of

Σ ωð Þ ¼ ∧Φ∧
′ þΨ; ð14Þ

where ∧ was the loading matrix, with

Model 1 : ∧′ ¼ :7 :7 :7 :7 :7 :7 :7 :7 :7½ �
Model 2 : ∧′ ¼ :7 :7 :7 :7 :7 :7 :7 :7 :7:7 :7 :7 :7 :7 :7 :7 :7 :7½ �

Model 3 : ∧′ ¼
:7 :7 :7 0 0 0 0 0 0
0 0 0 :7:7:7 0 0 0
0 0 0 0 0 0 :7 :7 :7

2
4

3
5

Model 4 : ∧′ ¼
:7 :7 :7 :7 :7 :7 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 7 :7 :7 :7 :7 :7 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 7 :7 :7 :7 :7 :7

2
4

3
5

ð15Þ

Φ was the factor covariance matrix, with

Model1and Model2 : Φ ¼ 1½ �

Model3and Model4 : Φ ¼
1 :3 :3
:3 1 :3
:3 :3 1

2
4

3
5 ; ð16Þ

and Ψ was the residual matrix, with no covariance between

any pair of residuals:

Model1andModel 3 : diag Ψð Þ ¼ :51; :51; :51; :51; :51; :51; :51; :51; :51½ �

Model 3 andModel 4 : diag Ψð Þ ¼
:51; :51; :51; :51; :51; :51; :51; :51; :51;
:51; :51; :51; :51; :51; :51; :51; :51; :51

� �
:

ð17Þ

The second step was to specify a targetML-RMSEAU as the

measure of the degree of misspecification. We varied the target

RMSEAU from .02 to .12 with an interval of .02, so that the

degree of misspecification for the target CFA models ranged

from small to large according to the conventional cutoff sug-

gested by Hu and Bentler (1999). We did not include the con-

dition with the target RMSEAU of 0 because the corresponding

analysis model was correctly specified and the fit indices

showed perfect fit (i.e., scaled and unscaled RMSEA = 0,

CFI = 1, and TLI = 1) at the population level, regardless of

the estimator used.

The third step was to construct an error matrix E to obtain

the population polychoric correlation matrix S:

S ¼ Σ ωð Þ þ E:

The details of the matrix operations to generate E were de-

scribed in Cudeck and Browne (1992). Briefly described,Ewas

generated such that two constraints weremet:When Swas fitted

to the target CFA model using ML, the estimated parameters

yielded the same values as those in Eqs. 15–17, and the resulting

ML-RMSEAUwas equal to the prespecifiedML-RMSEAU val-

ue. Because the computation of E involved random-number

generation, it was possible to generate many S matrices, each

of which resulted in the prespecified ML-RMSEAU value and

parameter estimates when it was fitted to the target CFA model

using ML. We generated 200 S matrices for each target ML-

RMSEAU value under each target CFA model.
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SAS (SAS Institute, 2015) was used to implement these

three steps for generating the polychoric correlation matrices.

In sum, 200 (matrices under each condition) × 6 (target ML-

RMSEAU values) × 4 (target CFA models) = 4,800 matrices

were generated.

Analyses

Each matrix was fitted to its corresponding target CFA model

using ULS and DWLS, with the CALIS procedure in SAS/

STAT 14.1 (SAS Institute, 2015). For the ULS scaled indices

and DWLS, threshold values need to be specified in order to

calculate the weight matrix (WDWLS), shown in Eq. 3, as well

as the a and b parameters in Eqs. 11–13, which were deter-

mined using the population thresholds and polychoric corre-

lations (Asparouhov & Muthén, 2010; B. O. Muthén et al.,

1997; Olsson, 1979).1 We varied the number of categories to

be either two or four. All ordered categorical variables under

each condition had the same set of thresholds. With two cat-

egories, the thresholds were either [0] or [1.5] across the var-

iables. With four categories, the thresholds were varied at [– 1,

0, 1] and [0, 1, 2]. The values of [0] and [– 1, 0, 1] resulted in

symmetric categorical distributions, whereas [1.5] and [0, 1,

2] resulted in high levels of asymmetry.

The thresholds were not needed to compute the ULS-

RMSEAU, CFIU, and TLIU at the population level, for two rea-

sons. First, the threshold structure was saturated—that is, s1
−σ1(ω) = 0 in Eq. 1. Second, the weight matrix shown in Eq.

2 is an identitymatrix and is not impacted by the threshold values.

The resulting unscaled and scaled variants of RMSEA,

CFI, and TLI based on DWLS and ULS were calculated using

Eqs. 5–7 and 11–13. The matrices were not analyzed using

ML, because Cudeck and Browne’s (1992) method ensured

that the ML-RMSEAU was the same as the prespecified ML-

RMSEAU. In addition, the ML-CFIU and TLIU could be cal-

culated using matrix operations. The corresponding ML-CFIU
and TLIU for each target model are presented in Table 1. Note

that, given an ML-RMSEAU, the resulting ML-CFIU and

TLIU were expected to differ across different population

models (e.g., Lai & Green, 2016).

Results

Comparing ML with ULS Figure 1 plots the ULS-RMSEAU for

each generated polychoric correlation matrix against the

prespecified ML-RMSEAU. The horizontal and vertical dotted

lines represent the conventional cutoff value of RMSEA (i.e.,

.06). For all the matrices, the ULS-RMSEAU was lower than

the ML-RMSEAU, suggesting that the models had a greater

tendency to be considered acceptable using ULS. Figure 2

compares ULS-RMSEAS with ML-RMSEAU. The left panel

presents the results when each variable had the threshold of

[0], and the right panel has the threshold equal to [1.5]. Similar

to ULS-RMSEAU, ULS-RMSEAS was consistently smaller

than ML-RMSEAU. With more extreme thresholds, ULS-

RMSEAS became even lower, and thus suggesting a better fit.

Using RMSEA < .06 as the cutoff, many matrices (those

marked as crosses in Figs. 1 and 2) resulted in poor fit when

analyzed by ML but acceptable fit according to either ULS-

RMSEAU or ULS-RMSEAS. For example, when the ML-

RMSEAU was .10, all the matrices in the one-factor models

and in the three-factor models with 18 items showed ULS-

RMSEAU and RMSEAS < .06. In addition, for a given ML-

RMSEAU, the one-factor models tended to result in a lower

ULS-RMSEAU and -RMSEAS than did the three-factormodels.

This pattern suggests that ULS-RMSEAU appeared to be less

likely to detect model–data misfit in more parsimonious models

than in more complex models if the same cutoff was applied.

Figures 3 and 4 plot the ULS-CFIU and -CFIS, respectively,

against the ML-CFIU. Both the ULS-CFIU and -CFIS were

higher than the ML-CFIU. The majority of the ULS-CFIU
and -CFIS values were above .95 (except for several analyses

with three factors and nine items), whereas the corresponding

ML-CFIU values fell below .95. For example, under the three-

factor model with 18 items, whenML-CFIUwas approximate-

ly .77, the corresponding ULS-CFIU and -CFIS values were

generally above .95. This pattern suggests that ULS-CFIU and

-CFISwere much less sensitive to model misspecification than

1
WDWLS was calculated according to Olsson’s (1979) Eq. 23; the a and b

parameters for each simulation condition were approximated by generating a

large dataset (1,000,000 observations) and then analyzing this dataset using the

lavaan package in R.

Table 1 ML-RMSEAU, -CFIU, and -TLIU under each simulation

condition

ML-RMSEAU

.02 .04 .06 .08 .10 .12

Model 1: One Factor With 9 Items

ML-CFIU .997 .989 .975 .956 .934 .907

ML-TLIU .996 .985 .967 .942 .911 .876

Model 2: One Factor With 18 Items

ML-CFIU .994 .977 .950 .914 .872 .826

ML-TLIU .993 .974 .943 .903 .855 .803

Model 3: Three Factors With 9 Items

ML-CFIU .996 .982 .961 .933 .890 .860

ML-TLIU .993 .973 .941 .900 .848 .790

Model 4: Three Factors With 18 Items

ML-CFIU .992 .969 .932 .886 .833 .775

ML-TLIU .991 .964 .922 .868 .806 .740
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was ML-CFI if the same cutoff was applied. The results for

TLI had very similar patterns, and thus are not reported.

Comparing ML with DWLS Figures 5 and 6 show the values

of DWLS-RMSEAU and -RMSEAS, respectively, for data

Fig. 1 Comparison between ML-RMSEAU and ULS-RMSEAU. The crosses represent the matrices on the basis of which the hypothesized models are

considered unacceptable using ML but acceptable using ULS, if RMSEA < .06 is used as the criterion of acceptable fit.

Fig. 2 Comparison betweenML-RMSEAU andULS-RMSEASwhen the

data are binary. The left panel has threshold = [0], and the right panel has

threshold = [1.5]. The crosses represent the matrices on the basis of which

the hypothesized models are considered unacceptable using ML but

acceptable using ULS, if RMSEA < .06 is used as the criterion of

acceptable fit.
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with two categories. The patterns of DWLS-RMSEAU and

-RMSEAS were similar to those from ULS, in that all the

values were lower than those for ML-RMSEAU. DWLS-

RMSEAU and -RMSEAS were also less likely to discover

Fig. 3 Comparison betweenML-CFIU and ULS-CFIU. The crosses represent the matrices on the basis of which the hypothesized models are considered

unacceptable using ML but acceptable using ULS, if CFI > .95 is used as the criterion of acceptable fit.

Fig. 4 Comparison between ML-CFIU and ULS-CFIS when the data are

binary. The left panel has threshold = [0], and the right panel has threshold

= [1.5]. The crosses represent the matrices on the basis of which the

hypothesized models are considered unacceptable using ML but

acceptable using ULS, if CFI > .95 is used as the criterion of acceptable

fit.
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model–data misfit with 18 than with nine items and with

the one-factor than with the three-factor models. DWLS-

RMSEAU and -RMSEAS were both dependent upon the

categorical distribution, because its values decreased (all

below .03) as the categorical distribution became asymmet-

ric. Appendix 1 shows DWLS-RMSEAU and -RMSEAS,

respectively, for data with four categories. Similarly, the

resulting values were smaller than those for ML-

RMSEAU, especially when the target models had 18 items

and the categorical distribution was asymmetric. The im-

pact of the number of latent factors on the DWLS indices

was less clear. DWLS-RMSEAU was lower in the one-

Fig. 5 Comparison between ML-RMSEAU and DWLS-RMSEAU when

the data are binary. The left panel has threshold = [0], and the right panel

has threshold = [1.5]. The crosses represent the matrices on the basis of

which the hypothesized models are considered unacceptable using ML

but acceptable using DWLS, if RMSEA < .06 is used as the criterion of

acceptable fit.

Fig. 6 Comparison between ML-RMSEAU and DWLS-RMSEAS when

the data are binary. The left panel has threshold = [0], and the right panel

has threshold = [1.5]. The crosses represent the matrices on the basis of

which the hypothesized models are considered unacceptable using ML

but acceptable using DWLS, if RMSEA < .06 is used as the criterion of

acceptable fit.
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factor than in the three-factor models, except for the anal-

yses with 18 items and ML-RMSEAU = .12.

Figures 7 and 8 present the DWLS-CFIU and -CFIS, re-

spectively, when the data had two categories. ML-CFIU
ranged from .77 to .99, but DWLS-CFIU and -CFIS were

mostly greater than .95. DWLS-CFIU and -CFIS appeared to

be relatively stable across conditions with different thresholds

and numbers of categories. Again, if CFI > .95 was adopted as

the indication of an acceptable model, the model was more

likely to be judged a goodmodel when DWLS rather thanML

was used, especially for the target models with one factor or

with nine items. The results for TLI were extremely similar to

those for CFI, and thus are not reported.

Implications of Study 1

On the basis of the conditions we manipulated in Study 1, ULS-

and DWLS-RMSEAU and -RMSEAS were smaller than those

from ML-RMSEAU, and ULS- and DWLS-CFIU values were

larger than those from ML-CFIU. Therefore, both scaled and

unscaled RMSEA, CFI, and TLI fromULS andDWLS aremore

likely than ML to indicate better model–data fit when the same

misspecified model is analyzed. If we continue applying Hu and

Bentler’s (1999) cutoffs developed under ML to ULS and

DWLS in SEM analyses with ordered categorical variables, in

the long run we would expect that more models that should have

been considered poor fit would accumulate in the published lit-

erature and be considered acceptable fit. In addition, both

unscaled and scaledULS- andDWLS-CFI and -TLIweremostly

clustered at large values (i.e., > .95), making them less useful in

differentiating Bunacceptable^ from Bacceptable^ models.

Because we investigated population-level fit indices, the conclu-

sions above apply to data with large-enough sample sizes.

Study 2: Comparing fit indices
across estimators using empirical polychoric
correlation matrices

In Study 1 we employed polychoric correlation matrices using

simulated matrices. To further demonstrate the consequences

of applying the conventional cutoffs to analyses with ULS and

DWLS, in Study 2 we applied six empirical polychoric corre-

lation matrices (labeled asM1–M6) that have been reported in

published research articles (Fernandez & Moldogaziev, 2013;

Iglesias, Burnand, & Peytremann-Bridevaux, 2014;MacInnis,

Lanting, Rupert, & Koehle, 2013; Martínez-Rodríguez et al.,

2016; Nguyen et al., 2016; Pettersen, Nunes, & Cortoni, 2016)

in the behavioral sciences (e.g., sexual behavior, employee

performance, and aggression). These articles were located by

a nonexhaustive search using Google Scholar from 2013 to

2016 and the search term Bpolychoric correlation matrix.^ All

six of the articles reported polychoric correlation matrices and

applied SEM with ordered categorical variables. We treated

these matrices as the populationmatrices and fitted them to the

models that were considered to be acceptable in their corre-

sponding articles, using ML, ULS, and DWLS. The six

polychoric correlation matrices are available in Appendix 2.

Fig. 7 Comparison between ML-CFIU and DWLS-CFIU when the data

are binary. The left panel has threshold = [0], and the right panel has

threshold = [1.5]. The crosses represent the matrices on the basis of

which the hypothesized models are considered unacceptable using ML

but acceptable using DWLS, if CFI > .95 is used as the criterion of

acceptable fit.
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Our goal was to replicate the conclusion from Study 1 using

real polychoric correlation matrices reported in empirical re-

search. That is, we aimed to show that both unscaled and

scaled ULS- and DWLS-RMSEA, -CFI, and -TLI tend to

indicate a better model–data fit than does ML when analyzing

ordered categorical variables.

Table 2 summarizes the target models that were used to

analyze M1–M6, which include five CFAmodels and one full

structural model, with different numbers of factors (one to

four) and different test lengths (5–12 items). For the ML and

ULS unscaled indices, the threshold values were not needed to

calculate the fit indices at the population level. However, for

the ULS scaled indices and for DWLS the threshold values

were required, and wemanipulated them in the sameway as in

Study 1.2 The resulting RMSEA, CFI, and TLI values are

presented in Table 2. The results were consistent with those

from Study 1, in that the DWLS- and ULS-RMSEAU and -

RMSEAS values were smaller than those fromML-RMSEAU,

and the DWLS- and ULS-CFIU and -CFIS values were larger

than those from ML-CFIU. The patterns for TLI were similar

to those for CFI. For example, for M1, the ML-RMSEAU, -

CFIU, and -TLIU values were .245, .919, and .879, all suggest-

ing severe misfit. However, ULS and DWLS both produced

indices that suggested much better fit, especially for CFI and

TLI (> .998, reaching the ceiling and suggesting an excellent

fit), regardless of whether or not they were scaled.

We also selected M1, M2, and M4 to investigate whether

the conclusions above could be observed in the sample-level

data. The sample size was fixed at 500, which is considered a

moderate sample size in behavioral research. The results and

more details of the simulation are presented in Appendix 3,

consistently showing that ULS and DWLS resulted in overop-

timistic unscaled and scaled fit indices as compared with ML.

Discussion

Given the lack of investigation of the ULS and DWLS fit

indices, in this article we compared them with their ML coun-

terparts at the population level. Study 1 used Cudeck and

Browne’s (1992) simulation technique and showed that both

the unscaled and scaled RMSEAvalues fromULS and DWLS

were smaller than the ML-RMSEAU values. CFI and TLI, in

contrast, from ULS and DWLS had values larger than those

from ML. In Study 2 we employed six polychoric correlation

matrices reported in published research and found consistent

results. In summary, the ULS- and DWLS-RMSEA, -CFI, and

-TLI values, scaled or not, are more likely to indicate a better

model–data fit than are the ML fit indices when the same

misspecified model is analyzed and when the same sets of

conventional cutoff values are adopted. Therefore, applying

the conventional cutoffs to ULS and DWLS can lead in the

2
None of the six articles reported the threshold values or the cell frequencies

that were needed to calculate the threshold values. We manipulated the thresh-

old values such that they yielded either symmetric or highly asymmetric cat-

egorical distributions. When the level of asymmetry was in-between the levels

we manipulated, we found the corresponding RMSEA, CFI, and TLI values

were also in-between the values under the manipulated conditions.

Fig. 8 Comparison between ML-CFIU and DWLS-CFIS when the data

are binary. The left panel has threshold = [0], and the right panel has

threshold = [1.5]. The crosses represent the matrices on the basis of

which the hypothesized models are considered unacceptable using ML

but acceptable using DWLS, if CFI > .95 is used as the criterion of

acceptable fit.
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long run to the accumulation of models with severe misfit that

are nonetheless considered acceptable, even in substantive

research with sufficient sample sizes.

Because in this study we have primarily compared the

asymptotic values of the fit indices across estimation methods,

the conclusions above only apply to studies with sufficient

sample sizes. For example, with a sample size of 500, ULS

and DWLS yield overoptimistic fit indices, as is shown in

Appendix 3. The results for the asymptotic values of the

DWLS fit indices are consistent with those based on finite

samples in Nye and Drasgow (2011). Nye and Drasgow first

employed a dataset consisting of 9,292 examinees and showed

that DWLS produced smaller RMSEAS and larger CFIS and

TLIS values than didML on the basis of polychoric correlation

matrices, especially when the data were dichotomized. Nye

and Drasgow further implemented a simulation study to ex-

amine what cutoff values would be appropriate for DWLS fit

indices under finite samples (i.e., 400, 800, and 1,600) with

Table 2 Model fit indices calculated using the six polychoric correlation matrices in Study 2

Matrix Target Model Index ML ULS DWLS

[0] [1.5] [– 1, 0, 1] [0, 1, 2] [0] [1.5] [– 1, 0, 1] [0, 1, 2]

# 1 CFA

one factor

7 items

RMSEAU .245 .038 .038 .038 .038 .063 .035 .101 .088

RMSEAS – .081 .044 .132 .116 .087 .047 .140 .123

CFIU .919 .999 .999 .999 .999 .999 .999 .999 .999

CFIS – .995 .995 .994 .994 .996 .996 .995 .995

TLIU .879 .998 .998 .998 .998 .998 .998 .998 .998

TLIS – .992 .993 .991 .991 .994 .994 .993 .993

# 2 CFA

three factors

12 items

RMSEAU .113 .045 .045 .045 .045 .036 .019 .053 .047

RMSEAS – .045 .022 .071 .062 .046 .023 .071 .062

CFIU .934 .995 .995 .995 .995 .996 .996 .996 .996

CFIS – .983 .986 .975 .976 .989 .991 .985 .986

TLIU .914 .993 .993 .993 .993 .995 .995 .995 .995

TLIS – .978 .981 .967 .969 .986 .988 .981 .982

# 3 CFA

four factors

12 items

RMSEAU .096 .049 .049 .049 .049 .037 .019 .053 .047

RMSEAS – .046 .049 .072 .062 .047 .022 .073 .063

CFIU .930 .992 .992 .992 .992 .993 .993 .993 .993

CFIS – .980 .992 .970 .972 .982 .983 .974 .976

TLIU .903 .989 .989 .989 .989 .990 .991 .991 .991

TLIS – .972 .989 .959 .962 .975 .977 .965 .967

# 4 CFA

one factor

11 items

RMSEAU .112 .052 .052 .052 .052 .040 .021 .059 .052

RMSEAS – .051 .025 .079 .070 .052 .025 .081 .070

CFIU .907 .991 .991 .991 .991 .992 .993 .993 .993

CFIS – .978 .981 .968 .970 .989 .983 .972 .973

TLIU .884 .989 .989 .989 .989 .990 .991 .991 .991

TLIS – .972 .976 .960 .962 .975 .979 .965 .967

# 5 Structural model

four factors

10 items

RMSEAU .078 .029 .029 .029 .029 .024 .012 .036 .031

RMSEAS – .034 .016 .056 .048 .034 .017 .056 .048

CFIU .977 .999 .999 .999 .999 .999 .999 .999 .999

CFIS – .995 .996 .993 .993 .997 .997 .995 .996

TLIU .965 .998 .998 .998 .998 .998 .999 .999 .999

TLIS – .993 .994 .989 .990 .995 .996 .993 .993

# 6 CFA

one factor

5 items

RMSEAU .078 .039 .039 .039 .039 .030 .015 .044 .038

RMSEAS – .035 .017 .057 .049 .038 .019 .063 .054

CFIU .982 .997 .997 .997 .997 .997 .997 .997 .997

CFIS – .994 .995 .991 .992 .994 .995 .992 .993

TLIU .963 .993 .993 .993 .993 .994 .994 .994 .994

TLIS – .988 .989 .982 .984 .989 .990 .984 .985

RMSEA > .06, CFI < .95, and TLI < .95 are bolded.
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dichotomous data, and found that DWLS-CFIS and TLISwere

mostly .99 for both moderately and severely misspecified

models. However, we did not explore the results with

smaller sample sizes. Savalei and Rhemtulla (2013) recom-

mended that samples of at least 150 observations are needed

for either binary or three-category data. With a smaller sample

in conjunction with asymmetric categorical distributions, the

expected values of fit indices across random samples might be

very different from the population values of the indices.

Strong arguments against the application of RMSEA, CFI,

and TLI and their conventional cutoff values have been raised

in the SEM literature (e.g., Barrett, 2007; Marsh et al., 2004;

McIntosh, 2007). However, before better alternatives are pro-

posed and accepted by SEM practitioners, the application of

these fit indices will continue in most SEM studies. We do not

aim to directly address the question of what new cutoff values

should be employed, partly because empirical Type I error

rates and power have not been investigated for finite samples.

However, this article delivers two messages that are related to

the use of cutoff values in SEM with ordered categorical var-

iables. First, for both ULS scaled indices and DWLS, no uni-

versal cutoff values are appropriate; the values of the indices

are contingent upon the number of categories and the thresh-

old values. The cutoff values thus also need to be specific to

the thresholds, which is impractical. Second, both scaled and

unscaled ULS- and DWLS-CFI and -TLI are very insensitive

to model misspecification, because they mostly cluster above

.95 under our manipulated conditions. In addition, in Study 2,

even when the ML indices suggested severe misfit, both the

unscaled and scaled ULS- and DWLS-CFI and -TLI values

were still above .989.

The general consensus is that a larger RMSEA and smaller

CFI and TLI values indicate worse fit, which prompts re-

searchers to modify their models and search for a better ex-

planation of the relationship among variables. However, the

current practice has evolved into a stage at which the fit indi-

ces serve as the criteria (and the sole criteria, in many situa-

tions) for determining whether to accept or reject a hypothe-

sized model. As long as the values of the fit indices reach a

Bpublishable level^ (e.g. , RMSEA < .06), model

respecification may be terminated. Given that the DWLS

and ULS fit indices tend to show a better model–data fit eval-

uation than do ML fit indices when the same misspecified

model is analyzed, we argue that surpassing a set of cutoff

values should not serve as the only justification for the accep-

tance of a model. It would be more appropriate to consider

RMSEA, CFI, and TLI as diagnostic tools for model improve-

ment. A statement such as Bbecause the RMSEA, CFI, and

TLI values suggest good fit, this model was chosen as the final

model^ is not sufficient. Achieving a set of desired values of

RMSEA, CFI, and TLI (e.g., according to the conventional

cutoffs) is only one marker showing that the model improve-

ment may be successful. Thereafter, one still needs to explain

whether other options exist to improve the model, why the

options are or are not adopted, and, as was suggested by

Barrett (2007), what are the substantive scientific conse-

quences of considering this model to be the final one.

When implementing Study 2, we initially attempted to rep-

licate the results on the basis of the six articles we found.

However, we could not achieve this purpose, because neither

the threshold values nor the weight matrix used to compute the

fit function was reported. We have also found that many stud-

ies have fit their models to polychoric correlation matrices but

reported Pearson correlation matrices instead by treating the

ordered categorical variables as continuous.Misunderstanding

exists regarding the application of polychoric correlation. To

improve the transparency and reproducibility of published re-

sults, we recommend that researchers report the polychoric

correlation matrices associated with the threshold values (or

the proportions of observed responses in each category).

When a mean- and variance-adjusted chi-square statistic is

employed in WLSMV and ULSMV, software programs by

default compute scaled fit indices that do not converge to the

definitions of RMSEA, CFI, and TLI. Brosseau-Liard,

Savalei, and Li (2012) first raised this concern using continu-

ous data analyzed by ML with Satorra and Bentler’s (1994)

robust correction. Brosseau-Liard and Savalei (2014),

Brosseau-Liard et al. (2012), and Xia, Yung, and Zhang

(2016) showed that the scaled RMSEA, CFI, and TLI values

under continuous data implemented in SEM software pro-

grams (e.g., EQS, Mplus, and the CALIS procedure in SAS/

STAT 14.1; Bentler, 2008; L. K. Muthén & Muthén, 2015;

SAS Institute, 2015) converge to values that are different from

the population definitions of RMSEA, CFI, and TLI. Because

a similar logic lies behind the robust corrections to ULS and

DWLS (e.g., Savalei, 2014) when analyzing ordered categor-

ical variables, the scaled fit indices also converge to popula-

tion values that deviate from their definitions, as we have

demonstrated in Eqs. 8–13. Our study evidences that both

the unscaled and scaled fit indices for ULS and DWLS can

be problematic, in that they all appear to be insensitive to

model misspecification if Hu and Bentler’s cutoff values are

applied. Future studies will need to seek alternative methods

(e.g., Yuan & Marshall, 2004; Zhang, 2008) for goodness-of-

fit evaluation with ordered categorical data.

Appendix 1: Additional results for Study 1

The results for the fit indices for conditions with four catego-

ries were reported in Figs. 9, 10, 11, 12, 13 and 14. The

patterns were similar to the conditions with two categories.

That is, ULS and DWLS produced smaller unscaled and

scaled RMSEA values and larger unscaled and scaled CFI

and TLI values than did ML-RMSEAU.
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Fig. 9 Comparison between ML-RMSEAU and ULS-RMSEAS when

data are four-category. The left panel has threshold = [– 1, 0, 1], and the

right panel has threshold = [0, 1, 2]. The crosses represent the matrices on

the basis of which the hypothesized models are considered unacceptable

using ML but acceptable using ULS, if RMSEA < .06 is used as the

criterion of acceptable fit.

Fig. 10 Comparison between ML-CFIU and ULS-CFIS when data are

four-category. The left panel has threshold = [– 1, 0, 1], and the right

panel has threshold = [0, 1, 2]. The crosses represent the matrices on the

basis of which the hypothesized models are considered unacceptable

using ML but acceptable using ULS, if CFI > .95 is used as the

criterion of acceptable fit.
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Fig. 11 Comparison between ML-RMSEAU and DWLS-RMSEAU

when data are four-category. The left panel has threshold = [– 1, 0, 1],

and the right panel has threshold = [0, 1, 2]. The crosses represent the

matrices on the basis of which the hypothesized models are considered

unacceptable using ML but acceptable using DWLS, if RMSEA < .06 is

used as the criterion of acceptable fit.

Fig. 12 Comparison between ML-RMSEAU and DWLS-RMSEAS

when data are four-category. The left panel has threshold = [– 1, 0, 1],

and the right panel has threshold = [0, 1, 2]. The crosses represent the

matrices on the basis of which the hypothesized models are considered

unacceptable using ML but acceptable using DWLS, if RMSEA < .06 is

used as the criterion of acceptable fit.
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Appendix 2: The six polychoric correlation
matrices in Study 2

The six polychoric correlation matrices in Study 2 are present-

ed in Tables 3, 4, 5, 6, 7 and 8. The analysis model for each

matrix is described below. We use BF^ to indicate latent

factors, BV^ to indicate items. Bby^ means Bmeasured by^

and Bon^ means Bregressed on.^

CFA model for M1:

F by V1–V7.

Fig. 13 Comparison between ML-CFIU and DWLS-CFIU when data are

four-category. The left panel has threshold = [– 1, 0, 1], and the right panel

has threshold = [0, 1, 2]. The crosses represent the matrices on the basis of

which the hypothesized models are considered unacceptable using ML

but acceptable using DWLS, if CFI > .95 is used as the criterion of

acceptable fit.

Fig. 14 Comparison between ML-CFIU and DWLS-CFIS when data are

four-category. The left panel has threshold = [– 1, 0, 1], and the right panel

has threshold = [0, 1, 2]. The crosses represent the matrices on the basis of

which the hypothesized models are considered unacceptable using ML

but acceptable using DWLS, if CFI > .95 is used as the criterion of

acceptable fit.
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CFA model for M2:

F1 by V1–V5; F2 by V6–V9; F3 by V10–V12.

CFA model for M3:

F1 by V1–V3; F2 by V4–V6; F3 by V7–V9; F4 by V10–

V12.

CFA model for M4:

F by V1–V11;

Nonrecursive structural model for M5:

F1 by V1–V4; F2 by V5–V6; F3 by V7–V8; F4 by V9–

V10.

F2 on F1; F3 on F1; F4 on F1; F3 on F2; F2 on F3; F3 on

F4.

CFA model for M6:

F by V1–V5.

Table 3 Polychoric Correlation Matrix 1 (Martínez-Rodríguez et al.,

2016)

Items 1. 2. 3. 4. 5. 6. 7.

1. 1

2. .86 1

3. .80 .83 1

4. .84 .84 .89 1

5. .80 .79 .83 .94 1

6. .79 .79 .81 .87 .90 1 .91

7. .79 .79 .83 .90 .86 .91 1

Table 4 Polychoric Correlation Matrix 2 (Nguyen et al., 2016)

Items 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

1. 1

2. .59 1

3. .68 .59 1

4. .58 .58 .77 1

5. .65 .58 .74 .70 1

6. .41 .33 .43 .47 .40 1

7. .57 .49 .60 .57 .62 .70 1

8. .54 .42 .60 .54 .63 .69 .80 1

9. .49 .34 .58 .53 .59 .58 .69 .80 1

10. .37 .47 .47 .45 .36 .30 .41 .42 .33 1

11. .38 .46 .51 .42 .40 .34 .39 .41 .40 .83 1 .80

12. .39 .46 .55 .44 .45 .36 .42 .40 .34 .79 .80 1

Table 5 Polychoric Correlation Matrix 3 (Pettersen et al., 2016)

Items 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

1. 1

2. .66 1

3. .57 .68 1

4. .31 .24 .36 1

5. .49 .51 .55 .50 1

6. .34 .39 .46 .55 .56 1

7. .42 .43 .54 .53 .49 .56 1

8. .49 .55 .57 .46 .55 .60 .64 1

9. .47 .55 .56 .53 .52 .59 .66 .71 1

10. .24 .24 .28 .34 .39 .32 .36 .46 .35 1

11. .26 .34 .27 .38 .46 .35 .38 .47 .36 .27 1 .45

12. .29 .31 .39 .41 .45 .41 .49 .54 .53 .38 .45 1

Table 6 Polychoric Correlation Matrix 4 (Iglesias et al., 2014)

Items 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.

1. 1

2. .36 1

3. .53 .50 1

4. .48 .28 .62 1

5. .42 .22 .50 .51 1

6. .55 .49 .60 .37 .45 1

7. .57 .46 .62 .64 .50 .60 1

8. .57 .42 .59 .50 .44 .49 .67 1

9. .60 .41 .63 .54 .44 .62 .65 .70 1

10. .40 .32 .43 .53 .33 .40 .44 .48 .49 1 .38

11. .46 .34 .51 .50 .43 .43 .54 .51 .56 .38 1

Table 7 Polychoric Correlation Matrix 5 (Fernandez & Moldogaziev,

2013)

Items 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

1. 1

2. .72 1

3. .76 .72 1

4. .77 .72 .74 1

5. .67 .64 .72 .71 1

6. .30 .26 .32 .31 .41 1

7. .55 .57 .57 .56 .51 .29 1

8. .64 .59 .62 .62 .56 .35 .60 1

9. .69 .63 .70 .73 .66 .38 .58 .62 1 .85

10. .75 .68 .70 .75 .66 .33 .58 .70 .85 1
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Appendix 3: Results for the sample-level
simulation

Sample-level simulation was conducted in order to further

explicate the differences between ML, ULS, and DWLS fit

indices. We selected three of the matrices (i.e., Matrices 1, 2,

and 4) in Study 2 to generate sample data, because they

yielded ML-RMSEAU > .10, ML-CFIU < .95, and ML-TLIU
< .95. The procedure of this simulation is described below:

& We first generated continuous data following a standard

multivariate normal distribution. The continuous data

were analyzed by the normal-theory ML estimator. Hu

and Bentler’s (1999) cutoff values based on continuous

data were for an ML analysis. Therefore, we used the

resulting fit indices as the benchmarks for comparison.

& We categorized the continuous data using threshold

values. For two-category data, we employed [0] or [1] as

the threshold value for every item. For four-category data,

the thresholds were either [– 1, 0, 1] or [0, 1, 2]. The

threshold manipulation was consistent with that at the

population level in Study 2.

& The ordered categorical data were analyzed using the

lavaan package in R, using ULSMV and WLSMV. The

unscaled and scaled indices were recorded, and their

means are reported in Table 9.

The number of replication was 1,000, and sample size was

fixed at 500.

The results for the sample-level simulation were consistent

with those of Study 2. That is, ULS and DWLS produced

overoptimistic unscaled and scaled fit indices as compared

with ML, especially for CFI and TLI.

Table 8 Polychoric Correlation Matrix 6 (MacInnis et al., 2013)

Items 1. 2. 3. 4. 5.

1. 1

2. .52 1

3. .55 .65 1

4. .55 .52 .60 1 .28

5. .24 .20 .26 .28 1

Table 9 Means of model fit indices when sample size is 500

Matrix Target Model Index ML ULS DWLS

[0] [1.5] [– 1, 0, 1] [0, 1, 2] [0] [1.5] [– 1, 0, 1] [0, 1, 2]

# 1 CFA

one factor

7 items

RMSEAU .245 .007 .026 .002 .003 .052 .013 .094 .080

RMSEAS – .077 .035 .127 .110 .082 .038 .135 .117

CFIU .919 .999 .999 .999 .999 .999 .999 .999 .999

CFIS – .995 .995 .994 .995 .996 .997 .996 .996

TLIU .879 .999 .998 .999 .999 .999 .999 .998 .998

TLIS – .993 .993 .992 .992 .994 .996 .993 .994

# 2 CFA

three factors

12 items

RMSEAU .113 .039 .088 .023 .027 .018 .002 .041 .034

RMSEAS – .043 .018 .068 .059 .044 .019 .069 .060

CFIU .934 .996 .978 .998 .998 .999 .999 .998 .998

CFIS – .984 .984 .976 .978 .990 .992 .986 .987

TLIU .914 .994 .971 .998 .997 .998 .999 .997 .998

TLIS – .979 .980 .969 .972 .987 .990 .982 .983

# 4 CFA

one factor

11 items

RMSEAU .112 .051 .098 .038 .041 .027 .004 .049 .042

RMSEAS – .049 .020 .077 .067 .050 .021 .078 .068

CFIU .907 .991 .966 .995 .994 .996 .999 .995 .995

CFIS – .978 .978 .969 .972 .981 .985 .974 .976

TLIU .884 .989 .958 .994 .993 .995 .999 .993 .994

TLIS – .973 .974 .962 .965 .976 .981 .967 .970

RMSEA > .06, CFI < .95, and TLI < .95 are bolded.
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