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Abstract In analogy to proteins, the function of RNA
depends on its structure and dynamics, which are encoded
in the linear sequence. While there are numerous methods
for computational prediction of protein 3D structure from
sequence, there have been very few such methods for RNA.
This review discusses template-based and template-free
approaches for macromolecular structure prediction, with
special emphasis on comparison between the already
tried-and-tested methods for protein structure modeling
and the very recently developed “protein-like” modeling
methods for RNA. We highlight analogies between many
successful methods for modeling of these two types of
biological macromolecules and argue that RNA 3D

structure can be modeled using “protein-like” methodology.
We also highlight the areas where the differences between
RNA and proteins require the development of RNA-
specific solutions.
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Introduction

RNAs and proteins are linear polymers composed of a
limited set of building blocks (ribonucleotide and amino
acid residues, respectively). Despite the fundamental
chemical differences of these building blocks, the higher
order structure of RNA and protein molecules can be
described with similar terms (Fig. 1). Each residue
comprises two parts: one is common to the given type of
a macromolecule and is used to form a continuous
“backbone”, the other is variable and forms a “sidechain”.
The order of building blocks held together by covalent
bonds is called the primary structure, the local conforma-
tion of the chain stabilized mostly by hydrogen bonds is the
secondary structure, while the path of the chain in three
dimensions resulting from various long-range interactions
is the tertiary structure.

Most protein and RNA molecules, or at least their parts/
domains, fold spontaneously into complex three-
dimensional shapes [1, 2]. From a global perspective, there
are a number of common principles that govern the folding
of proteins and RNA molecules, but there are also
important differences. The initial events leading to com-
paction of an RNA chain are driven by neutralization of the
negative charge on the phosphate groups by counterions,
whereas the compaction of a protein polypeptide chain is
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driven by burial of hydrophobic side-chains [3]. Besides,
secondary structure in proteins is formed owing to
hydrogen bonding of the main chains, while in RNA it
involves hydrogen bonding between the side-chains.

The structures of biological macromolecules provide a
framework for their biological functions [4]. These func-
tions typically involve interactions with various molecules
in the cell, including other proteins and RNAs. The
importance of structure for the function of protein non-
coding RNAs (e.g., tRNAs, ribozymes or riboswitches) has
been widely accepted [5]. Recently, it has been shown that
protein-coding regions of mRNAs are also highly struc-

tured, suggesting an additional role in the regulation of
translation [6, 7]. However, it is also known that many
proteins and RNAs undergo conformational transitions or
exhibit functionally relevant structural disorder [8, 9]. Thus,
the function of both proteins and RNAs depends on the
three-dimensional structure and dynamics, which in turn is
encoded in the linear sequence of individual molecules
[10].

It should be also mentioned that mature, functional RNA
and protein sequences can be modified/edited compared to
the “raw” sequence information encoded in the DNA. Apart
from removal or addition of sequence fragments, individual

Fig. 1 Hierarchical structure of
proteins and RNAs
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residues can be chemically altered by dedicated enzymes.
Posttranscriptional modifications in RNAs and posttransla-
tional modifications in proteins extend the basic alphabets
of four nucleotides and 20 amino acids with many
additional ‘letters’ that influence the structure and function
of molecules that contain them [11, 12].

The knowledge of structure is very important for the
understanding of RNA and protein function. However,
experimental sequence determination of genes and entire
genomes, from which the sequences of RNAs and proteins
can be reliably inferred, is much cheaper and simpler than
experimental determination of structures. As a conse-
quence, the rate of macromolecular structure determination
lags behind the rate of determination of new sequences and
the gap between the number of known structures and
known sequences continues to widen. It is unlikely that
structures will be solved experimentally for all protein and
RNA molecules. Understanding of the “1D-3D code”
provides an opportunity for theoretical prediction of protein
and RNA structures from their sequences. This has proven
to be a very difficult task, however a few successful
strategies have been identified, which now allow for
reasonably accurate (practically useful) predictions of 3D
structures. Most methods have been developed initially for
proteins only. However, recent developments in the RNA
structural bioinformatics field suggests that essentially the

same principles may be applicable for modeling of those
RNAs that exhibit relatively stable 3D structures.

Classification of methods for macromolecular 3D
structure prediction

Methods for 3D structure prediction can be divided into
those based on “first principles”, i.e., the fundamental laws
of physics that govern the process of folding, and those
based on information about other structures, available in
databases. In particular, knowledge-based methods can be
used to predict macromolecular structures by modeling the
process of evolution (Fig. 2).

Physics-based 3D structure prediction

One approach to 3D structure prediction, sometimes termed
ab initio prediction, is based on the thermodynamic
hypothesis formulated by Anfinsen, according to which
the native structure of a protein corresponds to the global
minimum of the free energy of the system comprising the
macromolecule [13]. Accordingly, physics-based methods
model the process of folding by simulating the conforma-
tional changes of a macromolecule while it searches for the

Fig. 2 Template-dependent and
template-free approaches to pre-
diction of macromolecular
structures, exemplified by the
modeling of evolution and fold-
ing, respectively
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state of minimal free energy (review: [14]). The “score” of
each conformation is calculated as the true physical energy
based on the interactions within the macromolecule and
between the macromolecule and the solvent [15]. While in
physics the term ab initio is often used to refer to find a set
of wave functions and energies by solving the Schrödinger
equation without external parameters, the physics-based
methods described here offer a simplified approach to
calculate the energy. The functional form and parameter
sets used to describe the potential energy of a system is
called a force field. There exist a number of software
packages for simulation of protein folding in atomic detail,
they typically implement various versions of molecular
dynamics (MD) and Monte Carlo (MC) protocols for
searching the conformational space, and force fields such
as AMBER [16], CHARMM [17] or GROMOS [18] to
calculate the energy.

In order to facilitate the identification of the native state
as the one of the lowest energy, the energy landscape that
describes the relationship between the distance from the
native-like conformation and the energy should have a
funnel-like shape (review: [19]). More explicitly, when
plotting the energy of models versus a structural difference
between the models and the native structure (e.g., expressed
as the root-mean-square deviation (RMSD) between pairs
of equivalent atoms in optimally superimposed structures),
there should be a funnel-shaped tip at the bottom left corner
of the plot. In particular, the native structure should exhibit
the lowest energy, and the farther a given conformation is

from the native structure, the higher its energy should be.
The prediction of the native structure is easier if this
relationship between the value and variability of energies
and deviation from the native structure holds across the
entire range of possible conformations.

Figure 3 presents diagrams comparing an ‘ideal’ (from a
practical point of view of macromolecular structure
prediction) relationship between the energy of models and
their distance from the native structure and a ‘real life’
example of such a distribution obtained from a folding
simulation of an immunoglobulin light chain-binding
domain of protein L (2ptl in the Protein Data Bank),
carried out using the REFINER method [20]. One concep-
tual difference between the energy function in a folding
simulation and the real physical energy becomes apparent
in this and similar plots: In reality, the energy differences
between the folded and unfolded state are very small, while
in practice the effective discrimination of native-like
models from non-native-like ones requires maximization
of the energy difference.

The ab initio approach is plagued by serious problems. In
particular, a full-atom structural model of a macromolecule
has a large number of degrees of freedom (3*Natoms-5),
which makes the search space enormous, and the function
with which to calculate the energy of the system is very
complex. As a result, both the sampling and energy
calculations are very costly in terms of computational power
required. Typically, the free energy landscape is extremely
rugged, i.e., it possesses multiple local minima, and it is

Fig. 3 A funnel-like relationship between the value of a function for
scoring of structural models and their deviation from the native
structure (expressed e.g., in root mean square deviation of superim-
posable atoms or in some other similarity measure): (a) a hypothetical
“ideal” function that maximizes the discrimination between native,
native-like and non-native conformations. The minimal value of
energy as well as the spread of energy values for conformations at a
particular distance from the native structure (corresponding to the

global energy minimum) increase monotonically with the increasing
distance, so conformations closer to the native structure on the average
exhibit lower energies than those farther away. Here a random sample
of points that fulfill this relationship is shown. (b) results of folding
simulations of an immunoglobulin light chain-binding domain of
protein L (2ptl in the Protein Data Bank), carried out using the
REFINER method [20], which uses a Monte Carlo sampling scheme
and a statistical potential
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essentially impossible to perform an exhaustive evaluation of
all these minima to identify the one with the globally lowest
value. Further, some of the components of the free energy
function (e.g., the entropy) are very difficult to calculate,
and may not be inferred accurately for large molecules.
For these reasons the use of ab initio methods is limited
to very small molecules. Thus far, most of the reported
successful all-atom folding simulations have been for very
small proteins, such as the 20-residue “Trp-cage” mini-
protein [21], and they rarely exceed the threshold of one
microsecond. Further, even extended simulations, such as
a ten microsecond simulation performed for a fast-folding
WW domain [22] may not sample a native-like confor-
mation. Hence, folding simulations have not yet matured
to the state of a reliable method for protein 3D structure
prediction.

One important problem for algorithms that deal with
macromolecular structures is the representation of coordi-
nates. Cartesian coordinates (three numbers representing
distances for each atom) are used to represent the final
model in a common PDB file format, but they may be
impractical at some stages of modeling, as they utilize
3*Natoms degrees of freedom. To increase the efficiency of
computations, the system may be transformed into internal
coordinate systems and/or bond lengths and angles may be
restricted to idealized values. For instance in torsion angle
dynamics (e.g., as implemented in the program DYANA
[23]), torsion angles are used instead of Cartesian coor-
dinates as degrees of freedom, and the only degrees of
freedom are rotations about single bonds. A biopolymer can
be represented as a tree structure consisting of n+1 atoms
connected by n rotatable bonds of fixed length. The tree
structure starts from a base, typically at the N-terminus of
the polypeptide chain, and terminates with “leaves” at the
ends of the side-chains and at the C-terminus. The
conformation of the molecule is uniquely specified by the
values of all torsion angles and torsion angles may be
allowed to assume only discrete values. The conversion of a
model from internal coordinates to a Cartesian representa-
tion can be achieved, e.g., with the Nerf algorithm [24],
which requires three coordinates per atom: a bond length, a
flat angle, and a torsion angle.

Another approach to reduce the number of degrees of
freedom is to use coarse-grained models, which treat groups
of atoms as single interaction centers, so that a smaller
number of elements and interactions need to be considered
(review: [25]). Actually, the first simulation of protein
folding reported in the literature used a simplified chain and
time-averaged forces to fold bovine pancreatic trypsin
inhibitor from an open-chain conformation into a folded
conformation close to that of the native molecule [26].
Another advantage of coarse-grained modeling is that the
force field derived for the united interaction centers yields a

much smoother energy surface than that for the all-atom
energy function. As a result, many local energy minima are
removed, in which the system could become trapped during
the simulation. However, it must be emphasized that
simplification of the model and the energy function usually
leads to reduced accuracy. As of today, it is not practical to
expect that a folding simulation for a macromolecule
comprising more than 100 residues would confidently
predict a native-like structure with a correctly estimated
energy. Contemporary methods for coarse-grained protein
structure prediction can be exemplified by UNRES [27],
which represents side chains by ellipsoids, and the peptide
bonds by united atoms located in the middle of two
consecutive Cα atoms. The only degrees of freedom in
the continuous space are the bond and torsion pseudoangles
defined between the Cα atoms. The free energy function
includes terms for interactions between the side chain
centers, steric repulsion between side chains and peptide
group centers, and electrostatic interactions between pep-
tide groups. Local conformational propensities of a poly-
peptide are described by torsional and angle-bending
potentials. Multibody interactions, which are the most
important for reproducing regular secondary structure
elements, are described by higher order terms.

Since the same basic laws of physics apply to all types of
molecules, one can postulate that analogous methods
should work for RNA as well. As mentioned earlier, RNA
folding relies on the modulation of electrostatic repulsion
by counterions, while protein folding relies on the forma-
tion of a hydrophobic core, and the secondary structure
formation requires hydrogen-bonding either via protein side
chain or RNA main chain functional groups, respectively.
Nonetheless, computational methods developed to study
protein folding have been successfully used to simulate
RNA folding (review: [28]). Examples of all-atom simu-
lations with general-purpose software packages such as
AMBER or CHARMM include the folding of small RNA
hairpins [29, 30], the analysis of H-bond stability in the
anticodon loop of tRNA(Asp) [31] or modeling the
interaction of “kissing loops” in the dimerization initiation
site (DIS) of HIV [32]. Molecular dynamics simulations
restrained by experimental data have also been used to
model the conformational transitions of large macromolec-
ular complexes involving both RNAs and proteins, such as
the ribosome (review: [33]).

The modeling of nucleic acid structures can also take
advantage of the use of local coordinate systems and/or
coarse-graining to reduce the number of variables in the
system. For instance the 3DNA program [34] constructs
reference coordinate frames around bases and base pairs,
while using idealized values for bond lengths and bond
angles. The treatment of nucleobase moieties as rigid
bodies allows one to drastically reduce the number of
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degrees of freedom. Further, a total of three angle and three
translation variables are enough to describe the relative
orientation of two bases (with parameters called propeller,
buckle, opening, shear, stretch, and stagger) or two base
pairs (twist, tilt, roll, shift, slide, and rise). Because these
parameters are independent of the Cartesian system, they
allow to directly compare two structures without the spatial
superposition of coordinates. The miniCarlo program for
energy minimizations and Monte Carlo simulations of
nucleic acid structures applies a very similar scheme. It
uses helical parameters that determine the relative position
of bases in a pair and relative position of base pairs,
pseudorotation parameters of sugars that determine internal
geometry of sugar moieties, glycosidic angles that deter-
mine orientation of sugars relative to the bases, and torsion
angles that determine the orientation of methyl groups in
thymines and hydroxyl groups in riboses [35]. The
commercially distributed program junction minimization
of nucleic acids (JUMNA) uses a reduced coordinate
approach to gain roughly an order of magnitude in the
number of variables necessary to model a nucleic acid
fragment [36].

One of the first applications of the coarse-grained
approach for RNA 3D structure modeling involved the
refinement of low-resolution structures of ribosomal RNAs
with restraints from experimental data and a representation
with pseudoatoms at different levels of detail - from a
single pseudoatom per helix to a single pseudoatom for
each nucleotide [37]. More recently, a number of new
methods have been developed that allow for coarse-grained
folding simulations with or without experimental data. YUP
[38] and NAST [39] represent RNA by just one pseudoa-
tom per nucleotide residue: phosphate and C3′, respective-
ly. Vfold [40] and DMD [41] represent RNA by three
pseudoatoms per residue, while HiRE-RNA [42] uses six or
seven pseudoatoms for purine or pyrimidine residues,
respectively. For bonded interactions (bonds, angles, and
dihedrals) all these methods use parameters derived from a
database of known RNA structures. For non-bonded
interactions, the energy terms differ. NAST actually does
not use a full energy function, it generates plausible 3D
structures based on restraints supplied by the user (e.g., on
secondary structure or tertiary contacts). Vfold and DMD
use experimentally tabulated energy values [43] to param-
eterize (in different ways) base-pairing and base-stacking,
as well as to estimate loop entropy. DMD also uses an
explicit representation of hydrogen bonding to enforce base
pairs formation and an additional term for phosphate-
phosphate repulsion. With the simplifications introduced,
both methods are capable of folding RNAs up to 100
residues long. Vfold has been recently used to successfully
model pseudoknotted RNA structures and to estimate the
conformational entropy for stem-loop tertiary contacts [44].

HiRE-RNA is an excellent example of a protein-like
coarse-grained method for RNA modeling. It uses an
implicit solvent force field similar to the protein OPEP
force field [42]. It is expressed as a sum of local (bonded),
nonbonded, and hydrogen-bond terms. All bonded inter-
actions are described by harmonic terms. For non-bonded
interactions, a Lennard-Jones potential is used, modified to
mimic some of the excluded volume and screening effect
that gets lost in coarse-graining. In particular, it implements
a repulsive power law at short distances, an exponential tail
at large distances to account for an extra screening given by
the atoms that are missing from the coarse-grained
representation, and a narrower well varying with the
equilibrium distance. Hi-RNA energy model does not take
into account electrostatic interactions explicitly, except for
the repulsion between the phosphates. The base pairing is
modeled by hydrogen bonding interactions consisting of 2-,
3-, and 4-body terms. The interactions taken into account
include canonical A-U and G-C Watson-Crick pairs, A-U
Hoogsteen pairs, G-U wobble pairs, as well as the relatively
rare A-C, A-G, and U-C pairs. All the HiRE-RNA
parameters were derived from a statistical study of 220
structures in the Nucleic Acids Database (NDB) and
subsequently refined through the analysis of long molecular
dynamics simulations for a poly-A molecule of 15
nucleotides. Tests of HiRE-RNA on two structures (22
and 36 nucleotide long) solved by NMR, have demonstrat-
ed that the method is capable of sampling the native state,
however the selection of the most native-like conformation
remains a challenge.

Evolution-based structure prediction

At the other end of the methodological spectrum there are
approaches based on the principles of evolution. After
experimental determination of the first handful of protein
structures it became clear that evolutionarily related
(homologous) proteins usually retain the same three-
dimensional fold (i.e., the 3D arrangement and connectivity
of secondary structure elements) despite the accumulation
of divergent mutations [45]. It was also found that structural
divergence is much slower than sequence divergence,
although these two features are strongly correlated. Thus,
methods have been developed to align the sequence of one
protein (a target) to the structure of another protein (a
template), model the overall fold of the target based on that
of the template and infer how the target structure will
change due to substitutions, insertions and deletions
(indels), as compared with the template (reviews: [46,
47]). The process of identification of a structurally related
template has been termed “fold recognition”, while the
transformation of atomic coordinates of the template

2330 J Mol Model (2011) 17:2325–2336



structure into the target has been typically referred to as
“homology modeling” or “comparative modeling” (the
latter takes into account a possibility that the template is
not homologous, as long as it is structurally similar to the
target). This entire approach has been termed “template-
based modeling”.

Comparative analyses of evolutionarily related RNAs
(see e.g., [48]), revealed patterns of conservation that are
analogous to those observed in proteins: the secondary and
tertiary structure is usually more conserved than sequence,
and core regions important to stability and function tend to
be more conserved at all levels. In general, it can be stated
that in families of homologous RNAs, the 3D fold is often
conserved and alignment of sequences and secondary
structure patterns can be used to recognize such structural
conservation, enabling template-based modeling.

Template-based modeling has two main limitations.
First, the modeling of the “target” structure starts with
another known structure of a structurally similar molecule
to be used as a ”template”, hence if such a structure does
not exist or cannot be identified reliably, then the model
cannot be built or almost certainly will be completely
wrong. Further, each element of the target sequence must
be aligned to the structurally equivalent element in the
template sequence/structure. In particular, homologous
residues should be aligned to each other. High sequence
similarity is not a prerequisite for template-based modeling.
In fact, it is possible to create good homology models even
if the sequence identity between the target and the template
is zero [49]. However, on the average, molecules with
higher sequence similarity tend to exhibit more similar
structures [45]. Besides, for highly similar sequences it is
generally easier to generate a correct alignment (to find
homologous residues between the target and the template).
Therefore, using templates with higher sequence similarity
is recommended. Apart from sequence divergence, struc-
tures may also change because of environmental factors, e.
g., the binding of other molecules or the composition of the
solution (salt, pH) [50]. This is particularly true for RNA,
where the binding of metal ions is often a key factor
enabling a stable tertiary structure [51]. It is generally the
responsibility of the user of the homology modeling
software to choose a template, whose biological state
corresponds best to the desired biological state of the target
to be modeled. With an incorrectly chosen template and/or
wrong alignment, the model will always be very far from
the native structure. These limitations concern all homology
modeling tools, as templates and alignments are always
necessary in this approach [52].

Finally, it must be noted that like proteins, homologous
RNAs need not retain the same structure in all details.
Topological variability (e.g., preserving the overall 3D
structure while changing the pattern of secondary structure

elements) has been observed in many protein families [53],
as well as in RNA families, with one prominent example
being the RNA subunit of RNase P from Escherichia coli
(type A) and Bacillus subtilis (type B) [54]. However,
methods for automated template-based modeling of macro-
molecules assume that the overall fold is conserved
between the template and the target, and special interven-
tion of the user is usually required to model topological
variations.

Two major approaches have been developed for
template-based modeling of proteins. One is to model the
structure by copying the coordinates of the template (both
the backbone and the side-chains) in the aligned core
regions, which can also include “averaging” over coor-
dinates of multiple templates. The variable regions are
modeled by taking fragments with similar sequence from a
database of previously observed loops, followed by replac-
ing the mutated side-chains with rotamers that satisfy the
stereochemical criteria, and (optionally) limited energy
optimization, as implemented in SWISS-MODEL [55].
The other possibility is to use the distance and torsion
angles and interatomic distances from the aligned regions
of the template(s) as modeling restraints, which permits the
use of information from multiple structures. This approach
also requires the idealization of geometry and packing of
the entire chain by satisfying stereochemical constraints
derived from the database of protein structures, as imple-
mented in MODELLER [56].

The same two types of methods have been recently
proposed for RNA modeling. The Altman group has
implemented a MODELLER-like strategy in RNABuilder,
an extension to the SimTK molecular modeling toolkit [57].
The force field consists of forces and torques which act to
fold the RNA molecule according to the restraints specified
by the user. No forces act between nucleotide residues
unless specified by the user, except stacking forces. A
coarse-grained simulation is carried out to fold the model
into a conformation that minimizes the violation of
restraints. RNABuilder starts with an extended representa-
tion of the target sequence and threads it onto the template
structure(s), guided by restraints derived from the target-
template sequence alignment, optionally using additional
user-specified restraints on base pairing, stacking and
tertiary interactions, rigidifying portions of the molecule,
and many more. It detects runs of three or more consecutive
Watson-Crick base pairs and automatically enforces helical
geometry. Given a complete description of the structural
interactions, RNABuilder is able to construct an RNA
model that satisfies all restraints. The structure may
however get caught in local minima, especially for longer
RNA, where the method cannot satisfy all constraints
without further action from the user. RNABuilder has been
recently used to construct a homology model of the
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Azoarcus group I intron, using structural information from
two template structures.

Our group has recently developed a protein-like RNA
comparative modeling method ModeRNA (http://iimcb.
genesilico.pl/moderna/ [58]), inspired by the SWISS-
MODEL method for protein structure modeling. ModeRNA
interprets a pairwise sequence alignment as a set of
instructions that are used to create a model by copying
the conserved core from a template structure, and introduc-
ing the variable parts by taking fragments from a database
of experimentally determined structures. A highlight of
ModeRNA is that it can automatically add and remove
nucleotide modifications. ModeRNA also offers a scripting
interface that allows the users to perform more complex
manipulations, such as recombination of fragments taken
from unrelated structures.

Hybrid methods

In the protein structure prediction field the most successful
approach combines the features of physics-based folding
with the use of previously solved structures. The known
structures that may be used explicitly as templates or
implicitly, as the source of information to calculate a
scoring function that may complement or replace the
’purely physical‘ energy. This type of structure prediction
is often termed ’de novo modeling‘, and should not be
confused with the ab initio modeling, as it heavily relies on
information from databases. De novo methods for structure
prediction share many problems with the ab initio
approach, including a high computational cost of the
conformational sampling and uncertainty as to which of
the large number of alternative conformations generated is
the most native-like structure. Nonetheless, so far in blind
tests such as the CASP benchmark, they have outperformed
methods based on either ‘pure physics’ or ‘pure evolution’
[59, 60]. Methods such as ROSETTA [61] improve the
efficiency of the conformational search by restricting local
conformations to those taken from known structures, which
should correspond to locally energy-minimized structures.
Hence, the main type of conformational transition in
ROSETTA involves a replacement of conformational
parameters for a short fragment in the modeled protein by
parameters taken from a randomly selected fragment in a
previously solved structure of another protein. Additional
conformational changes are required to refine the local
structure. The ROSETTA energy function combines param-
eters that are based on physics and statistics. Other methods
such as CABS [62] restrict the conformational space by
projecting all possible conformations onto a discrete three-
dimensional lattice. In CABS the scoring function is
entirely based on a statistical potential. REFINER is an

off-lattice variant of CABS [20], which makes the method
slower, but potentially more accurate. TASSER [63] goes
even further into hybrid modeling by combining the
fragment assembly (if any starting models are available
from template-based modeling) with lattice-based modeling
(in particular for fragments that lack any template). All
these methods initially use a simplified (coarse-grained)
model and the final refinement is usually carried out after
rebuilding a full-atom model and with an energy function
that is enriched into high-resolution physics-based terms.

A number of methods based on the principle of fragment
assembly have been recently proposed also for RNA 3D
modeling. In particular, FARNA/FARFAR [64, 65] is
essentially ‘ROSETTA for RNA’. The FARNA procedure
assembles an RNA 3D structure from short linear frag-
ments, using a knowledge-based energy function, which
takes into account preferences of the backbone and side-
chains conformations, and of base-pairing and base-
stacking interactions, derived from experimentally deter-
mined RNA structures. Fragments for the assembly of RNA
structure were taken from the large ribosomal subunit of
Haloarcula marismortui (PDB code: 1ffk). FARFAR is an
extension of FARNA, which uses a full-atom refinement in
order to optimize the RNA structures generated by FARNA.
The full-atom energy function is supplemented with
harmonic constraints placed between Watson-Crick edge
atoms in the two residues that are assumed to form each
bounding canonical base pair and a term to approximately
describe the screened electrostatic interactions between
phosphates. It also includes terms derived from the earlier
work on proteins: a potential for weak carbon hydrogen
bonds, an alternative orientation-dependent model for
desolvation based on occlusion of protein moieties. In
the authors’ own tests of folding 32 RNA targets, 14
cases gave at least one of five FARFAR models with
better than 2.0 Å all-heavy-atom RMSD to the experi-
mentally observed structure.

MC-Fold|MC-Sym [66] is based on a principle related to
FARNA, as it assembles RNA structures from a library of
‘nucleotide cyclic motifs’, i.e., fragments in which all
nucleotides are circularly connected by covalent, pairing or
stacking interactions. MC-Fold|MC-Sym implements two
energy functions, one based on non-bonded terms (van der
Waals and stacking interactions) from the AMBER package
and another one based on statistics of the experimentally
determined structures, but neither of them can discriminate
native-like models from misfolded ones. Recently, inspired
by the CABS and REFINER methods for protein structure
modeling, we developed SimRNA for RNA structure
modeling (M.B., Konrad Tomala, Pawel Łukasz, T.P., K.
R., J.M.B., in preparation). SimRNA represents the nucle-
otide chain by three pseudoatoms per nucleotide residue,
similarly to Vfold and DMD, but instead of a physics-based
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potential, both bonded and non-bonded terms in its
energy function are based entirely on database statistics.
A conceptually related CG model represents RNA with
five pseudoatoms per residue and uses a statistical
potential to describe all the nonbonded interactions,
including the excluded volume repulsive, the attractive
force, and the electrostatic force between nonbonded
particles, as well as the solvation forces due to the
environment [67].

There exist methods for interactive (user-guided) mod-
eling of macromolecular structures based on assembly of
fragments derived from various structures that are predicted
to be similar to different parts of the target. Computational
tools and the graphics front-end facilitate the choice, the
manipulation, and the visualization of fragments, and often
provide specialized algorithms for local optimization of
geometry to seal breaks in the chain or relieve steric
clashes. The approach that allows the expert user to
rearrange and recombine multiple template structures has
been particularly widely used in the RNA modeling field,
with methods such as S2S/Assemble [68, 69], ERNA-3D
[70], or RNA2D3D [71]. However, similar methods
including the ‘Frankenstein’s Monster approach’ [72] and
the “protein lego” approach [73] have also been applied to
model protein structures (review: [74]).

Critical assessment and benchmarking of protein
and RNA structure prediction

For a very long time, the field of RNA 3D structure
modeling has been dominated by methods based on
interactive graphical interfaces that allow human experts
to manipulate sequences and structures in 3D. Only
recently have a number of automated methods been
developed, many of which are based on concepts previous-
ly used with success in the protein 3D structure modeling
field (Table 1). Thus, we conclude that protein and RNA
modeling present more similarities than differences, and
that it may be worthwhile for these two fields of research to

inspire and ‘bootstrap’ each other to overcome some of the
existing bottlenecks.

The development of useful methods for protein structure
prediction has been driven by the benchmarking experi-
ments, in which blind predictions are objectively compared
to the experimentally solved structures. In the protein
structure prediction community there are periodic evalua-
tion experiments that rigorously test the accuracy of
prediction methods, e.g., CASP (biannually; http://www.
predictioncenter.org/casp8/) and Livebench (continuously;
http://meta.bioinfo.pl/livebench.pl). The ability to objec-
tively assess the structure prediction methods, their relative
performance as well as the typical accuracy of predictions
using an established set of measures [75] has proven
indispensable for progress in this field of research.

The assessment of model accuracy requires reliable and
meaningful metrics for comparisons between the models
and the experimentally determined structures used as a
“gold standard”. One of the measures used commonly for
comparison of macromolecular models is the RMSD
between pairs of equivalent atoms in the optimally super-
imposed structures. Typically only backbone atoms are
considered, e.g., Cα in protein structures or P in RNA
structures, but RMSD can also be calculated for any (or all)
atoms. However, RMSD is not a perfect measure. A small
perturbation in just one part of the structure (e.g., a hinge
movement of two domains) can create a large RMSD
suggesting that the two structures are very different overall.
To take into account both local and global structural
similarities, several metrics have been developed. The
global distance test (GDT_TS) score [76] and the template
matching (TM) score [77] are examples of metrics
developed for comparison of protein structures that have
been generally accepted in the protein structure prediction
field and used by assessors in the CASP experiment; they
can also be applied to compare RNA structures and
measure the accuracy of RNA models.

Many metrics of structural similarity are dependent on
the molecule size: if randomly selected molecules of the
same size are compared, the score deteriorates with the

Table 1 Automated methods for protein and RNA modeling reviewed in this article, arranged according to the analogous principles used

Prediction method class Protein RNA

Template-based, comparative modeling Restraints-based MODELLER RNABuilder

Fragments-based SWISS-MODEL ModeRNA

Template-free, physics-based All-atom AMBER, CHARMM

Coarse-grained UNRES Vfold, DMD, HiRE-RNA

Automated hybrid (statistics+physics) All-atom, fragment-based ROSETTA MC-Fold

Coarse-grained CABS, TASSER, REFINER SimRNA, CG
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molecule size. To eliminate the dependence on protein size,
Levitt and Gerstein converted the structure similarity score
into the P-value, i.e., a statistical significance score, based
on the statistics of random structure comparisons [78].
Recently, Hajdin et al. have analyzed the dependence of
the structure similarity on the molecule size in small
RNAs ( < 161 nt length) with relatively complex tertiary
structures [79]. They found that the compactness of folded
RNA molecules is slightly lower than for proteins with the
same mass. Based on their analysis they defined an
expression relating RMSD with the P-value that describes
prediction significance.

Measures of structural similarity developed for protein
models are not always ideal for RNA structures. They may
capture the general 3D shape, local deviations of the
structure, intradomain deformation, or interdomain devia-
tions, but are agnostic about important features that are
unique to RNA, i.e., the base-pairing and base-stacking
patterns. Parisien et al. developed an RNA 3D structure
comparison measure called the deformation index (DI),
which evaluates the deviations between two RNA 3D
structures by calculating the proportion of base interactions
(stacking and pairing) that are identical in both structures
[80]. They also developed another measure called a
deformation profile (DP) that highlights dissimilarities
between structures at the residue level for both intradomain
and interdomain interactions. DP can also be used for
proteins.

CASP for RNA has not fully materialized yet, hence it
is difficult to objectively assess how different methods and
approaches for RNA modeling compare with each other
and how well they perform in the hands of different users.
The number of crystal and NMR structures solved for
RNA molecules that are sufficiently large for meaningful
analysis is probably still too small to provide a sufficient
number of targets for CASP-like intense modeling over a
few months every year. In the meantime we have started a
project similar to Livebench (again, an inspiration from
the field of protein structural bioinformatics), which aims
to become an objective benchmark of fully automated
methods for RNA structure prediction. The CompaRNA
web server (http://comparna.amu.edu.pl, T.P., K.R.,
Łukasz Kozłowski, Ewa Tkalińska, J.M.B., manuscript
in preparation) provides a continuous benchmark for
standalone and web server methods. Currently it
addresses only fully automated methods for RNA
secondary structure prediction, but we intend to extend
it to include methods for RNA 3D structure prediction
that will become available as public web servers and/or
local installations that can be run in a fully automated
mode with default parameters and do not require large
computing resources. While this approach excludes
expert-based modeling and methods that are not yet fully

automated or require high performance computing, we
hope it will contribute to the assessment of the progress
in the RNA structure prediction field.
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