
The process of the ‘birth’ of a new gene has fascinated 
biologists for a long time1,2, not least because new genes 
are thought to contribute to the origin of adaptive evo-
lutionary novelties and thus lineage- or species-specific 
phenotypic traits1,3. A major mechanism underlying the 
formation of new genes is gene duplication2. Traditionally, 
only DNA-mediated duplication mechanisms, that 
is, duplication of chromosomal segments containing 
genes, have been considered and widely studied in this 
context (reviewed in Refs 4,5). Nevertheless, gene cop-
ies originating through an alternative mechanism — the 
reverse transcription of mRNA intermediates — have 
been described since the early 1980s6–8. These intronless 
retroposed gene copies were long dismissed a priori as 
‘dead on arrival’ 9–12, and routinely classified as processed 
pseudogenes13 owing to the expected lack of regula-
tory elements and the presence of mutations, such as  
premature stop codons, in many copies. Indeed, they 
were mainly considered a nuisance and a confounding 
factor in transcription surveys because of their often 
high sequence similarity with parental genes.

However, after some anecdotal findings of functional 
retroposed genes in the late 1980s14 an unexpectedly 
large number of functional retrogenes have recently been 
discovered, mainly in mammals and fruitflies15–19. These 
studies revealed that retrogenes have often evolved func-
tional roles in the male germ line16,17. Other intriguing  
retrogene functions — for example, in antiviral defence20, in  
hormone–pheromone metabolism21,22, in the brain23 or 
in courtship behaviours24 — have also been postulated. 
More fundamentally, retrogene analyses have uncovered 
novel mechanisms for how new genes might arise (for 

example, the recruitment of regulatory elements) and 
obtain new functions (for example, through gene fusion 
and adaptive evolution). Finally, retroposed gene copies 
have served as unique genomic markers, increasing our 
understanding of various genomic processes ranging 
from the detection of extinct transcripts25 to the origin 
of our sex chromosomes17. All of these findings were 
possible because of the growing number of complete 
genome sequences, and they were achieved by targeted 
cross-disciplinary approaches involving evolutionary 
analysis, mining of available large-scale expression data, 
and both molecular and genomics experiments.

This Review aims to cover the most exciting insights 
obtained from the study of RNA-based gene duplication, 
focusing on functionally relevant aspects of protein-
coding retrogenes. Given that the process of retroposition 
(also known as retroduplication) has been most thor-
oughly studied and might be more frequent in mammals 
and fruitflies, we focus our discussion on these organisms. 
After a brief description of the process of retroposition, 
we discuss the abundance of retrocopies and functional 
retrogenes in mammals and Drosophila species. We then 
discuss how retrocopies might become transcribed and 
functional, and give an overview of novel mechanisms 
underlying the emergence of new gene functions that 
were uncovered in detailed surveys of young retrogenes. 
We then examine a major functional role of retrogenes 
in the male germ line, which is related to the biology and 
evolution of X chromosomes. Finally, we outline other 
general insights pertaining to mammalian genome evolu-
tion obtained from global retrocopy surveys, and conclude 
with potential future research directions.
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New gene
A gene that originated recently 
during evolution.

Parental gene
source of the mRNA that gives 
rise to a retroposed gene copy.

Retrogene
expressed and functional 
retrocopy, usually with an 
intact ORf consistent with that 
of the parental gene.

Gene fusion
The fusion of adjacent genes 
into a single transcription unit, 
which is then termed a 
chimeric or fusion gene.

RNA-based gene duplication: 
mechanistic and evolutionary insights
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Abstract | Gene copies that stem from the mRNAs of parental source genes have  
long been viewed as evolutionary dead-ends with little biological relevance. Here we 
review a range of recent studies that have unveiled a significant number of functional 
retroposed gene copies in both mammalian and some non-mammalian genomes. These 
studies have not only revealed previously unknown mechanisms for the emergence of 
new genes and their functions but have also provided fascinating general insights into 
molecular and evolutionary processes that have shaped genomes. For example, analyses 
of chromosomal gene movement patterns via RNA-based gene duplication have shed 
fresh light on the evolutionary origin and biology of our sex chromosomes.
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Retroposition
A mechanism that creates 
duplicate gene copies in new 
genomic positions through the 
reverse transcription of mRNAs 
from source genes (also known 
as RNA-based duplication or 
retroduplication).

Retrocopy
Gene copy that results from 
the process of retroposition 
(also termed retroposed gene 
copy or retroposed copy).

L1 element
A member of the long 
interspersed nuclear  
element (LINe) family  
of repeats. Provides the 
enzymatic machinery 
necessary for the process  
of retroposition in mammals.

Retropseudogene
Non-functional retrocopy, 
which usually carries 
frameshift-causing insertions  
or deletions and/or premature 
stop codons that preclude 
gene function.

Mechanisms of retroposition
To be heritable and hence of evolutionary relevance,  
retroposition needs to occur in the germ line. Thus, retro-
position requires enzymatic machinery that not only  
can reverse transcribe and integrate fully processed 
cDNA copies of mRNAs from parental source genes 
into the genome, but that is also active in the germ 
line. The fact that retroposition relies on duplication 
through an mRNA intermediate also implies that only 
genes expressed in the germ line can be duplicated via 
this mechanism.

The key retroposition enzyme, reverse transcriptase, 
seems to stem from different types of retrotransposable 
elements, depending on the organism. In mammals, long 
interspersed nuclear elements (lINes) seem to provide the 
enzymes necessary for retroposition. These retrotranspo-
sable elements encode a reverse transcriptase with endo-
nucleolytic activity that can recognize any polyadenylated 
mRNA26,27. esnault et al. and Wei et al. demonstrated that 
the L1 element subfamily of lINes can generate processed 
genes28,29, indicating that l1 retrotransposon activity has 
generated retroposed gene copies in mammals. The proc-
ess of retroposition (including the hallmarks of retroposed 
gene copies) is detailed in fIG. 1.

Retrotransposable element-encoded enzymes are also 
likely to be responsible for retroposition in Drosophila10,30 
and some plants31,32, which carry various retrotrans-
posons with reverse-transcriptase activity. However, the 
retroposition machinery has not been studied in detail 
in these organisms to date. The paucity of retrocopies in 
non-mammalian vertebrates is probably explained by the 
lack of retrotransposons with reverse transcriptases that 
can process standard mRNAs. For example, bird genomes 
contain a relatively large number of CR1 lINes33, but CR1 
reverse transcriptases cannot recognize polyadenylated 
mRNAs owing to their specificity towards a different 
target sequence, and are thus incapable of promoting 
retroposition of mRNAs from other genes34. The small 
number of RNA-based gene copies in birds34 seems to 
have been mediated by retroviral mechanisms35.

Rates of retrocopy and retrogene formation
Given that retrocopies are particularly abundant in 
mammals11,17–19,36 owing to the high activity of l1 
elements, we first discuss the rates of retrocopy and 
functional retrogene formation in mammals and then 
in Drosophila species. Thousands of retrocopies have 
been identified in several placental mammal (that is, 
eutherian) genomes11,17,18,36. This suggests a high rate of 
retrocopy formation during the evolution of this mam-
malian lineage. However, the rate of retroposition has 
not been constant, with periods of very high and low 
activity11,37,38, which is probably due to the fluctuating 
activity of l1 elements (BOX 1). Recently, approximately 
2,000 retrocopies were identified in the opossum 
genome17, suggesting a similarly high retroposition 
rate in metatherians (that is, marsupials). Only ~80 
retrocopies seem to be present in the platypus genome 
(H.K., N.v. and M.l., unpublished observations), 
which is consistent with the paucity of l1 elements in 
monotremes39 — the most basal mammalian lineage.

It was long assumed that retroposed gene copies are 
mostly non-functional retropseudogenes because of their 
presumed lack of expression potential10,13, although 
individual studies have revealed instances of functional 
retrogenes since the late 1980s14. But how many retro-
copies have evolved into bona fide genes? Different 
types of evidence support the functionality of retro-
copies; given the wealth of genomic data now available, 
the most straightforward approaches to look for retro-
gene functionality are based on evolutionary analyses 
that screen for signatures of selection. For example, the 
selective preservation of intact ORFs between distant 
species17,18 or between several closely related species37 
can provide statistically significant and convincing 
evidence for non-neutral evolution of retrocopies 
— this therefore implies functionality. Furthermore, 
comparison of the rate of functionally relevant sub-
stitutions (that is, amino-acid changing) to the rate of 
neutral changes (that is, silent substitutions) in retro-
gene-coding regions can be used to detect non-neutral  
evolution, and is indicative of functional constraint23,37.

In addition to such evolutionary approaches, molecu-
lar evidence can be used as an indication that a retrocopy 
is functional. One example is evidence of transcription, 
which can often be easily detected. Transcription alone is 
not sufficient to demonstrate functionality of individual 
genes, as non-functional DNA can be transcribed18. 
evidence of translation (that is, the presence of a  
protein, which can be detected with specific antibodies), 
coupled with analysis of cellular phenotypes provides 
strong evidence of retrogene functionality. Ideally, the 
in vivo function of a retrogene is demonstrated — either 
by showing the association of retrogene mutations with 
disease40–42, or by the targeted disruption of retrogenes 
in animal models24,43,44. However, given that solid experi-
mental evidence for the functionality of retrocopies is 
currently hard to obtain on a larger scale, the estimates of 
overall rates of functional retrogene formation discussed 
in the following sections have largely been obtained from 
evolutionary and/or statistical analyses.

vinckenbosch et al. estimated the number of func-
tional retrogenes present in the human genome by 
comparing transcription levels of intact retrocopies with 
those of retropseudogenes, which reflect the transcrip-
tional background noise in the genome18. They found 
that more than a thousand retrocopies show evidence 
of being transcribed18, with intact retrocopies being 
transcribed to a much greater extent than retropseu-
dogenes. On the basis of this observation the authors 
conservatively estimate that at least ~120 retrocopies are 
likely to be functional genes. Based on an assessment 
of selective constraint on primate retrocopies, Marques 
et al. estimated the rate of functional retrogene forma-
tion in primates37. They estimated that, on average, at 
least one functional retrogene per million years emerged 
on the primate lineage that led to humans37.

In Drosophila melanogaster, in which the first retro-
posed gene copies were described in the early 1990s, 
a similar rate of functional retrogene formation was 
estimated15,45. evidence of selective constraint sug-
gests that about 90–100 functional retrogenes in this 
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Figure 1 | Mechanism of gene retroposition. a | Gene retroposition is initiated with the transcription of a parental 
gene by RNA polymerase II. b | Further processing of the resulting RNA (by splicing and polyadenylation) produces  
a mature mRNA. c | Gene retroposition is mediated by the L1 endonuclease domain (pink rectangle), which creates a 
first nick (yellow star) at the genomic site of insertion at the TTAAAA target sequence. d | This nick enables the mRNA 
to be primed for reverse transcription by the L1 reverse transcriptase domain (pink oval), which uses the parental 
mRNA as a template. e | Second-strand nick generation (precise mechanism not known). f | Second DNA-strand 
synthesis (precise mechanism not known). g | cDNA synthesis in the overhang regions created by the two nicks.  
This process creates a duplication of the sequence flanking the target sequence, which is one of the molecular 
signatures of gene retroposition; other signatures include the lack of introns and the presence of a poly(A) tail.  
The direct repeats and the poly(A) tail degenerate over time, and are therefore usually only detectable in recent 
retrocopies. The illustration is based on findings described in Refs 26–28.
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invertebrate lineage are functional15,16,46. However, the 
total number of retrocopies in the Drosophila genus is 
much lower than that in mammals. This seems to be due 
mainly to the paucity of retropseudogenes in Drosophila 
genomes9,47 (owing to the extremely short half-life of 
unconstrained DNA in this genus9) rather than to a low 
rate of retroposition.

Sources of regulatory elements
The observation that a significant number of retrocopies 
have evolved into bona fide genes raises the question of 
how retrocopies can be expressed in their new genomic 
location. To become expressed at a significant level and 
in a meaningful way (for example, in tissues in which it 
can exert a selectively beneficial function), a new gene 
needs to obtain a core promoter and probably other ele-
ments, such as enhancers, that regulate its expression. 
In this section, we discuss various mechanisms through 
which the acquisition of promoters and other regulatory 
elements might occur.

Generally, the expression of retrocopies might ben-
efit from the presence of pre-existing regulatory ele-
ments in their vicinity. For example, a straightforward 
way for a retrocopy to obtain transcription potential 
would be to ‘hitch-hike’ on the regulatory machinery 
of other genes. Indeed, a number of cases have been 
described in which retrocopies are located in an intron 
of a host gene, and are transcribed in the form of a 
fusion transcript together with host gene exons18,41,48,49 
(fIG. 2a). In mammals, retrocopies are often transcribed 
together with only 5′-uTR exons of the host gene, as 
splice variants, thus potentially avoiding interference 
with host gene functions18. In general, transcribed 
retrocopies tend to be close to other genes, suggesting 
that their transcription might be facilitated by the open 
chromatin and/or regulatory elements of nearby genes18 
(fIG. 2b). This possibility is supported by observations 

that retrogenes might be transcribed from bi-directional 
CpG-rich promoters of genes in their proximity (H.K., 
unpublished observations). The sometimes substantial 
distances between the retrocopy insertion site and these 
promoters are usually spanned by new 5′ untranslated 
exon–intron structures that arose during the process of 
promoter acquisition18.

In a similar way, that is, via the acquisition of new 
5′-uTR structures, retrocopies might also become tran-
scribed from distant CpG-enriched sequences, which 
often have inherent capacity to promote transcription50, 
and that are not previously associated with other genes 
(H.K., unpublished observations) (fIG. 2c). These distant 
CpG ‘proto-promoter’ elements might have been opti-
mized by natural selection after they became associated 
with a functional retrogene. similarly, distant promot-
ers from retrotransposable elements might have been 
‘captured’ by retrocopies for their transcription via the 
acquisition of new 5′ untranslated exon–intron struc-
tures. In addition, retrotransposons51 (or, potentially, 
CpG-island proto-promoters) that are immediately 
upstream of retrogene insertion sites might also be used 
directly (fIG. 2d). 

until recently, it was thought that retrocopies are 
unlikely to directly inherit parental promoters (hence 
the common expectation that they are unlikely to evolve 
into functional genes), although instances of parental-
promoter inheritance had been found52–54. However, a 
recent study suggests that retrocopies could frequently 
inherit basic promoters directly from their parental source 
genes55. Often, these parental genes are trans cribed from 
CpG promoters, which usually have multiple transcrip-
tional start sites56 (Tsss). If a retrocopy stemmed from 
a parental transcript with a Tss located far upstream, 
the mRNA that gave rise to the retrocopy might carry 
downstream promoter sequences and Tsss with sufficient 
capacity to promote transcription (fIG. 2e). The frequent 
inheritance of CpG promoters might also help to explain 
why a significant number of retrogenes evolved paternally 
or maternally imprinted expression57,58 (TABLe 1).

In Drosophila spp., the source of transcription 
potential of retrogenes is somewhat more elusive. 
Although, similarly to mammals, host gene fusions 
have occurred in this genus48,49 and retrogene trans-
cription might be facilitated through the transcrip-
tional activity of genes in their vicinity15, some other 
mechanisms described for mammals, such as parental 
promoter inheritance or retrotransposon-driven 
transcription, have not yet been detected in fruitflies. 
Instead, small substitutional changes in pre-existing 
upstream sequences of retrogene insertion sites that 
occurred under the influence of natural selection have 
been postulated to play a part in the formation of basic 
Drosophila retrogene promoters15,59 (fIG. 2f).

We note that the various mechanisms described here 
that might endow retrogenes with regulatory elements 
probably often only provide the basic means for the  
initial transcription of retrocopies, whereas more  
sophisticated regulatory elements might evolve with 
time (see for example, the mammalian phosphoglycerate 
kinase 2 (Pgk2) retrogene52,60) (TABLe 1).

 Box 1 | Retrocopies as genomic archives

Retrocopies can serve as useful genomic markers of transcript activity during 
evolution. For example, because retroposition is mediated by long interspersed 
nuclear elements (LINEs) the rate of retrocopy generation, which might be 
calculated on the basis of the divergence of retrocopies and parental genes at  
a synonymous site, can be used to explore the activity of LINE retrotransposons 
during evolution.

Moreover, given that the probability of retroposition of a gene is expected to 
mainly depend on the abundance of its transcripts in the germ line, the number of 
retrocopies should reflect parental gene activity during these stages11,12. 
Consistently, well-known housekeeping genes and genes with high germline 
expression levels have produced many retrocopies11,12,101. Thus, retrocopies might 
serve as unique markers to shed light on the tissue origin of retroposition by 
correlating parental gene expression during different male and female germline 
stages with the abundance of their retrocopy offspring in the genome. The better the 
correlation observed in such an analysis, the higher the number of retrocopies that 
would have emerged in a given germ line or embryonic cell type.

Finally, the fact that retrocopies reflect their parental transcript structures has 
been exploited to detect previously unannotated or extinct ‘fossil’ transcripts25,102. 
For example, in a recent study, the authors reconstructed ancestral transcripts that 
were present in the common ancestor of humans and chimpanzees, using retrocopy 
sequences and inferred potential exon gains and losses in humans and chimpanzees 
based on their analysis102.
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Figure 2 | source of retrogene promoters. This figure illustrates various scenarios that lead to the transcription of 
retroposed gene copies. a | Retrocopies can insert into intronic sequences of host genes. The evolution or presence 
of splicing signals enables these copies to be integrated into new splice variants of their host gene. Depending on 
the localization of these new splice sites, these variants result in either non-coding fusion transcripts (the entire ORF 
derives from the retrocopy) or coding sequence fusions (the coding region of the retrocopy is fused to that of the 
host gene). b | The insertion of retrocopies into actively transcribed regions with an open chromatin structure 
facilitates their transcription, as this increases accessibility for the transcriptional machinery. The presence of 
enhancer elements from neighbouring genes and weak transcription promoting sequences (not previously 
associated with genes) can further strengthen their transcriptional activity. c | Recruitment of distant promoters in 
the genomic neighbourhood via the acquisition of a new untranslated exon–intron structure. d | Recruitment of 
proto-promoters from retrotransposons or CpG islands. e | Inheritance of parental promoters through alternative 
transcriptional start site use by the parental gene. f | De novo promoter evolution in the 5′ flanking region of the 
insertion site by single nucleotide substitutions.
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The evolution of new functions from retrogenes
DNA versus RNA-based duplication. The fundamental 
differences between the two major duplication mecha-
nisms — segmental duplication (reviewed in Refs 4,5) 
and retroposition — have significant consequences 
for the evolutionary fates of resulting gene copies and 
their analysis. segmental duplication regularly produces 
daughter copies that inherit the genetic features — exons, 

introns and regulatory elements — of the ancestral gene, 
whereas retroposed copies usually lack introns and are 
less likely to have strong regulatory elements following 
their emergence. Therefore, segmental duplication is 
more likely to yield expressed daughter copies than the 
retroposition process. In addition, segmental duplicates 
are likely to exhibit similar expression patterns in their 
early evolution, which can often imply that one copy is 

Table 1 | Representative retrogenes in mammals and fruitflies

genes Phylogenetic distribution Features (chromosomal origin, structure, type of selection or function) Refs

Primates

GLUD2 Hominoids Into the X, positive selection, subcellular adaptation, adaptation to neurotransmitter 
glutamate metabolism

23,67

CDC14Bretro Hominoids Positive selection, subcellular adaptation, derived from cell-cycle gene, brain- and 
testis-specific expression

37,65

c1orf37-dup Humans Positive selection, transmembrane protein 66

PGAM3 Old World primates Positive selection, phosphoglycerate mutase 64

TRIM5–CypA Macaque lineage Chimeric gene, retrovirus restriction, CypA portion derives from retroposition 72–74

TRIM5–CypA New World monkeys Chimeric gene, retrovirus restriction, CypA portion derives from retroposition 20

PIP5K1A–PSMD4 Hominoids Chimeric gene, positive selection, subcellular change, fusion retrogene — stems 
from chimeric transcript of two adjacent parental genes

75

TAF1L, KIF4B Old World primates X-derived 37,103

RBMXL1 Old World primates X-derived, chimeric gene, fusion to host gene UTR 37

Utp14c Primates X-derived, chimeric gene, evidence that it is required for male fertility, fusion to host 
gene UTR

40

Rodents

Utp14b Rodents X-derived, chimeric gene, required for male fertility, fusion to host gene UTR exon 41,42

U2af1-rs1 Rodents X-derived, paternally imprinted 57

PMSE2b Mouse* Inserted into a LINE1 that drives its transcription 51

Mammals

Cstf2t Eutherians X-derived, chimeric gene, required for male fertility, crucial for proper 
polyadenylation in meiosis and post-meiosis

43

HNRNPGT Eutherians X-derived, required for male fertility 44

Pgk2 Eutherians X-derived, promoter inherited from parent, acquisition of a testis-specific enhancer, 
first described X-derived retrogene

14,60

Inpp5f, Nap1/5, Mcts2 Eutherians X-derived, paternally imprinted, located in introns of host genes 57

KLF14 Eutherians Maternally imprinted, accelerated evolution on the human lineage 58

USP26 Eutherians Into the X, among the five most positively selected genes in human–chimp 
comparison

104

Drosophila

jingwei Drosophila yakuba, 
Drosophila santomea and 
Drosophila teisseri

Chimeric gene, positive selection, retrocopy encoded ADH domain evolved new 
substrate (alcohol) specificity

21,48

sphinx Drosophila melanogaster Chimeric gene, positive selection, retrocopy evolved into non-coding RNA gene 
that promotes male–female courtship

24,49

Adh–Twain Drosophila subobscura, 
Drosophila guanche and 
Drosophila madeirensis

Chimeric gene, positive selection, putative functional adaptation to new substrate 
specificity

105

mojoless Drosophila genus X-derived, required for male fertility 106

Dntf-2r D. melanogaster subgroup Substitutions in an upstream proto-promoter element seem to have provided this 
gene with a new, testis-specific promoter

59

The cases listed here are representative of the different mechanisms that lead to the formation of retrogenes, their chromosomal distribution and the type of 
function they can obtain. We describe most of these genes in the main text. *Identified in the mouse, phylogenetic distribution not established. ADH, alcohol 
dehydrogenase; LINE1, long interspersed nuclear element 1. 
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Subcellular adaptation
A process by which a  
duplicate gene product  
evolves a new localization  
in the cell or localizes more 
specifically to one of the 
ancestral compartments  
under the influence of positive 
Darwinian selection.

initially functionally redundant. The increased gene dose 
might even be deleterious, although increased gene 
dosage can sometimes be beneficial and thus selectively 
preserved. By contrast, retroposed copies often need 
to recruit regulatory elements to become transcribed 
(see above). However, this also means that retrocopies 
that do become transcribed are probably more prone to 
evolve new expression patterns and, as a consequence, 
novel functional roles than gene copies that arise from 
segmental duplication.

A further fundamental difference between the two 
duplication mechanisms is related to the relationship 
between the two duplicate members of the pair. The 
clear directionality in the retroposition process, which is 
often not discernible for segmental duplications, facili-
tates studies on the origin of new gene functions. This 
is because parental genes usually maintain the ancestral 
gene function, although there are interesting exceptions 
to this rule61, whereas new functions usually are acquired 
by the intronless daughter retrogene copies. This direc-
tionality also renders the detection and analysis of young 
duplication events straightforward; these duplication 
events are particularly informative for the study of new 
gene functions (see below). However, recent segmental 
duplicates are not easily distinguishable and are more 
difficult to study because they are, for example, fre-
quently collapsed into a single locus in standard genome 
assemblies owing to their high sequence and structural 
similarities.

Finally, retroposition usually produces gene copies 
on chromosomes different from that of the parental gene 
copy, whereas segmental duplications are less likely to 
involve different chromosomes — although the rate of 
inter versus intrachromosomal segmental duplication 
differs between lineages45,62,63. Thus, retroposition is the 
ideal ‘vehicle’ for interchromosomal gene ‘movements’,  
the directions of which are also easily determined based 
on the inherent directionality of the process (see below for 
a detailed discussion of retrogene movement studies).

Nevertheless, owing to the abundance of functional 
segmental duplicates in nearly all genomes studied, 
numerous studies of segmental duplication have yielded 
many fundamental insights and have established general 
concepts regarding the emergence of new gene functions 
(reviewed in Refs 4,5).

However, because of the particular features of 
retroposed gene copies outlined above, the analysis 
of retroposition has provided additional insights with 
respect to the functional evolution of new genes not 
previously described for segmental duplicates. In par-
ticular, the analysis of young retrogenes has provided 
novel insights into mechanisms underlying the evolution 
of new genes, as the changes in sequence that occurred 
during their early evolution are usually still traceable 
using evolutionary approaches1. In mammals, the study 
of young retrogenes has mainly focused on primate cases. 
systematic surveys and individual studies led to the dis-
covery of several young retrogenes that emerged on the 
primate lineage leading to humans23,37,64–66. For some of 
these, positively selected substitutions could be tied to 
functional change and adaptation23,65,67 (TABLe 1).

Emergence of new cell compartment-specific functions. 
Further analysis of these recently emerged retro-
genes uncovered a novel mechanism underlying the 
emergence of new gene function. They showed that 
new gene functions can arise through changes in the 
localization of encoded proteins in the cell, a process 
that is termed subcellular adaptation65,67,68. The following 
examples demonstrate two ways by which this process 
might occur (fIG. 3).

The glutamate dehydrogenase 2 (GLUD2) retrogene 
exemplifies one form of subcellular adaptation called 
sublocalization68, in which the protein encoded by the 
new gene becomes more specifically targeted to one or 
several of the ancestral cellular compartments. GLUD2 
(TABLe 1) emerged in the common ancestor of humans 
and apes 18–25 million years ago by retro position from 
its parental gene, GLUD1, which encodes an enzyme 
that degrades glutamate69. The enzyme encoded by 
GLUD2 evolved unique biochemical properties soon 
after the duplication event through two key amino-
acid substitutions that were fixed as a result of positive 
selection23. These changes were suggested to reflect the 
functional adaptation of GluD2 to the metabolism of 
the neurotransmitter glutamate in the brain70. A fur-
ther study of GLUD2 uncovered another level of func-
tional adaptation. Rosso et al. showed that whereas the 
ancestral glutamate dehydrogenase enzyme localizes to 
mitochondria and the cytoplasm, GluD2 became spe-
cifically targeted only to the mitochondria, owing to a 
single, positively selected substitution in its N-terminal 
targeting sequence67. This event probably contributed 
to the adaptation of GluD2 to a function in glutamate 
metabolism in the brain and other tissues. Thus, GluD2 
is an example of rapid change in subcellular localization 
and function of a new protein that has been driven by 
natural selection65,67,68 (fIG. 3a).

The analysis of another ape-specific retrogene, 
CDC14Bretro, revealed that proteins encoded by new 
genes can completely relocalize to new, previously unoc-
cupied cellular niches during evolution under the influ-
ence of natural selection. This process is a variant form of 
subcellular adaptation termed subcellular relocalization, 
or neolocalization68,71. CDC14Bretro stems from a splice 
variant of the CDC14B cell-cycle gene65 (TABLe 1) and it 
encodes a protein that became specifically expressed 
in the adult and fetal brain and testes soon after its 
emergence in the common human and ape ancestor.  
It then completely relocalized in the cell owing to intense 
positive selection in the common African ape ancestor 
~7–12 million years ago, shifting from the ancestral role 
of stabilizing microtubules to a localization and function 
in the endoplasmic reticulum (fIG. 3b).

Notably, a recent global survey of yeast duplicate 
proteins, which was prompted by these retrogene stud-
ies, showed that subcellular adaptation seems to be 
widespread, and is involved in the evolutionary fate 
of at least 30% of duplicates68. Thus, in conclusion, the 
analysis of young retrogenes led to the finding that, in 
addition to changes in gene expression and/or the bio-
chemical function of the protein through neofunction-
alization or subfunctionalization5, rapid and selectively 
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Domain shuffling
Juxtaposition of one or more 
exons from two different genes 
that encode functional protein 
domains.

driven subcellular adaptation by either neolocalization 
(CDC14Bretro) or sublocalization (GLUD2) is a common, 
previously underappreciated mechanism underlying the 
emergence of new gene function (fIG. 3).

Gene fusion and domain shuffling. New gene functions 
can also arise through gene fusion, which is defined as 
the fusion of two previously separate source genes into 
a single transcription unit1. Gene fusion might occur 

through various mechanisms, including DNA-based 
recombination events, and can lead to the juxtaposi-
tion of exons encoding functional protein domains 
from different genes, in which case it is a form of exon 
or domain shuffling1.

Fusion of retroposed gene copies to the genes in  
which they have inserted has yielded new genes 
with important functions. Detailed studies of such 
fusion genes uncovered surprising aspects of new-
gene formation, such as a recurrence of the fusion of  
genes with complementary functions in the case  
of the TRIM5–CypA fusion gene (fIG. 4). A retroposed 
copy of the CypA gene, which encodes a protein that 
potently binds retroviral capsids, was shown to have 
integrated independently into the antiviral defence 
gene TRIM5 in a New World monkey20 (fIG. 4a) and in 
an Old World monkey72–74 (fIG. 4b). In both cases, the 
retrocopy-encoded CypA protein replaced and func-
tionally substituted the original capsid-binding domain 
(B30.2) from TRIM5. The TRIM5–CypA fusion pro-
tein more efficiently restricts HIv-1 and other retro-
viruses than the ancestral TRIM5 (Refs 20,72–74). The 
TRIM5–CypA gene fusion is a striking case of domain 
shuffling and convergent evolution. The seemingly 
unlikely multiple independent insertions of CypA ret-
rocopies into the same gene in different species were 
probably facilitated by the high retroposition rate of 
the CypA gene, which is due to its high expression in 
the germ line. Rare TRIM5–CypA fusions were then 
probably driven to fixation during the evolution of the 
monkey lineages by strong selective pressures, because 
potent TRIM5 variants can provide a high degree of 
resistance to lethal and common diseases caused by 
various retroviruses73.

Recent studies revealed that fusion genes can also 
arise through the co-retroposition of adjacent parental 
source genes. Akiva et al. identified a recently retro-
posed gene (PIPSL) on human chromosome 10 that 
stems from a fusion transcript of two parental genes 
(PIP5K1A and PSMD4) that are next to each other on 
chromosome 1 (Ref. 75). Babushok et al. then showed 
that the gene was exclusively expressed in testes in 
humans and chimpanzees76. But curiously, although 
PIPSL was apparently shaped by strong positive selec-
tion — suggesting functionality and adaptive evolution 
of the encoded protein — this fusion gene seemed to be 
post-transcriptionally repressed. However, in a recent 
follow-up analysis, evolutionary and experimental sup-
port was obtained for the functionality of this gene in 
hominoids (M.l., unpublished observations). Given the 
abundance of intergenic splicing in mammals75,77, we 
speculate that co-retroposition of adjacent genes might 
potentially be responsible for the origination of other 
chimeric retrogenes.

Analysis of chimeric genes in Drosophila species has 
demonstrated how gene fusion via retroposition can 
generate raw material for the evolution of new gene 
functions under the influence of positive Darwinian 
selection. The gene jingwei (jgw), which was the first 
chimeric gene involving retroposition described in any 
species48, originated by the insertion of a retrocopy of 
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the Alcohol dehydrogenase gene (Adh) into the yande 
gene48 (TABLe 1). The functional evolution of jgw was 
recently analysed using a biochemical approach21,22, 
which revealed that the jGW protein (particularly the 
ADH domain) was shaped by positive selection and 
apparently evolved a role in hormone and pheromone 
biosynthesis or degradation processes.

The Drosophila sphinx (spx) gene49 (TABLe 1) illustrates 
a mechanism for how RNA genes with important new 
functions can arise, a process that is currently poorly 
understood. The sphinx gene emerged within the last 
2–3 million years and derives from a retroposed ATP 
synthase gene that fused to exons located in the vicin-
ity of the insertion site. Notably, the retroposed gene 
copy lost its protein-coding capacity by accumulating 
nonsense mutations, and spx subsequently evolved 
into a non-coding RNA gene under the influence of 
positive selection. Dai et al. knocked out the spx gene 
in D. melano gaster24, which caused an increase in male–
male courtship behaviour relative to wild-type flies, 
suggesting that spx is the first recently emerged gene for 
which a behavioural phenotype has been identified.

Testis functions and sex chromosome evolution
Global surveys of retroposition in mammals and fruitflies 
have shown that retrogenes have often evolved functions 
in the testes. The formation and preservation of many of 
these genes is closely linked to the biology and selective 
forces, imposed by the male germ line, that have shaped 
X chromosomes since their emergence. These issues, 
and how dating of the origin of these retrogenes has also 
allowed a reassessment of the age of mammalian sex  
chromosomes, are discussed below.

Expression in testes. Numerous retrogene studies in both 
mammals and fruitflies revealed an overall propensity of 
retrogenes to be expressed in the testis16,18,37,46,48. A combi-
nation of a testis-expression bias and natural selection was 
postulated to explain this observation17,37. In meiotic and 
post-meiotic spermatogenic cells, the autosomal chromo-
somes seem to be in a state of hypertranscription owing 
to various modifications of the chromatin (reviewed in 
Ref. 78). It was suggested that this hypertranscription 
state enables transcription of DNA that is usually not 
trans cribed. It might therefore have facilitated transcrip-
tion of retrocopies37 but also other types of duplicates79 
in the testis during their early evolution. A subset of 
these retrocopies subsequently obtained beneficial func-
tions in the testis and evolved into bona fide genes (see 
below). Natural selection then further enhanced their  
promoters and other regulatory elements, which led to 
a stronger and more refined testis-expression pattern 
among the functional retrogenes.

An alternative and not mutually exclusive hypothesis 
is based on the notion that retrocopies might preferen-
tially insert into open, actively transcribed chromatin80. 
Given that retroposition occurs in the germ line, retro-
copies might predominantly insert into or close to germ 
line-expressed genes, which would facilitate retrocopy 
transcription in the germ line. However, in Drosophila 
species, this hypothesis seems to explain testis expression 
of only some retrogenes81. In mammals, this insertion-bias 
scenario remains to be explored.

Retrogenes ‘out of the X’. As noted above, the retroposition 
process readily produces gene copies on chromosomes 
different from that of the parental gene copy. Global 
genomic surveys of such gene ‘movements’ revealed an 
intriguing pattern that was observed both in mammals17–19 
and in Drosophila16: a disproportionately large number of 
parental genes on the X chromosome have given rise to 
functional retrogene copies on autosomes16,19 (fIG. 5a). For 
mammals, it was shown that these autosomal retrogenes 
are specifically expressed in the testis during and after the 
meiotic stages of spermatogenesis, whereas their X-linked 
parents (usually broadly expressed housekeeping genes) 
are transcriptionally silenced during these stages owing 
to male meiotic sex chromosome inactivation (MsCI)17 
(reviewed in Ref. 82) (fIG. 5a).

Importantly, these mammalian X-derived retrogenes 
are significantly more frequently and more specifically 
expressed during and after meiosis than other retro-
genes17, which also tend to be expressed in testes (see 
above). This substantiates the hypothesis that retrogenes  
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that stem from the X chromosome have been fixed 
during evolution and shaped by natural selection to 
compensate for parental, housekeeping gene silencing 
during and after MsCI17,19,83. This compensation hypoth-
esis has also been supported by functional studies that 
showed that loss of function of retrogenes with X-linked 
progenitors lead to severe defects of male meiotic func-
tions in mice41–44 and probably in humans40. Curiously, 
the potential mechanistic biases favouring expression 
in meiotic and post-meiotic cells (see above) allow 
X-derived retrogenes to be expressed precisely where 
needed to compensate for the lack of expression from 
the parental gene. Thus, together with the fact that the 
retroposition process readily moves genes between 

chromosomes, this means that retrogenes — rather than 
DNA-based duplicates — might easily evolve into func-
tional autosomal substitutes of their X-linked parental 
genes during the late stages of spermatogenesis.

Although it was recently suggested that the major 
cause for the out-of-the-X movement in Drosophila 
species might be different from that in mammals84, a 
recent study suggests that MsCI occurs in Drosophila85. 
Therefore, MsCI might be the main force responsible 
for the preferential fixation of X-derived retrogenes 
with meiotic or post-meiotic expression in fruitflies 
as well as in mammals. In addition, similarly to mam-
mals, retrogene–parental gene expression patterns 
also seem to be complementary during meiosis in 
Drosophila46.

The origin of mammalian sex chromosomes. A recent 
survey of young retrogenes in primates showed that 
the out-of-the-X movement of retrogenes is ongoing37, 
which suggests that gene export from the X chromo-
some continues to be selectively beneficial. But when 
did this process begin during evolution? A systematic 
dating analysis using representative genomes from the 
three major mammalian lineages recently revealed that, 
although retrogenes have been generated since the com-
mon ancestor of all mammals, selectively driven retro-
gene export from the X chromosome only started later, 
in the eutherian and marsupial lineages17 (fIG. 5b). Given 
that MsCI is the probable selective force that is driving 
genes off the X chromosome, this observation suggested 
that MsCI emerged, rather late, in the common ancestor 
of eutherians and marsupials, well after their separation 
from the monotreme lineage17 (fIG. 5b).

Moreover, these observations have led to a reassess-
ment of the age of our sex chromosomes, which evolved 
from an ancestral pair of autosomes86,87. Given that MsCI 
probably reflects the spread of the recombination barrier 
between the X and y chromosomes during their evolu-
tion17,88, Potrzebowski et al. concluded that these chromo-
somes originated, probably at a late stage, in the common 
ancestor of eutherians and marsupials and not in the com-
mon ancestor of all mammals, and are therefore much 
younger than previously thought17 (fIG. 5b). This view is 
supported by the recent analysis of the platypus genome, 
which revealed that monotreme sex chromosomes share 
homology only with bird and not with therian (placental 
mammals and marsupials) sex chromosomes39,89,90.

Retroposition ‘into the X’. Curiously, retrogenes are not 
only exported from the X chromosome, but they are also 
preferentially imported into this chromosome in mam-
mals19. There seems to be a slight mechanistic bias that 
favours the insertion and/or retention of retrocopies on 
the X chromosome19. Although the cause of this bias 
remains unclear, the excess of retropseudogenes on the 
X chromosome is consistent with the accumulation of 
other non-functional retro-elements (including lINes) 
on the X chromosome in the mammalian lineage91. 
However, a strong selective force — the precise nature 
of which remains to be identified — has apparently led 
to the preferential fixation of bona fide retrogenes on the 
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X chromosome19. Finally, note that no increased fixation 
rate of retrogenes on the X chromosome is observed in 
Drosophila species16,92. This might reflect differences  
in the biology of sex chromosomes between mammals 
and fruitflies, but the precise reasons for this discrepancy 
need to be clarified.

Retroposition and gene structure evolution
studies of the process of retroposition have not only shed 
light on the origin of new genes as discussed above, but 
have also provided other general insights pertaining to 
the evolution of mammalian genomes. These findings 
are discussed below and in BOX 1, which highlights how 
retrocopies reflect aspects of transcriptome evolution.

Retroposition and intron loss. One way by which retro-
position has shaped mammalian genes is by mediating the 
loss of introns. Intron gains are rare events during evolu-
tion, whereas intron loss seems to be more frequent93. In 
mammals, for example, not a single case of intron gain has 
been documented, whereas more than 100 intron losses 
have been reported94. These intron losses seem to have 
been mediated by recombination of the gene displaying 
intron loss with the reverse transcribed, processed mRNA 
molecule (the cDNA) of the same gene94,95. The lines of 
evidence that support this hypothesis include: the always 
precise loss of the intronic sequence — the alternative 
mechanism, DNA deletion, would often result in impre-
cise intron loss; the fact that intron loss usually affects 
genes that are highly expressed in the germ line, thus 
producing many processed cDNAs that might recombine 
with the source gene; and the preferential loss of introns 
towards the 3′ end of the genes94,96, reflecting that reverse 
transcription begins at the 3′ end of transcripts — thus, 
incomplete 3′ cDNAs can recombine with the source gene, 
leading to 3′ intron loss.

Retrogenes and splicing constraints. Retrogenes have also 
helped to support the novel hypothesis that the preser-
vation of splicing signals constrains protein evolution. 
specifically, a recent study suggested that the selective 
pressures on splice signals (enhancers and silencers) near 
exon boundaries significantly reduce the rate of protein 
evolution97. The rate of protein evolution of retrogenes is 
highest near the sequences in which intron–exon junc-
tions previously resided in the parental genes that gave 
rise to the retrogenes. Therefore, splicing sequence con-
straints might have hampered the evolution of multi-exon 
gene-encoded proteins, thus potentially preventing func-
tional optimization of proteins. It will be interesting to test 
whether retrogenes have evolved more efficient and/or 
adapted proteins compared with their intron-containing 
parents, owing to the relaxation of splicing constraints.

Conclusions
mRNA-derived duplicates were long thought to be 
doomed to pseudogenization and decay. However, 
a significant number of retroposed gene copies have 
escaped this evolutionary fate and have evolved into 
bona fide genes, as outlined in this Review. Retroposed 
genes are probably still much less likely to become  

functional compared with ‘normal’ DNA duplicates owing 
to their peculiar properties, which include the frequent 
lack of strong regulatory elements following their emer-
gence. However, because of these properties retrogenes 
often evolved in unique ways, being much more prone  
to evolve new expression patterns, new genomic locations 
and new functions compared with DNA duplicates. Thus, 
individual and global surveys of retrogenes, using a vari-
ety of evolutionary, genomic and molecular tools, have 
unearthed previously unknown molecular mechanisms 
pertaining to the origin of new genes; for example, pro-
moter recruitment and subcellular adaptation of encoded 
proteins. These surveys have also provided unexpected 
and unique insights into genome evolution; for example, 
the origin and evolution of our sex chromosomes.

In spite of these recent advances in the RNA-based 
duplication field, much remains to be done. so far, 
only a few young retrogenes have been pinpointed, and 
even fewer studies (most of which are discussed in this 
Review) have attempted to characterize the functional 
evolution of young retrogenes, thus going beyond mere 
descriptions of evolutionary signatures. Future work 
should therefore first aim to identify more young func-
tional retrogenes. such studies are challenging (at least 
in mammals) owing to the difficulty in assessing their 
selective preservation, but they will benefit from the 
steadily increasing number of available complete genome 
sequences in primates. Notably, very recent functional 
hominoid retrocopies might soon be identified because 
of the astounding number of human genomes that will 
be completed using the recently developed ultra-high-
throughput sequencing technologies98. New cases of 
young retrogenes should then be subjected to in-depth 
analyses of their functional evolution, using evolutionary 
analysis combined with molecular, cellular and in vivo 
experiments; for example, transgenic mice carrying  
primate-specific genes, or knockout studies in Drosophila. 
ultimately, such studies are likely to uncover additional 
modes underlying the evolution of new gene function 
and provide a more global view of the contribution of 
retrogenes to cellular or organismal phenotypes.

It will also be interesting to screen for retrogenes in 
other organisms for which complete genomes are becom-
ing available and to study their chromosomal localization 
patterns, evolution and functions. For example, a recent 
study discovered a surprisingly large number of functional 
retrogenes with interesting properties in the rice genome32, 
a large proportion of which were fused to other genes. 
This large number of retrogenes was unexpected, given 
that the retroposition activity in plants was traditionally 
thought to be low.

We believe that retrocopies generally are still a rela-
tively untapped resource and are likely to reveal further 
unpredicted and fascinating aspects, which might even 
open up new fields of research. For example, recently it 
was found that mammalian retropseudogenes frequently 
seem to encode small interfering RNAs, which are impor-
tant for the regulation of their parental source genes99,100. 
Thus, even retropseudogenes do not necessarily represent 
evolutionary dead-ends, but might provide the raw mate-
rial for functionally important evolutionary innovations.
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