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Abstract: Chronic lung diseases are highly prevalent worldwide and cause significant mortality. Lung
cancer is the end stage of many chronic lung diseases. RNA epigenetics can dynamically modulate
gene expression and decide cell fate. Recently, studies have confirmed that RNA epigenetics plays
a crucial role in the developing of chronic lung diseases. Further exploration of the underlying
mechanisms of RNA epigenetics in chronic lung diseases, including lung cancer, may lead to a better
understanding of the diseases and promote the development of new biomarkers and therapeutic
strategies. This article reviews basic information on RNA modifications, including N6 methylation of
adenosine (m6A), N1 methylation of adenosine (m1A), N7-methylguanosine (m7G), 5-methylcytosine
(m5C), 2′O-methylation (2′-O-Me or Nm), pseudouridine (5-ribosyl uracil or Ψ), and adenosine to
inosine RNA editing (A-to-I editing). We then show how they relate to different types of lung disease.
This paper hopes to summarize the mechanisms of RNA modification in chronic lung disease and
finds a new way to develop early diagnosis and treatment of chronic lung disease.
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1. Introduction

Chronic lung diseases include chronic obstructive pulmonary disease (COPD), pneu-
monia, idiopathic pulmonary fibrosis(IPF), asthma, and lung cancer [1]. Despite many
new treatments for chronic lung disease, the death rate for the disease has remained nearly
unchanged over the years [2]. With the update of research techniques, our understanding
of the changes in the genome and signaling pathways associated with chronic lung diseases
has dramatically improved. These advances allow clinicians to treat patients precisely
to improve outcomes. Unfortunately, due to the vast heterogeneity in most chronic lung
diseases, new tried-and-true treatments are still needed for the diagnosis and treatment
of chronic lung diseases [3–6]. Epigenetics and epigenetic-based targeted therapies have
begun to be applied in the clinic and have made remarkable progress.

Epigenetics is a study of molecular biology that deals with the heritable variation in
gene function above the primary DNA sequence. It regulates gene expression without
changing the DNA sequence. The properties of cells and the differences between different
types of cells often rely on systems without DNA variation. Epigenetics includes but is not
limited to four principal mechanisms: DNA and RNA methylation, chromatin remodeling,
noncoding RNAs, and histone modifications [7]. The development of approaches for the
detection of RNA modifications has played a crucial role in the field of RNA modification
research. Methylated RNA immunoprecipitation sequencing (MeRIP-Seq), as a detection
method of m6A modification, can detect the presence of m6A in the whole genome [8].
Sequencing technology based on bisulfite has been widely used for the identification of
m5C [9]. Pseudouridine sequencing (Pseudo-seq) is a method for pseudouracil recogni-
tion in genome-wide single nucleotide resolution. This method can accurately locate the
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one-base resolution at the full transcriptome level [10]. The m1A detection methods use
antibodies that can specifically recognize m1A to enrich the RNA containing m1A, and
then detects m1A on the mRNA [11,12]. As the approaches for the detection of RNA modi-
fications continue to improve, more and more RNA modifications are being discovered.

RNA epigenetics has introduced a new layer of gene regulation in the study of chronic
lung diseases. It dynamically regulates gene expression through a series of different
modifications, broadening the potential of epigenetics in the diagnosis and treatment of
chronic lung diseases [13]. Currently, a number of articles have summarized the relationship
between RNA modification and respiratory diseases [14–16]. The majority of them have
focused on lung cancer and m6A. With the progress of the technologies, more and more
studies have confirmed the relationship between lung diseases other than lung cancer and
other types of RNA modification. The computational work has made a great contribution
to the development of RNA modification research and provided a valuable data set for
chronic lung diseases related analysis. This review therefore also covers a number of known
database/functional tools to make this review more informative and useful to the readers.
This review aims to explore the mechanisms of epigenetic modifications associated with
RNA, especially the impact of these modifications on chronic lung diseases.

2. RNA Epigenetics Mechanisms

RNA epigenetics research has developed rapidly in the last decade. RNAs participate
in many processes, such as transcription, splicing, and translation. RNA regulates gene
expression not only through the form of an intermediate in protein synthesis (messenger
RNA (mRNA)) or an effector molecule (transfer RNA (tRNA) and ribosomal RNA (rRNA)),
but also acts directly on gene expression, including through the action of multiple classes
of other noncoding RNAs(ncRNAs), such as microRNA (miRNA), small nuclear RNA
(snRNA), small nucleolar RNA (snoRNA) and long ncRNA (lncRNA) [17–19]. RNA is a
novel function as a catalyst and regulator of many biochemical reactions, a carrier of genetic
information, an adaptor for protein synthesis, and a structural scaffold for subcellular
organelles [20–24]. RNA epigenetics is generally considered to be irreversible changes
that have significant effects on RNA structure stability and/or function. However, some
RNA modifications are reversible [25,26]. With only 4 bases, RNA is less diverse than
protein with 20 different amino acid residues. To enrich the structure and function of RNA,
nature modifies RNA through various chemical modifications. More than 150 structurally
distinct modification types have been identified across all types of RNA [27,28]. These
modifications are associated with various biological processes and human diseases [29,30].
RNA modification was initially only studied in rRNA, tRNA, and snRNA. Using immuno-
precipitating RNA or covalently binding RNA-methylase complexes in combination with
sequencing, the researchers gained a global understanding of the characteristics of these
RNA modifications [8,31,32]. More and more RNA modifications are now confirmed, and
these changes are detected in a variety of RNAs [33–37]. RNA modifications affect base
pairing, secondary structure, and the ability of RNA to interact with proteins directly.
These chemical changes further affect RNA processing, localization, translation, and decay
processes to regulate gene expression [38].

2.1. Several Most Common RNA Modification Types

The common RNA modifications include N6 methylation of adenosine (m6A), N1

methylation of adenosine (m1A), N7-methylguanosine (m7G), 5-methylcytosine (m5C),
2′O-methylation (2′-O-Me or Nm), pseudouridine (5-ribosyl uracil or Ψ) and adenosine to
inosine RNA editing (A-to-I editing), etc. (Figure 1) [39]. Among these RNA modifications,
m6A is the most abundant form in eukaryotic cells, extensively studied in recent years.
m6A expression was abundant in the liver, kidney, and brain. The content of it in different
cancer cell lines varies greatly. Studies have found that m6A is mainly distributed within
genes, and the proportion of m6A in protein-coding regions (CDS) and untranslated regions
(UTRs) is relatively high. m6A in UTRs tended to be highly expressed in the third UTR
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region, while CDS regions were mainly enriched near-stop codons. The modification
of m6A primarily occurs on the adenine of the RRACH sequence, where R is guanine,
or adenine, and H is uracil, adenine, or cytosine [40]. The m6A modification has been
implicated in the activation of multiple signaling pathways associated with lung cancer, in
addition to COPD, pulmonary fibrosis, asthma, and other respiratory diseases. The m1A
modification is formed by the methylation of N1 adenosine. It is an isoform of m6A and
is regulated by multiple transferase complexes and demethylases, and this regulation is
reversible [41,42]. The m1A-modified tRNA can regulate translation by increasing tRNA
stability, while m1A-modified mRNA and lncRNA can influence RNA processing or protein
translation. Some studies have found that m1A may regulate mitochondrial function [43].
The m7G was first discovered at the 5′ caps and internal positions of mRNAs, as well as
inside rRNAs and tRNAs [44–46]. Recently, m7G has also been detected in miRNAs [47].
The m7G is associated with tumor metastasis and growth. The m5C is ubiquitous in mRNAs,
tRNAs, RNAs, and ncRNAs [48]. It is involved in various RNA metabolisms. In tRNA, m5C
is involved in stabilizing tRNA secondary structure and enhancing codon recognition. In
addition, m5C modifies rRNA and ncRNA, thereby regulating mitochondrial dysfunction,
stress response defects, gametocyte and embryonic development, tumorigenesis and cell
migration [49–51]. 2′-O-Me(Nm) is a co- or post-transcriptional modification of RNA,
where one of the methyl groups (-CH3) is added to the 2’ hydroxyl (-OH) of ribose. 2′-O-Me
is widespread in tRNAs, RNAs, and mRNAs and regulates pre-mRNA splicing and small
RNA stability [52,53]. Of all RNA species, rRNAs carry the most 2′-O-Me modifications.
2′-O-Me is found mainly in mRNA caps, but 2′-O-Me has recently been detected in CDS.
2′-O-Me can also modify sncRNAs (including miRNAs and piRNAs) [54]. Ψ can change
mRNA’s secondary structure. When Ψ occurs in the stop codons, or nonsense codons it can
affect the translation process and translation result [55]. Ψ could affect the development
of lung cancer. A-to-I editing mainly exists on the primary transcript of mRNA, tRNAs,
and miRNAs, and this RNA modification mechanism can modify the secondary structure
of RNA. It is the deamination of adenosine in RNA to inosine. Inosine is recognized as
guanosine in cells. A-to-I editing is associated with lung cancer cell phenotype.

2.2. RNA Modification Database

High-throughput sequencing data has a key impact in the study of RNA modifica-
tion. These sequencing data are available on public websites, including the NCBI-Gene
Expression Omnibus database (NCBI-GEO) (https://www.ncbi.nlm.nih.gov/geo, accessed
on 27 November 2022). The data related to chronic lung disease in the GEO database is
mainly related to m6A modification. The m6A levels in cisplatin-resistant A549 cells were
up-regulated compared to A549 cells (GSE140020, GSE136433). In addition, multiple data
sets were compared and screened for m6A markers in LUAD cells (GSE198288, GSE176348,
GSE161090). There are also RNA-seq expression profiles associated with writer/eraser
perturbation. For example, expression profiles after METTL3 knockdown in A549 and
H1299 cells (GSE76367), ALKBH5 knockdown in PC9 cells (GSE165453), and YTHDF1 or
YTHDF2 knockdown PC9 cells (GSE171634).

https://www.ncbi.nlm.nih.gov/geo
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Figure 1. The most common types of RNA modifications. Common RNA modifications include N6

methylation of adenosine (m6A), N1 methylation of adenosine (m1A), N7-methylguanosine (m7G),
5-methylcytosine (m5C), 2′O-methylation (2′-O-Me), pseudouridine (Ψ), and adenosine to inosine
RNA editing (A-to-I editing), and regulated by methyltransferase (writers), demethylases (erasers),
and some specific proteins (readers).

With the further study of RNA modification, databases containing various informa-
tion are emerging. These databases, which have received widespread interest and use,
in turn, provide the basis for further research about the function of RNA modification.
The existing RNA modification databases can be divided into biochemical RNA modi-
fication databases, comprehensive reversible RNA modification databases, specialized
reversible RNA modification databases, and RNA editing databases [56]. Biochemical RNA
modification databases can query the chemical structure and biosynthetic pathways of
RNA modification, among which RNA Modification Database (RNAMDB) [57] and Mod-
omics [58] are the most common. Comprehensive reversible RNA modification databases
include MethylTranscriptome DataBase (MeT-DB) [59], RNA Modification Base Database
(RMBase) [60], m6A-Atlas [61], m6A2target [62], m5C-Atlas [63], m7GHub [64] and RNA
Epi-transcriptome Collection (REPIC) [65]. RMBase is the most comprehensive RNA modi-
fication database available. The m6A2Target is a comprehensive database of target genes
for m6A modified enzymes (writers, erasers, and readers). Specialized reversible RNA
modification databases include m6Avar [66], m6A-TSHub [67], CVm6A [68], RMVar [69]
and RMDisease [70]. RNA editing databases include RNA Editing Database (REDIdb) [71],
Rigorously Annotated Database of A-to-I RNA Editing (RADAR) [72], Database of RNA
Editing (DARNED) [73], and REDIportal [74]. There are other functional tools available for
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RNA modification such as m6ASNP [75] and ConsRM [76]. Genetic variants that affect RNA
modification play a key role in many aspects of RNA metabolism and are also associated
with chronic lung disease. It is important to assess the effect of single nucleotide variants
in the human genome on m6A modification. The m6AVar database is a comprehensive
database for studying m6A-related variants that may affect m6A modification. It will ex-
plain the influence of variants through the function of m6A modification. The m6AVar can
be used to predict potential modification sites of m6A in chronic lung disease. According
to the m6AVar database, three m6A-related genes (ZCRB1, ADH1C, and YTHDC2) are
reliable prognostic indicators for lung adenocarcinoma (LUAD) patients and are potential
therapeutic targets [77]. RMVar is similar to m6AVar in that it mainly collects related
variants affecting m6A modification. However, RMVar has more comprehensive functions
than m6AVar. RMVar also contains other RNA-modified variants. The databases of genetic
variation in RNA modification also include RMDisease and m6A- TSHub. RMDisease
integrates the predictions of 18 different RNA modification prediction tools and a large
number of experimentally validated RNA modification sites and identifies single nucleotide
polymorphisms (SNPs) that may affect eight types of RNA modification. Most of the m6A-
associated cancer variants are tissue- and cancer-specific. The m6A-TSHub consists of four
core components, namely m6A-TSDB, m6A-TSFinde, m6A-TSVar, and m6A-CAVar. The
m6A-TSDB platform can be used to retrieve m6A sites in normal lung tissue and lung cancer
cell lines. Then, m6A-TSVa can be used to explore the influence of lung tissue variation
on m6A by integrating tissue-specific m6A. Finally, m6A-CAVar can be used to screen for
cancer variants affecting m6A in lung tissue. Through these databases, we can screen out
the gene variants associated with RNA modification in chronic lung disease for further
verification.

2.3. The Regulation of RNA Modification

Three proteins have been found to regulate RNA modification. The first is an en-
zyme that introduces modified nucleotides into RNA during post-transcriptional RNA
modification; the second protein interacts with the modified nucleotides; the third protein
removes the modification labels [78]. The methylation modification of m6A is regulated
by three types of proteases, methyltransferases (writers, including methyltransferase like
protein-3/14/16 (METTL3/14/16), RNA-binding motif protein 15/15B (RBM15/15B),
zinc finger CCCH type containing 13 (ZC3H13), virlike m6A methyltransferase associ-
ated (VIRMA, also known as KIAA1429), cbl proto-oncogene like 1 (CBLL1), and Wilms’
tumor-associated protein (WTAP), demethylases (erasers, including fat mass and obesity-
associated (FTO) and alkB homolog 5 (ALKBH5)), and readers (including YTH domain
family 1/2/3 (YTHDF1/2/3), YTH domain containing 1/2 (YTHDC1/2), insulinlike
growth factor 2 mRNA binding protein 1/2/3 (IGF2BP1/2/3), and heterogeneous nu-
clear ribonucleoprotein A2B1 (HNRNPA2B1)), and is reversible and can be dynamically
regulated [79,80]. These regulatory proteases work together in a coordinated manner to
maintain a homeostatic balance of intracellular m6A levels. Reversible m1A methylomes
are achieved by the dynamic modulation of m1A RNA-modifying proteins, including
m1A methyltransferases such as tRNA methyltransferase 6 noncatalytic subunit (TRMT6)-
TRMT61A complex, TRMT10C, TRMT61B and nucleomethylin (NML), m1A demethylases
such as ALKBH1, ALKBH3 and FTO, and m1A-dependent RNA-binding proteins such
as YTHDF1/2/3 and YTHDC1 [81]. The modification of m7G in mammals is catalyzed
by the compounds METTL1 and WD repeat domain 4 (WDR4), a complex that facilitates
the installation of m7G in tRNA, miRNA, and mRNA [82,83]. RNA guanine-7 methyl-
transferase (RNMT) and its cofactor RNMT-activating miniprotein (RAM) actively catalyze
m7G. Among them, RNMT is the catalytic subunit, and RAM is the regulatory subunit,
which plays the role of activation. Williams–Beuren syndrome chromosome region 22
(WBSCR22) and TRMT112 are responsible for regulating m7G in rRNA. The main function
of these regulatory mechanisms is to add m7G to the target RNAs, thereby mediating many
key biological processes by modulating RNA production, structure, and maturation [84].



Genes 2022, 13, 2381 6 of 18

The m5C is reversibly regulated by methyltransferases, including DNA methyltransferase
(DNMTs, such as DNMT1, DNMT2, and DNMT3A/3B) and NOP2/Sun RNA methyltrans-
ferases (NSUNs), and demethylases, including ten-eleven translocation (TETs), and reader
proteins including YTHDF2, Aly/REF Export Factor(ALYREF) and Y-box binding protein
1(YBX1) [85,86]. There are two ways to add 2′-O-Me modification: either by the complex
assembly of proteins associated with snoRNA guides (sno(s)RNPs) to carry out site-specific
modification or standalone protein enzymes with direct specific site modification [87,88].
In addition, the methylated reader protein TAR RNA-binding protein (TRBP) binds to
the methyltransferase FtsJ RNA 2’-O-methyltransferase 3 (FTSJ3) to form a TRBP-FTSJ3
complex, which induces 2′-O-Me [89]. Fibrillarin (FBL) is also a 2’-O-methyltransferase
that can form a small nucleolar ribonucleoproteins (snoRNPs) with three other proteins
and snoRNA for specific rRNA modifications [90]. Ψ is produced by the isomerization of
uridine, catalyzed by pseudouridine synthase (PUS). Thirteen pseudouridine synthases
have been identified, which can be divided into two categories, RNA-dependent and RNA-
independent PUSs. Dyskerin pseudouridine synthase 1 (DKC1) is the catalytic subunit of
the H/ACA snoRNP complex and catalyzes rRNA pseudouridylation. The other 12 writers
are PUSs: PUS1, PUSL1, PUS3, TRUB1, TRUB2, PUS7, PUS7L, RPUSD1-4, and PUS10. The
cellular localization and RNA targets of these enzymes are fixed. No Ψ erasers and readers
have been identified. This is probably because of the formation of relatively inert C-C
bonds between the ribose and the base, which leads to the fact that the pseudoureacylation
process is irreversible [91]. A-to-I editing is catalyzed by adenosine deaminases acting on
the RNA (ADAR) family of enzymes. There are 3 ADAR enzymes, ADAR1 and ADAR2
being catalytically active, while ADAR3 lacks catalytic activity [92].

3. RNA Modifications in Lung Cancer and Other Chronic Lung Diseases
3.1. The Roles of RNA Modifications

RNA modifications have a key influence in the regulation of many fundamental bio-
logical processes associated with chronic lung disease (Table 1). The methylation of m6A
can affect the RNA stability, localization, turnover, and translation efficiency of genes,
thereby regulating cellular processes such as cell self-renewal, differentiation, invasion,
and apoptosis, and is even critical for skeletal development and homeostasis [93,94]. The
METTL3-METTL14 complex increases the expression of the cyclin-dependent kinase p21 by
regulating m6A. This complex enhances m5C methylation, which synergistically promotes
p21 expression and affects oxidative stress-induced cellular senescence [95]. In the cardio-
vascular system, multiple m6A-related regulators promote the progression of atherosclero-
sis by regulating macrophage polarization and inflammation. WTAP and METTL14 also
can affect the phenotypic regulation of vascular smooth muscle cells (VSMCs) via m6A
modification [96]. Enhanced m6A RNA methylation generates compensatory cardiac hy-
pertrophy, whereas decreased m6A causes cardiomyocyte remodeling and dysfunction [97].
An increasing number of studies have found that m6A modification plays an important role
in controlling the generation and self-renewal of hematopoietic stem cells and in mediating
the development and differentiation of T and B lymphocytes from hematopoietic stem
cells [98]. YTHDF2, the first recognized “reader” of m6A, can maintain the homeostasis and
maturation of natural killer (NK) cells, and positively regulate the antitumor and antiviral
activities of NK cells. Its deletion significantly impairs NK cell antitumor and antiviral
activity in vivo [99]. METTL3-mediated m6A methylation is also associated with NK cell
homeostasis and antitumor immunity [100]. In addition, m6A is associated with apoptosis,
autophagy, pyroptosis, ferroptosis, and necrosis [101], and m5C mediates cell proliferation,
differentiation, apoptosis, and stress response [102].

3.2. RNA Modifications in the Respiratory System

RNA epigenetic modifications have been broadly reported in lung cancer development
and other chronic lung diseases (Figure 2). The most studied m6A modification plays an
important role in tumorigenesis, proliferation, and metastasis. Active m6A regulators
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in lung cancer are related with the activation of multiple signaling pathways, such as
DNA replication, RNA metabolism, epithelial–mesenchymal transition (EMT), cell cycle,
cell proliferation and apoptosis, energy metabolism, inflammatory response, drug resis-
tance, tumor metastasis and recurrence [103]. Reprogramming of energy metabolism is the
hallmarks of cancer. The m6A regulates tumor metabolism by directly regulating nutri-
ent transporters and metabolic enzymes or indirectly by controlling key components in
metabolic pathways [104]. Aberrant m6A modification contributes to the progression of ma-
lignant tumors and affects patient prognosis. Some m6A-related mRNA markers have also
been shown to be independent prognostic biomarkers in patients with different types of
cancer [105,106]. Recent studies have found that the m6A methylase METTL3 is abnormally
activated in cisplatin-resistant nonsmall-cell lung cancer (NSCLC) cells. METTL3 enhances
YAP mRNA translation by introducing YTHDF1/3 and eIF3b into the translation initiation
complex and increasing YAP mRNA stability by regulating the MALAT1-miR-1914-3p-YAP
axis. This induces NSCLC drug resistance and metastasis [107]. FTO is the first m6A
demethylase discovered to promote NSCLC cell growth by demethylating USP7 mRNA or
MZF1 mRNA transcripts and increasing their stability and transcriptional levels [108,109].
The 5’-UTR of m6A-modified PDK4 mRNA positively regulates the glycolysis of cells
by binding to IGF2BP3, thereby promoting the development of cancer. While METTL14
knockout can reverse the function of IGF2BP3 and play a tumor suppressor role [110].
In addition, IGF2BP1 can also promote cancer development and induce therapeutic re-
sistance by stabilizing oncogenic mRNAs [111]. The m6A modification also affects the
mediating tumor metastasis process. When lung cancer brain metastasis (BM) occurs,
miR-143-3p was upregulated in paired BM tissues compared with primary lung cancer
tissues. METTL3-mediated m6A modification induces the maturation of miR-143-3p, which
induces lung cancer invasion and angiogenesis via suppressing the expression of the target
gene vasohibin-1 [112]. The lncRNA HCG11 is modulated by METTL14-mediated m6A
modification in LUAD. METTL14-mediated HCG11 inhibits the growth of LUAD by tar-
geting large tumor suppressor kinase 1 (LATS1) mRNA through IGF2BP2 [113]. The m7G
methyltransferase METTL1 and WDR4 complex is significantly elevated in lung cancer,
which can promote lung cancer cell growth and invasion and negatively correlate with
patient prognosis. Impaired m7G tRNA modification in the absence of METTL1/WDR4
results in decreased proliferation, colony formation, cell invasion, and tumorigenicity of
lung cancer cells [114]. Highly expressed METTL1 can also methylate mature let-7 miRNAs
by interfering with inhibitory secondary structure (G-quadruplex) in the pri-miRNA tran-
script of let-7. The m7G-let-7 miRNA can inhibit lung cancer cell metastasis by reducing
the expression of target oncogenes, including high mobility group AT-hook 2 (HMGA2),
RAS, and MYC, at the posttranscriptional level [47]. Studies have confirmed that m5C
levels can be used as a cancer marker. For example, in lung squamous cell carcinoma
(LUSC), the upregulation of m5C-related NSUN3 and NSUN4 is related to poor patient
prognosis [115]. In LUAD, cells with high NSUN1 expression are more likely to be poorly
differentiated [116]. Abnormally elevated RNA m5C levels can be found in circulating
tumor cells from lung cancer patients [117]. The studies of Ψ are mainly concerned with
breast, lung, and prostate cancers. In NSCLC, the expression of lncRNAs PCAT1 is highly
expressed, and cooperates with DKC1 to influence the proliferation, invasion, and apopto-
sis of NSCLC cells through the VEGF/AKT/Bcl-2/caspase9 pathway [118]. The rs9309336
may interfere with PUS10 expression, thereby reducing the sensitivity of tumor cells to
tumor necrosis factor-associated apoptosis-inducing ligand (TRAIL) [119]. Finally, it pro-
motes the immortalization of tumor cells and the development of lung cancer. The RNA
editing protein ADAR promotes LUAD progression by stabilizing transcripts encoding
focal adhesion kinase (FAK). The increased abundance of ADAR in the mRNA and protein
levels in lung tissues of LUAD patients was associated with tumor recurrence. ADAR
increases the stability of FAK mRNA by binding to FAK. FAK blocks the ADAR-induced
invasiveness of LUAD cells [120]. A-to-I microRNA editing is correlated with tumor phe-
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notypes in multiple cancer types. Altered editing levels of microRNAs in LUAD may be a
potential biomarker [121].

Genes 2022, 13, x FOR PEER REVIEW 8 of 21 
 

 

confirmed that m5C levels can be used as a cancer marker. For example, in lung squamous 
cell carcinoma (LUSC), the upregulation of m5C-related NSUN3 and NSUN4 is related to 
poor patient prognosis [115]. In LUAD, cells with high NSUN1 expression are more likely 
to be poorly differentiated [116]. Abnormally elevated RNA m5C levels can be found in 
circulating tumor cells from lung cancer patients [117]. The studies of Ψ are mainly con-
cerned with breast, lung, and prostate cancers. In NSCLC, the expression of lncRNAs 
PCAT1 is highly expressed, and cooperates with DKC1 to influence the proliferation, in-
vasion, and apoptosis of NSCLC cells through the VEGF/AKT/Bcl-2/caspase9 pathway 
[118]. The rs9309336 may interfere with PUS10 expression, thereby reducing the sensitiv-
ity of tumor cells to tumor necrosis factor-associated apoptosis-inducing ligand (TRAIL) 
[119]. Finally, it promotes the immortalization of tumor cells and the development of lung 
cancer. The RNA editing protein ADAR promotes LUAD progression by stabilizing tran-
scripts encoding focal adhesion kinase (FAK). The increased abundance of ADAR in the 
mRNA and protein levels in lung tissues of LUAD patients was associated with tumor 
recurrence. ADAR increases the stability of FAK mRNA by binding to FAK. FAK blocks 
the ADAR-induced invasiveness of LUAD cells [120]. A-to-I microRNA editing is corre-
lated with tumor phenotypes in multiple cancer types. Altered editing levels of mi-
croRNAs in LUAD may be a potential biomarker [121]. 

 
Figure 2. The mechanisms and pathways of RNA modifications in lung cancer. The RNA modifica-
tions that have been confirmed to be involved in the development and progression of lung cancer 
include m6A, m7G, m5C, Ψ, and A to I editing. The most studied modification in lung cancer is m6A. 
METTL3 increases the expression of YAP mRNA by combining YTHDF1/3-eIF3b axis and MA-
LAT1-miR-1914 axis, causing drug resistance and metastasis of lung cancer. The m6A-modified 
PDK4 mRNA enhances cellular glycolysis through IGF2BP3, thereby promoting tumor growth. The 
knockdown of METTL14 reversed this process. USP7 mRNA or MZF1 mRNA demethylated by FTO 
can promote the tumor growth. IGF2BP1 can promote drug resistance and tumor growth by stabi-
lizing oncogenic mRNAs. METTL3 induces the maturation of miR-143 and inhibits the expression 
of Vasohibin-1, thereby inducing lung cancer brain metastasis. METTL14 regulates the expression 

Figure 2. The mechanisms and pathways of RNA modifications in lung cancer. The RNA modifica-
tions that have been confirmed to be involved in the development and progression of lung cancer
include m6A, m7G, m5C, Ψ, and A to I editing. The most studied modification in lung cancer is
m6A. METTL3 increases the expression of YAP mRNA by combining YTHDF1/3-eIF3b axis and
MALAT1-miR-1914 axis, causing drug resistance and metastasis of lung cancer. The m6A-modified
PDK4 mRNA enhances cellular glycolysis through IGF2BP3, thereby promoting tumor growth. The
knockdown of METTL14 reversed this process. USP7 mRNA or MZF1 mRNA demethylated by FTO
can promote the tumor growth. IGF2BP1 can promote drug resistance and tumor growth by stabi-
lizing oncogenic mRNAs. METTL3 induces the maturation of miR-143 and inhibits the expression
of Vasohibin-1, thereby inducing lung cancer brain metastasis. METTL14 regulates the expression
of lncRNA HCG11 and then inhibits tumor growth by targeting LATS1 mRNA via IGF2BP2. The
m7G methyltransferase METTL1 and WDR4 complex promotes the tumor growth and invasion. In
addition, METTTL1 promotes the methylation of Let-7 miRNA, increases the expression of HMGA2,
RAS and MYC, and induces the tumor metastasis. The m5C-associated upregulations of NSUN3 and
NSUN4 are associated with poor prognosis. Cancer cells with high NSUN1 expression are related
with poor differentiated. LncRNA PCAT1 and Ψ methyltransferase DKC1 cooperate to promote
the proliferation, invasion and apoptosis of lung cancer cells. ADAR promotes tumor progression
by stabilizing FAK transcripts. The expression of Ψ methyltransferase PUS10 is associated with the
tumor growth. A-to-I miRNA editing correlates with tumor phenotype.
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Table 1. A summary of RNA modifications in chronic lung diseases.

Modification Type Writer Eraser Reader Mechanism Reference

m6A

METTL3/14/16,
RBM15/15B, ZC3H3,

VIRMA,
CBLL1,
WTAP,

KIAA1429

FTO, ALKBH5

YTHDF1/2/3,
YTHDC1/2,

IGF2BP1/2/3,
HNRNPA2B1

(1) Activation of METTL3 promotes drug resistance and metastasis in NSCLC; (2)
FTO promotes the growth of NSCLC cells by demethylating USP7 mRNA or
MZF1 mRNA transcripts; (3) PDK4 mRNA binds to IGF2BP3 and promotes the
development of cancer. METTL14 knockout can reverse the function of IGF2BP3;
(4) IGF2BP1 promotes cancer development and induces therapeutic resistance; (5)
METTL3 inhibited vasohibin-1 expression and induced lung cancer invasion and
angiogenesis; (6) METTL14 inhibits LUAD growth through IGF2BP2; (7) High
expression m6A promotes the development and progression of COPD and
participates in PM2.5-induced microvascular injury; (8) Inhibition of METTL3
function promotes LPS-induced pneumonia; (9) METTL3 promotes pulmonary
fibrosis; (10) ALKBH5 promotes silicon-induced pulmonary fibrosis; (11) YTHDF3
affects eosinophil function in severe asthma.

[85–91,103,104,106–110]

m1A
TRMT6-TRMT61A complex,

TRMT10C, TRMT61B,
NML

ALKBH1/3,
FTO YTHDF1-3, YTHDC1

m7G

METTL1 and WDR4 complex,
RNMT and RAM complex,

WBSCR22,
TRMT112

(1) METTL1 and WDR4 complexes promote lung cancer cell growth and invasion;
(2) High expression of METTL1 inhibits metastasis of lung cancer cells; (3) The
m7G has a key value in the prognosis and early diagnosis of IPF patients.

[47,92,111]

m5C
NSUNs,
DNMT1,

DNMT2, DNMT3A/3B
TETs

ALYREF,
YBX1,

YTHDF2

(1) Upregulation of NSUN3 and NSUN4 is associated with poor prognosis in
LUSC patients; (2) Cells with high NSUN1 expression are more likely to be poorly
differentiated in LUAD; (3) Increased m5C modification negatively affects normal
lung metabolic activities.

[93,94,105]

2′-O-Me FBL, FTSJ3 TRBP

Ψ

DKC1,
PUS1,

PUSL1,
PUS3,

TRUB1,
TRUB2,
PUS7,

PUS7L,
RPUSD1-4,

PUS10

(1) LncRNAs PCAT1 is highly expressed in NSCLC and cooperates with DKC1 to
affect proliferation, invasion and apoptosis of NSCLC cells; (2) PUS10 promotes
the immortalization of tumor cells and the development of lung cancer; (3) ADAR
promotes LUAD progression.

[96–98]

A-to-I editing ADAR1,
ADAR2 (1) A-to-I microRNA editing is correlated with tumor phenotypes. [99]
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In addition to studies on lung cancer, the effects of RNA modification in other chronic
lung diseases such as COPD, pneumonia, asthma, and pulmonary fibrosis have also been
explored (Figure 3). Exposure to some toxicants can cause A-to-I editing of lung cells.
Potassium chromate (VI) induced upregulation of ADARB1 in human lung cells [122],
whereas tetrachlorodibenzodioxin (TCDD) exposure resulted in the decreased expression
of ADARB1 [123]. Carbon nanotubes can increase ADAR expression in mouse lungs [124].
It has been found that the expression of m6A RNA methylation regulators is abnormal in
COPD, among which the mRNA expressions of IGF2BP3, FTO, METTL3, and YTHDC2
show a tight association with the occurrence of COPD. IGF2BP3, FTO, METTL3, and
YTHDC2 have obvious correlations with various important genes enriched in signaling
pathways and biological processes that promote the development and progression of
COPD [125]. Exposure to fine particulate matter (PM2.5) is an important cause of COPD.
METTL16 may regulate sulfate expression through m6A modification, thereby participating
in PM2.5-induced microvascular injury and promoting the development of COPD [126].
In addition, the increase of mRNA m5C modification may negatively affect normal lung
metabolic activities by upregulating gene expression levels in the lungs of mice exposed to
PM2.5 [127]. LncRNA small nucleolar RNA host gene 4 (SNHG4) promotes LPS-induced
lung inflammation by inhibiting METTL3-mediated expression of STAT2 mRNA m6A [128].
Myofibroblasts are the main collagen-producing cells in pulmonary fibrosis, which are
mostly derived from resident fibroblasts via fibroblast-to-myofibroblast transition (FMT).
m6A modification was upregulated in the bleomycin (BLM)-induced pulmonary fibrosis
mouse model, FMT-derived myofibroblasts, and lung samples from IPF patients. Silencing
METTL3 can inhibit FMT by reducing m6A levels. KCNH6 is involved in the m6A-regulated
FMT process. m6A modification regulates KCNH6 expression through YTHDF1 [129,130].
ALKBH5 promotes silica-induced pulmonary fibrosis through miR-320a-3p/forkhead box
protein M1 (FOXM1) axis or directly targeting FOXM1. Targeting ALKBH5 can be used
to treat pulmonary fibrosis [131]. The m6A methylation has also been implicated in the
pathogenesis of asthma, and YTHDF3 has an effect on eosinophils for severe asthma, which
can guide future immunotherapy strategies [132]. Increased METTL1 level in IPF patients
is associated with poor prognosis. IPF can be divided into two molecular subtypes (subtype
1 and subtype 2) by combining the expression levels of METTL1 and RNMT. Patients with
subtype 2 have a more unfavorable prognosis than patients with subtype 1. It suggests that
m7G has an important value in predicting the prognosis of IPF patients and early diagnosis
of IPF patients [133].
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Figure 3. The mechanisms and pathways of RNA modifications in chronic lung diseases. RNA
modifications promote the occurrence and development of chronic lung diseases such as COPD,
pneumonia, asthma, and pulmonary fibrosis. Among these modifications, m6A have been the most
studied in chronic lung diseases. The mRNA expressions of m6A related IGF2BP3, FTO, METTL3
and YTHDC2 promote the progression of COPD. The m6A methyltransferase METTL16 regulates the
level of sulfate and participates in microvascular injury induced by PM2.5. In addition, increased m5C
modification is also involved in the process of PM2.5 induced COPD by inhibiting lung metabolic
activity. LncRNA SNHG4 promotes LPS-induced pneumonia by inhibiting METTL3-mediated STAT2
mRNA expression. The enhancement of FMT promotes pulmonary fibrosis. METTL3 increases
the FMT process. The m6A modification also is involved in FMT process by regulating KCNH6
expression through YTHDF1. METTL1 level in IPF patients is positive associated with poor prognosis.
ALKBH5 promotes silicon-induced pulmonary fibrosis through FOXM1. The m6A-related YTHDF3
causes severe asthma by affecting eosinophils.

4. Diagnosis and Therapeutic Potential

In recent years, RNA modification has been identified as a novel regulatory mech-
anism in controlling cancer pathogenesis and treatment response/resistance. The m6A
modification plays a multifunctional role in normal and abnormal biological processes,
and its regulatory proteins can act as therapeutic targets for cancer and are expected to be
biomarkers for overcoming drug resistance [134]. METTL3 is the major catalytic subunit
of m6A modification. METTL3 facilitates the translation of a large subset of oncogenic
mRNAs and has direct physical and functional interactions with translation initiation
factor 3 subunit h (eIF3h). METTL3-eIF3h interaction is required for oncogenic transfor-
mation. The depletion of METTL3 inhibits tumorigenicity and sensitizes lung cancer cells
to bromodomain-containing protein 4 (BRD4) inhibition [135]. METTL3 promotes tumor
development in human lung cancer cells by upregulating the translation of important
oncogenes such as EGFR and TAZ. MiR-33a, a negative regulator of METTL3, can directly
target the 3’UTR of METTL3 mRNA, reduce its expression, and further inhibit NSCLC cell
proliferation [136]. The dynamic m6A methylome is a new mechanism for drug resistance
in cancer, such as tyrosine kinase inhibitors (TKIs) [137]. FTO is an oncogene of LUSC,
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and its increased expression can promote the growth of cancer cells. Knockout of FTO
significantly decreased MZF1 mRNA level, and MZF1 gene silencing significantly inhibited
the cell viability and invasion of LUSC [109]. Two FTO inhibitors, FB23 and FB23-2, can
attenuate the activity of FTO demethylase by directly binding to the activity pocket of FTO
demethylase, resulting in a significant lethal effect on cancer cells [138]. Under the action of
intermittent hypoxia (IH), the expression of ALKBH5 was upregulated in lung cancer cells,
resulting in a decrease in the level of m6A. Knockdown of ALKBH5 under this condition
significantly inhibited cell invasion by upregulating the m6A level of FOXM1 mRNA and
reducing its translation efficiency [139]. Downregulation of solute carrier 7A11 (SLC7A11)
expression in lung cancer inhibits cell proliferation and colony formation. In LUAD, m6A
modification destabilizes SLC7A11 mRNA and accelerates mRNA decay upon recognition
by YTHDC2, thereby affecting cystine uptake and contributing to antitumor activity [140].
The m6A modification-related inflammatory cytokine interleukin 37 (IL-37) has received
extensive attention for the treatment of lung cancer. IL-37 inhibits the proliferative capacity
of LUAD cells by regulating RNA methylation. Meanwhile, overexpression of IL-37 de-
creased the expression of ALKBH5 and thus can also be used to treat NSCLC patients [141].
Gefitinib is indicated for the treatment of locally advanced or metastatic NSCLC. However,
acquired resistance limits its long-term efficacy. m6A modification reduces gefitinib resis-
tance (GR) in NSCLC patients via the FTO/YTHDF2/ABCC10 axis [142]. The development
of selective inhibitors to RNA modification regulators for future clinical applications would
create more effective therapeutic approaches for treating lung cancers and chronic lung
diseases.

5. Conclusions and Future Perspectives

In conclusion, this article reviews the recent advances in the function and molecular
mechanism of RNA epigenetics in the progression of chronic lung diseases. RNA epige-
netics is expected to be a research tool for the development of new diagnostic biomarkers
with clinical value. Enzymes involved in regulating RNA modification can be new targets
for the treatment of chronic lung diseases. Most of the m6A regulators are upregulated in
cancer and play a role in promoting tumor growth. These regulators, including METTL3,
METTL14, and WTAP, and their key targets are associated with the clinical characteristics
of various cancer patients, which may provide new possibilities for early cancer diagno-
sis [143]. The combination of m6A targeted drugs with traditional chemotherapy drugs or
PD-1/PD-L1 inhibitors has great therapeutic prospects [144]. The mechanism by which
IL-37 inhibits the proliferation of LUAD cells and is used to treat NSCLC patients is also
related to m6A methylation [141]. YTHDF1 knockout can significantly enhance the thera-
peutic effect of PD-L1 immune checkpoint blocking, suggesting that YTHDF1 is a potential
therapeutic target in tumor immunotherapy [145]. The m5C deletion of mitochondrial
RNA in tumor cells can reduce the metastasis and invasion of cancer cells. This means that
when cancer patients undergo clinical treatment, they can inhibit the metastasis and spread
of cancer cells by inhibiting m5C modification in mitochondria, thus increasing clinical
benefits. As an enzyme responsible for modifying RNA, NSUN3 is only used to modify the
formation of m5C, so it is a very promising drug target [146]. RNA modification provides a
new research direction for the early diagnosis and treatment of tumors.

In the future, precision medicine based on RNA epigenetics may target individual
patients with chronic lung diseases for diagnosis and treatment. However, the function of
these chemical modifications in both coding and noncoding RNAs remains in its infancy,
and collaborative efforts are still needed to establish a clear link between RNA epigenetics
and chronic lung diseases. At present, many new methods of RNA modification have
emerged, among which Direct RNA sequencing is the representative one. Through the
unique way of the library building and relying on the algorithm, the collection of RNA
modification information at the single base level can be achieved. The development of RNA
modification quantitative map databases (such as DirectRMDB) based on this sequencing
method also undoubtedly opens another direction for RNA modification detection [147].
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In brief, the advances in RNA epigenetics detection technologies will undoubtedly lead to
the discovery of new mechanisms regulating gene expression in chronic lung diseases in
the future.
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