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Abstract

Background: Tomato yellow leaf curl virus (TYLCV), a monopartite begomovirus (family Geminiviridae) is responsible

for heavy yield losses for tomato production around the globe. In Oman at least five distinct begomoviruses

cause disease in tomato, including TYLCV. Unusually, TYLCV infections in Oman are sometimes associated with a

betasatellite (Tomato leaf curl betasatellite [ToLCB]; a symptom modulating satellite). RNA interference (RNAi) can be

used to develop resistance against begomoviruses at either the transcriptional or post-transcriptional levels.

Results: A hairpin RNAi (hpRNAi) construct to express double-stranded RNA homologous to sequences of

the intergenic region, coat protein gene, V2 gene and replication-associated gene of Tomato yellow leaf curl

virus-Oman (TYLCV-OM) was produced. Initially, transient expression of the hpRNAi construct at the site of

virus inoculation was shown to reduce the number of plants developing symptoms when inoculated with either

TYLCV-OM or TYLCV-OM with ToLCB-OM to Nicotiana benthamiana or tomato. Solanum lycopersicum L. cv. Pusa Ruby

was transformed with the hpRNAi construct and nine confirmed transgenic lines were obtained and challenged with

TYLCV-OM and ToLCB-OM by Agrobacterium-mediated inoculation. For all but one line, for which all plants remained

symptomless, inoculation with TYLCV-OM led to a proportion (≤25%) of tomato plants developing symptoms of

infection. For inoculation with TYLCV-OM and ToLCB-OM all lines showed a proportion of plants (≤45%) symptomatic.

However, for all infected transgenic plants the symptoms were milder and virus titre in plants was lower than in infected

non-transgenic tomato plants.

Conclusions: These results show that RNAi can be used to develop resistance against geminiviruses in tomato. The

resistance in this case is not immunity but does reduce the severity of infections and virus titer. Also, the betasatellite

may compromise resistance, increasing the proportion of plants which ultimately show symptoms.
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Background
Tomato (Solanum lycopersicum L.) is the sixth largest

horticulture crop grown in tropical and subtropical re-

gions [1]. Tomato yellow leaf curl disease (TYLCD) has

become the key limiting factor for the production of to-

mato in many areas [2]. Since the first report of TYLCD

by Cohen [3] in Israel, the virus causing the disease has

spread and now causes heavy yield losses worldwide [4].

Tomato yellow leaf curl virus (TYLCV) is a monopartite

begomovirus (genus Begomovirus, family Geminiviridae),

with a genome of 2.6-2.8 kb, that is transmitted by the

whitefly Bemisia tabaci. Geminiviruses replicate via a

double-stranded (ds) DNA intermediate and transcription

occurs in a bidirectional manner from a non-coding inter-

genic region (IR). The genomes of monopartite begomo-

viruses from the OW encode six proteins. The genes in the
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virion-sense encode the coat protein (CP; involved in virus

movement in and between plants) and pre-coat protein

(a virulence determinant, suppressor of gene silencing

and involved in virus movement in plants) [5-9]. The

complementary-sense strand encodes the replication-

associated protein (Rep; the only virus-encoded protein

required for viral DNA replication that is a rolling-

circle replication [RCR] initiator protein), the transcrip-

tional activator protein (TrAP; involved in up-regulating

late gene expression and may be a suppressor of gene si-

lencing), the replication enhancer protein (REn), and the

C4 protein (a pathogenicity determinant which may act

as a suppressor of gene silencing) [7,10-12]. The IR re-

gion (~300 nt) contains the origin of virion-strand DNA

replication consisting of a predicted stem-loop structure

containing the conserved (among all geminiviruses) non-

anucleotide sequence TAATATTAC (which is nicked by

the Rep to initiate RCR) and high affinity Rep recognition

sequences known as iterons [13,14]. Begomoviruses in

the OW are often associated with a class of DNA satellite

molecules referred to as betasatellite [15]. Betasatellites

are true satellites that require a helper virus for their rep-

lication and movement in plants and transmission be-

tween plants [16,17].

TYLCV-like symptoms in Oman were first observed in

late 80’s by the Ministry of Agriculture and Fisheries

(MAF), although the causative agent was not identified

as TYLCV until 2007 [18]. The virus identified in Oman

showed the highest levels of nucleotide sequence identity

(91%) to TYLCV and is a distinct strain of the species;

the Oman strain of TYLCV (TYLCV-OM). Additionally,

a betasatellite was identified in association with TYLCV-

OM having 88.5% nucleotide sequence identity with

Tomato leaf curl betasatellite (ToLCB) isolated from

Pakistan [18].

In Oman, farmers use three major management prac-

tices to control TYLCV; insecticides, a physical barrier

(AGRYL™ cover) and partially resistant tomato cultivars.

Despite these control measures the incidence of TYLCV

may at times reach 100% on some farms in Oman [18].

Conventional breeding is considered the simplest and

most reliable strategy for obtaining resistance [19].

However, conventional breeding is a time consuming

procedure and sometimes may lead to undesirable char-

acteristics due to linkage drag [20]. However, conven-

tional breeding has not been entirely effective in

controlling crop losses due to begomoviruses or the

whitefly vector. Genetic engineering has the potential to

address this issue and offers an alternative route to virus

resistance in plants. RNA interference (RNAi) provides a

possible solution to address the control of diseases

caused by begomoviruses [21,22].

RNAi (also known as gene silencing) is an evolution-

arily conserved mechanism for down-regulating gene

expression in a sequence-specific manner that is triggered

by double-stranded (ds)RNA. Begomoviruses are targeted

by gene silencing both at the transcriptional level (tran-

scriptional gene silencing [TGS]), that results in viral

DNA methylation, and the post-transcriptional level (post-

transcriptional gene silencing [PTGS]), which results in

degradation of viral transcripts. Both TGS and PTGS

involve a dsRNA trigger that is cleaved into short interfer-

ing (si)RNAs by an RNase referred to as Dicer. The

siRNAs then provide the sequence specificity for silencing.

For PTGS siRNAs are incorporated into an enzyme com-

plex, the RNA-induced silencing complex (RISC), which

degrades mRNAs homologous to the incorporated siRNA

[23-26]. The introduction into plants of a sequence hom-

ologous to the virus, in the form of an inverted repeat

hairpin (hp) construct, is an efficient method to provide

virus resistance in plants by inducing gene silencing [27].

The success of RNAi based resistance relies on a silencing

signal which is not only limited to individual cell, but can

spread from the initially infected cells to more distant

tissues [28,29].

Although geminiviruses have no dsRNA stage in their

replication cycle they do induce the production of virus-

specific siRNA and have been shown to trigger PTGS in

infected plants [30,31]. An increased accumulation of

cassava-infecting geminivirus-derived siRNAs in infected

cassava is associated with a corresponding decrease in

disease symptom severity [30], providing a clue for RNAi

as an adaptive defense against geminiviral infection in

plants. Unlike the RNA viruses, which are affected by

only PTGS, geminiviruses are affected by both PTGS

and TGS. TGS is triggered when siRNA homologous to

the promoter regions are produced, leading to inhibition

of transcription due to methylation of promoter se-

quences [32]. TGS was shown to be effective against the

begomovirus Mungbean yellow mosaic virus (MYMV) in

a transient assay in which it was shown that MYMV-

infected black gram (Vignamungo) plants showed

complete recovery from infection after inoculation of

an RNAi construct targeting viral promoter sequences

in the IR [33]. Recently RNAi-based resistance has

been successfully applied in beans against Bean golden

mosaic virus (BGMV) in Brazil. Transgenic bean lines

were tested in the field and showed immunity to

BGMV infection. These transgenic beans are now avail-

able to farmers for cultivation; the first commercially

available RNAi-based resistance in a crop against a gemi-

nivirus [34,35].

The study described here has investigated the hpRNAi

strategy as a means to control the TYLCV complex

in Oman by targeting four regions of the TYLCV-

OM genome. The hpRNAi construct was transformed

in S. lycopersicum L. plants by Agrobacterium-mediated

transformation. Resistance was evaluated in transgenic
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tomato plants by challenging with TYLCV-OM and

ToLCB. The potential of multi-targeted hpRNAi strategy

for delivering resistance to begomoviruses is discussed.

Results
Evaluation of the resistance imparted by the hpRNAi

construct by transient assay

A multi-target hpRNAi construct containing sequences

of the Rep gene, IR region, V2 and overlapping CP genes

of TYLCV-OM was produced. This consisted of 112 bp

of IR (coordinates19-128), 161 bp of V2 (coordinates

129-288), 127 bp of the overlapping CP and 175 bp

(coordinates 1760-1934) of the Rep. The 575 bp frag-

ment was inserted in the expression vector in sense and

antisense orientation separated by an intron to form a

hairpin-loop structure. The whole RNAi cassette was

expressed from a double Cauliflower mosaic virus (CaMV)

35S promoter.

N. benthamiana plants inoculated with TYLCV-OM

or TYLCV-OM/ToLCB-OM showed the first symptoms

of infection at15 days post inoculation (dpi) and all

plants were ultimately symptomatic by 30 dpi (Table 1).

The symptoms consisted of mild leaf curling which

gradually increased in severity. By 30 dpi plants showed

severe stunting, leaf curling, vein swelling and foliar yel-

lowing (Figure 1, panels I and J). Overall the symptoms

for TYLCV-OM/ToLCB-OM infected plants were more

severe than those of TYLCV-OM inoculated plants, with

leaves being smaller with more pronounced leaf curling,

yellowing and vein swelling.

In contrast the majority of N. benthamiana plants

co-inoculated with the hpRNAi construct and either

TYLCV-OM or TYLCV-OM/ToLCB-OM remained

symptomless (Table 1). Overall more plants were symp-

tomatic when the virus was inoculated with the betasatel-

lite (10/30) than when the virus was inoculated alone

(8/30). Analysis of inoculated N. benthamiana plants

by Southern blot hybridization showed hybridization

of both the virus and the betasatellite probes to DNA

samples extracted from plants inoculated with the

hpRNAi construct and either TYLCV-OM or TYLCV-

OM/ToLCB-OM (Table 1) for a small number of plants;

1 out of 30 and 7 out of 30, respectively. Again, more

plants were positive from inoculation with the virus and

betasatellite than with just the virus. PCR diagnostics in-

dicated that for plants co-inoculated with the hpRNAi

construct, the majority of the plants contained virus but

that the presence of the betasatellite increased the

number of plants that ultimately were virus positive; 16

out of 30 for TYLCV-OM inoculated plants and 21 out

of 30 for TYLCV-OM/ToLCB-OM inoculated plants.

A Southern blot analysis of the PCR positive, non-

symptomatic, hpRNAi construct and either TYLCV-OM

or TYLCV-OM/ToLCB-OM inoculated plants is

shown in Figure 1, panels K and L. This shows no

hybridization, suggesting that virus and betasatellite

levels in these plants were below the threshold for

detection by hybridization.

All tomato plants co-inoculated with the hpRNAi con-

struct and TYLCV-OM, in the absence or presence of

Table 1 Effect of the transient expression of the hpRNAi construct on the infectivity of TYLCV-OM and TYLCV-OM/ToLCB-OM

in Nicotianabenthamianaplants

Inoculum Experiment Infectivity (plants symptomatic/inoculated) SS* % Resistance Molecular diagnosis

15 dpi 30dpi 40 dpi PCR Southern for
TYLCV-OM

Southern for
ToLCB-OM

Non-inoculated - 0/10 0/10 0/10 0 NA _ _ _

TYLCV-OM I 10/10 10/10 10/10 3 - 10/10 10/10 _

II 10/10 10/10 10/10 3 - 10/10 10/10 _

III 10/10 10/10 10/10 3 - 10/10 10/10 _

TYLCV-OM/ ToLCB-OM I 10/10 10/10 10/10 3 - 10/10 10/10 10/10

II 10/10 10/10 10/10 3 - 10/10 10/10 10/10

III 10/10 10/10 10/10 3 - 10/10 10/10 10/10

TYLCV-OM + hpRNAi I 0/10 1/10 2/10 1 80 6/10 0/10 0/10

II 0/10 2/10 2/10 1 80 4/10 0/10 0/10

III 0/10 3/10 4/10 2 60 6/10 1/10 0/10

TYLCV-OM/ToLCB-OM+
hpRNAi

I 0/10 3/10 4/10 1 60 7/10 0/10 0/10

II 0/10 3/10 3/10 2 70 6/10 3/10 2/10

III 0/10 2/10 3/10 2 70 8/10 4/10 4/10

*Symptom severity for symptomatic plants rated according to AVDRC disease severity scale (0: Normal healthy plant, 1: light leaf yellowing, 2: moderate plant

stunting with leaf yellowing and curling, 3: Severe plant stunting with leaf curling and yellowing).
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ToLCB-OM, remained symptomless (Table 2; Figure 1,

panels A-D). These plants continued to grow nor-

mally and flower. In contrast, non-transgenic tomato

plants developed foliar yellowing and mild leaf curl-

ing by 30 dpi when inoculated with TYLCV-OM

(Figure 1, panel E), while plants inoculated with

TYLCV-OM/ToLCB-OM developed more severe foliar

yellowing, stunting and leaf curling by 30 dpi (Figure 1,

panel F).

Southern blot analysis of tomato plants detected

viral DNA forms typical of geminivirus replication

for plants inoculated with TYLCV-OM and TYLCV-

OM/ToLCB-OM (Figure 1, panel K). Blots probed for

the presence of the betasatellite showed hybridization

Figure 1 Resistance to infection by TYLCV-OM and TYLCV-OM/ToLCB-OM imparted by the transient expression of the hpRNAi construct.

Tomato plants inoculated with TYLCV-OM and the hpRNAi construct (A and B), TYLCV-OM/ToLCB-OM and the hpRNAi construct (C and D), TYLCV-OM

(E) or TYLCV-OM/ToLCB-OM (F). N. benthamiana plants inoculated with TYLCV-OM and the hpRNAi construct (G), TYLCV-OM/ToLCB-OM and

the hpRNAi construct (H), TYLCV-OM/ToLCB-OM (I) or TYLCV-OM (J). Photographs of plants were taken at 30 dpi. Southern blot probed for

the presence of TYLCV-OM sequences (K). The DNA samples run on the gel were extracted from a healthy, non-inoculated N. benthamiana

plant (lane 2), N. benthamiana plants inoculated with TYLCV-OM (lane 3), hpRNAi and TYLCV-OM (lanes 7 and 8) and tomato plants

inoculated with TYLCV-OM (lane 4) or hpRNAi and TYLCV-OM (lanes 5 and 6). The sample in lane 1 consisted of 50 ng of TYLCV-OM plasmid.

With the exception of lane 1, approx. equal amounts (10 μg) of total DNA extract was loaded in each case. Southern blot probed for the

presence of ToLCBV-OM sequences (L). The DNA samples run on the gel were extracted from a healthy, non-inoculated N. benthamiana plant

(lane 1) and N. benthamiana plants inoculated with TYLCV-OM/ToLCB-OM (lane 2) or hpRNAi and TYLCV-OM/ToLCB-OM (lanes 6 and 7) and

tomato plants inoculated with TYLCV-OM/ToLCB-OM (lane 3) or hpRNAi, TYLCV-OM/ToLCB-OM (lanes 4 and 5). Approx. equal amounts

(10 μg) of total DNA extract were loaded in each case. The positions of the viral single-stranded (ss) and supercoiled (sc) replicative DNA

forms are indicated.
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of ssDNAfor TYLCV-OM/ToLCB-OM inoculated to-

mato (Figure 1, panel L). In contrast, for none of the

tomato plants inoculated with either TYLCV-OM or

TYLCV-OM/ToLCB-OM in the presence of the hpRNAi

construct was hybridization to either virus or betasatellite

probes detected. With the exception of a single plant,

TYLCV-OM and ToLCB-OM were not detected by PCR

in tomato plants co-inoculated with the hpRNAi construct,

whereas specific DNA bands indicative of the virus/

betasatellite were produced for PCR reactions containing

DNA extracted from symptomatic plants that had been in-

oculated with TYLCV-OM or TYLCV-OM/ToLCB-OM

but without the hpRNAi construct (Table 2).

Production of transgenic S. lycopersicum cv. Pusa

Ruby plants

S. lycopersicum L.cv. Pusa Ruby plants were transformed

with the hpRNAi construct by Agrobacterium-mediated

transformation. A total of 11 kanamycin resistant, pri-

mary transformed tomato plants were obtained. How-

ever, PCR analysis using primers CS-For/CS-Rev

(Table 3), directing the amplification of an approx.

1100 bp fragment of the chalcone synthase intron,

indicated that only 9 plants contained the transgene.

These 9 plants were progressed to the T1 generation

by self-pollination and used for evaluation of resistance

against TYLCV-OM and TYLCV-OM/ToLCB-OM. All

putative transgenic lines (20 seed of each line) were ger-

minated on 500 mg/L kanamycin selection medium be-

fore transfer to soil in pots.

Transgenic tomato plants harboring the hpRNAi construct

are resistant to TYLCV-OM and the TYLCV-OM/ToLCB-OM

complex

All non-transgenic wild type S. lycopersicum cv. Pusa

Ruby plants inoculated with TYLCV-OM (Figure 2

panel J) and TYLCV-OM/ToLCB-OM (Figure 3

panel J) developed severe yellowing, leaf curling and

a reduced leaflet size, symptoms typical of this virus,

by 30 dpi (Table 4). Such plants ceased to grow, fail-

ing to flower and produce fruit. Plants inoculated

with TYLCV-OM/ToLCB-OM exhibited more severe

symptoms than plants inoculated with only the virus,

with significantly smaller leaflets.

The majority of inoculated transgenic plants remained

symptomless. With the exception of plants of line 41, for

Table 2 Effect of the transient expression of the hpRNAi construct on the infectivity of TYLCV-OM and TYLCV-OM/ToLCB-OM

in tomato cv Pusa Ruby plants

Treatments Experiment Infectivity (plants symptomatic/inoculated) SS* % Resistance Molecular diagnosis

15 dpi 30 dpi 40 dpi PCR Southern for
TYLCV-OM

Southern for
ToLCB

Non-inoculated 0/10 0/10 0/10 0 NA _ _ _

TYLCV-OM I 0/10 10/10 10/10 3 - 10/10 10/10 _

II 0/10 10/10 10/10 3 - 10/10 9/10 _

III 0/10 10/10 10/10 3 - 10/10 10/10 _

TYLCV-OM/ToLCB-OM I 0/10 10/10 10/10 3 - 10/10 10/10 8/10

II 0/10 10/10 10/10 3 - 10/10 9/10 8/10

III 0/10 10/10 10/10 3 - 10/10 10/10 9/10

TYLCV-OM + hpRNAi I 0/10 0/10 0/10 0 100 0/10 0/10 0/10

II 0/10 0/10 0/10 0 100 0/10 0/10 0/10

III 0/10 0/10 0/10 0 100 0/10 0/10 0/10

TYLCV-OM/ToLCB-OM+
hpRNAi

I 0/10 0/10 0/10 0 100 0/10 0/10 0/10

II 0/10 0/10 1/10 1 90 1/10 0/10 0/10

III 0/10 0/10 0/10 0 100 0/10 0/10 0/10

*Symptom severity for symptomatic plants rated according to AVDRC disease severity scale (0: Normal healthy plant, 1: light leaf yellowing, 2: moderate plant

stunting with leaf yellowing and curling, 3: severe plant stunting with leaf curling and yellowing).

Table 3 Oligonucleotide primers used in the study

Primer Sequence*

CS-For 5′-CCGACGAATTGTGGGAAGGT-3′

CS-Rev 5′-GCATAGCATGCAAAAACCCTCA-3′

FD-CP-382 5′-CTSARCTTCGACAGCCCXTA-3′

RD-CP-1038 5′-TGMGTACAXGCCATATACAA-3′

Sat01 5′-GGTACCACTACGCTACGCAGCAGCCGGT-3′

Sat02 5′-ACCTACCCTCCCAGGGGTACAC-3′

QF-OM 5′-GAAGCCCTGATGTTCCCCGTGG-3′

QR-OM 5′-CGATTTAACACAGAACCTCTTACC-3′

*The ambiguity codes used are X = A or T or G or C; S = G or C; R = A or G;

M = C or A.
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which no plants inoculated with TYLCV-OM showed

symptoms, all lines showed up to 25% of plants mildly

symptomatic following inoculation with TYLCV-OM

and up to 45% of plants for inoculation with TYLCV-

OM/ToLCB-OM by 60dpi (Table 4). The symptoms

exhibited were some mild leaf curling and mild yellow-

ing for TYLCV-OM inoculated and mild leaf curling

and mild yellowing with occasionally severe symptoms

(severe yellowing and reduced leaflet size) on single

branches (Figure 3, panels C to E) for TYLCV-OM/

ToLCB-OM inoculated plants.

A Southern blot hybridization analysis of inoculated

tomato plants detected high levels of both virus and

betasatellite in symptomatic non-transgenic plants.

However, with the exception of one plant, in which low

levels of the betasatellite were detected, no virus or beta-

satellite DNA could be detected in inoculated transgenic

plants (Figure 4).

Quantitative PCR determination of virus titer in plants

The levels of virus in tomato plants inoculated with

either TYLCV-OM or TYLCV-OM/ToLCB-OM were

Figure 2 Analysis of the resistance imparted by the hpRNAi construct in transgenic tomato to infection by TYLCV-OM. Plants of

transgenic tomato cv. Pusa Ruby lines 11, 12, 13, 18, 21, 23, 41, 51 and 52 inoculated with TYLCV-OM (A to I). A TYLCV-OM inoculated wild-type

Pusa Ruby plant is shown for comparison (J). Photographs were taken at 60 dpi.

Figure 3 Analysis of the resistance imparted by the hpRNAi construct in transgenic tomato to infection by TYLCV-OM/ToLCB-OM.

Plants of transgenic tomato cv. Pusa Ruby lines 11, 12, 13, 18, 21, 23, 41, 51 and 52 inoculated with TYLCV-OM/ToLCB-OM (A to I). A TYLCV-OM/

ToLCB-OM inoculated wild-type Pusa Ruby plant is shown for comparison (J). Photographs were taken at 60 dpi.
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Table 4 Evaluation of the response of transgenic tomato lines harbouring the hpRNAi construct to challenge with TYLCV-OM and TYLCV-OM/ToLCB-OM

Transgenic line TYLCV-OM (30 dpi) TYLCV-OM/ToLCB (30 dpi) TYLCV-OM (60 dpi) TYLCV-OM/ToLCB (60 dpi)

Plants symptomatic/
inoculated

SS* % Resistance Plants symptomatic/
inoculated

SS* % Resistance Plants symptomatic/
inoculated

SS* % Resistance Plants symptomatic/
inoculated

SS* % Resistance

11 2/20 1 90 4/20 1 80 5/20 1 75 6/20 1 70

12 2/20 1 90 4/20 1 80 4/10 2 80 7/20 2 65

13 1/20 1 95 6/20 1 70 1/20 1 95 7/20 1 65

18 2/20 1 90 4/20 2 80 5/20 2 75 7/20 2 65

21 0/20 0 100 5/20 1 75 4/20 1 80 7/20 1 65

23 1/20 1 95 2/20 1 90 5/20 1 75 9/20 1 55

41 0/20 0 100 4/20 1 80 0/20 0 100 4/20 1 80

51 2/20 1 90 4/20 2 80 4/20 1 80 7/20 1 65

52 0/20 0 100 2/20 1 90 4/20 1 80 5/20 1 75

NC** 0/10 - - 0/10 - - 0/10 - - 0/10 - -

PC*** 10/10 1 0 10/10 2 0 10/10 3 0 10/10 3 0

The data presented in each case is the sum of two independent experiments with 10 plants each.

*Symptom severity rated according to AVDRC disease severity scale (0: Normal healthy plant, 1: light leaf yellowing, 2: moderate plant stunting with leaf yellowing and curling, 3: Severe plant stunting with leaf curling

and yellowing).

**Non-transgenic tomato cv. Pusa Ruby plants inoculated with pGreen0029 vector with no insert.

***Non-transgenic tomato cv. Pusa Ruby plants inoculated with TYLCV-OM or TYLCV-OM/ToLCB.
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determined by a real time quantitative PCR (qPCR)

assay on DNA samples extracted from plants at 60 dpi.

The efficiency of qPCR reaction was 99.3% and a melt-

curve analysis resulted in a single peak, indicative of the

amplification of a single product. PCR reactions with

DNA extracted from wild type non-inoculated tomato

plants did not reach the threshold cycle (Ct), indicative

of no viral DNA in these samples. The qPCR analyses

showed the presence of the virus in all inoculated to-

mato plants, including the transgenic plants. However,

the level of virus was significantly lower in all trans-

genic plants than in the non-transgenic control plants

(Figure 5). Overall the worst performing line (based on

the qPCR results) was line 23 (with an <340 fold lower

virus titre than non-transgenic plants) and the best per-

forming lines were 18 and 52 (with a > 290,000 fold re-

duction). Also, for the majority of plants (both transgenic

and non-transgenic) the levels of virus were significantly

higher in plants inoculated with TYLCV-OM/ToLCB-

OM than in plants inoculated with just the virus.

Discussion
The results presented here have shown that the hpRNA

approach to generating resistance in plants, targeted

against four parts of the virus genome, has the potential

to yield resistance against the begomovirus TYLCV-OM;

a virus causing significant losses to tomato production

in Oman. The majority of inoculated transgenic plants

remained symptomless with one line, line 41, showing

100% resistance (no plants with symptoms) after inocu-

lation with TYLCV-OM and 80% resistance following in-

oculation with TYLCV-OM/ToLCB-OM. However, the

qPCR analysis showed all inoculated plants to contain

virus but at levels significantly below the titer of non-

transgenic plants. The level of resistance obtained here

is thus best described as a “tolerance” to infection. This

finding is consistent with a number of studies that have

investigated transgenic resistance to geminiviruses using

the RNAi approach [36-38].

For the majority of transgenic plants as well as the

non-transgenic plants inoculated in the presence of the

betasatellite the virus titer was higher than in plants in-

oculated with the virus alone. This is consistent with

what is known about betasatellites which, in most cases,

increase helper virus DNA levels in plants [39,40]. The

precise reason for the increase in virus DNA levels

induced by betasatellites is unclear. This could be due

to the activity of the only protein expressed by betasatel-

lites, known as βC1, which is a suppressor of gene

silencing and is also believed to play a part in virus

movement in plants [41,42].

Mubin et al. [43] have shown that betasatellites have

the potential to overcome RNAi mediated resistance

against begomoviruses. This work showed that an

hpRNAi construct containing sequences of the Rep,

TrAP and REn of the monopartite begomovirus Cotton

leaf curl Multan virus could prevent symptomatic infec-

tion by transient assay in N. benthamiana, but that in

the presence of the cognate betasatellite, Cotton leaf curl

Mutan betasatellite, a significant number of plants devel-

oped symptoms. The results presented here are consist-

ent with this. For all the transgenic lines, the presence of

the betasatellite resulted in more symptomatic plants

with more severe symptoms. This is likely due to the

betasatellite increasing virus titre above the threhold

level for inducing symptoms and the fact that betasatel-

lites encode a dominant symptom (pathogenicity) deter-

minant [44].

It remains unclear whether RNAi will be able to de-

liver effective resistance, which is durable in the field,

against geminiviruses. The transgenic beans in Brazil

with engineered resistance to BGMV are so far the only

Figure 4 Southern blot analysis of transgenic tomato plants

harboring the hpRNAi construct inoculated with TYLCV-OM

probed for the presence of TYLCV-OM (A) and inoculated with

TYLCV-OM/ToLCB-OM probed for the presence of ToLCB-OM

(B). The DNA samples run on the gel were extracted from a

non-transgenic non-inoculated tomato cv. Pusa Ruby plant (N),

symptomatic TYLCV-OM (panel A) or TYLCV-OM/ToLCB-OM (panel B)

inoculated non-transgenic Pusa Ruby plants (C) and two plants each

of 9 transgenic Pusa Ruby lines (as indicated on the figure) inoculated

with either TYLCV-OM (panel A) or TYLCV-OM/ToLCB-OM (panel B).

Approx. 10 μg of total DNA was loaded on each case and the samples

were extracted at 60 dpi. The positions of the viral single-stranded (ss)

and supercoiled (sc) replicative DNA forms are indicated.
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RNAi-based resistance to a plant infecting DNA virus

that has been commercialized. This resistance is re-

ported to be at immunity level [34,35,45]. For all other

reported efforts to produce RNAi-based resistance in

plants to begomoviruses the results have been less suc-

cessful, usually resulting in tolerant plants that contain

low levels of viral DNA and are non-, or very mildly,

symptomatic [36-38]. RNA silencing in plants involves

RNA-directed DNA methylation (RdDM), in which

DNA homologous to a triggering RNA is methylated de

novo leading to TGS [32,46]. This is believed to be,

amongst other things, an adaptive defense mechanism

against nuclear DNA viruses [29,47]. As a counter-

defense geminiviruses have evolved proteins capable of

suppressing methylation, which may explain why the

development of RNAi-based resistance against gemini-

viruses has proven so problematic. The begomovirus-

encoded suppressors of TGS include Rep, TrAP, V2

and the betasatellite-encoded βC1 [9,48-50]. The RNAi

construct produced here was designed to both induce

TGS (by including promoter sequences present in the

IR) and post-transcriptionally silence two of the genes of

proteins known to suppress TGS (V2 and Rep). Further

studies will be required to determine whether TGS is

occurring in the transgenic tomato lines.

A drawback of RNAi-mediated resistance is that it is

sequence homology based. Thus, the resistance will only

be effective against viruses with high levels of sequence

identity across the targeted region [51]. In Oman at least

five distinct begomoviruses cause disease in tomato

[18,52-55]. Given that the ultimate goal is to produce

tomato lines with a broad-spectrum resistance to all to-

mato infecting viruses occurring in Oman, the potential

of the RNAi construct produced here to counter infec-

tion by the heterologous viruses should be investigated.

However, it would seem likely that either separate con-

structs for each virus or a single construct, but utilizing

sequences conserved between all the viruses, would be

Figure 5 Real-time quantitative PCR assay of TYLCV-OM in transgenic and non-transgenic tomato cv. Pusa Ruby plants inoculated with

TYLCV-OM and TYLCV-OM/ToLCB-OM. The bars indicate calculated virus titre (genome copies per 25 ng total DNA) in each case. The results

are from qPCR reactions with DNA extracted from inoculated non-transgenic tomato cv. Pusa Ruby plants (C), a non-inoculated non-transgenic

plant (N) and four plants each of 9 transgenic Pusa Ruby lines (as indicated on the figure) that were inoculated. For all the inoculated plants the

left two bars (indicated by a yellow block at the base) are plants inoculated with only TYLCV-OM and the right two bars (indicated by a green

block at the base) are plants inoculated with TYLCV-OM and ToLCB-OM. Each bar is the mean of three replicates of the qPCR reaction and the

error bars indicate standard deviation. The leaf samples from which DNA was extracted were collected at 60 dpi.
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required. Investigation of these problems will be the ob-

jective of future studies.

Materials and methods
Production of the hpRNAi construct

A modified pGreen 0029 binary vector [56] was pro-

duced by designing a multiple cloning site (MCS) con-

taining restriction and homing endonuclease recognition

sequences (Additional file 1: Figure S1). The 237 bp

MCS was synthesized by GenScript Inc. (New Jersey,

USA) and provided in the plasmid vector pUC57. The

modified MCS was excised on flanking EcoRV sites and

cloned into pGreen 0029.

The hpRNAi construct consisted of 574 bp of se-

quence derived from TYLCV-OM (acc. no. DQ644565)

cloned sense (virion-sense, with respect to the virus) and

antisense (complementary-sense) separated by a chal-

cone synthase intron (sequence derived from the binary

vector pFGC5941; acc. no. AY310901), with upstream a

double CaMV 35S promoter and downstream a CaMV

35S terminator sequence (both derived from the binary

vector pEAQ-HT [acc. no. GQ497234]). The 574 bp

TYLCV-OM derived sequence consisted of a 175 bp

fragment of the Rep gene (TYLCV-OM coordinates

1760-1934; antisense orientation with respect to the Rep

gene) and a 399 bp fragment spanning the 3′ part of the

IR, the 5′ ends of the V2 and overlapping CP genes

(TYLCV-OM coordinates131-418).

The complete construct (4097 bp) consisting of 2x35S

promoter, sense TYLCV sequence, chalcone synthase in-

tron, antisense TYLCV sequence and 35S terminator,

flanked by I-CeuI and PI-PspI/PI-SceI sites, was synthe-

sized by GenScript and supplied in pUC57 (Additional

file 2: Figure S2). The expression cassette (4067 bp) was

then excised using I-CeuI and PI-PspI and ligated into

the modified pGreen0029 binary vector.

Tomato transformation

The modified pGreen0029 vector containing the hpRNAi

construct was transformed by electroporation in Agro-

bacterium tumefaciens AGL1. Agrobacterium-mediated

transformation of tomato cv. Pusa Ruby was con-

ducted as described earlier [57]. Nine primary trans-

formant plants were confirmed to contain the hpRNAi

construct by PCR with primer pair CS-For/CS-Rev

which are designed to amplify the chalcone synthase

intron fragment from the construct (Table 3). The 9

plants were self-pollinated and seed was collected. The

seed were germinated on MS basal medium containing

500 mg/L kanamycin and unbleached seedlings were

transferred to pots containing autoclaved soil and

maintained in a glasshouse at 28-29°C and 80-90% relative

humidity. These T1 generation transgenic plants were used

for virus inoculation.

Agrobacterium-mediated inoculation of plants with

TYLCV-OM and ToLCB-OM

Agro-infectious clones TYLCV-OM (acc. no. DQ644565)

and ToLCB-OM (acc. no.HE800544) were used to infect

tomato plants. Three leaves per plants were inoculated.

Non-transgenic Pusa Ruby tomato plants of the same age

were infiltrated with TYLCV-OM and TYLCV-OM/

ToLCB-OM as positive controls. All plants were main-

tained in an insect-free glasshouse and monitored daily for

the appearance of symptoms. Leaf samples from all plants

were collected at 60 dpi. Total genomic DNA was isolated

from leaf tissues by the CTAB method [58]. The presence

of TYLCV-OM and ToLCB-OM was assessed by PCR

using primer pairs FD-CP-382/RD-CP-1038 and Sat01/

Sat02, respectively (Table 3).

Southern hybridization

DNA samples (~10 μg) were electrophoresed in 1% agar-

ose gels in 1X TBE buffer at 60-80 volts for 5 to 6 hours.

DNA was transferred to Hybond N+ (Amersham) nylon

membrane by capillary transfer in 10 X SSC. The mem-

brane was air dried, UV cross-linked and stored at 4°C

until use between two sheets of wet Whatman filter

paper.

For detection of the virus a 650 bp fragment of the CP

gene of TYLCV-OM was PCR amplified by using

primers FDCP/RDCP.A 1084 bpBamHI- XbaI fragment

of the ToLCB-OM clone was gel purified for the detec-

tion of the betasatellite. These DNA fragments were

labeled with digoxigenin using a DIG-High Prime DNA

Labeling and Detection Starter Kit I (Roche GmbH,

Germany).

Blots were hybridized with the respective probes at

42°C for 12-16 hours. Unbound probe was removed

by washing with 2XSSC, 0.1% SDS and 1X SSC, 0.1%

SDS for 30 min each. Hybridization of probes was

detected using CDP star (Roche) and X-ray film

(AmershamHyperfilm, GE Life Sciences) according to

the manufacturer’s instructions.

Quantitative real time PCR

Primer pair QF-OM and QR-OM, which amplify a 50 bp

product of the TYLCV-OM CP gene, was used for quan-

tification of the virus (Table 3). The copy number of

virus was calculated by reference to a standard curve

obtained by serial dilution of a plasmid containing the

full-length TYLCV-OM (acc. no. DQ644565). Reaction

mixes consisted of 10 μl of 1XPower SYBR Green mas-

ter mix (Life Technologies, USA), 0.10 μl of each primer

(10 pmol) and 2.5 μl of DNA sample (10 ng/μl) in a total

volume of 25 μl.

PCR reactions were carried out in clear optical plates

inan Applied Biosystems 7500 (Life Technologies) real

time PCR detection system. The machinewas programmed
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for 1 cycle at 94°C for 5 min, followed by 35 cycles of 30s

at 94°C, 30s at 55°C and 30s at 72°C. All reactions were

conducted in triplicate. Data analysis was performed using

Applied Biosystems 7500 software version 2.0.6.

Additional files

Additional file 1: Modified MCS in pGreen vector.

Additional file 2: Multigene hpRNAi cassette for TYLCV-OM.
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