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RNA modification of N6-methyladenosine (m6A) plays critical roles in various biological

processes, such as cancer development, inflammation, and the anticancer immune

response. However, the role played by a comprehensive m6A modification pattern in

regulating anticancer immunity in kidney renal clear cell carcinoma (KIRC) has not been

fully elucidated. In this study, we identified two independent m6A modification patterns

with distinct biological functions, immunological characteristics, and prognoses in KIRC.

Next, we developed an m6A score algorithm to quantify an individual’s m6A modification

pattern, which was independently validated in external cohorts. The m6A cluster 1 and

low m6A score groups were characterized by a hot tumor microenvironment with an

increased infiltration level of cytotoxic immune cells, higher tumor mutation burden,

higher immune checkpoint expression, and decreased stroma-associated signature

enrichment. In general, the m6A cluster 1 and low m6A score groups reflected an

inflammatory phenotype, which may be more sensitive to anticancer immunotherapy.

The m6A cluster 2 and high m6A score groups indicated a non-inflammatory phenotype,

which may not be sensitive to immunotherapy but rather to targeted therapy. In this study,

we first identified m6A clusters and m6A scores to elucidate immune phenotypes and to

predict the prognosis and immunotherapy response in KIRC, which can guide urologists

for making more precise clinical decisions.

Keywords: kidney renal clear cell carcinoma, N6-methyladenosine, immune phenotype, immune checkpoint

blockade, tumor microenvironment

INTRODUCTION

Kidney renal clear cell carcinoma (KIRC) is a common urinary cancer with increasing incidence
(1). Despite advances in targeted therapy, the prognosis of patients with advanced KIRC remains
extremely poor (1). The emergence of anticancer immune checkpoint blockade (ICB) therapy has
revolutionized the treatment of advanced KIRC and significantly improved survival status (2–4).
However, response rates to ICB in advanced KIRC are low, even though KIRC is an immunogenic
cancer characterized by a high tumor mutation burden (TMB) (5). These low response rates
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indicated that there were some primary or secondary resistance
mechanisms to ICB. Hence, to decrease adverse events and
economic burden and identify the best candidates to receive ICB
treatment, it is necessary to explore these resistance mechanisms
and identify reliable predictors for response to ICB response.

RNA modification of N6-methyladenosine (m6A) is the
most prominent and abundant RNA modification pattern in
eukaryotic cells (6). M6Amodification is a dynamically reversible
process regulated by methyltransferases (writers), demethylases
(erasers), and binding proteins (readers) (6, 7). Moreover, it plays
a critical role in various biological processes, such as cancer
occurrence, progression and inflammation (8, 9). Recently,
m6A modification has been found to play an essential role
in anticancer immune regulation (10). Wang et al. elucidated
that depletion of METTL3/14 promoted secretion of IFN-γ,
CXCL9, and CXCL10, subsequently inducing infiltration of
CD8+ T cells, which overcomes resistance to ICB (11). In
contrast, another study reported thatMETTL3 activates dendritic
cells by increasing m6A levels of CD40, CD80, and TLR4,
priming cytotoxic T lymphocyte activation (12). Interestingly,
the same m6A writer gene (METTL3) exerted the opposite
role in regulating anticancer immunity. FTO, an m6A eraser
gene, promoted tumor immune evasion by increasing expression
of immune checkpoint genes, such as LILRB4 and PD-1 (13,
14). Genetic depletion or pharmacological inhibition of FTO
reactivates immune surveillance and overcomes resistance to
ICB. Furthermore, Han et al. revealed the potential of YTHDF1
as a promising therapeutic target in anticancer immunotherapy
(15). They demonstrated that genetic depletion of YTHDF1
significantly enhanced tumor antigen cross-presentation and
CD8+ T cell priming. Therefore, m6A modification represents
a potential emerging immunotherapy target and predictor of
response to ICB response.

However, all of the studies above are confined to only one
or two m6A modification genes because of technical limitations.
As we all known, antitumor effect and tumor microenvironment
(TME) can be regulated by numerous factors (16). Therefore,
comprehensive analysis of multiple m6A regulators will improve
our understanding of antitumor effect and TME. In this study,
we comprehensively analyzed m6A modification patterns based
on 24 m6A genes in KIRC. To the best of our knowledge, the
number of m6A genes included in this manuscript is the largest
reported to date. Additionally, we correlated m6A modification
patterns with the immune phenotype and response to ICB for the
first time.

MATERIALS AND METHODS

Figure 1 illustrates the mechanism diagram of our study and
Supplementary Figure 1 shows the workflow of our study.

Data Retrieval and Preprocessing
Cancer Genome Altas (TCGA) Data

RNA sequencing data (FPKM value), mutation profiles, and
clinical data for TCGA-KIRC were downloaded from the
Genomic Data Commons (GDC, https://portal.gdc.cancer.gov/)
using the R package TCGAbiolinks (17). The FPKM value was

transformed into transcripts per kilobase million (TPM) value.
After removing duplicated patients, we included 530 KIRC
patients with full clinical information and 72 normal tissues
for further analysis. The copy number variation (CNV) data,
processed with the GISTIC algorithm, were downloaded from
the UCSC Xena data portal (http://xena.ucsc.edu/). Somatic
mutation data were analyzed using VarScan2 and used to
calculate the tumor mutation burden (TMB). Microsatellite
instability (MSI) data were collected from the supplementary files
of Bonneville’s study (18).

Other Data Sources

A KIRC cohort (GSE22541) with detailed survival data and
an RNA expression matrix was downloaded from GEO
(https://www.ncbi.nlm.nih.gov/geo/). After removing 44 samples
collected from pulmonary metastasis of KIRC, we included 24
samples collected from primary KIRC for further analysis. An
immunotherapy cohort (PMID29301960) containing 33 KIRC
patients was collected from the supplementary files of Miao’s
study (19). Based on the Creative Commons 3.0 License, an
immunotherapy cohort (IMvigor210) containing 348 bladder
cancer patients was obtained from http://research-pub.gene.
com/IMvigor210CoreBiologies/ (20). Another immunotherapy
cohort of melanoma (GSE78220) was downloaded from GEO.
After removing one duplicated patient and one patient without
follow-up time, we included 26 patients of GSE78220 for
further analysis.

Detailed information on these cohorts is summarized in
Supplementary Table 1.

Unsupervised Clustering for 24 m6A
Regulator Genes
We systematically identified 24 m6A regulator genes in our study
from previous studies (16, 21). These m6A genes included
eight writers (METTL3, METTL14, RBM15, RBM15B,
WTAP, KIAA1429, CBLL1, and ZC3H13), two erasers
(ALKBH5 and FTO), and 14 readers (YTHDC1, YTHDC2,
YTHDF1, YTHDF2, YTHDF3, IGF2BP1, IGF2BP2, IGF2BP3,
HNRNPA2B1, HNRNPC, FMR1, LRPPRC, ELAVL1, and
EIF3A). Unsupervised clustering analysis was then conducted to
comprehensively identify differential m6A modification patterns
using the ConsensuClusterPlus package (22). Finally, the TCGA-
KIRC cohort was classified into several clusters with different
biological functions using a consensus clustering algorithm.

Functional Analysis Between Different m6A
Clusters
First, we downloaded 50 hallmark pathways from the MSigDB
database (23). These 50 pathways systematically reflect the
majority of the biological functions of humans. The GSVA
algorithm was applied to calculate the enrichment scores of
these pathways using the “GSVA” R package (24). Then, we
analyzed difference in these pathways between different m6A
clusters using the LIMMA algorithm (25). An adjusted P <

0.05 was considered statistically significant. Second, the limma R
package’s empirical Bayesian approach was applied to determine
differentially expressed genes (DEGs) between different m6A
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FIGURE 1 | Mechanism diagram of this study.

clusters. The significance criteria for determining DEGs were set
as an adjusted P < 0.05 and |logFC|>1. Finally, we performed
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses using the ClusterProfiler R package
based on these DEGs.

Depicting Immunological Characteristics
of the TME in KIRC
The anticancer immune response, also called the cancer
immunity cycle, is composed of seven key steps in the TME:
the release and presentation of cancer cell antigens (Steps 1 and
2), the priming and activation of the immune system (Step 3),
trafficking and infiltration of immune cells into tumors (Steps
4 and 5), and recognition and killing of cancer cells by T
cells (Steps 6 and 7) (26). The activities of these seven steps
were downloaded from http://biocc.hrbmu.edu.cn/TIP/ (27).
Then, the single-sample gene-set enrichment analysis (ssGSEA)
algorithm was used to quantify the relative abundance of tumor-
infiltrating immune cells (TIICs) in the TME based on specific
immune cell gene sets obtained from the study of Charoentong
(Supplementary Table 2) (28). In addition, to avoid calculation
errors caused by different algorithms and mark gene sets, we
validated the infiltration level of TIICs using Cibersort-ABS,
xCell and TIMER algorithm (29–31).

Mariathasan et al. revealed a set of gene signatures related
to immune processes and stromal pathways, such as the CD8
T-effector signature, epithelial-mesenchymal transition (EMT)
markers, and the panfibroblast TGF-b response signature (Pan-
FTBRS) (20). We also collected 19 gene signatures related to
the clinical response to the anti-PD-L1 agent atezolizumab
(Supplementary Table 3). The ssGSEA algorithm was used to
calculate the enrichment score of individuals.

Generation of Co-expression Module
Networks
The R package “WGCNA” was used to develop the gene co-
expression network and to identify the m6A cluster-related
module (32). First, TPM data from the TCGA-KIRC dataset were
tested to determine whether they were good genes or samples.
Then, the filtered genes were used to calculate the connection
strength and to develop a scale-free network. The gradient
method was used to test the scale independence and modules’
average connectivity degree. The degree of independence was
set as 0.85, and then we chose a suitable power value when the
connectivity degree was relatively higher (33). Next, scale-free
gene co-expression networks were generated using the selected
power value. A heatmap was drawn to describe the interactions
between different modules and clinical characteristics, and we
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chose the module that had the strongest relationship with the
m6A cluster.

Generation of m6A Score
An m6A score was developed to quantify the m6A modification
pattern in an individual patient with KIRC. First, we conducted
univariate Cox analysis on genes of the module that had the
strongest relationship with the m6A cluster and subsequently
identified those genes with prognostic value. Similar to previous
studies, we then performed principal component analysis (PCA)
on these prognostic genes to calculate principal component 1,
which was used for m6A score calculation (16, 34).

m6A score =
∑

PC1i

where i is the selected gene.

External Validation and Drug Sensitivity
Analysis
To confirm the robustness of this m6A score, we validated the
prognostic value and the association between the m6A score and
immunological characteristics of the TME in an independent
KIRC cohort (GSE22541).

The functions significantly differed among m6A clusters.
We further compared the drug sensitivities between different
m6A clusters. First, we collected 184 common anticancer
drugs and their target genes from the DrugBank database
(www.drugbank.ca). In addition, we validated the predictive
value of the m6A score for the response to ICB in three external
immunotherapy cohorts.

Statistical Analysis
Correlations between m6A regulators, m6A score and cancer
immunity cycle and m6A score and pathways related to the ICB
response were explored by Spearman coefficients and distance
correlation analyses. Continuous variables fitting a normal
distribution between binary groups were compared using a t-test
and presented as mean ± standard deviation (SD). Otherwise,
the Mann-Whitney U test was applied. Chi-square or Fisher
exact tests were used to compare differences between categorical
variables. The “survcutpoint” function for the maximum rank
statistic was applied to determine the optimal cutoff value of
the m6A score. The survival curves for prognostic analyses
of categorical variables were generated using the Kaplan-Meier
method, while the log-rank test was applied to estimate the
statistical significance. The hazard ratio (HR) for m6A regulators
was calculated using univariate Cox regression model. The
independent prognostic factor of m6A score was conducted
using multivariate Cox regression model and the forestplot R
package was used to visualize the results. The receiver operating
characteristic (ROC) curve and area under the curve (AUC) were
conducted to assess the specificity and sensitivity of m6A score
using time ROCR package. Themutations of m6A regulators and
mutation profiles between high and low m6A score groups were
visualized using maftools R package. The level of significance was
set at P < 0.05, and all statistical tests were two-sided. Finally,

all statistical data analyses were implemented using R software,
version 3.6.3 (http://www.r-project.org).

RESULTS

Multi-Omics Analysis of m6A Genes in
KIRC
We first analyzed the expression patterns of 24 m6A genes
in KIRC and normal tissues. Interestingly, the majority of
m6A writers and readers, such as METTL14, EIF3A, YTHDC1,
YTHDF1, and YTHDF2, were significantly downregulated in
KIRC compared to normal tissues. In contrast, expression of two
m6A eraser genes (FTO and ALKBH5) was significantly higher
in KIRC (Figure 2A). This expression imbalance between m6A
writer and eraser genes may lead to abnormal m6A modification
patterns and consequently promote the development of KIRC.
Similarly, most of the m6A genes were prognostic factors.
METTL14, RBM15, KIAA1429, CBLL1, YTHDC2, ZC3H13,
FMR1, RBM15B, YTHDC1, FTO, LRPPRC, YTHDF2, YTHDF3,
and EIF3A were favorable prognostic factors. On the other hand,
METTL3, IGF2BP1, IGF2BP2, IGF2BP3, and HNRNPA2B1 were
adverse prognostic factors (Figure 2B). Based on the expression
of these 24 m6A genes, we could completely distinguish
KIRC samples from normal samples (Figure 2C). These results
suggested that m6A genes are potential diagnostic and prognostic
predictors in KIRC.

Next, we assessed the CNV and mutation profiles of 24 m6A
genes. Analysis of CNV data revealed prevalent CNV alterations
in 24 m6A genes, and most were focused on amplification of
YTHDC2, while RBM15 and RBM15B had the highest frequency
of CNV deletion (Figure 2D). However, mutations of m6A
genes were not frequent. Among 417 KIRC samples, only 66
(15.83%) exhibited mutations in m6A genes. ZC3H13 exhibited
the highest mutation frequency at 4%, followed by YTHDC2
(2%) (Figure 2E). Finally, the close connections between the
majority of m6A genes laid the foundation for the subsequent
m6A clustering analysis (Figure 2F, Supplementary Table 4).

Depicting m6A Clusters and Correlating
Them With Biological Functions
Figure 3A shows the comprehensive landscapes of 24 m6A genes
concerning their prognostic value, correlations, and groups.
Most of them were prognostic factors and were significantly
correlated with each other, which prompted us to perform
a comprehensive unsupervised clustering analysis based on
these 24 m6A gene expression profiles. The results were
robust when the TCGA-KIRC cohort was divided into two
independent clusters. One hundred six patients were classified
into m6A cluster 1, whereas the remaining 423 patients
were classified into m6A cluster 2. m6A cluster 1 exhibited
a significantly poorer prognosis (P = 0.00057) (Figure 3B).
The DEGs between m6A clusters are displayed in a heatmap
and volcano plot (Figures 3C,D, Supplementary Table 5). The
results of GO analysis suggested that these DEGs were
enriched in several biological processes, including organic
anion transport, metal ion transmembrane transporter activity,
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FIGURE 2 | Multi-omics analysis of m6A genes in kidney renal clear cell carcinoma (KIRC). (A) Expression of 24 m6A genes between tumor and normal tissues in the

TCGA-KIRC dataset. Tumor, red; Normal, blue. (B) The prognostic analyses for 24 m6A genes in the TCGA-KIRC dataset using the univariate Cox regression model.

(C) Principal component analysis (PCA) of the expression profiles of 24 m6A genes between tumor and normal tissues in the TCGA-KIRC dataset. Tumor, red;

(Continued)
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FIGURE 2 | Normal, green. (D) The copy number variation (CNV) frequency of 24 m6A genes in the TCGA-KIRC dataset. The height of the column represents the

count, and the color represents gains or losses. Gains, red; Losses, blue. (E) The mutation frequency of 24 m6A genes in 417 patients with kidney clear cell

carcinoma from the TCGA-KIRC cohort. Column presents individual patients. The upper bar plot represents TMB. The number on the right represents the mutation

frequency in each regulator. The right bar plot represents the proportion of each variant type. The stacked bar plot below represents the fraction of conversions in

each sample. (F) Expression correlations between 24 m6A regulators in the TCGA-KIRC dataset using Spearman analyses. Eraser, green; Reader, brown; Writer,

purple (ns, Not Significant; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).

collagen-containing extracellular matrix, and cellular divalent
inorganic cation homeostasis (Supplementary Figures 2A–C,
Supplementary Table 6). The results of KEGG analysis indicated
that these DEGs were enriched in pathways such as neuroactive
ligand-receptor interaction, bile secretion, vascular smooth
muscle contraction, mineral absorption, complement and
coagulation cascades, serotonergic synapse, protein digestion
and absorption, and leukocyte transendothelial migration
(Supplementary Figure 2D, Supplementary Table 7). Finally,
the enrichment scores of many hallmark signatures significantly
differed between the two clusters. As shown in Figure 3E, TGF-
beta signaling, Wnt-beta catenin signaling, protein secretion,
PI3K-Akt-Mtor signaling, androgen response, hememetabolism,
mitotic spindle, and Notch signaling were enriched in m6A
cluster 2. In contrast, spermatogenesis, estrogen response late,
and KRAS signaling DN were enriched in m6A cluster 1
(Figure 3E, Supplementary Table 8).

m6A Clusters Correlate With Immune
Phenotypes and Immunotherapy-Related
Signatures
We next comprehensively correlated the m6A clusters with
immune phenotypes. First, we focused on the activities of
anticancer immunity cycles. The activity of priming and
activation of the immune system of m6A cluster 1 was
significantly higher than that of m6A cluster 2, while the
activities of releasing and presenting cancer cell antigens were
lower (Figure 4A). In addition, the activities of T cell recruiting,
B cell recruiting, and dendritic cell recruiting were consistently
higher in m6A cluster 1 (Figure 4A). Finally, activities of
recognition of cancer cells by T cells were higher in m6A
cluster 1. To confirm these findings, we directly compared the
infiltration level of tumor-infiltrating immune cells between
m6A clusters. As expected, the abundance of several antitumor
immune cells, such as activated CD8T cells, activated CD4T
cells, CD56bright natural killer cells and type 17 T helper
cell, was significantly higher in m6A cluster 1 than in m6A
cluster 2 (Figure 4B). However, the abundance of the most
recognized protumor immune cells, including regulatory T
cells, immature dendritic cells, and plasmacytoid dendritic cells,
was significantly downregulated in m6A cluster 1 (Figure 4B).
Based on these results, we proposed that m6A cluster 1 may
be an inflammatory immune phenotype, while m6A cluster
2 may be a non-inflammatory phenotype. Previous research
demonstrated that stroma-associated pathways, such as EMT
and Pan-FTBRS signatures, inhibited the anticancer immunity
in TME (20). Here, EMT1, EMT3, and Pan-F-TBRS enrichment

scores were significantly downregulated in m6A cluster
1 (Figure 4C).

Inflammatory tumor phenotypes are more sensitive to ICB
(35, 36). Consistently, pathways that were positively related to
the ICB response, such as RNA degradation, the cell cycle, and
DNA replication, were enriched in m6A cluster 1 (inflammatory
phenotype). In contrast, the pathway cytokine-cytokine receptor
interaction negatively related to the ICB response was enriched
in m6A cluster 2 (non-inflammatory phenotype) (Figure 4D).
Therefore, we confirmed that m6A cluster 1 might represent an
inflamed phenotype from the aspect of immunotherapy response.

Developing m6A Scores and Correlating
Them With Immune Phenotypes
All tumor data from the TCGA-KIRC dataset were used to
develop the gene co-expression network and to identify m6A
cluster-related modules. All KIRC samples with full clinical
characteristics were included in the co-expression analysis
(Figure 5A). The “WGCNA” package was used to allocate genes
with similar expression patterns into different modules. In this
study, we chose the soft threshold as 7 (scale-free R2 = 0.85)
to develop a scale-free network. As shown in Figure 5B, a
total of 29 modules were recognized. The modules with the
most significant association with clinical characteristics had the
greatest biological meanings. The turquoise module was found
to have the highest association with the m6A cluster (r = 0.64,
p = 4e-64; Figure 5C). We chose the turquoise module to be
analyzed in the subsequent steps, and the turquoise module was
also related to tumor grade and stage. The genes in the turquoise
modules were significantly co-expressed (cor= 0.81, P < 1e-200;
Figure 5D). Among these genes, 2,214 were significantly related
to prognosis (Supplementary Table 9). Then, the m6A score was
calculated for individuals using the PCA algorithm.

m6A score was lower in m6A cluster 1 (Figure 6A). Similar
to the performance of m6A cluster 1, patients in the low m6A
score group exhibited poorer prognosis than patients in the high
m6A score group (Figure 6B). Also, m6A score still remained
an independent prognosis factor in multivariate Cox regression
analysis (p = 0.01, Supplementary Figure 3A). The Q-Q plot
of the model showed that the residuals are approximately
normally distributed (Supplementary Figure 3B) and the AUC
at 5 years showed that the predictive accuracy of m6a score
was comparative to tumor stage (Supplementary Figure 3C).
There were consistent correlations between the m6A score
and the immune phenotype. The CD8T effector signatures
were enriched in the low m6A score group (Figure 6C). The
abundance of antitumor immune cells, including activated
CD8T cells, activated CD4T cells, activated dendritic cells,
CD56bright natural killer cells, central memory CD4T cells,

Frontiers in Oncology | www.frontiersin.org 6 March 2021 | Volume 11 | Article 642159

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Li et al. m6A Predicts Immunophenotypes in KIRC

FIGURE 3 | m6A modification patterns and corresponding biological characteristics. (A). Correlations between 24 m6A genes in KIRC. The size of the circle

represents the prognosis of each gene, and values were calculated by the log-rank test, which ranged from 0.1 to 0.0001. Green dots represent favorable factors for

(Continued)
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FIGURE 3 | overall survival, while purple dots in the circle represent risk factors for overall survival. The color of the lines shows the correlation between regulators.

Negative correlation, blue; Positive correlation, red. (B) Survival analysis for m6A clusters from the TCGA-KIRC dataset. m6A cluster 1 is shown in blue and m6A

cluster 2 is shown in red. (C) A heatmap was drawn based on the differentially expressed genes between m6A clusters 1 and 2. Differentially expressed genes with

higher expression are shown in red, and genes with lower expression are shown in blue. (D) A volcano plot was drawn based on the differentially expressed genes

between m6A clusters 1 and 2. Differentially expressed genes with log2(fold change) higher than 1 were shown in red while the genes lower than −1 were shown in

blue, and the genes without different expression were shown in gray. (E) GSVA analysis showed the activation (red) or inhibition (blue) of biological pathways between

m6A modification patterns.

natural killer T cells, type 1 T helper cells, and type 17 T helper
cells was significantly upregulated in the low m6A score group
(Figure 6D). However, the abundance of protumor immune
cells, including immature dendritic cells and plasmacytoid
dendritic cells, was downregulated in the low m6A score
group (Figure 6D). We validated the infiltration level of
TIICs using Cibersort-ABS, xCell, and TIMER algorithm
(Supplementary Figures 4–6). Generally, most of the algorithms
showed that m6A score was negatively correlated with anti-
tumor immune cells, including CD8T cells, CD4T cells, and
natural killer T cell. Except TIMER algorithm showed that CD8T
cells was positively correlated with m6A score. This could be the
calculation errors caused by different algorithms and mark gene
sets. In addition, the EMT1 and EMT3 pathways were enriched
in the high m6A score group (Figure 6E). Meanwhile, the m6A
score was negatively related to the activities of several critical
anticancer immunity cycles, such as priming and activation,
T cell recruiting, CD8T cell recruiting, CD4T cell recruiting,
dendritic cell recruiting, Th17 cell recruiting, and infiltration of
immune cells into tumors (Figure 6F, Supplementary Table 10).
These findings suggested that the lowm6A score group may have
an inflammatory phenotype.

As expected, m6A scores were negatively correlated with
pathways that were positively related to the ICB response, such
as RNA degradation, cell cycle, and DNA replication. In contrast,
the m6A score was positively related to the cytokine-cytokine
receptor interaction pathway, which was negatively related to
the ICB response (Figure 6F, Supplementary Table 11). Finally,
several common immune checkpoints, such as CTLA-4, PD-1,
LAG-3, LAALS3, and TIGIT, were highly expressed in the low
m6A score group (Figure 6G).

In summary, the m6A score predicts the immune phenotype
and clinical response to ICB.

Mutation Profiles of m6A Score Groups
Genomic mutations are a prominent factor in initiating
malignancy. Here, we analyzed distribution differences in the
top 20 somatic mutations between m6A score groups using the
maftools R package. The most common mutations in KIRC were
VHL and PBRM1. There was no difference in the VHL mutation
between the m6A score groups (Figure 7A). The mutation
frequencies of TTN (32 vs. 23%), SETD2 (19 vs. 9%), BAP1
(16 vs. 7%), and MUC16 (15 vs. 7%) were markedly higher
in the low m6A score group suggesting that these mutations
may be m6A score-specific mutations in KIRC. In general, a
more extensive tumor mutation burden was presented in the
low m6A score group than in the high m6A score group (97.4
vs. 90.67%) (Figure 7A). Consequently, the TMB quantification

analysis revealed that the low m6A score group was markedly
correlated with a higher TMB (Figure 7B). However, there was
no difference in MSI status between the two m6A score groups
(Figure 7C).

External Validation of the m6A Score in
GSE22541
Similar to the performance of the m6A score in the TCGA-
KIRC cohort, we found that the low m6A score group had a
poorer prognosis in the GSE22541 cohort as well (Figure 8A).
Meanwhile, the m6A score was negatively correlated with
the activities of many anticancer immunity cycles, such
as the recognition of cancer cells by T cells (Figure 8B,
Supplementary Table 12). Furthermore, the infiltration levels of
activated CD8T cells, activated CD4T cells, activated dendritic
cells, central memory CD8T cells, natural killer T cells, type 1 T
helper cells, and type 17 T helper cells were significantly higher
in the low m6A score group (Figure 8C). Finally, the m6A score
was negatively related to most pathways that predicted higher
ICB response rates (Figure 8B, Supplementary Table 13). These
results confirmed that the m6A score might be a robust predictor
of immune phenotype, prognosis, and ICB response.

Role of the m6A Score in Predicting the
Response to Targeted Therapy and
Immunotherapy
We further explored the role of the m6A score in guiding clinical
decision making in KIRC. First, we found that the sensitivities
of many anticancer drugs were significantly different between
m6A score groups (Supplementary Table 14). Targeted therapy
was the first-line treatment option for advanced KIRC. Here,
we collected the targeted therapy drugs used in KIRC and their
targeted genes from the DrugBank database: sorafenib with
its targeted genes including BRAF, FLT1, FLT3, FLT4, KDR,
KIT, and RAF1; sunitinib with its targeted genes including
CSF1R, FLT1, FLT3, FLT4, KDR, and RET; pazopanib with its
targeted gene SH2B3; and bevacizumab with its targeted gene
VEGFA. Interestingly, all targeted therapy drug sensitivities were
significantly lower in the low m6A score group (Figure 9A).
These results indicate that the m6A score may identify suitable
candidates to receive targeted therapy.

Although findings from TCGA-KIRC and GSE22541 cohorts
suggested that the m6A score predicts ICB response, it would
be more convincing to validate these results in cohorts that
received ICB. First, in a KIRC cohort that received anti-PD-1
therapy (nivolumab), we demonstrated that the clinical benefit
rate was higher in the low m6A score group than in the high
m6A score group (p = 0.26; Figure 9B). Regrettably, because of
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FIGURE 4 | Differences in immunological characteristics between m6A clusters. (A) Activities of cancer immunity cycles between the two distinct m6A modification

patterns. m6A cluster 1, blue; m6A cluster 2, red. (B) TME immune cell infiltration scores between the two distinct m6A modification patterns. m6A cluster 1, blue;

m6A cluster 2, red. (C) Differences in stroma-activated pathways between the two distinct m6A modification patterns. m6A cluster 1, blue; m6A cluster 2, red. (D)

Differences in immunotherapy-predicted pathways between the two m6A clusters. Left bar plots represent log10 p-values, red bars represent activated pathways,

and blue bars represent inhibited pathways. The colors of the right bar plots represent different pathways, as shown in the legend (ns, Not Significant; *P < 0.05; **P

< 0.01; ***P < 0.001; ****P < 0.0001).
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FIGURE 5 | Detection and validation of m6A modification pattern-related modules by WGCNA. (A) Clustering dendrogram of 530 samples in the TCGA-KIRC dataset

and heatmaps of clinical traits. The color intensity was related to older age, male sex, higher tumor stage, higher tumor grade, and m6A cluster 2. (B) Clustering

dendrogram of differentially expressed genes. The dissimilarity was based on the topological overlap, and different modules were assigned to different colors. (C)

Heatmap of the correlation between different gene modules and clinical characteristics. Red represents a positive correlation, and blue represents a negative

correlation. (D) Scatter plot of membership in the turquoise module.
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FIGURE 6 | Differences in prognosis and immunological characteristics between the m6A score groups. (A) The m6A score in the two distinct m6A modification

patterns. Kruskal-Wallis tests to calculate significant differences. (B) Survival analyses for the low (311 cases) and the high (218 cases) m6A score patient groups in

(Continued)
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FIGURE 6 | the TCGA-KIRC cohort using Kaplan-Meier curves. m6A Score High, blue; m6A Score Low, red. (C) Activation of antigen processing machinery (APM)

and CD8T effector pathways between the m6A Score group. M6A Score High, blue; m6A Score Low, red. (D) TME immune cell infiltration scores between the m6A

score groups. M6A Score High, blue; m6A Score Low, red. (E) Activation of stroma-activated pathways in the m6A score group. M6A Score High, blue; m6A Score

Low, red. (F) Spearman correlation analysis of m6A scores with activities of cancer immunity cycles (left) and immune-related pathways analyzed by ssGSEA (right).

The thickness of the lines represents the relation strength. The different colors of the lines represent different p-values. The red bar plots represent a positive

correlation, and the blue bar plots represent a negative correlation. (G) The histogram of immune checkpoint gene expression between the m6A score groups. M6A

Score High, blue; m6A Score Low, red (ns, Not Significant; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).

FIGURE 7 | Tumor mutation burden (TMB) analyses of m6A score groups in the TCGA-KIRC cohort. (A) Mutation status in the high (left) and low (right) m6A score

groups of the TCGA-KIRC dataset. Each column is related to individual patients. Upper bar plots represent TMB, right bar plots represent variant type proportions,

and lower bar plots represent conversions or each sample. (B) The histogram of log2(TMB) between the m6A score groups. M6A Score High, blue; m6A Score Low,

red. (C) The histogram of log2(MANTIS Score) between the m6A score groups. M6A Score High, blue; m6A Score Low, red.

the small sample size, we didn’t find significantly differences. The
prognosis of the lowm6A score group was better than in the high
m6A score group (p = 0.039; Figure 9C). It is worth noting that
this survival outcome was contrary to the results showing that the
prognosis of the low m6A score group was worse in the TCGA-
KIRC and GSE22541 cohorts. These differences in outcome were

due to the response rate of immunotherapy being more likely
to determine the prognosis of an immunotherapy cohort when
compared to other prognostic risk factors, such as the m6A score.
Additionally, we successfully validated the role of the m6A score
in predicting the response to ICB in two other cancer cohorts,
including the IMvigor210 cohort (bladder cancer) and GSE78220
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FIGURE 8 | Validation of m6A score in the GSE22541 dataset. (A) Survival analyses for the low and high m6A score patient groups in the GSE22541 dataset using

Kaplan-Meier curves. M6A Score High, blue; m6A Score Low, red. (B) Spearman correlation analysis of m6A scores with activities of cancer immunity cycles (left) and

immune-related pathways analyzed by ssGSEA (right) in the GSE22541 dataset. The thickness of the lines represents the relation strength. The different colors of the

lines represent different p-values. The red bar plots represent a positive correlation, and the blue bar plots represent a negative correlation. (C) TME immune cell

infiltration scores between the m6A score groups in the GSE22541 dataset. M6A Score High, blue; m6A Score Low, red (ns, Not Significant; *P < 0.05; **P < 0.01;

***P < 0.001).
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FIGURE 9 | Role of m6A score in predicting sensitivities of targeted therapy and immunotherapy. (A) The differences in sensitivities of targeted therapy between m6A

score groups by analyzing data from the DrugBank dataset. m6A Score High, blue; m6A Score Low, red. (B) Proportion of patients with clinical benefit to

immunotherapy between the different m6A score groups in an RCC immunotherapy dataset (PMID29301960). (C) Survival analyses for the low and high m6A score

patient groups in the RCCICI dataset using Kaplan-Meier curves. (D) Proportion of patients with clinical benefit to immunotherapy between the different m6A score

groups in IMvigor210 dataset. (E) Survival analyses for the low and high m6A score patient groups in the IMvigor210 dataset using Kaplan-Meier curves. (F)

Proportion of patients with clinical benefit to immunotherapy between the different m6A score groups in the GSE78220 dataset. (G) Survival analyses for the low and

high m6A score patient groups in the GSE78220 dataset using Kaplan-Meier curves (CR, complete response; PR, partial response; SD, stable disease; PD,

progressive disease; ns, Not Significant; **P < 0.01; ****P < 0.0001).
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cohort (melanoma) (Figures 9D–G). These findings revealed
that this m6A score may represent a generalized predictor for
response to ICB in other cancer types as well.

DISCUSSION

m6A modification plays a critical role in regulating the immune
status of the TME in various cancers (10). However, the role
of m6A in modifying immune characteristics in KIRC needs
to be further explored. In this manuscript, we identified two
independent m6A modification patterns with distinct biological
functions, immunological characteristics, and prognoses. Then,
we developed an m6A score algorithm to quantify an individual’s
m6Amodification pattern, which was independently validated in
external cohorts.

There are some studies reporting the function of m6A
modification in the progression, prognosis and the TME in KIRC,
indicating the potential key role of m6A regulators in KIRC.
Strick et al. reported that ALKBH5 and FTO were significantly
downregulated in KIRC compared to normal tissues, and their
low expression predicted poorer prognosis (37). However, Zhang
et al. found that ALKBH5 was highly expressed in KIRC
compared to normal tissues, and high expression of ALKBH5
promoted progression of KIRC (38). Notably, a simple analysis
of a single m6A gene in KIRC may lead to obvious contradictory
results. These differences in results might be because m6A
modification is an extremely complex process that is regulated
by writers, erasers, and readers. Therefore, systematic analysis
of all m6A genes may more comprehensively reflect the m6A
modification pattern in the TME. To date, there are some
studies performing systematic analysis of multiple m6A genes
using bioinformatics algorithms and reported that the m6A
modification pattern predicted progression and prognosis of
KIRC. Chen et al. systematically analyzed the global m6A
modification pattern in KIRC and correlated it with cancer-
related gene expressions (39). Zhou et al. found a close
relationship between genetic alterations of m6A regulators with
clinical characteristics in KIRC (40). Zhang et al. (41), Wang
et al. (42), and Chen et al. (43) systematically analyzed the m6A
regulators in KIRC and developed a METTL3 and METTL14
based risk score for the prognosis of KIRC. Zhao et al. developed
a risk score based on three m6A regulators, including METTL3,
METTL14, andHNRNPA2B1 (44). However, all of them have not
correlated m6A regulators with TME. Fang et al. systematically
analyzed 16m6A regulators and correlated themwith TME. Also,
they developed a four-m6A-regulators based risk score only for
the prognosis (45). But they have not analyzed the relationship
between m6A regulators and ICB response. In addition, their risk
score can’t predict the immune phenotypes of KIRC and quantify
the m6A modification pattern of an individual patient.

Abnormal m6A modification patterns promote the
development of cancers (8). In our study, we found that
the expression profiles between m6A writers and m6A erasers
were imbalanced. Theoretically, these imbalanced expression
profiles may cause abnormal m6A modification patterns
and consequently lead to KIRC development. In addition,

the majority of m6A genes were related to prognosis. More
importantly, these m6A genes were related to each other and
formed a close interaction network. These findings prompted
us to perform a comprehensive clustering analysis instead of
analyzing the role of a single m6A gene.

Zhang et al. identified three different m6A clusters in
gastric cancer based on 21 m6A genes. After analyzing the
landscapes of immunological characteristics, prognosis, and
other functions, they connected the three m6A clusters
to different immune phenotypes, including inflammatory,
excluded, and deserted phenotypes (16). Indeed, the
excluded and deserted phenotypes can be unified into a
non-inflammatory phenotype. In our study, we similarly
identified two m6A clusters that reflected different
immune phenotypes.

The TME is a complex system composed of cancer cells,
various TIICs, and an extracellular matrix. These TIICs
play a distinct role in regulating anticancer immunity. In
general, CD8T cells and natural killer cells were the most
important cytotoxic cells that killed tumor cells. Other antitumor
TIICs included CD4T cells, type 1 T helper cells, and type
17 T helper cells (46). Regulatory T cells are recognized
as the most important protumor TIICs (46). In addition,
there are various immunomodulators, including chemokines,
MHC, immune stimulators, immune inhibitors, and receptors
(28). The comprehensive effects of these different TIICs and
immunomodulators determine the direction of the anticancer
immune response. The activities of the anticancer immune
response determine the fate of cancer cells. In this study, T cell
recruitment activity was higher in m6A cluster 1. Consequently,
activated CD8T cells, activated CD4T cells, natural killer cells,
and type 17 T helper cells were enriched in m6A cluster 1. In
contrast, regulatory T cells were enriched in m6A cluster 2.
Stromal pathways, such as EMT and Pan-FTBRS signatures, may
inhibit anticancer immunity (20). Consistently, the enrichment
score of these immune-inhibiting pathways was lower in m6A
cluster 1. This evidence indicates that the m6A cluster 1 belongs
to an inflammatory phenotype, while m6A cluster 2 reflected a
non-inflammatory phenotype. Additionally, pathways that were
positively related to the ICB response were enriched in the
m6A cluster 1. Therefore, m6A cluster 1 was theoretically more
sensitive to ICB.

We developed the m6A score using WGCNA and PCA
algorithms. The WGCNA algorithm identified gene sets that
are highly related to the specific biological behavior and clinical
phenotype of a cohort (32). Genes in these sets are highly
correlated with each other. Based on this, the PCA algorithm
further calculated the score of genes with the highest correlation
with the m6A cluster, while decreasing the contributions from
other factors (16, 34). As a result, the m6A score accurately
reflected the m6A clusters. In our study, the low m6A score
group indicated m6A cluster 1, while the high m6A score group
indicated m6A cluster 2. We then evaluated the value of the
m6A score in predicting immune phenotypes, prognosis, and
ICB response. In general, the m6A score was negatively related
to anticancer immunity in the TME. Therefore, the low m6A
score group indicated an inflamed phenotype. As a result, the
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m6A score was negatively related to pathways that were positively
related to ICB response.

Theoretically, patients with an inflammatory phenotype
may have a better prognosis. However, we found that patient
prognosis in the low m6A score group was worse, even
though the low m6A score group had an inflammatory
phenotype. This could be because several critical inhibitor
immune checkpoints, including CTLA-4, PD-1, LAG-3,
LAALS3, and TIGIT, were significantly highly expressed
in the low m6A score group. Higher expression of these
immune checkpoints may limit cytotoxic immune cell
activities in the TME, such as CD8T cells, causing these
cytotoxic cells to be in an exhausted functional state (47, 48).
Finally, the robustness of the m6A score was invalidated in
external cohorts.

Both targeted therapy and ICB have been recommended
as first-line treatments for advanced KIRC (2–4). However,
it is difficult to determine an individual’s optimal treatment
option, which prompted us to explore more accurate
predictive biomarkers. Here, the m6A score may be a
potential biomarker to guide clinical decision-making and
help us achieve individualized and precision treatment. First,
we identified a highly consistent result that all targeted
therapy drugs’ sensitivities were significantly lower in
the low m6A score group, indicating that patients with
high m6A scores might be suitable candidates to receive
targeted therapy. In contrast, patients with low m6A
scores may be the optimal candidates to receive ICB. More
importantly, we demonstrated that this m6A score may be
a generalized predictor for the response to ICB in other
cancer types.

Several inevitable shortcomings exist in this study. First, all
conclusions came from public databases, including validations.
This weakens the use of these conclusions for the future.
Therefore, it is necessary to validate these findings with
experiments in vivo and in vitro and more data from our
center in the future. Second, in order to enlarge our sample
size and verify our results, we pooled data from TCGA
and GEO together. However, despite the inevitable analysis
error caused by different sequencing platforms, we found that
the results found in TCGA can be successfully verified in
multiple independent external datasets, which enhanced the
reliability of our results. Third, it is difficult to unify the
same cutoff value of the m6A score in different cohorts due
to the differences in sequencing platform and batch effects.
Alternatively, we used the survcutpoint function to calculate the
optimal cutoff values.

In conclusion, this work revealed that m6A modification
patterns played significant role in regulating the TME
of KIRC, including immunological characters, mutation
profiles and other functional pathways. Based on the
comprehensive m6A patterns, we first identified m6A
clusters and m6A scores to elucidate immune phenotypes
and to predict the prognosis and immunotherapy
response in KIRC. Finally, the m6A clusters and m6A
scores can guide urologists for making more precise
clinical decision.
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