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Abstract
RNA molecules undergo a vast array of chemical post-transcriptional modifications (PTMs) that can affect
their structure and interaction properties. To date, over 150 naturally occurring PTMs have been identified,
however the overwhelming majority of their functions remain elusive. In recent years, a small number of PTMs
have been successfully mapped to the transcriptome using experimental approaches relying on high-throughput
sequencing. Oxford Nanopore direct-RNA sequencing (DRS) technology has been shown to be sensitive to
RNA modifications. We developed and validated Nanocompore, a robust analytical framework to evaluate the
presence of modifications in DRS data. To do so, we compare an RNA sample of interest against a non-modified
control sample. Our strategy does not require a training set and allows the use of replicates to model biological
variability. Here, we demonstrate the ability of Nanocompore to detect RNA modifications at single-molecule
resolution in human polyA+ RNAs, as well as in targeted non-coding RNAs. Our results correlate well with
orthogonal methods, confirm previous observations on the distribution of N6-methyladenosine sites and provide
novel insights into the distribution of RNA modifications in the coding and non-coding transcriptomes. The
latest version of Nanocompore can be obtained at https://github.com/tleonardi/nanocompore.
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1 Introduction
RNA post-transcriptional modifications (PTMs) are a
pervasive feature common to all domains of life. They
arise from covalent alteration or isomerisation of nu-
cleotides, typically involving the addition of chemical
groups to different positions of the nitrogenous bases or
the ribose cycle. To date, over 150 modifications have
been found throughout all classes of RNAs, with the
most common modification being methylation1. PTMs
are deposited and catalytically removed by specific en-
zymes and can be recognized by specific ‘reader’ pro-
teins. Overall, PTMs influence fundamental prop-
erties and functions of RNAs, including their stabil-
ity, structure, intermolecular interactions and cellular
localization2,3. Over the past few decades, methods
such as RNA fragmentation and liquid chromatogra-
phy combined with mass spectrometry (LC-MS) have
provided an extensive characterisation of PTMs in the
abundant classes of RNA, especially tRNAs, rRNAs
and snoRNAs4. More recently, various strategies har-
nessing high-throughput sequencing have allowed detec-
tion and mapping of PTMs in the less abundant messen-
ger RNAs (mRNAs) and regulatory noncoding RNAs
(ncRNAs)5,6. At the same time, enzymes catalysing the
deposition of PTMs in mRNAs have been identified at a
steady pace, allowing mechanistic studies into the role
of PTMs in post-transcriptional regulation as well as
their impact on cancer and developmental diseases7–11.
N6-Methyladenosine (m6A) is the best characterised
PTM and the most abundant in mRNAs and long non-
coding RNAs (lncRNAs). It is deposited mainly by the
METTL3/METTL14/WTAP complex and has a vari-
ety of functions such as regulation of nuclear export,
translation and degradation of RNAs. m6A is found
preferentially at the consensus motif DRACH (D=A,
G or U; R=A or G; H=A, C or U) and is highly en-
riched near mRNA stop codons12,13. Pseudouridine is
another well characterised modification, occurring via
an isomerisation of uracil catalysed by enzymes of the
pseudouridine synthase (PUS) family and the dyskerin
pseudouridine synthase 1 (DKC1) enzyme14. It is the
most abundant internal PTM present in RNAs, includ-
ing the highly conserved transcriptional regulator 7SK
RNA15. The majority of current methods for mapping
PTMs rely on RNA immunoprecipitation, chemoselec-
tive alteration or specific signatures resulting from re-
verse transcription (RT), and therefore suffer from the
shortcomings of these approaches, including (1) the
need to develop ad hoc protocols for each PTM, (2)
cross reactivity or low sensitivity of antibodies or chem-
ical reactions and (3) biases induced by the complex

multi-step experimental protocols5,6.
The recent advances in Nanopore direct RNA se-

quencing (DRS) have allowed, for the first time, direct
sequencing of full-length native RNAmolecules without
the need for RT or amplification. Importantly, a num-
ber of studies have shown that DRS data intrinsically
contain information about RNA modifications16–18,
and the development of reliable tools to extract this
information remains a significant and immediate chal-
lenge. In Nanopore DRS a single DNA or RNA
molecule is ratcheted by a molecular motor through a
protein pore embedded in a synthetic membrane. The
passage of nucleobases through the narrowest section
of the pore (reader-head) alters the flow of ions across
the membrane, depending on the chemical composi-
tion of the bases. At any given point in time approx-
imately 5 nucleotides reside within the reader-head of
R9 pores, leading to a strong 5-mer specific signal al-
teration. Crucially, the presence of nucleotide modifica-
tions can induce discernible shifts in current intensity
and in the time the nucleic acid sequence resides in-
side the pore (dwell time)16. These parameters can be
used to train predictive models capable of identifying
modified sites at single nucleotide resolution from raw
current signal. This type of strategy has been success-
fully applied by several academic groups19,20 as well as
by Oxford Nanopore Technologies (ONT) (e.g. tools
such as Megalodon and Guppy) to detect DNA methy-
lation. However, creating training sets and predictive
models for RNA modifications has so far proven to be
a much more challenging task. There are three notable
pieces of software currently available for RNA modifi-
cations detection: Tombo21, EpiNano22 and MINES23.
Tombo is a toolset developed by ONT for detection
of DNA modifications, which was later extended to
RNA but only with moderate success. The TOMBO
RNA analysis framework has several unresolved issues,
surrounding RNA signal alignment and ONT recently
announced their intention to move towards different
strategies (London Calling 2019). On the other hand,
EpiNano mostly relies on a model of basecalling errors
induced by the presence of m6A. This model was gener-
ated from a training set obtained by in vitro transcrip-
tion of RNAs in the presence of either canonical A or
m6A. Although powerful, this approach is potentially
affected by the limited number of sequence contexts
that contain m6A (i.e. limited kmer coverage) and is
difficult to generalise to other modifications. MINES is
a classifier trained on m6A canonical motif sites identi-
fied by miCLIP. This approach is innovative and offers
isoform resolution, but is limited to m6A sites within
4 specific DRACH sequences and could be affected by
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the same biases and/or limitations as miCLIP. There is
therefore a currently unmet need for a robust method
capable of reliably detecting multiple RNA modifica-
tions in any possible sequence contexts.
Here we introduce Nanocompore, a flexible and ver-

satile analysis method dedicated to the detection of
RNA modification from DRS datasets. To identify po-
tential modification sites, Nanocompore uses a model-
free comparative approach where an experimental RNA
sample is compared against a sample with fewer or
no modifications. Potentially, this can be applied to
any modification, provided that an appropriate control
sample strongly depleted of the modification is avail-
able. Nanocompore includes several unique features:
(1) robust signal realignment based on Nanopolish, (2)
modelling of the biological variability, (3) ability to run
multiple statistical tests, (4) prediction of RNA modifi-
cations using both signal intensity and duration (dwell
time) and (5) availability of an automated pipeline that
runs all preprocessing steps. Finally, the results gener-
ated by Nanocompore can also be leveraged to infer
RNA modifications at single molecule resolution.
We validated the performance and sensitivity of

Nanocompore using multiple strategies. Specifically,
we tested our method on hundreds of in silico gen-
erated datasets as well as a dataset generated from
an in vitro modified oligonucleotide sample. We then
applied Nanocompore to the detection of METTL3-
dependent m6A sites in the human polyA+ transcrip-
tome as well as in targeted ncRNAs. Our findings were
cross-validated with methylated individual-nucleotide-
resolution UV cross-linking and immunoprecipitation
(miCLIP). Finally, using an in vitro transcribed (IVT)
control sample, we showed the ability of Nanocompore
to map large numbers of candidate sites, albeit without
identifying which modification.

2 Results
2.1 Nanocompore data preparation and

statistical basis
Nanocompore detects potential RNA modifications by
comparing DRS datasets from one experimental test
condition containing specific RNA modifications to one
control condition containing significantly fewer or no
modifications. Ideally, the control RNA is isolated
from a cell harbouring either a knock-down (KD) or
a knock-out (KO) of a gene encoding an RNA modi-
fying enzyme. Alternatively, for small scale compari-
son, it is also possible to use either an in vitro tran-

scribed or synthetic RNA containing canonical RNA
bases only. Before running Nanocompore, the DRS
data need to be preprocessed. These steps can be
effectively and easily streamlined using our compan-
ion Nextflow pipeline (https://github.com/tleonardi/
nanocompore_pipeline) that automatically runs the en-
tire analysis starting from raw Nanopore data (detailed
in Figure 1A). Brefly, raw fast5 reads from all in-
put DRS datasets are basecalled and quality control
is performed to assess the consistency of the datasets24.
Basecalled reads are then aligned to a reference tran-
scriptome. Alignment information is used by the ro-
bust Nanopolish algorithm19 to realign raw nanopore
signal to the expected reference sequence. This step
is essential for annotating and slicing the signal corre-
sponding to each kmer sequenced. Finally, these data
are collapsed by kmer and indexed by read. The result-
ing realigned reads are then processed with Nanocom-
pore (https://github.com/tleonardi/nanocompore) to
identify modified bases (Figure 1B). Firstly, reads
are grouped by reference transcript and transcripts
with coverage above a user-specified threshold are used
for subsequent analyses. Then, two parameters - the
median signal intensity and the log10(dwell time) -
are collected from each read and aggregated at the
transcript position level. These descriptive data are
stored on disk to allow users to visually inspect the
modification-induced effect on the signal. The aggre-
gated data are compared in a pairwise fashion, one po-
sition at the time. For the identification of modified
positions, Nanocompore currently supports 3 robust
univariate pairwise tests: Kolmogorov-Smirnov (KS),
Mann-Whitney (MW) and Welch’s t-test. In addition,
we also implemented a more advanced bivariate classifi-
cation method based on 2 component Gaussian mixture
model (GMM) clustering followed by a statistical test
to determine if there is a significant difference in the
distribution of reads into the two clusters between con-
ditions. This test is implemented either as a logistic
regression or an ANOVA test. Furthermore, we and
others observed that DNA and RNA modifications can
have an intrinsic effect on the local signal upstream
or downstream of the modification position. Thus, to
evaluate the effect of modifications on the proximal
sequence context, we implemented an established sta-
tistical method that combines the non-independent p-
values to produce a combined p-value representative of
multiple neighbouring kmers25. The p-values are then
corrected for multiple tests using Benjamini-Hochberg’s
procedure26 and the results are stored in a lightweight
database. Users can obtain a tabular text dump of the
database or use the extensive Nanocompore API to ex-
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Figure 1: Overview of data preparation and Nanocompore steps. A: Raw fast5 reads from 2 conditions are basecalled with Guppy, filtered
with Samtools and the signal is then resquiggled with Nanopolish eventalign. The output of Nanopolish is then collapsed and indexed
at the kmer level by NanopolishComp Eventalign_collapse. B: Nanocompore aggregates median intensity and dwell time at transcript
position level. The data is compared in a pairwise fashion position per position using univariate tests (KS, MW, t-tests) and/or a
bivariate GMM classification method. The p-values are corrected for multiple tests and these data are saved in a database for further
analyses.
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Figure 2: legend on next page
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Figure 2: (previous page) In silico and in vitro validation of Nanocompore. A: Position plots showing the median intensity (top) and dwell
time (bottom) for simulated data generated by Nanocompore SimReads. Dashed vertical lines indicate modified positions, where a clear
signal shift between unmodified (green) and modified (orange) reads can be seen. B: ROC curves obtained with the GMM method
on in silico generated data. The different subplots indicate varying amounts of intensity and dwell time shifts from the unmodified
model (from 1 to 4 standard deviations), whereas the different colors indicate varying fractions of modified reads in the generated data
(from 10% to 100%). All the comparisons are against a fully unmodified reference dataset. C: Diagram depicting the experimental
and signal processing workflow used to run Nanocompore on a synthetic RNA carrying an N6-methyladenosine residue. Briefly, the
RNA sequence was obtained by ligating an oligo carrying an m6A residue at position 6 to a longer unmodified carrier obtained by IVT
of the firefly luciferase gene. The data obtained by DRS was parsed to extract the signal from the 2 short regions corresponding to
a “UGAGGACUGUA” with either an A or an m6A in the middle. D: Plot showing the Nanocompore p-values (-log10, y-axis. Tests:
GMM+logit and KS) for the synthetically modified GGACU kmer and those surrounding it. E: Scatter plot showing the median signal
intensity (x-axis) and scaled dwell time (log10, y-axis) for the synthetically modified kmer. The concentric lines show the kernel density
estimates for the two samples.

plore the results and generate ready-to-publish plots.

2.2 In silico and in vitro validation
In order to estimate the sensitivity and specificity of
Nanocompore, we first generated an unmodified RNA
model from an in vitro transcribed (IVT) RNA DRS
dataset containing A, U, C and G canonical bases
only17. For each 5-mer, we estimated the distribution
type and parameters that best fit the observed current
intensity and dwell time values. Based on this model,
we simulated a reference in silico dataset from a semi-
randomly generated unmodified reference sequence (see
Materials and Methods). To mimic signal changes in-
duced by RNA modifications we then in silico gener-
ated 144 “modified” datasets where the dwell time and
signal intensity at defined positions are shifted from
the means of the unmodified model by a varying mul-
tiple of standard deviations. For each combination of
dwell time and signal intensity shift we generated 6
datasets with varying fractions of modified reads (rang-
ing from 10% to 100%) (Figure 2A). We ran Nanocom-
pore on each dataset to test its sensitivity and speci-
ficity for identifying these known modified positions.
We observed that all the statistical tests implemented
in Nanocompore had near perfect precision and recall
(0.9889 ≤ AUROC ≤ 0.9947) when the simulated shifts
from the model were greater than 2 standard deviations
(SD) for both intensity and dwell time and the fraction
of modified reads was above 25% (Figure 2B and Sup.
Fig. S1, page 22). The GMM method performed bet-
ter than other methods when only as little as 25% of
the reads were modified, although requiring a relatively
large shift between the 2 populations (≥ 2 SD). On the
other hand, the KS tests achieved near perfect precision
and recall with milder intensity or dwell time shifts (1
SD) at the expense of the need for a larger population
of modified reads. (Sup. Fig. S1, page 22). For these
reasons, Nanocompore implements both tests and users

can choose which one to use depending on their exper-
imental settings.
As a further control for Nanocompore sensitivity, we

re-analysed a DRS dataset generated by the Nanopore
RNA Consortium consisting of a synthetic oligonu-
cleotide carrying m6A at a known position17 (Figure
2C). The data were preprocessed as described be-
fore and then split into a modified and an unmod-
ified subset (Figure 2C and Materials and Meth-
ods). We found that Nanocompore correctly iden-
tified the modified position as highly significant (p-
values of 3.50x10-11, 5.95x10-6 and 1.93x10-12 for the
GMM+logit, KS_dwell and KS_intensity test respec-
tively, Figure 2D), with the clear formation of 2 clus-
ters for reads corresponding to the modified and un-
modified data (Figure 2E). We also observed that the
intensity shift spreads to the adjacent kmers containing
the m6A residue (positions 1 to 5, Figure 2D). This
shows that a modification can alter the signal locally
and supports the rationale of combining the p-values
of neighbouring kmers.

2.3 Transcriptome-wide m6A profiling
Having validated the accuracy of Nanocompore on sim-
ulated and synthetic data, we sought to apply it to
map m6A in a biologically relevant context. METTL3-
METTL14 heterodimers form a N6-methyltransferase
complex that methylates adenosine residues at the N(6)
position of specific RNAs. Since m6A is required
for development and maintenance of acute myeloid
leukemia8,27, it is of particular importance to accu-
rately map it in leukemia cells. We therefore used
DRS to profile the poly-A+ transcriptome of human
MOLM13 cells with inducible shRNA-mediated knock-
down (KD) of METTL3, as well as control Wild Type
(WT) MOLM13 transfected with a scrambled shRNA.
We sequenced RNA from two biological replicates per
condition on independent Minion flow cells after 4
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Figure 3: (previous page) m6A profiling in MOLM13 cells. A: Sharkfin plot showing the absolute value of the Nanocompore logistic regression
log odd ratio (x-axis) plotted against its p-value (-log10, y-axis, see Material and Methods). Each point represents a specific kmer of a
transcript. B: Red line, total number of transcripts with at least one significant Nanocompore site at varying p-value thresholds (x-axis).
Blue line: average number of significant Nanocompore sites per transcripts at varying p-value thresholds. C: Genome browser screenshot
showing METTL3-dependent m6A sites in the ACTB transcript. The p-value track reports the Nanocompore GMM+Logistic regression
method (see Material and Methods). D-F: As in C but showing the three most significant β-actin sites at higher magnification. The
sequence reported at the bottom corresponds to the RNA sequence in the 3’ to 5’ orientation, as the ACTB transcript is encoded on
the minus strand. The overlapped m6A consensus GGACU sequences are highlighted in red. G: Metagene plot showing the coverage
of m6A sites across transcripts. H: Sylamer plot showing kmer enrichment in Nanocompore significant sites. The x-axis reports all
Nanocompore sites with p-value<0.5 ranked from the most to the least significant. The y-axis reports the Sylamer hypergeometric
p-value of enrichment of a certain motif in the first x Nanocompore sites vs the rest. The vertical dotted line delineates Nanocompore
sites with p-value<0.01 (to the left of the line). I: m6A miCLIP coverage of clusters of significant Nanocompore sites (GMM logit
p-value<0.01). Coverage calculated in transcriptome-space. The y-axis shows the mean input-normalised signal across sites of the
average coverage (counts per million) in four and two replicates for WT and KO respectively. The shaded area shows the standard error
of the mean across sites. The difference between WT and KO in the windows 0+/-100nt is statistically significant (p-value=7.73x10-62,
Mann-Whitney test).

days of induced KD of METTL3, yielding a total of
3,768,380 reads. After applying a stringent 30X cover-
age threshold, we obtained data for 752 unique tran-
scripts robustly expressed in all samples (Sup. Fig.
S2A-C, page 24). Overall, we observed a high correla-
tion of expression levels between samples showing the
consistency of the datasets (R2 of 0.969, Sup. Fig.
S2D-F, page 24). We then used Nanocompore to map
the location of METTL3-dependent m6A sites in hu-
man transcripts from MOLM13 cells. Applying a false
discovery rate of 1% (GMM+logit method, see Mate-
rials and Methods) we found 6,021 significant kmers
in 437 distinct transcripts, which could be grouped
into 4,094 clusters (clustering distance 5nt) averaging
9.37 clusters per transcript (Figure 3A,B). As an
example, we found 61 significant clusters (83 kmers
with p-value<0.01, Figure 3C) in the β-actin (ACTB,
ENST00000646664) mRNA. Interestingly, the 3 most
significant β-actin hits are “GGACU” kmers, perfectly
matching the canonical m6A DRACH motif (Figure
3D-F). On a transcriptome-wide scale, we repro-
duced previous observations showing that METTL3-
dependent m6A sites are enriched in the immediate
vicinity of mRNA stop-codons (Figure 3G)12,28. Addi-
tionally, we used Sylamer29 to identify enriched kmers
in the Nanocompore significant sites, finding a 4.3 fold
enrichment for the consensus GGACU motif in the
Nanocompore sites with p-value<0.01 (hypergeomet-
ric p-value=4.3x10-21 Figure 3H). Lastly, we gener-
ated miCLIP datasets from MOLM13 cells targeted
with METTL3 CRISPR gRNAs to compare the results
obtained with Nanocompore with an orthogonal high-
resolution method. Nanocompore positive sites show a
peak of normalized miCLIP crosslink sites in WT cells,
whereas it is significantly reduced in METTL3 KO
cells (log2 fold change -0.45, p-value=7.73x10-62, Mann-

Whitney test, Figure 3I and Sup. Fig. S3, page
26). Overall, these results show that Nanocompore is
capable of identifying enzyme-specific RNA modifica-
tions transcriptome-wide and that these findings are in
agreement with previous techniques.

The identification of RNA modifications outlined so
far operates at consensus level, i.e. looking at the dis-
tribution of signal across the entire population of reads.
However, the information obtained from GMM cluster-
ing at the population level can be leveraged to calcu-
late the probability of each read to belong to the mod-
ified or unmodified cluster. Hence, it is possible to as-
sign modification probabilities at the single-molecule,
single-site level. As a proof of concept, we calculated
the single-molecule modification probabilities of the
three β-actin high-confidence m6A sites previously de-
scribed (Figure 3C-F). We found that these three
sites are methylated at different degrees: 45% of β-actin
molecules methylated with high-confidence (probability
>0.75) at A652, 23% at A1324 and 49% at A1535. As
expected, we also found that the fraction of methylated
molecules decreased at all three sites in the METTL3
KD condition (26%, 14% and 27% of molecules methy-
lated at A652, A1324 and A1535 respectively, Figure
4A-C). We further asked whether the presence of an
m6A modification at one of these three sites influences
the probability that the same molecule is modified at
the other sites. Taking into account the underlying
frequency of modification at each site, we calculated
the conditional probabilities for all possible combina-
tions of 0, 1, 2 or 3 modifications to co-occur in the
same molecule (Figure 4D). This analysis showed that
the observed and expected modification frequencies do
not differ significantly, suggesting that methylation of
these three sites are independent events (p-value=0.4,
see Materials and Methods).
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Figure 4: (previous page) Single molecule identification of m6A sites. A: Heatmap organised by hierarchical clustering showing the probability
of A652, A1324 and A1535 in the β-actin gene to be modified in the WT and METTL3 KD samples. Each column corresponds to a
single molecule. B: Scatter plot with overlaid kernel density estimates showing the scaled median intensity vs the scaled log10 dwell
time for each read covering A652, A1324 and A1535. Data points are color coded according to the probability that the read belongs
to the cluster of m6A modified reads. For visualisation purposes the x- and y- axis were limited to the +/-3 range. C: Density plot
showing the distribution of modification probability for A652, A1324 and A1535 of β-actin in WT (blue) and KD (red). D: Bar chart
showing the number of molecules identified in each of the 8 possible m6A configurations for the A652, A1324 and A1535 sites of β-actin
. Each site was considered modified if the modification probability was >0.75. The shaded blue areas indicate the expected number of
molecules in each given configuration under the null hypothesis of independence of the three modifications.

2.4 Modification mapping in snRNA 7SK
by high coverage targeted sequencing

Using the same inducible METTL3 KD and control
cells as above, we next performed high-coverage tar-
geted DRS of the human non-coding snRNA 7SK.
To do so, we designed a custom nanopore sequenc-
ing adapter targeting the 3’ end of 7SK (see Mate-
rials and Methods and Table S2). With this ap-
proach we achieved consistently high coverage in all
the samples (average of 4,844 reads per sample). 7SK
is a highly structured RNA with numerous binding
sites for interacting proteins, which together form the
7SK snRNPs (Figure 5A). Nanocompore analysis of
7SK in METTL3 KD cells identified 24 significant
kmers across its entire sequence (p-value<0.01, Figure
5A,B). The most significant hit falls in the UGAUC
kmer at position 41 (Figure 5A-D), which corre-
sponds to the 5’ palindrome of the double-stranded and
structurally conserved binding site for HEXIM130. In-
terestingly, the 3’ GAUC palindrome at position 64 is
also a significant site (Figure 5A,B,D). These results
suggest that the two central adenosines of the double
stranded HEXIM1 binding site (A43 and A65) are both
methylated by METTL3. We also identified 5 signifi-
cant overlapping kmers between positions 229 and 250
in the terminal loop of hairpin 3 (HP3) (Figure 5A,B).
This region was recently shown to be the binding site
for RNA-binding motif protein 7 (RBM7), which medi-
ates the activation of P-TEFb by releasing it from 7SK
snRNP31.
We next sought to extend our investigation of 7SK

to include other modifications in addition to m6A. To
this end we used IVT to generate large amounts of 7SK
RNA devoid of all modifications. We then sequenced
this IVT 7SK by DRS and analysed the resulting data
with Nanocompore, using the dataset from targeted se-
quencing of WT MOLM13 cells as the reference condi-
tion. This approach potentially allows mapping of all
RNA modifications in targeted RNAs, albeit without
revealing the type of each modification. We identified
68 significant kmers spread across the entire 7SK se-

quence (1% FDR, Sup. Fig. S4A, page 27). The
most significant region identified is ∼10nt long and is
located at the stem-loop boundary of HP3 (Sup. Fig.
S4B, page 27). This region encompasses the m6A site
identified at position A245 by the analysis of METTL3-
KD, as well as a known pseudouridine site at position
U250 (Sup. Fig. S4C, page 27)15. We also observed
a significant change between IVT and WT RNA sam-
ples at A43 (UGAUC kmer, p-value=0.0608) and A65
(GCUGA and CUGAU kmers, p-values=0.0839 and
0.0346, respectively), supporting the presence of the
two m6A sites that we identified above in the double
stranded HEXIM1 binding site. To confirm that the
signal observed at U250 of 7SK is indeed due to the
presence of pseudouridine at this position, we repeated
targeted DRS after knocking down dyskerin pseudouri-
dine synthase 1 (DKC1), the enzyme responsible for
catalysing pseudouridine formation at this position15.
Nanocompore analysis of these data revealed a signifi-
cant kmer at position 317 (AGUCU, Sup. Fig. S5A,
page 28), indicating U318 or U320 as potential DKC1-
mediated pseudouridine sites. However, U250 did not
pass the FDR threshold, but we did find three sig-
nificant kmers covering the adjacent stretch of three
U at positions 246-248 ( Sup. Fig. S5A, page 28,
kmers UCCAU, CCAUU and AUUUG, KS test on cur-
rent intensity). In this experiment we also simultane-
ously targeted 3 other ncRNAs; RMRP, RPPH1 and
U2 snRNA. We achieved sufficient coverage for all of
them and found 6 significant kmers for RMRP and 2
for U2 (GMM p-value<0.01, Sup. Fig. S5B-D, page
28).

3 Discussion and conclusions
In recent years substantial progress has been made in
our understanding of the roles and functions of RNA
PTMs. In fact, it is becoming increasingly clear that
they can affect RNA function and metabolism. The
diverse range of RNA PTMs biological roles are me-
diated by their capacity to dynamically regulate the
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Figure 5: (previous page) m6A identification in 7SK RNA. A: On the left, secondary structure of 7SK showing positions of known protein
binding sites and structural conservation. On the right, secondary structure of 7SK with the Nanocompore p-value (METTL3-KD vs
WT, GMM-logit) overlaid as a color scale. For each nucleotide the color indicates the lowest p-value among those of the 5 kmers
that overlap it. Only p-values<0.01 are shown in color. B: m6A profile of 7SK, showing the Nanocompore GMM-logit p-value (y axis,
-log10) across the transcript length. C: Scatter plot showing the scaled median intensity vs the scaled log10 dwell time for each read
covering kmer 41 of 7SK. Each point shows data for a distinct read color coded according to the sample. The contour lines show the
kernel density estimates for the two samples. For visualisation purposes the x- and y- axis are truncated at -4 and +3 respectively. D:
Violin plots showing the distributions of median intensity (top) and scaled log10 dwell time (bottom) for the Hexim1 binding sites and
neighbouring kmers. All coordinates refer to the first nucleotide of each kmer relative to ENST00000636484.

physical and chemical properties of RNA molecules, for
example by creating or masking binding sites, altering
RNA structure or modulating expression and subcel-
lular distributions7,11. However, fully understanding
the breadth and scope of RNA modifications as well as
their dynamic regulation in physiological and patholog-
ical context requires efficient and accurate methods to
detect their presence and to map them to the respective
RNA sequence contexts.
In this paper we introduce Nanocompore, a robust

method for the identification of any RNA modifications
site from Nanopore DRS data. Nanocompore performs
a signal level comparison between two conditions, al-
lowing identification of significant changes indicative
of the presence/absence of RNA modifications (Figure
1). Our approach has several advantages over alterna-
tive RNA PTM mapping methods. First, it is based
on Nanopore DRS which means it is not affected by
retro-transcription or PCR amplification mediated bi-
ases that other genome-wide strategies are subject to.
Second, it maps RNA modifications in the context of
long reads, giving critical information on the impact
of RNA PTMs on individual gene isoforms. Third, our
comparative strategy does not require any training and
can be applied as-is to any RNA modification, as long
as a modification-depleted reference sample is available.
Fourth, Nanocompore is the first generalist method
which can be used to map physically linked RNA mod-
ifications at single molecule resolution. Finally, we im-
plemented a pipeline in the Nextflow Domain Specific
Language that automatically runs all processing steps,
from the raw data up to the execution of Nanocom-
pore, thus greatly simplifying the bioinformatics work.
As previously mentioned, there are several alternatives
offering some the functionalities included in Nanocom-
pore, such as Tombo21, EpiNano22 and MINES23. How-
ever, they target specific modifications or use simpler
statistical frameworks making them hard to compare.
Given the unique strengths and pitfalls of each method,
we would encourage users to test other tools and inte-
grate the results with Nanocompore predictions.
We validated the performance of Nanocompore us-

ing a purposely generated in silico dataset as well as
an in vitro control oligonucleotide (Figure 2 and Sup.
Fig. S1, page 22). We then applied Nanocompore to
a biologically relevant dataset, where the main m6A
writer enzyme (METTL3) was knocked-down in hu-
man cells (Figure 3, Sup. Fig. S2, page 24 and
Sup. Fig. S3, page 26). In this context, we were
able to recapitulate previous observations and provide
novel insights. For example, we found m6A to be en-
riched toward mRNA stop codons as well as for the
short motif DRACH. Furthermore, we could also con-
firm by miCLIP that m6A is enriched at the sites
identified by Nanocompore. This experiment shows
the feasibility of using Nanocompore to detect RNA
modifications transcriptome-wide, even at relatively
shallow sequencing depths. As an additional proof-
of-concept, we performed high coverage targeted se-
quencing of non-polyadenylated ncRNAs, identifying
multiple putative modification sites in the 7SK snRNA
(Figure 5 and Sup. Fig. S4, page 27). In addition
to METTL3-dependant m6A sites we were also able
to profile Dyskerin-dependent Pseudouridine candidate
sites as well as the overall modification landscape by
comparing our sample with an IVT 7SK control (Sup.
Fig. S5, page 28).
We showed that Nanocompore performs well with

mixed populations of modified/unmodified reads in the
control and experimental samples. Although it is cur-
rently unsuitable for the identification of very low-
frequency modifications, our in silico benchmarks show
good sensitivity in mixed populations where only 25%
of reads are modified. This observation strengthens the
importance of having good control conditions, such as
high efficiency knock-downs, knock-outs or IVT sam-
ples.
An additional feature of Nanocompore is that by

analysing knock-down or knock-out samples it intrinsi-
cally assigns RNA modifications to their specific writer
enzymes, thus allowing one to discern the individual
roles of multiple enzymes that catalyse the same mod-
ification. However, an important caveat to be consid-
ered when pursuing this approach - as well as any other
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method based on loss-of-function of catalytic enzymes
- is that it is likely that some RNA modifications are
catalysed by multiple enzymes with partially overlap-
ping functions that could compensate each other when
individually depleted. A further complication is the po-
tential interaction of neighbouring modifications: for
example, one modification might be required in order
for another (possibly different) one to be deposited or
removed. Then, the loss of one enzyme could indirectly
result in signal differences on bases harbouring a differ-
ent modification, which depends on the one catalysed
by the enzyme. These possible scenarios and secondary
effects may be confounding factors for Nanocompore
analysis and currently cannot be accurately resolved
with our method.
In the field of epigenetics, CpG methylated sites have

long been known to influence each other and methyla-
tion can quickly spread to adjacent CpGs32. On the
other hand the interplay between RNA modifications
is still widely unknown. Hence, in addition to isoform-
level resolution of RNA modifications, it is becoming in-
creasingly important to obtain information about mod-
ification stoichiometry and combinatorics. One of the
major advantages of Nanocompore is its ability to de-
tect RNA modifications at single molecule resolution.
We applied our analysis to the most significant m6A
sites found by Nanocompore in β-actin mRNA and
found that multiple methylated residues are present in
the same molecule independently of one another at a
given time. These observations suggest the presence of
highly site-selective intramolecular deposition and/or
removal of m6A. This is the first observation of this
kind to date, and it will need to be cross-validated when
other methods enabling the same level of resolution be-
come available.
In conclusion, Nanocompore offers a versatile, robust

and practical method to readily identify RNA modifi-
cations from Nanopore DRS experiments. We envisage
that its adoption by the scientific community will help
to shed light on the distribution and function of RNA
modifications at high resolution, helping to reveal the
currently hidden life of RNAs.

4 Methods
4.1 Cell culture and KD/KO experiments
MOLM13 cells were cultured in RPMI1640 (Invit-
rogen) supplemented with 10% FBS and 1% peni-
cillin/streptomycin/glutamine. Conditional knock-
downs (KD) using METTL3-, DKC1-targeting or

scrambled shRNAs were performed as previously de-
scribed 8. For lentivirus production, 293T cells were
transfected with PLKO.1 lentiviral vector contain-
ing the shRNA sequences (Table S5), together with
the packaging plasmids psPAX2 (Addgene Plasmid
#12260), and VSV.G (Addgene Plasmid #14888) for
METTL3 KD or Pax2 (Addgene Plasmid #35002) and
pMD2.G (Addgene Plasmid #12259) for DKC-1 KD
experiments, at a 1:1.5:0.5 ratio, using Lipofectamine
2000 reagent (Invitrogen) according to the manufac-
turer’s instructions. Supernatant was harvested 48
and 72 h after transfection. 1x106 cells and viral su-
pernatant were mixed in 2ml culture medium supple-
mented with 8 μg/ml polybrene (Millipore), followed
by spinfection (60 min, 900g, 32°C) and further incu-
bated overnight at 37°C. The medium was refreshed on
the following day and the transduced cells were cul-
tured further. MOLM13 cells (5x105) were infected
using PLKO-TETon-Puro lentiviral vectors expressing
shRNAs. 24h after infection, the cells were replated
in fresh medium containing 1 μg/ml of puromycin and
kept in selection medium for 7 days. shRNA expres-
sion was induced by treatment with 200 ng/ml doxy-
cycline for 4 days for METTL3 KD and 8 days for
DKC1 KD experiments. For METTL3 knock-out (KO)
experiments, lentiviruses were produced in HEK293
cells using ViraPower Lentiviral Expression System
(Invitrogen) according to manufacturer’s instructions.
MOLM13 cells stably expressing Cas9 were transduced
with lentiviral gRNA vectors expressing either empty
or METTL3 gRNAs (Table S5) and selected with
puromycin from day 2 to day 5. At day 5 post-
transduction, the cells were suspended in fresh medium
without puromycin. At day 6, cells were harvested for
RNA extraction.

4.2 RNA purification and in vitro
transcription

Total RNA was isolated from MOLM13 cells using the
RNeasy midi kit (Quiagen) and polyA+ RNA was puri-
fied from 30μg total RNA using the Dynabeads mRNA
Purification Kit (Thermo Fisher Scientific) according
to the manufacturer’s instructions. For production
of unmodified 7SK RNA, synthetic double stranded
DNA template for in vitro transcription (IVT) was pro-
duced by hybridization of synthetic Megamer® Single-
Stranded DNA Fragments (IDT) containing the 7SK
sequence downstream of a T7 promoter (Table S6).
500ng of double stranded DNA template were used
in 20μl IVT reactions for 1h using the TranscriptAid
T7 High Yield Transcription Kit (Thermo Fisher Sci-
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entific), following the manufacturer’s instructions. The
RNA product was purified using the RNA Clean & Con-
centrator kit (Zymo Research).

4.3 miCLIP
miCLIP was performed in duplicates with RNA iso-
lated from wild type and METTL13 KO MOLM13
cells. The protocol is conceptually related to the
original m6A miCLIP protocol33, but uses total RNA
as input and follows a more recent variant of iCLIP
protocol34. 4μg of total RNA were fragmented with
RNA fragmentation reagents (ThermoFisher) follow-
ing the manufacturer’s instructions. Fragmented RNA
was then incubated with 2.5μg anti-m6A antibody (Ab-
cam, ab151230) in IP buffer (50mM Tris-HCl pH 7.4,
100mM NaCl, 0.05% NP-40) at 4°C for 2 hours, in
rotation. Subsequently, the solution was placed in
6-well plates on ice and irradiated twice with 0.3 J
cm−2 UV light (254 nm) in a Stratalinker crosslinker.
30μl protein G beads (Dynabeads) per sample were
washed twice with IP buffer and then incubated with
the RNA-antibody solution at 4°C for 1.5 hours, in ro-
tation. After the IP, the RNA-antibody-beads com-
plexes were washed twice with High-Salt Wash buffer
(50mM Tris-HCl pH 7.4, 1M NaCl, 1mM EDTA, 1%
Igepal CA-630, 0.1% SDS, 0.5% sodium deoxycholate),
once with IP buffer and once with PNK Wash buffer
(20mM Tris-HCl pH 7.4, 10mM MgCl2, 0.2% Tween-
20). The beads then proceeded to 3’ dephosphorylation
and the rest of the iCLIP protocol. The 3’ adapters
for on-bead ligation carry the sequences found in Ta-
ble S1. Samples were mixed after the adapter re-
moval step. Following the SDS-PAGE gel, the mem-
brane was cut from 45kDa to 185kDa and RNA was
extracted. The following sequence of the RT primer
was used: /5Phos/ WWW CGTAT NNNN AGATCG-
GAAGAGCGTCGTGAT /iSp18/ GGATCC /iSp18/
TACTGAACCGC. cDNA libraries were sequenced
with single end 100bp reads on Illumina HiSeq4000.

4.4 Nanopore direct-RNA sequencing
(DRS)

RNA sequencing was performed following the in-
struction provided by Oxford Nanopore Technologies
(Oxford, UK), using R9.4 chemistry flowcells (FLO-
MIN106) and direct-RNA chemistry sequencing kits
(SQK-RNA001 or SQK-RNA002). For polyA+ tran-
scriptome sequencing, we followed the conventional
DRS protocol using the provided polyT (RTA) adapter.
For the targeted sequencing, we ordered custom reverse

transcription adapters complementary to the 3’end of
4 selected noncoding RNAs, and followed the sequence-
specific DRS protocol (Table S2). For library prepara-
tion, we used 500ng of unmodified synthetic 7SK RNA
using the adapter complementary to the 3’end of 7SK.
To reduce sequencing costs for the DKC1 KD datasets,
we multiplexed multiple conditions using the 4 barcodes
supported by Poreplex (Table S3) and used 3μg of to-
tal RNA per sample for library preparation. The lay-
out of the sequences used for targeted sequencing are
represented in Sup. Fig. S6, page 29.

5 Data and computational methods
All the computational methods and scripts used for
this paper are available in the following Github repos-
itory: https://github.com/tleonardi/nanocompore_
paper_analyses. The direct RNA datasets generated
for this study can be obtained from ENA (https://www.
ebi.ac.uk/ena/browser/home) with the following acces-
sion number id: PRJEB35148. For this study we used
the following Human reference files all obtained from
Ensembl:

• Genome reference: Human genome assembly
GRCh38.p12

• Annotation reference: Ensembl Gene build
release-97

5.1 In silico simulated datasets
5.1.1 Unmodified RNA model
We used an in vitro transcribed human RNA DRS
dataset released by the Nanopore WGS consortium as
a ground truth for non-modified RNA bases (https:
//github.com/nanopore-wgs-consortium/NA12878).
This dataset contains all possible 5-mers on average
58,307 times. The reads were aligned on gencode
release 28 human reference transcriptome with Min-
imap2v 2.14 and we realigned the signal to the reference
sequence using Nanopolish eventalign v0.10.1 followed
by NanopolishComp Eventalign_collapse v0.5. Next,
we collected the median intensity and dwell time data
for each 5mers and tried to fit 44 different distribu-
tions. We selected distributions minimising the sum of
square root error for all kmers between the observed
and modeled data. In addition, we also based our selec-
tion on the possibility to easily change the parameters
of the distributions to simulate the presence of modi-
fications. We selected the Wald distribution and the
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Logistic distribution for dwell time and median inten-
sity, respectively. Finally, we generated a model file
containing the parameters of the observed and model
distributions for each 5-mer. The up-to-date model
file is distributed with Nanocompore. The detailed
analysis is available in the following Jupyter note-
book: https://github.com/tleonardi/nanocompore_
paper_analyses/blob/master/in_silico_dataset/01_
IVT_Kmer_Model.ipynb.

5.1.2 Simulated reference sequence
We generated a set of in silico reference sequences. In
order to maximise the sequence diversity and kmer
coverage we used a “guided” random sequence gen-
erator. In brief, the sequences are generated base
per base using a random function, but the program
keeps track of the number of times each kmer was
already used. The sequence is extended, based on a
random function with a weighted probability for each
kmer inversely proportional to their occurrence in the
sequences already generated. This ensures that all
kmers are represented as uniformly as possible, but
it leaves some space to randomness. We generated a
set of 2000 sequences 500 bases long each maximis-
ing the 9-mers coverage. We excluded any homopoly-
mers longer than 5 bases, as they are likely to be
miscalled in nanopore data. Kmer coverage in the final
sequence set are summarised inTable S4. The detailed
analysis is available in the following Jupyter note-
book: https://github.com/tleonardi/nanocompore_
paper_analyses/blob/master/in_silico_dataset/02_
Random_guided_ref_gen.ipynb.

5.1.3 Simulated modified and unmodified datasets
Nanocompore comes with a companion tool called Sim-
Reads which can generate simulated read data based
on a fasta reference and a kmer model file. Essen-
tially, SimReads walks along the reference sequence
and generates intensity and dwell time values corre-
sponding to each 5-mers. To do so, it uses a proba-
bility density random generator using the kmer model
values (location and scale) bounded by the extreme
observed values. This tool can also offset the model
mean by a fraction of the distribution standard devia-
tion to simulate the effect of RNA modifications. This
can be done for all the reads or only on a subpopula-
tion of reads. SimReads generates files similar to the
output of NanopolishComp EventalignCollapse. This
means that the datasets can be directly used as input
for NanoCompore SampComp. Using Nanocompore

v1.0.0rc3 with the previously described simulated ref-
erence sequence set we generated 144 in silico datasets
with various amplitude of modification of the median
signal intensity and the dwell time (0, 1, 2, 3 and 4
standard deviation) as well as different fractions of
modified reads (10%, 25%, 50%, 75%, 90% and 100%).
All the datasets were simulated in duplicate with a
uniform coverage depth of 100 reads. The detailed
analysis is available in the following Jupyter note-
book: https://github.com/tleonardi/nanocompore_
paper_analyses/blob/master/in_silico_dataset/03_
Simulated_dataset_gen.ipynb.

5.1.4 Analysis of simulated datasets

We compare the 144 datasets containing simulated
modifications against the reference dataset gener-
ated from the unmodified model with Nanocom-
pore v1.0.0rc3 (See Nanocompore section after).
The analysis was performed with all the statisti-
cal methods supported by Nanocompore using a
sequence context of 2 nucleotides (https://github.
com/tleonardi/nanocompore_paper_analyses/blob/
master/in_silico_dataset/04_nanocompore.sh). The
result database was subsequently parsed and the pre-
dicted modified sites were compared with the position
of the known simulated positions. A hit was considered
true positive (TP) when we found a significant p-value
within 3 nucleotides of a known modified position. A
significant hit outside of this window was counted as
a false positive (FP). Finally, we plotted the Receiver
Operating Characteristic (ROC) curves correspond-
ing to the TP rate compared with the FP rate for
every Nanocompore comparison performed (https://
github.com/tleonardi/nanocompore_paper_analyses/
blob/master/in_silico_dataset/05_calc_roc.sh).

5.2 Direct-RNA datasets analysis
5.2.1 Demultiplexing

For targeted sequencing of ncRNAs in the DKC1 KD
vs WT experiment, we multiplexed several conditions
together using custom barcodes as described in the sec-
tion “Nanopore direct-RNA sequencing” and outlined
in Table S3. The datasets were demultiplexed using
Poreplex v0.4 with default parameters (https://github.
com/hyeshik/poreplex/tree/v0.4). We were able to as-
sign 23% of the reads to one of the 4 barcodes used.
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5.2.2 Data preprocessing
All the datasets were preprocessed using an automated
analysis NextFlow pipeline, before running Nanocom-
pore (https://github.com/tleonardi/nanocompore_
pipeline). Raw reads FAST5 files were basecalled with
ONT Guppy v3.1.5 and the basecalled reads were saved
in FASTQ format. A post-basecalling quality control
was performed with pycoQC (v2.2.4)24 to verify the
consistency of the sequencing runs. A transcriptome
reference FASTA file was created from the annota-
tion BED file and genome FASTA file with Bedparse
(v0.2.2)35. Reads were then aligned on the transcrip-
tome reference with Minimap2 (v2.16)36 in unspliced
mode (-x map-ont). The resulting aligned reads were
filtered with samtools (v1.9)37 to keep only primary
alignments mapped on the forward strand (-F 2324)
and the raw signal was realigned on reads using Na-
nopolish eventalign (v0.11.1)19. Finally, the data was
processed by NanopolishComp Eventalign_collapse
(v0.6.2)38 to generate a random access indexed tab-
ulated file containing realigned median intensity and
dwell time values for each kmer of each read.

5.2.3 Synthetic m6A data preprocessing
We obtained a dataset corresponding to an in vitro
oligomer containing the m6A- modified and unmodi-
fied GGACU motifs ligated to a large carrier RNA16.
Briefly, the fast5 files were basecalled with Guppy
(v3.1.5) and the resulting sequences mapped to the
reference with minimap2 (v2.16). The raw signal was
then realigned to the mapped sequences with Nanopol-
ish eventalign (v0.11.1) and the resulting eventalign file
was split into two separate files respectively containing
the modified and unmodified UGAGGACUGUA sub-
sequence. After splitting, the resulting files were pro-
cessed with NanopolishComp Eventalign_collapse and
Nanocompore as described for the other datasets. The
code for this analysis is available at the following URL:
https://github.com/tleonardi/nanocompore_paper_
analyses/tree/master/synthetic_oligo_timp/scripts.

5.3 Signal comparison with Nanocompore
Nanocompore is a Python3 package dedicated to com-
parative analysis of DRS nanopore sequencing raw sig-
nal in order to identify potential RNA modifications
sites. Signal analysis and complex statistical tests are
generally resource-intensive, but Nanocompore takes
advantage of a multiprocessing architecture to process
transcripts in parallel and has a relatively small mem-
ory footprint. Nanocompore requires at least 1 indexed

tabulated file generated with NanopolishComp Even-
talign_collapse for each of the 2 conditions to compare.
The program will run with a single replicate per con-
dition, but we recommend at least 2 to take full ad-
vantage of the advanced statistical framework. The
analysis flow is divided in three steps: 1) white-listing
of transcripts with sufficient coverage, 2) parallel pro-
cessing and statistical testing of transcripts position per
position, 3) post-processing and saving.

5.3.1 Transcripts whitelisting
In order to reduce the computational burden, Nanocom-
pore first filters out transcripts with insufficient cover-
age. This is achieved by a rapid tally of reads mapped
per transcripts followed by selection of transcripts hav-
ing at least 30 reads mapped in all of the samples pro-
vided. Users can modify the threshold but the default
value allows to get reproducible results. Optionally,
one can provide a custom list of transcripts to include
or exclude.

5.3.2 Statistical analysis
White-listed transcripts are processed in parallel to take
advantage of multi-threaded architecture. First, the
data corresponding to the reads mapped on each tran-
script is loaded in memory and transposed in the tran-
script space in a position-wise fashion. The current
implementation of Nanocompore only uses the median
signal intensity and the scaled log10 transformed dwell
time, but the framework is flexible enough to aggre-
gate more variables, such as the error rate or addi-
tional Nanopolish HMM states. The 2 experimental
conditions are compared positions per position using a
range of statistical tests. We included 3 robust univari-
ate pairwise statistical methods: Kolmogorov-Sirmrnov
(KS), Mann-Whitney U (MW) and t-test. Those tests
are performed independently on the median intensity
and the dwell time. We also implemented a Gaus-
sian mixture model (GMM) clustering-based method.
For a given position we fit a bivariate 2 components
GMM to all the data points observed (x=median in-
tensity, y=dwell time), irrespective of the sample la-
bel. We then assign each data point to one of the
two clusters and test for differences in the distribu-
tion of reads between clusters across conditions. To
this purpose, testing is implemented in two ways: 1)
we fit a Logit model to the data using the formula
predicted_cluster∼1+sample_label and report the co-
efficient’s p-value. 2) We do a one-way ANOVA test
comparing the log odds of data points belonging to
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cluster one between the two conditions. After testing,
it’s optionally also possible to aggregate the p-values of
neighbouring kmers to account for the fact that modi-
fied bases affect the signal of multiple kmers. To this
end, and due to the fact that neighbouring p-values are
non-independent, we implemented in python a method
to approximate the distribution of the weighted com-
bination of non-independent probabilities23. The com-
bined p-values are computed all along the sequence us-
ing a sliding window of a given length. This method
greatly reduces the prediction noise (false positive rate)
at the expense of spatial resolution, while giving more
weight to sites for which the effect of RNA modifica-
tions on the signal is spread over several kmers.

5.3.3 Post-processing, saving and data exploration
with Nanocompore interactive plotting API

Results generated by the statistical module are col-
lected and written in a simple key/value GDBM
database. Although this data structure has limita-
tion in terms of portability and concurrent access, it
is natively supported by python and allow to store
complicated data structures. For each test previously
performed p-values are temporary loaded in memory
and corrected for multiple tests with the Benjamini-
Hochberg procedure. Users can then obtain a tabu-
lated text dump of the database containing all the
statistical results for all the positions in the tran-
scripts space or a BED file with the positions of
significant hits found by Nanocompore converted in
the genome space. Finally, we provide a convenient
python wrapper over the GDBM database, allowing
users to interactively access simple high level functions
to plot and export the results (https://nanocompore.
rna.rocks/demo/SampCompDB_usage/). The wrap-
per was initially developed for Jupyter but can essen-
tially work with any python IDE. At the time of publi-
cation the wrapper allows to generate 6 different types
of publication ready plots for a given transcript includ-
ing (1) the distribution of p-values, (2) the distribution
of signal intensity and dwell time, (3) the overall cov-
erage per sample, (4) the nanopolish HMM states, (5)
the kernel density of the signal and dwell time for a spe-
cific position and (6) the sharkfin plot of the p-values
compared with Log Odds Ratio (for the GMMmethod).
The API, will be progressively extended in the future.

5.4 Downstream analyses
The code for all generic analyses, plots and met-
rics is available at https://github.com/tleonardi/

nanocompore_paper_analyses/. The transcript inter-
section plot for the MOLM13 polyA dataset had been
generated with UpsetR39,40.

5.4.1 Metagene m6A coverage
The metagene m6A coverage analysis was done con-
sidering all nanocompore sites with GMM logit p-
value<0.01. The plot was produced with GuitarPlot
using m6A sites in genome-space (from the BED
files produced by Nanocompore) and the Bioconduc-
tor TxDb.Hsapiens.UCSC.hg38.knownGene packages
as txdb option.

5.4.2 Motif enrichment analysis of m6A sites
For the motif enrichment analysis of m6A sites iden-
tified by Nanocompore analysis of METTL3 KD, we
extracted the sequence of all kmers tested by Nanocom-
pore and having a p-value<0.5 (GMM-logit). The se-
quences were then sorted by p-value and analysed with
Sylamer for the identification of over-represented words,
using a word size of 5 and a growth parameter of 100.
The Sylamer results were then imported in R for plot-
ting. For visualisation purposes, the final plot only re-
ports the lines for the top 100 motifs with the greatest
area under the sylamer curve, with the top one repre-
sented in colour.

5.4.3 Single molecule identification of m6A sites
To assign an m6A probability at A652, A1324 and
A1535 for each read covering the β-actin transcript,
we developed a dedicated post-processing script avail-
able at https://github.com/tleonardi/nanocompore_
paper_analyses/m6acode/parse_sampcomdb.py.
Briefly, for each of the three positions of interest, we
extract the GMM model saved in sampCompDB, and
for each read we then predict the probability that it
belongs to each of the two clusters. To define which
of the two clusters corresponds to m6A modified reads,
we consider which of the two clusters has negative log
odds of data points belonging to it in the KD condi-
tion (i.e., we consider which of the two clusters shrinks
in the KD condition). To test the independence of
the methylation events at these three sites, we per-
formed a chi-squared test of independence comparing
the expected number of molecules for each of the 8
combinations of modifications to the observed number
of molecules. The results reported are obtained using
a probability threshold of 0.75 (as predicted by the
GMM) to consider a read as methylated. However, to
ensure robustness of these results, the chi-squared test
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was repeated for all thresholds between 0.1 and 1 (0.05
steps) and p-values were adjusted accordingly using
the Benjamini–Hochberg procedure. Adjusted p-values
were >0.39 for all thresholds used.

5.4.4 7SK structures

The 7SK multiple alignments and consensus sec-
ondary structure were obtained from Rfam (RF00100).
Secondary structure plots were produced with
R2R34,41 and a custom python script to annotate p-
values as color shading (available at https://github.
com/tleonardi/nanocompore_paper_analyses/blob/
master/ncRNAs_structures/create_annotations.py).

5.4.5 miCLIP analysis

miCLIP data and corresponding input data was anal-
ysed using the iMaps web server (https://imaps.
genialis.com/). Briefly, raw reads were demulti-
plexed and trimmed (for adaptors and quality), be-
fore being mapped to a tRNA and rRNA index us-
ing STAR (v2.4.0.1)42. Unmapped reads were then
mapped to GRCh38 GENCODE primary assembly, us-
ing GENCODE annotation v30. STAR parameter –
alignEndsType Extend5pOfRead1 was used to ensure
no soft clipping of cDNA start sites. PCR dupli-
cates were removed based on unique molecular identi-
fier (UMI) and mapping position. cDNA start -1 posi-
tions were taken as crosslink sites. To calculate miCLIP
coverage of Nanocompore sites, the resulting BAM files
were converted to transcriptome space. Briefly, the
BAM files produced from the iMaps pipeline where fil-
tered to only retain uniquely mapping reads and then
converted to fastq format with Samtools. The reads
were then mapped with bowtie2 to an index gener-
ated from the sequences of all the 752 transcripts ana-
lyzed by Nanocompore. The resulting BAM files were
then loaded into R, the start positions converted to
GRanges with BAM2GRanges and normalised using
the TMM method as implemented in csaw43. The
binned coverage was calculated using the featureScores
function of the Repitools package43,44 with a bin size
of 50nt. To test the null hypothesis of no difference
between WT and KO, we calculated the mean cover-
age of the bins within 100nt of a Nanocompore site
and applied the Mann-Whitney U test. For these anal-
yses only Nanocompore sites with GMM-logit p-value
<0.01 were considered and sites less than 5nt apart were
merged.
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Figure 1: Benchmarks on in silico data. Plots showing the Area Under the ROC curve (AUROC, y-axis) obtained with Nanocompore on in
silico generated data at varying fractions of modified reads (x-axis).
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Figure 2: legend on next page
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Figure 2: (previous page) m6A profiling in the polyA+ transcriptome. A: Bar chart showing the total number of mapped reads in each
sample. Overall total number of reads: 3,768,380 (average 942,095 per sample). B: Bar chart and intersections plots showing the total
number of sequences transcripts in each sample. Average: 34,386.75 distinct transcripts per sample C: Bar chart and intersections
plots showing the total number of sequences transcripts in each sample and in every combination of samples. D: Cumulative fraction
of reads mapping to transcripts with increasing degree of total coverage. For example, the point (10,0.6) on the purple line indicates
that in the KD2 sample ∼60% of the reads map to transcripts with coverage of 10x or lower. E: Scatter plot showing the correlation in
transcript abundance between replicates. R2 of 0.757 and 0.937 for WT and KD respectively. F: Scatter plot showing the correlation
in transcript abundance between WT and KD after averaging replicates. R2=0.969.

Oligo Name Oligo sequence
L3-ATT 5’Phos - WNATTAGATCGGAAGAGCGGTTCAG - 3’Bio
L3-AGG 5’Phos - WNAGGAGATCGGAAGAGCGGTTCAG - 3’Bio
L3-TTA 5’Phos - WNTTAAGATCGGAAGAGCGGTTCAG - 3’Bio
L3-TGC 5’Phos - WNTGCAGATCGGAAGAGCGGTTCAG - 3’Bio

Supplementary Table 1: Sequence of miCLIP barcoded adapters

Gene Symbol Ensembl gene ID Ensembl Transcript ID Targeting sequence
RN7SK ENSG00000283293 ENST00000636484.1 5’-AAAGAAAGGCAGACTGCCAC-3’
RPPH1 ENSG00000277209 ENST00000516869.1 5’-AATGGGCGGAGGAGAGTAGT-3’
RNU2-1 ENSG00000274585 ENST00000618664.1 5’-TGGTGCACCGTTCCTGGAGG-3’
RMRP ENSG00000277027 ENST00000602361.1 5’-ACAGCCGCGCTGAGAATGAG-3’

Supplementary Table 2: Targeted ncRNA

Barcode name Oligo-A sequence Oligo-B sequence
BC1 5’-CCTCCCCTAAAAACGAGCCGCATTTGCG-3’ 5’-CGCAAATGCGGCTCGTTTTTAGGGGAGG-3’
BC2 5’-CCTCGTCGGTTCTAGGCATCGCGTATGC-3’ 5’-GCATACGCGATGCCTAGAACCGACGAGG-3’
BC3 5’-CCTCCCACTTTCACACGCACTAACCAGG-3’ 5’-CCTGGTTAGTGCGTGTGAAAGTGGGAGG-3’
BC4 5’-CCTCCTTCAGAAGAGGGTCGCTTCTACC-3’ 5’-GGTAGAAGCGACCCTCTTCTGAAGGAGG-3’

Supplementary Table 3: Poreplex compatible barcoding sequences

Order Median oc-
currences

Mean oc-
currences

Min occur-
rences

Max occur-
rences

kmers
found

kmers
expected

Percent
kmers
found

5-mers 970 968 695 1023 1024 1024 100
6-mers 242 241 214 275 4092 4092 100
7-mers 60 60 45 89 16356 16356 100
8-mers 15 15 8 26 65376 65376 100
9-mers 4 3 0 9 261268 261312 99.98
10-mers 1 1 0 6 706080 1044480 67.6
11-mers 1 1 0 4 913965 4174848 21.89

Supplementary Table 4: Coverage of kmers (5 to 11 mers) found in the in silico generated reference sequences. The sequence set was designed
to optimise the 9-mers content. The expected kmer count excludes the sequences containing homopolymers longer
than 5 bases which were intentionally avoided when designing the reference sequence.
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Figure 3: (previous page) miCLIP validation of Nanocompore m6A sites. A: m6A miCLIP coverage of significant Nanocompore sites (GMM
logit p-value<0.01). Coverage calculated in transcriptome-space. The y-axis shows the mean signal across sites of the average coverage
(counts per million) in 4 replicates for the WT condition and 2 replicates for the KO condition. The shaded area shows the standard
error of the mean across sites. B: Same as in A but showing the coverage of the transcriptional start sites (TSSs) of transcripts with at
least one significant Nanocompore site. C: Heatmap showing the z-score normalised mean coverage around significant Nanocompore
sites. For visualisation purposes the color scale was saturated at the 95th percentile of distribution of z-scores.

Construct name sg and shRNA sequence
METTL3 gRNA1 GCTCAACATACCCGTACTAC
METTL3 gRNA2 CTGTTGTGATATCCGCTACC
METTL3 sh1 CGTCAGTATCTTGGGCAAGTTCTCGAGAACTTGCCCAAGATACTGACGTTTTTG
METTL3 sh2 GCTGCACTTCAGACGAATTATCTCGAGATAATTCGTCTGAAGTGCAGCTTTTTG
METTL3 Scramble CAACAAGATGAAGAGCACCAACTCGAGTTGGTGCTCTTCATCTTGTTGTTTTTG
DKC1 sh1 CCGGGCTCAGTGAAATGCTGTAGAACTCGAGTTCTACAGCATTTCACTGAGCTTTTTG
DKC1 sh2 CCGGTATGTTGACTACAGTGAGTCTCTCGAGAGACTCACTGTAGTCAACATATTTTTG
DKC1 Scramble CCGGCAACAAGATGAAGAGCACCAACTCGAGTTGGTGCTCTTCATCTTGTTGTTTTTG

Supplementary Table 5: Sequences of sgRNAs and shRNAs used for KD and KO experiments.

Oligo name Oligo sequence

T7 7SK

5’-TATTAGTACTTAATACGACTCACTATAGGGATGTGAGGGCGATCTGGCT
GCGACATCTGTCACCCCATTGATCGCCAGGGTTGATTCGGCTGATCTGGCT
GGCTAGGCGGGTGTCCCCTTCCTCCCTCACCGCTCCATGTGCGTCCCTCCC
GAAGCTGCGCGCTCGGTCGAAGAGGACGACCATCCCCGATAGAGGAGGAC
CGGTCTTCGGTCAAGGGTATACGAGTAGCTGCGCTCCCCTGCTAGAACCT
CCAAACAAGCTCTCAAGGTCCATTTGTAGGAGAACGTAGGGTAGTCAAGC
TTCCAAGACTCCAGACACATCCAAATGAGGCGCTGCATGTGGCAGTCTGCC

TTTCTTT-3’

T7 7SK Reverse Complement

5’-AAAGAAAGGCAGACTGCCACATGCAGCGCCTCATTTGGATGTGTCTGGA
GTCTTGGAAGCTTGACTACCCTACGTTCTCCTACAAATGGACCTTGAGAGC
TTGTTTGGAGGTTCTAGCAGGGGAGCGCAGCTACTCGTATACCCTTGACC
GAAGACCGGTCCTCCTCTATCGGGGATGGTCGTCCTCTTCGACCGAGCGC
GCAGCTTCGGGAGGGACGCACATGGAGCGGTGAGGGAGGAAGGGGACACC
CGCCTAGCCAGCCAGATCAGCCGAATCAACCCTGGCGATCAATGGGGTGA
CAGATGTCGCAGCCAGATCGCCCTCACATCCCTATAGTGAGTCGTATTAAG

TACTAATA-3’

Supplementary Table 6: DNA oligo sequences used to produce double stranded DNA template for 7SK in vitro transcription. The T7 promoter
is in the first and last 28 nucleotides of the forward and reverse complement sequence respectively.
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Figure 4: Modification profile of 7SK from the analysis on an IVT sample. A: Secondary structure of 7SK with the Nanocompore IVT vs
WT p-value (GMM-logit) overlaid as a color scale. For each nucleotide the color indicates the lowest p-value among those of the 5 kmers
that overlap it. Only p-values<0.01 are shown in color. B: Violin plots showing the distributions of median intensity (top) and scaled
log10 dwell time (bottom) for kmers encompassing the known pseudouridine site U250. the Hexim1 binding sites and neighbouring
kmers. C: RNA modification profile of 7SK, showing the Nanocompore GMM-logit p-value (y axis, -log10) across the transcript length.
All coordinates refer to the first nucleotide of each kmer relative to ENST00000636484.
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Figure 5: Pseudouridine profile of ncRNAs. A-D: DKC1-dependent pseudouridine profiles 7SK, showing the Nanocompore p-values (y-axis,
DKC1 KD vs control, -log10) across the transcript length for 7SK (A), RMRP (B), RPPH1 (C) and U2 (D). All coordinates refer to the
first nucleotide of each kmer.
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Figure 6: Sequence of the custom RT/sequencing adapter used for targeted sequencing
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