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ABSTRACT

Functional and kinetic constraints must be efficiently balanced during the folding process of all biopolymers. To understand how
homologous RNA molecules with different global architectures fold into a common core structure we determined, under
identical conditions, the folding mechanisms of three phylogenetically divergent group I intron ribozymes. These ribozymes
share a conserved functional core defined by topologically equivalent tertiary motifs but differ in their primary sequence, size,
and structural complexity. Time-resolved hydroxyl radical probing of the backbone solvent accessible surface and catalytic
activity measurements integrated with structural-kinetic modeling reveal that each ribozyme adopts a unique strategy to attain
the conserved functional fold. The folding rates are not dictated by the size or the overall structural complexity, but rather by
the strength of the constituent tertiary motifs which, in turn, govern the structure, stability, and lifetime of the folding
intermediates. A fundamental general principle of RNA folding emerges from this study: The dominant folding flux always
proceeds through an optimally structured kinetic intermediate that has sufficient stability to act as a nucleating scaffold while
retaining enough conformational freedom to avoid kinetic trapping. Our results also suggest a potential role of naturally
selected peripheral A-minor interactions in balancing RNA structural stability with folding efficiency.

Keywords: structural homology; RNA folding; kinetic intermediates; group I introns; ribozymes

INTRODUCTION

It is well documented in the scientific literature that bi-

ological polymers like nucleic acids and proteins often

fold into conserved, energetically favorable structural scaf-

folds to execute similar biochemical reactions (Lockless

and Ranganathan 1999; Socolich et al. 2005). Consequently,

homologous RNA molecules displaying striking differences

in nucleotide composition, chain lengths, global structural
complexities, and stabilities of the tertiary motifs, more

often than not, adopt highly conserved functional cores

defined by topologically equivalent tertiary interactions

(Westhof and Massire 2004; Vicens and Cech 2006). While

formation of specific structural features of RNA is expected

to generate stable low-energy intermediates during folding,

satisfying the topological constraints conferred by the

conserved tertiary interactions requires sufficient confor-

mational freedom to overcome steric barriers. It is poorly

understood how RNA molecules that are designed to fold
into an evolutionarily conserved core conformation balance

these competing energetic constraints during folding.

A number of studies in the protein folding field, mostly

using comparative F-value analysis (Matouschek et al. 1989;

Maxwell et al. 2005), have revealed that structurally homol-

ogous proteins fold through similar folding transition state

ensembles (TSE) (Maxwell et al. 2005). Do RNA molecules

sharing a phylogenetically conserved structural core fold
through similar pathways and intermediates too? The answer

to this question remains elusive because of the absence of

quantitative comparative analyses of structurally homologous

RNA molecules folding under identical conditions. Meta-

analysis of the folding rates of topologically diverse RNAs

revealed that for slow folding molecules, folding rates are

inversely proportional to structural complexity. In contrast,
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folding rates are independent of topological complexity for

fast folding molecules (Sosnick and Pan 2004). From the

limited information comparing folding of a few RNA

classes, it is generally believed that a correlation between

folding rate and topology depends upon whether the rate-

limiting step involves disruption of non-native interactions

or small local conformational changes that act as nucleation

scaffolds (Treiber and Williamson 2001a; Sosnick 2008).
The routinely used F-value analysis in protein folding

makes a fundamental assumption that a structural pertur-

bation does not change the folding pathways, which in turn

renders it unsuitable for characterizing the folding TSEs of

RNA. A well-established tenet in RNA folding is that even

subtle perturbations in the stability of the native state alter the

dominant folding pathways (Shcherbakova and Brenowitz

2005; Laederach et al. 2006). Therefore, in order to address
the relationship between topologically conserved tertiary

interactions and folding pathways in RNA, we adopted

a complementary quantitative approach that critically com-

pares structural-kinetic folding models resolved from time-

resolved hydroxyl radical (dOH) footprinting experiments on

structurally homologous RNA molecules. Structural-kinetic

folding models, by providing insight into the dominant

folding pathways, structural features of the folding interme-
diates, and their solution lifetimes (Laederach et al. 2006;

Shcherbakova and Brenowitz 2008), have helped elucidate the

contributions of both physical and intrinsic factors that

influence RNA folding mechanisms (Laederach et al. 2007).

We describe, validate, and critically compare the folding

mechanisms of three group I intron ribozymes that catalyze

their own excision from precursor RNA molecules in vivo,

cleave an oligonucleotide substrate with multiple turnovers
in vitro, have solved crystal structures, and are derived

from three phylogenetically divergent organisms: Tetrahy-

mena thermophila—a ciliate protist (Guo et al. 2004),

Azoarcus sp. BH72—a purple bacterium (Adams et al.

2004), and Twort sp.—a bacteriophage (Golden et al.

2005). The Tetrahymena structure, spanning z2/3 of the

full length, contains the conserved core, but lacks the

peripheral domains P2–2.1 and P9.1–9.1a–9.2.; a well-
validated tertiary structure model derived from phyloge-

netic covariation analysis (Michel and Westhof 1990; Lehnert

et al. 1996) complements the missing information about

the global geometries of the peripheral domains.

The structures of the three ribozymes reveal superimpos-

able catalytic active sites formed by the juxtaposition of two

sets of coaxially stacked helices and stabilized by conserved

tertiary contacts that are typical of the group I intron
architecture (Fig. 1B,C; Woodson 2005; Hougland 2006;

Vicens and Cech 2006). Azoarcus, the smallest of the three

ribozymes, has just the core architecture, while Tetrahymena,

the largest of the three, has extensive peripheral domains

buttressing the core. The Twort ribozyme is of intermediate

size and complexity. Despite significant differences in their

structural complexities and the total number of tertiary

contacts, 10 homologous tertiary interactions are sufficient

to define the conserved core architecture of each molecule

(Fig. 1A). If the conserved interactions defining the native

state topology dictate the choice of folding pathways, we

expect to see a common kinetic folding mechanism for the

three ribozymes.

RESULTS

Choice of a common folding condition

Since RNA folding pathways are extremely sensitive to

solution conditions (Kwok et al. 2006; Laederach et al.

2007), we conducted our folding comparisons under a condi-

tion compatible with all three ribozymes (10 mM potassium
cacodylate, 0.1 mM EDTA, 100 mM KCl, at 37°C) with the

reaction initiated by a saturating concentration of MgCl2, 10

mM. This ionic strength and temperature has been used for

several RNA folding studies (Zarrinkar and Williamson

1994; Fang et al. 1999; Rook et al. 1999; Russell and

Herschlag 2001; Kwok et al. 2006), and thus facilitates

comparison of the present work with these other analyses.

The moderate-to-high net G+C content of the ribozymes
(37% for Twort, 44% for Tetrahymena, and 60% for Azoarcus)

results in stable secondary and tertiary structures under

our solution conditions (Banerjee et al. 1993; Tanner and

Cech 1996; Rangan et al. 2003; Vicens et al. 2008). These

ribozymes are fully catalytically active without the need of ad-

ditional protein cofactors for structural stability (Herschlag

and Cech 1990a,b; Tanner and Cech 1996; Golden et al. 2005),

observations confirmed under our experimental conditions
by trans oligonucleotide substrate cleavage analysis (Fig.

5A–C, below; Supplemental Figs. S5–S7).

The presence of 100 mM K+ engenders a relaxed initial

state ensemble in which the repulsive columbic forces be-

tween the negatively charged backbones of the RNA helices

are screened, allowing for greater conformational flexibility

(Russell et al. 2000; Rangan and Woodson 2003; Takamoto

et al. 2004). This condition also recapitulates the physio-
logical ionic milieu in which almost all RNA molecules

have evolved to fold and function (Cayley et al. 1991), and

helps avoid the idiosyncratic Mg2+-mediated folding be-

havior observed for both the Tetrahymena (Sclavi et al.

1998) and the Azoarcus (Chauhan and Woodson 2008)

ribozymes under conditions of very low ionic strength.6

6Folding of the Tetrahymena ribozyme from low salt conditions (20 mm
Na+) leads to the formation of z75% of misfolded species (Russell and
Herschlag 1999) and also produces mutually heterogeneous behavior
between several tertiary contact partners. Thus, such low ionic strength
conditions are unsuitable for our comparative studies. Under conditions
comparable to our initial state, the Azoarcus and Tetrahymena ribozymes
exist as a compact ensemble in which the native secondary structure is
stabilized, while only a few tertiary contacts are at the most partially
formed (Rangan and Woodson 2003; Takamoto et al. 2004).
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Since the folding of the Twort ribozyme has not been

quantitatively studied, we performed equilibrium dOH foot-

printing and analytical ultracentrifugation analyses to verify,

under these experimental conditions, that the native structure

is fully formed in 10 mM Mg2+ (Supplemental Fig. S1A,B),

and that its initial Mg2+ free state is a relaxed ensemble

(Supplemental Fig. S1C).

The temporal order of formation of homologous
tertiary contacts is not conserved

Following initiation of the folding reaction by addition of

10 mM MgCl2, we probed the backbone solvent accessibility

change for each nucleotide of an RNA by time resolved dOH

footprinting. A total of 24 positions in the Twort, 19 in the

Azoarcus, and 33 in the Tetrahymena ribozymes were
analyzed. For each of these positions, we confirmed that

the observed decrease in dOH radical reactivity upon folding

correlates with the formation of a native tertiary contact by

comparing reactivity profiles of the equilibrium folded states

with the solvent accessibilities of the C49 atom within the

crystal structures (Supplemental Figs. S1A, S2A,B).

The time-progress curves determined for each of these

positions report the formation rate of the corresponding
tertiary contact. Three statistically significant temporal clus-

ters were obtained for each ribozyme (Fig. 2A–C) using the

KinFold software (Laederach et al. 2006, 2007; Martin et al.

2009). These clusters identify groups of positions with

common time evolutions. The cluster centroids, representing

the average time dependence of formation of the tertiary

contacts pertaining to a cluster, are noticeably different for the

three ribozymes (Figure 2A–C). For the smallest (Azoarcus)

and largest (Tetrahymena) of the ribozymes studied, the

fastest tertiary contacts reach their native extent of protection

within 50 to 100 msec, while the slowest contacts require

z200 sec (Fig. 2B,C). The long time spans contrast sharply
with those of the medium-sized Twort ribozyme, whose

fastest and slowest tertiary contacts reach the native state in

z500 msec and z5 sec, respectively, leading to a compressed

folding time span (Fig. 2A). A correlation between size and

folding rate is not observed for these homologous ribozymes.

Plotting the clustered residues on the secondary structure

diagrams of the three ribozymes reveals a striking observa-

tion; the 10 homologous tertiary contacts defining the con-
served native core structure of group I intron ribozymes

form at widely different rates and belong to different tem-

poral clusters in each ribozyme (Fig. 2D–F; Supplemental

Table S1). This observation is counter to our expectation

that homologous tertiary contacts would display a conserved

temporal order of formation. This insight is ‘‘model inde-

pendent’’ in that it does not depend on the kinetic modeling

of the time progress curves that is described below.

Similarities among the kinetic folding models reveal
conserved dominant folding pathways

The clustered kinetic progress curves of each ribozyme were

analyzed with the KinFold software, yielding the kinetic

FIGURE 1. The conserved core structure of Group I introns. (A) Conserved secondary structure depicted using the conventional nomenclature
(Burke et al. 1987). The additional intron-specific peripheral structural elements and their sites of insertion are indicated within the dotted boxes and are
coded by cyan, orange, and lime colors representing Twort, Azoarcus, and Tetrahymena, respectively. The purple boxes indicate the positions where dOH
footprints corresponding to the 10 topologically equivalent tertiary contacts are observed. (B,C) Superposition of the crystal structures of the three
ribozymes (Twort-1Y0Q.pdb, Azoarcus-1ZZN.pdb, Tetrahymena-1X8W.pdb). The superimposed structures are either viewed from an angle such that
the P4–P6–P5abc domains appear in the front (B) or from the opposite side, such that the P9.1–P9.2 and P7.1–P7.2 domains appear in the front.
(C) The introns are color coded as in A. The backbones of the conserved core regions are shown as ribbons. The nucleotides within the 10 homologous
tertiary contacts are shown as sticks. The peripheral domains of Twort (P7.1–7.2 and P9.1) and Tetrahymena (P5abc, P2–2.1, and P9.1–9.1a–9.2) are
shown as semitransparent space-filled surfaces in cyan and lime, respectively. Since the peripheral structures are missing in the Tetrahymena crystal
structure (1X8W), these domains were obtained from the phylogenetically derived 3D model (TtLSU.pdb) and the structure of the P4–P6 domain
(1GID.pdb), and spatially oriented by superposing these structures on 1X8W.pdb. B and C were generated in PyMOL (DeLano 2009).
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models that best describe folding (Fig. 3A,C,E). In simula-

tions conducted without bound reverse rates, the reverse

rates are close to zero and poorly determined due to the

progression of all our reactions to full completion (Supple-

mental Table S2A–C). We chose to bind the reverse rates

along each transition pathway to zero in

the models we report, as this constraint

reduces the dimensionality of the opti-

mization problem and yields overall

lower errors on the forward rates. Nu-

merical simulation of the possible fold-

ing pathways leading to the native state

reveals the relative flux of folding mol-
ecules flowing through each pathway

and identifies the pathways that are most

highly populated (Fig. 3B,D,F; Laederach

et al. 2006, 2007).

The kinetic models of the three ribo-

zymes share a common theme; the

initial ensemble of folding molecules

immediately partitions into three paral-
lel pathways. Two pathways lead to

intermediates, U/I1 and U/I2, while

the third leads directly to the native state

(U/F). The initial folding flux parti-

tions predominantly through U/I1

(Twort: 57.1%, Azoarcus: 50.5%, and

Tetrahymena: 44.5%; insets of Fig. 3,

B,D,F). The U/I2 pathway is the sec-
ond most highly populated (Twort:

32.8%, Azoarcus: 45.7%, and Tetrahy-

mena: 41.4%). The small remainder of

the folding flux is destined to the direct

pathway (Twort: 9.7%, Azoarcus: 3.9%,

and Tetrahymena: 14.2%). We refer to

the intermediates as ITwort, IAzoarcus, and

ITetrahymena for the respective folding
pathways.

As we follow Twort folding from the

intermediates to the final state, we see

that almost all of the initial U/I1Twort
and U/I2Twort fluxes are channeled

through to F (Fig. 3B vs. insets); there

is very little exchange between I1Twort
and I2Twort. The dominant pathway to
the native state (U/I1Twort/F, 55%)

is through the intermediate comprised

only of the fastest forming tertiary

contacts (green cluster). U/I2Twort/F

is the second most populated pathway

(35%); its intermediate is exclusively

comprised of the tertiary contacts affil-

iated to the medium temporal cluster
(red). The remaining 10% of the folding

flux follows the direct pathway. The

close resemblance between the initial flux partitioning

and the total flux through the dominant pathways suggests

that the Twort RNA molecules are directed from the onset

of folding into distinct channels mutually separated by

high-energy barriers throughout the folding reaction.

FIGURE 2. Clustering the kinetic progress curves derived from time resolved dOH foot-
printing during Mg2+ mediated folding of (A) Twort, (B) Azoarcus, and (C) Tetrahymena
ribozymes. The 24 progress curves of Twort, 19 of Azoarcus, and 33 of Tetrahymena, each
representing the time-dependent formation of a tertiary contact, statistically clustered into
three groups—fast (green), medium (red), and slow (blue). The cluster centroids, plotted as
solid lines though the clusters, represent the average kinetic behavior of a group and are used
in the KinFold analysis. For cluster affiliations of the tertiary contacts please refer to
Supplemental Table S1. Hydroxyl radical footprints are shown as boxes, colored according
to their cluster affiliations, on the secondary structures of the three ribozymes—(D) Twort, (E)
Azoarcus, and (F) Tetrahymena. The core helices (P4–P5–P6 and P3–P7–P8) and the substrate
docking site (P1) are shown in cyan, orange, and lime for D, E, and F, respectively; while
intron-specific peripheral domains, as described in Figure 1A, are shown in gray. Boxes
representing the homologous tertiary interactions, depicted in Figure 1A, are indicated by
black outlines.
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In both the Azoarcus (Fig. 3C) and the Tetrahymena (Fig.

3E) ribozymes, the most dominant pathways are again

U/I1/F and U/I2/F. As observed for I1Twort, I1Azoarcus
and I1Tetrahymena are comprised of the tertiary contacts
pertaining only to the fastest cluster (green). In contrast,

the nature of I2 differs; the tertiary contacts defining I2Twort
are exclusively the medium (red) cluster, while those

defining I2Azoarcus and I2Tetrahymena include both the fastest

(green) and the medium (red) clusters.

Another difference is that pathways,

in addition to the ones observed in

the Twort ribozyme are significantly

populated. These pathways are those

that involve interconversion of the in-

termediates I1 and I2. We note that

for both Azoarcus and Tetrahymena a

small but significant fraction (z10% 6

1%) of U/I2 flux is diverted to I1

(i.e., U/I2/I1/F as opposed

to U/I2/F) (Fig. 3D,F vs. insets).

Moreover, while the rates of

I1Tetrahymena/F and I2Tetrahymena/F

conversions are comparable to the

rate of I1Tetrahymena4I2Tetrahymena inter-

conversion (Fig. 3E), the I1Azoarcus/F
conversion is an order of magnitude

faster than both I2Azoarcus/F and

I1Azoarcus4I2Azoarcus (Fig. 3C). Finally,

while U/F is the third dominant path-

way in Tetrahymena (14%) (Fig. 3F),

Azoarcus’ third most populated pathway

is U/I2Azoarcus/I1Azoarcus/F (10.5%)

(Fig. 3D). Together, these observations
suggest that while I2 is very stable in

both Tetrahymena and Azoarcus, it is

a deeper folding trap in Azoarcus.

The folding behavior of the three

ribozymes was also analyzed at the

lower temperature of 25°C. Identical

kinetic model topologies were resolved.

The only observed difference was an
overall slowing of the folding process

(data not shown). Detailed studies of

the temperature dependence of these

folding reactions are being conducted

and will be presented elsewhere.

Structural character of the
predicted folding intermediates

Since the time–progress curves that

comprise each cluster are associated

with specific nucleotides, structural

characteristics of the folding inter-

mediates can be inferred by mapping

their locations on the native structures of the ribozymes

(Laederach et al. 2006). We emphasize that the time-
progress curves only report the rate at which a site becomes

inaccessible to solvent; hydroxyl radical protections do not

directly identify pairwise contacts. We interpret the data to

indicate formation of a native contact only when pairs of

time-progress curves, for protections observed in the native

structure to form a tertiary contact, are coincident. Alter-

natively, where coincidence of dOH progress curves for

FIGURE 3. Kinetic folding models and flux analysis. Folding model topologies (left) and flux
of folding molecules through the dominant pathways (right) for the Twort (A,B), Azoarcus
(C,D), and Tetrahymena (E,F) ribozymes, respectively, as derived from KinFold analysis. U, I,
and F refer to the unfolded, intermediate, and folded species, respectively. The resolved
microscopic rate constants are indicated for each step of a folding pathway. In the three left
panels, the green, red and blue colored boxes, associated with the intermediates (I1, I2) and the
folded species (F), represent the cluster affiliation of tertiary contacts formed in the
corresponding species. In the three right panels, each histogram represents the percentage of
folding molecules traversing the pathway indicated below it. The insets of B, D, and F show the
initial flux partitioning for the corresponding ribozymes.
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native pairwise contacts is not observed, we interpret these

cases to reflect transient interactions.

In the structures shown in Figure 4, we color nucleotides

that are predicted by the kinetic model to be protected in

an intermediate, by the color of the affiliated cluster. Our

present analysis addresses only protections that are present

in the intermediates; topological constraints and constraints

on ‘‘unfolded’’ stretches of polynucleotide are explored in
a detailed modeling analysis of the novel Twort and Azoarcus

intermediate structures that will be published separately

(C Chen, S Mitra, M Jonikas, M Brenowitz, and A Laederach,

in prep.). The intermediate structures inferred for the Tetra-

hymena ribozyme are identical to those previously published.

The time evolution of the unfolded, intermediates, and the

native species, calculated from the resolved structural-kinetic

models, are shown alongside the representative predicted
structured regions of each folding intermediate.

I1Twort is characterized by dOH protection of nucleotides

corresponding to the conserved triple helical junctions (J3/4

and J6/7), the L9 GNRA tetraloop, and the G binding site

(Fig. 4A). These represent only one-quarter of the total

number of protections observed in the native state (six out of

24). It is important to note that the protection corresponding

to the P5 receptor half of the L9–P5 tetraloop–receptor
interaction is not observed until much later in the folding

reaction. This observation suggests that the L9 tetraloop

transiently forms non-native contacts early in folding that are

reorganized during the later steps.

I2Twort is characterized by protections corresponding to

the P7.1–P7.2 peripheral domain, long-range contacts be-

tween the P6 and P3 domains, the central J8/7 stretch of

unpaired residues, and the 39 side of the P7 and the 59 side of
the P9.0 domains (Fig. 4B). These protections together

represent only one-third of all the native state protections

(eight out of 24). What is striking about the Twort in-

termediates is that the protections observed in one interme-

diate are not present in the other. Most of the protections

that define I1Twort and I2Twort form around the specifically

bound Mg2+ visible in the Twort crystal structure.

The slowest forming 10 protections in Twort folding
correspond mostly to the peripheral interactions that in-

clude the P5 tetraloop receptor half of the conserved L9–P5

tetraloop receptor interaction, the long range L2–P8

A-minor motif interaction, the P9–P9.1 peripheral domain,

and the conserved catalytic core involving residues on the

59 sides of the P3 and P7 helices (Supplemental Figs. S3A,

S4A). Therefore, the critical local core interactions assemble

in the Twort ribozyme before the more global long-range
peripheral interactions are established.

Both Twort intermediates are short-lived, with only

a z20-msec lifespan at their peak concentrations. The

native tertiary structure appears at a rate of 1.71 6 0.04 s�1

(Fig. 4C). These characteristics suggest that both the Twort

intermediates are transient nucleation scaffolds rather than

energetically stable modules.

The Azoarcus intermediates differ from those of Twort in

both structure content and time evolution. I1Azoarcus dis-

plays four of the total 19 protections observed in the native

Azoarcus ribozyme. These protections correspond to nu-

cleotides in the P2 GAAA tetraloop, the 11-nucleotide (11

nt) P8 canonical receptor, the J5/4 junction, the helix P1,

and the guanosine binding site (Fig. 4D). I2Azoarcus is

characterized by protections corresponding to the con-
served triple helical junctions J3/4 and J6/7, the L9 GAAA

tetraloop, the P5 11-nt canonical receptor, the upper part

of the P3 helix, and the unpaired J8/7 segment, in addition

to all of the I1Azoarcus protections (Fig. 4E). Thus, the well-

structured I2Azoarcus possess almost two-thirds of the pro-

tections observed in the native state (14 of 19 contacts). As

discussed in more detail below, the fastest forming pro-

tections in I1Azoarcus are located around specific K+ binding
sites. In contrast, the protections belonging to the medium

temporal cluster in I2Azoarcus are formed around sites of

specifically bound Mg2+ (Fig. 4D,E).

The slowest forming Azoarcus protections correspond to

nucleotides in the J6/6a segment, the minor groove of the P3

helix, the J4/5 junction, the P1 helix, and the core protections

involving the unpaired J8/7 and the P4 and P7 helices (Figs.

3B, 4B). Together, these protections comprise only 26% of
the native state protections (five out of 19). In the Azoarcus

ribozyme, the majority of the peripheral interactions are

established before the critical core contacts are assembled.

The native tertiary structure of the Azoarcus ribozyme

appears much more slowly than Twort, with a rate constant

of 0.013 (6 0.001) s�1 (Fig. 4F). Both I1Azoarcus and I2Azoarcus
reach their peak concentrations in z40 msec (Fig. 4F).

Unlike the Twort intermediates, their lifetimes are long; up
to 760 msec for I1Azoarcus and z20 sec for I2Azoarcus.

Therefore, I1Azoarcus and especially I2Azoarcus are significantly

stabilized.

I1Tetrahymena exhibits all of the protections pertaining to

the P5abc subdomain (Fig. 4G), which include the two Type

I/II A-minor interactions, the metal ion core (P5a)—receptor

(P4) interaction, and the GAAA tetraloop (L5b)-11 nt

canonical receptor (J6a/6b) interaction. This intermediate
also shows protections of nucleotides in the conserved L9

tetraloop and those consistent with formation of the long

range L2–L5c loop–loop interaction (P14) (Fig. 4G). Almost

half of the protections observed in the native Tetrahymena

ribozyme are detected in I1Tetrahymena (15 of 33).

I2Tetrahymena shows the protections observed in I1Tetrahymena

and those that correspond to the long range L9.1a–L2.1

loop–loop interaction (P13), the G binding site, P6 and P3
helices, and the J8/7 and J1/2 junctions (Fig. 4H). The 23

protections formed in I2Tetrahymena constitute z70% of the

33 contacts that define the ribozyme’s native conformation.

Mapping these contacts onto the available crystal structures

(Cate et al. 1996; Guo et al. 2004) reveals that most of the

protections observed in both I1Tetrahymena and I2Tetrahymena

form around K+ and Mg2+ binding sites.
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FIGURE 4. Mapping the temporal clusters of tertiary interactions onto the crystal structures of the Twort (A,B) and Azoarcus (D,E) ribozymes,
and the biochemically validated phylogenetic model of the Tetrahymena (G,H) ribozyme. The coordinates of the structures were obtained from
the following PDB entries: 1Y0Q (Twort), 1ZZN (Azoarcus), and TtLSU (Tetrahymena). The positions of divalent and monovalent ions (when
known in the crystal structures) are indicated by blue and purple spheres, respectively. The green and red colored boxes drawn below the
intermediates (I1 and I2) represent the clusters of tertiary contacts formed in each species. The schematic models of the intermediates were
generated in PyMOL (DeLano 2009). The three right panels show the lifetimes in solution of the unfolded (U: black line), intermediate (I1: green
line, I2: red line or red line with green dots), and the folded (F: blue line) species, as derived from KinFold analysis, for the Twort (C), Azoarcus
(F), and Tetrahymena (I) ribozymes. The two deep blue clusters of spheres in the P4–P6 domain of the Tetrahymena ribozyme represent the two
cobalt hexamine(III) molecules observed in the crystal structure (1GID.pdb).
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The slowest forming protections in the Tetrahymena

ribozyme involve nucleotides corresponding to the core

interactions represented by the conserved triple helix (J3/

4), interaction of the J6/6a with the minor groove of P3,

contact between the P2–2.1 domain and J2/3 segment, and

finally, the receptor half of the L9–P5 tetraloop receptor

interaction. These protections comprise the remaining

z30% of the native state protections (Supplemental Figs.
S3C, S4C). As the Azoarcus ribozyme, the majority of the

Tetrahymena peripheral interactions are established before

the critical core contacts are assembled. The Tetrahymena

native tertiary structure appears at a rate of 0.048 (6 0.002)

s�1 (Fig. 4I). I1Tetrahymena and I2Tetrahymena remain at their

peak concentrations between z100 msec and 1 sec (Fig.

4I), which reflects their moderate energetic stabilization,

slightly more for I2Tetrahymena than for I1Tetrahymena.
A common behavior of the all three ribozymes is that the

dominant path to the native state involves fast nucleation

of a few key tertiary interactions unencumbered by addi-

tional structure formation. In the Azoarcus and Tetrahy-

mena ribozymes, both of which contain a peripheral GAAA

tetraloop and its canonical 11-nt receptor, protections

corresponding to this interaction are among the fastest

to appear during tertiary folding. These data reflect early
organization of this interaction around K+ ions that are

site-specifically bound to this motif. In the Twort ribo-

zyme lacking the canonical receptors of the peripheral

GNRA tetraloops, nucleation seems to proceed around site-

specifically bound Mg2+ ions near the two triple helical junc-

tions (J3/4 and J6/7) and near the guanosine binding site.

Most importantly, the protections consistent with forma-

tion of stable peripheral contacts appear before protections
corresponding to the catalytic core are evident in the Azoarcus

and the Tetrahymena ribozymes. This folding hierarchy is

in clear contrast to the behavior of the Twort ribozyme, in

which formation of these groups of protections occurs in

concert.

Ribozyme activity assays confirm time-dependent
evolution of the native states

We performed oligonucleotide substrate cleavage assays to

independently follow the formation of the catalytically

active native state (Supplemental Figs. S5–S7). The time-

dependent appearances of catalytic activity of the Twort

and the Azoarcus ribozymes are in an excellent agreement

with the rates of formation of their native tertiary struc-

tures predicted by the structural-kinetic models (Fig. 5A,B).
In contrast, the time evolution of the Tetrahymena ribo-

zyme’s full catalytic activity lags the formation of native

state predicted by the structural kinetic model (Supple-

mental Fig. S7A,B). At the end of the time scale for activity

measurements, commensurate with the end points of the

footprinting experiment, the ribozyme activity reaches only

30% as compared with a prefolded control at 50°C. This

result was expected, since under folding conditions com-

parable to those used herein, the Tetrahymena ribozyme

acquires 25%–50% of its full activity at the end of the

measured time scale (Russell and Herschlag 1999; Treiber

and Williamson 2001b; Russell et al. 2002; Uchida et al.

2003). The remaining fraction is trapped into a long-lived

misfolded state denoted ‘‘M’’ (Russell and Herschlag 2001).

‘‘M’’ is a nearly identical topological isomer of the native
structure ‘‘N’’ that is indistinguishable by dOH footprinting

(Russell et al. 2000, 2006).

Extending our catalytic activity measurement of the

Tetrahymena ribozyme to several hours yielded results

consistent with the above-referenced studies; an initial

phase with an amplitude of z30% is in close agreement

with the rate of formation of the folded RNA predicted by

the structural-kinetic model (Fig. 5C; Supplemental Fig.
S7C). A second phase with an amplitude of z70%, appears

very slowly, unaccompanied by further dOH cleavage

reactivity (Supplemental Fig. S7A). This result is consistent

with conversion of ‘‘M’’ to the ‘‘N’’ state. Since ‘‘M’’ and

‘‘N’’ possess nearly identical tertiary structures, we con-

clude that the rate of folding of the Tetrahymena ribozyme,

calculated from the structural-kinetic model, is directly

comparable to the rate of the first phase of native ribozyme
formation. Therefore, for all the three ribozymes, the

structural-kinetic models accurately describe the major

conformational events associated with native tertiary struc-

ture formation.

DISCUSSION

The three homologous RNA molecules compared in this
study fold into a common core conformation to execute

the same biological function despite significant disparities

in terms of their global structures, highly divergent phylo-

genetic backgrounds, and distinctly different locations in

the genomic context (rRNA, tRNA, and mRNA) (Cech

1990; Reinhold-Hurek and Shub 1992; Landthaler and

Shub 1999). Our combined approach of chemical probing,

ribozyme activity measurements, and kinetic modeling
enable quantitative comparison of their folding mecha-

nisms and reveal basic principles of RNA folding.

Phylogenetic covariation analyses have revealed how a few

tertiary contacts, despite sequence dissimilarities, are geomet-

rically conserved in evolutionary divergent homologous RNA

molecules to generate similar core architectures, regardless of

the presence or absence of additional nonconserved peripheral

domains (Gutell et al. 1986; Michel andWesthof 1990; Lehnert
et al. 1996). It is generally believed that peripheral domains

(i.e., the P5abc subdomain in the Tetrahymena ribozyme) of

large RNA molecules specifically stabilize the native core

structures (Engelhardt et al. 2000; Johnson et al. 2005); in

the absence of such domains, strong tertiary interactions such

as the two canonical GAAA tetraloops and their cognate 11-nt

canonical receptors present in the Azoarcus ribozyme, impart
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unusually high stability to the folded structure (Tanner and

Cech 1996). The stability conferred by peripheral domains,

strong canonical tertiary contacts, or both, is expected to

generate stable folding intermediates. However, the compro-

mised conformational dynamics of stable intermediates could

generate steric obstacles early during folding, and thus impede
the overall folding rate.

Our comparative analysis reveals that large RNA mole-

cules fold efficiently through energetically balanced path-

ways involving nucleation of minimally stabilized transient

structural scaffolds that are poised for capture of native

tertiary structure. We outline a set of general principles that

dictate the choice of the dominant pathways on all three

folding landscapes.

Less-structured folding intermediates offer more
efficient folding routes

The majority of molecules in the three ribozymes prefer-

entially fold not through the direct pathway, but through

multiple structurally less-constrained pathways. This ob-

servation suggests that the energy barriers along the direct

pathway are high enough so that nucleation of a minimal
set of interactions is necessary for guiding the molecules

into pathways with lower energy barriers. These pathways

are presumably those that balance enthalpy gain with the

entropy loss associated with progressive structure forma-

tion. All three structural-kinetic models identify the most

populated pathway as U/I1/F. The intermediate I1 is

structured either minimally (z25% of the native contacts

are formed in Twort and Azoarcus) or, at the most,
moderately (z45% in Tetrahymena). The majority of the

remaining formation of native structure occurs during the

transition from the I1 intermediate to the native state.

We conclude from this observation that formation of an

early structural scaffold narrows down conformational

heterogeneity without imposing too many steric con-

straints. This balance between ‘‘order and chaos’’ allows

the ensemble to retain sufficient freedom to fully explore
the available conformational space. A similar theme of

a late bias toward the native state has been recently revealed

in protein folding. For structurally homologous proteins

that fold through an intermediate, and hence, through two

TSEs, the late TSE of each protein resemble the other’s

much more than their early TSE (Calosci et al. 2008). The

observation implies that while the native state uniquely

defines the reaction coordinate during the later stages of
folding, the earlier stages retain much more conformational

freedom on the free energy landscape (Calosci et al. 2008).

Interestingly, the structurally most complex Tetrahymena

ribozyme, which populates long-lived misfolded interme-

diates under some experimental conditions, displays sig-

nificantly higher I1 structuring compared with Twort and

Azoarcus. Sixty seven percent of this structuring (10 out of

15) is attributable to contacts that specifically stabilize the
independently folding P5abc subdomain. This observation

suggests that early folding of the P5abc subdomain con-

strains the conformational ensemble that in turn restricts

alternate pathways that could favor either correct folding or

lead to faster resolution of misfolded species. Consistent

with this hypothesis, the earliest steps of folding of the

EDP5abc version of the Tetrahymena ribozyme that lacks

FIGURE 5. Correspondence between dOH footprinting and activity
assays. The time-dependent evolutions of the native ribozyme species,
as measured by enzymatic activity assays (filled circles with error
bars), and the time-dependent appearance of the folded ribozyme
species, as derived form KinFold analysis of time-resolved dOH
footprinting data (solid lines), for the Twort (A: blue), Azoarcus (B:
orange), and Tetrahymena (C: green) ribozymes, are depicted. The
activity assays are described in Supplemental Figures S5, S6, and S7.
The left ordinate, in all three panels, represents the fraction of
substrate cleaved during the initial product burst phase. The
fraction native at each time point is scaled either with respect to
a prefolded control (incubated at 50°C—for the Twort and Azoarcus
ribozymes) or with respect to the 15-min time point (end of the first
phase—for the Tetrahymena ribozyme). The right ordinate repre-
sents the extent to which a RNA backbone region has become
solvent inaccessible, as compared with the solvent accessibility of
the same region in the fully folded control (Fractional Saturation).
The abscissa represents the time for which the ribozyme is allowed
to fold, after addition of Mg2+ ions, prior to the addition of the
oligonucleotide substrate and guanosine (in the enzymatic activity
assays) or the addition of dOH generating reagents (in time resolved
dOH footprinting experiments).
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P5abc, are greater than fivefold faster than those observed

in the folding of the wild-type ribozyme (Russell et al.

2007). EDP5abc folding involves fewer and different ter-

tiary interactions as compared with the wild-type ribozyme.

Even though EDP5abc misfolds to the catalytically inactive

‘‘M’’ state, refolding from the ‘‘M’’ to the ‘‘N’’ state is two

orders of magnitude faster as compared with the wild type

(Russell et al. 2007).

Overall folding speed is governed by folding
intermediate stability

A ‘‘mutual tertiary structure capture’’ model, where folding

proceeds through parallel pathways involving moderately

stable structural scaffolds, was proposed based on the effect

of destabilization of the tetraloop–tetraloop receptor interac-
tion in the P4–P6 domain of the Tetrahymena ribozyme

(Treiber and Williamson 2001b). Twort ribozyme folding

reflects a natural occurrence of this mechanism, in which

long-lived kinetic intermediates that are often a kinetic trap

are avoided. Twort is therefore the fastest folding ribozyme of

the three analyzed under our quasiphysiological experimental

conditions. The Twort intermediates are characterized by

formation of several key interactions whose moderate stabil-
ity is evidenced by their short lifetimes.

The short-range interactions surrounding the central

metal ion-binding sites are efficiently organized in this

ribozyme before the periphery completely closes upon the

core through the Type I/II A-minor interactions between

the L9 and L2 tetraloops and their respective receptors in

P5 and P8 (Fig. 6A–C; Supplemental Figs. S3A, S4A). Thus,

the late imposition of spatial constraints through long-
range tertiary interactions is a folding strategy that appears

to be favored only in the absence of strong peripheral

tertiary interactions.

In contrast, what happens when high-affinity interac-

tions are formed in early folding intermediates (Fig. 6E)?

The answer to this question comes from the Azoarcus

ribozyme, in which two GAAA tetraloop–canonical re-

ceptor interactions stabilize its global fold (Fig. 6D) and
from the Tetrahymena ribozyme that uses a GAAA tetra-

loop–canonical receptor interaction to stabilize its early

forming and independently folding P4–P6 domain (Fig.

6F). I1Azoarcus is stabilized by formation of the L2-GAAA

tetraloop-P8 canonical receptor contact (Fig. 6F), an

exceptionally high-affinity tertiary interaction (Costa and

Michel 1995). I2Azoarcus is stabilized by a second, identical,

high-affinity interaction between the L9-GAAA tetraloop
and its receptor in P5. These two interactions, along with

other tertiary contacts, firmly lock both ends of the

molecule, and thus strongly stabilize I2Azoarcus. I1Azoarcus
with only one such interaction still retains some confor-

mational freedom.

Our initial state contains a physiologically relevant

monovalent cation type and concentration, 100 mM K+

(Cayley et al. 1991). K+ binds specifically to the adenosine

platforms (AA) in the tetraloop receptor of the Tetrahy-

mena ribozyme (Basu et al. 1998). Of the five specifically

bound K+ ions observed in the Azoarcus crystal structure

(Stahley et al. 2007), two are within the L2–P8 tetraloop

receptor (one to the L2 loop and the other to the AA

platform in the P8 receptor) and one is coordinated by

residues in the G binding site and the J5/4 segment. The
fact that these are the fastest forming I1 interactions in both

Azoarcus and Tetrahymena suggests that under physiolog-

ical conditions, stabilization by cations of secondary struc-

ture modules participating in tertiary interactions strongly

influences RNA folding kinetics.

We propose that very stable intermediates such as those

observed for the Azoarcus and the Tetrahymena ribozymes

are ensembles of low-energy structures in which most of
the peripheral native/native-like tertiary contacts are pres-

ent. Therefore, rearrangements necessary to generate the

native conformation of the catalytic core are impeded by

steric constraints arising from the severely compromised

conformational dynamics of the intermediates. This is

especially true for intermediates like I2Azoarcus, which is

locked at both ends. The prolonged lifetimes of I1Azoarcus
and I2Azoarcus are likely to arise from slow conformational
search and/or slow interconversion that therefore reduce

the overall folding speed of the Azoarcus ribozyme.

The conclusion that long-lived intermediates, populated

and stabilized by the synergistic effects of monovalent and

divalent cations on strong tetraloop receptor interactions,

retard folding of the Azoarcus ribozyme, is consistent with

previous studies conducted in a lower ionic strength buffer

(z8 mM Na+); all of the native tertiary contacts are observed
to form in <50 msec under this very low-ionic strength

condition (Rangan et al. 2003; Chauhan and Woodson

2008). The importance of the strong tertiary interactions like

canonical tetraloop–tetraloop receptors on kinetic folding

pathways, especially in the absence of peripheral domains, is

underscored by the observation that destabilization of these

interactions through mutations or backbone nicks slows the

overall folding kinetics of the Azoarcus ribozyme under the
low-salt initial condition (Chauhan and Woodson 2008;

Chauhan et al. 2009). Such perturbations most likely in-

troduce alternate folding pathways.

I1Tetrahymena and I2Tetrahymena are also stabilized by a net-

work of strong tertiary interactions that increase the proba-

bility of forming trapped states. It has been shown that the

commitment to fold to the native state is made late along the

folding pathway of the Tetrahymena ribozyme (Russell and
Herschlag 2001), and misfolded states presumably arise from

well-structured intermediates such as I2Tetrahymena, whose con-

formational freedom is compromised. Among the fastest-

forming interactions that cooperatively stabilize the P5abc

subdomain (Sattin et al. 2008) present in the Tetrahymena

intermediates are Type I/II A minor interactions and a high-

affinity GAAA tetraloop–canonical receptor interaction.
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FIGURE 6. Noncanonical and canonical receptors in group I introns. The two tetraloops in the Twort ribozyme (A), the GUAA (L2) and the
GAAA (L9) dock into an A-minor motif in P8 and a half receptor in P5, respectively (shown in their secondary and tertiary forms in B and C,
respectively). These two noncanonical tetraloop receptor interactions are colored blue to indicate their affiliations to the slow cluster. The
Azoarcus (D) and the Tetrahymena (F) ribozymes, containing the canonical GAAA tetraloops and their cognate 11-nt receptors (represented in its
secondary and tertiary structure forms in E), are shown. The L9–P5 and L2–P8 tetraloop–receptor interactions in the Azoarcus are colored red and
green, respectively, to indicate their cluster affiliations. Similarly, the L5b–J6a/6b tetraloop–receptor interaction in the Tetrahymena ribozyme is
shown in green to indicate its cluster affiliation.
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Although these peripheral interactions pose kinetic

impediments, their importance is underscored by the

observation that the independently folding P5abc subdo-

main stabilizes the native structure of the ribozyme over a

misfolded state by z6 Kcal/mol (Johnson et al. 2005).

Therefore, as opposed to the Azoarcus ribozyme, where

early tertiary structure capture by the GAAA tetraloop–

tetraloop receptor interactions most likely generates kinetic
traps, the same interaction in the Tetrahymena ribozyme

stabilizes an early folding subdomain, which, in turn,

thermodynamically discriminates between native and

non-native structures.

A proposed role of naturally selected peripheral
A-minor interactions in RNA folding

Our results suggest that the folding mechanism of homol-

ogous RNA molecules cannot be accurately predicted

simply based on the topology of the conserved native core

structure. The nature of the unpaired adenosines that

mediate long-range minor groove contacts in structured

RNA through Type I/II A- minor interactions (Gutell et al.

2000; Doherty et al. 2001; Lee et al. 2006) play a key role in

determining pathway preference and folding speed. The
binding efficiency of GAAA tetraloop–canonical 11-nt

receptors present in the Azoarcus and the P5abc subdomain

of the Tetrahymena ribozymes, is 50-fold higher than that

of the homologous A-minor interactions (GUAA tetra-

loops–CCU:AGG receptor) found in the Twort ribozyme

(Costa and Michel 1997).

The relative efficiency of these interaction classes corre-

lates directly with the predicted lifetime of the folding
intermediates and inversely with the overall folding speed;

the Twort ribozyme folds more than an order of magnitude

faster than the Azoarcus and the Tetrahymena ribozymes.

This observation suggests that a tradeoff to highly stable

native folds is a reduction of the speed with which the final

structure forms, and a greater temporal spread between the

earliest and the latest steps in folding (Fig. 4, cf. F, I, and

C). The existence of this tradeoff predicts a preferential
occurrence of high-efficiency A-minor interactions under

selective pressures that demand structural integrity over

speed; the removal of such pressures should allow for

a more generous selection of A-minor interactions with

a wider range of affinities and specificities. Two questions

are posed by this hypothesis: (1) Is such a biased distribu-

tion observed in nature? (2) What selective pressure in-

fluences the natural occurrence of A-minor interactions, at
least for the group I introns?

We propose that for group I introns the natural selection

of peripheral A-minor tertiary motifs with different relative

efficiencies could be a direct consequence of the extent of

structuring in the adjoining regions of their corresponding

precursor RNA transcripts. Evidence for biased distribution

of A-minor interactions comes from several independent

observations. The Tetrahymena and Azoarcus group I introns

belong to the IC1 and IC3 subgroups that occur almost

exclusively in highly structured noncoding transcripts such

as preribosomal and pretransfer RNAs (Cannone et al.

2002). High-affinity interactions within these introns help

them specify a unique thermodynamically stable structure

by avoiding competition from the surrounding tertiary

interactions. It has been shown that the independently
folding P5abc subdomain, an integral part of which is the

GAAA tetraloop-canonical 11-nt receptor, stabilizes the

native structure of the ribozyme over a misfolded state

by z6 Kcal/mol (Johnson et al. 2005).

Consistent with this hypothesis, it has been shown that in

the IC3 group I introns, 88.7% of L2 and 98.6% of the L9

peripheral tetraloops belong to the GNRA family; all of

these GNRA loops are, in fact, GAAA (Prathiba and Malathi
2008). The binding affinity of a GAAA tetraloop for its 11-nt

canonical receptor is up to a 1000-fold higher than the affinity

of other GNRA tetraloops for the same or closely related

receptor motifs (Ikawa et al. 2001; Geary et al. 2008).

A comprehensive comparative analysis of natural and in

vitro-selected GNRA tetraloop receptors suggests that the

preferred occurrence of the receptors with the highest

specificities and affinities could be an evolutionary adapta-
tion to avoid alternate tertiary folds (Geary et al. 2008). That

the natural splicing efficiency of IC1 and IC3 introns has

evolved as a subtle balance between the stabilization of

a unique conformation over competing interactions and the

kinetic impediments imposed by high-affinity interactions

is perhaps best exemplified by the fact that the splicing of

the Tetrahymena intron is more efficient in its natural pre-

rRNA context as compared with its splicing in an artificially
engineered pre-mRNA context (Hagen and Cech 1999).

In contrast, the Twort ribozyme belongs to the IA2 group

I intron subgroup that, as known to date, occur exclusively

in significantly less-structured protein-coding bacterio-

phage mRNA (Cannone et al. 2002). Almost all of the

IA2 introns have either GUAA or GUGA as their peripheral

L2 and L9 tetraloops (Prathiba and Malathi 2008), which

dock into noncanonical receptors. The need to fold and
splice out quickly from a cotranscriptionally translated

mRNA could have disfavored the selection of tertiary in-

teractions that potentially generate long-lived intermediates

in IA2 introns.

In fact, it has been demonstrated that in the IA2 intron

containing mRNAs, continuous cotranscriptional translation

is essential for efficient splicing of the introns, presumably by

avoiding misfolding (Sandegren and Sjoberg 2007). Also
consistent with our hypothesis, mutational analysis of a

bacteriophage T4 IA2 group I intron showed that perturba-

tion of the naturally selected noncanonical L9–P5 or L2–P8

interactions severely impaired the intron’s ability to self-

splice in vivo (Brion et al. 1999).

Our studies support the following general conclusions: (1)

Selection pressures phylogenetically divergent homologous
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RNA sequences to fold into identical catalytically active

core conformations structured by conserved patterns of

tertiary contacts. The energetic stabilities of conserved and

nonconserved tertiary motifs vary between homologous

RNA molecules depending upon the intron’s location

within the natural genomic context. (2) The greater ther-

modynamic stability of a native conformation over com-

peting nonnative structures, achieved through selection of
strong tertiary interactions, comes at the expense of slower

folding to the catalytically active conformation due to for-

mation of long-lived intermediates. (3) Unique kinetic inter-

mediates associated with a given overall native state topology

offer energetically efficient routes to fold to the correct func-

tional conformation. Efficient folding is achieved by balanc-

ing the gain in structural stability due to tertiary contact

formation with the probability of misfolding due to loss of
conformational freedom.

MATERIALS AND METHODS

RNA preparation and labeling

The three ribozymes were in vitro transcribed using the MEGA-

script T7 Kit (Ambion) from three linear DNA templates encod-

ing nucleotides 22–409 of the Tetrahymena ribozyme (Zaug et al.

1988), 4–204 of the Azoarcus ribozyme (L-3; R Russell, pers.

comm.), and 9–251 of the Twort ribozyme (Golden et al. 2005),

each of which contained a T7 promoter sequence immediately

upstream of the ribozyme sequence. The transcribed RNA

molecules were purified either on a 5% denaturing PAGE or by

the MEGAclear kit (Ambion). Each ribozyme was radioactively

labeled with 32P at either the 59 end (Zaug et al. 1988) or the 39

end (Huang and Szostak 1996). Labeled RNA molecules were

purified by 5% denaturing PAGE, gel eluted, precipitated, and

dissolved in CE buffer (10 mM Potassium Cacodylate, 0.1 mM

EDTA, at pH 7.3). The following oligo substrates, for activity assays,

were ordered from Dharmacon: 59-CAUACGGCC-39 (Azoarcus),

59-GCUUAAAAA-39 (Twort), and 59-CCCUCUAAAAA-39 (Tetra-

hymena); substrates were labeled at the 59 end as described (Zaug

et al. 1988).

Time-resolved and equilibrium hydroxyl radical
(dOH) footprinting

Time-resolved dOH footprinting was performed as described

(Shcherbakova et al. 2006; Shcherbakova and Brenowitz 2008).

Briefly, the 32P-labeled RNA samples were denatured at 95°C for

2 min in ‘‘CEK Buffer’’ (10 mM Potassium Cacodylate, 0.1 mM

EDTA at pH 7.3, and 100 mM KCl) and cooled to 37°C. Folding

was initiated by rapidly mixing the RNA with a folding buffer

containing 20 mM MgCl2 (final Mg2+ concentration after mixing

is 10 mM) and 80 mM H2O2, using the two sample syringes in

a Kintek quench flow apparatus, and allowed to age for the desired

time period in the mixing chamber. dOH cleavage was initiated by

adding a Fe-EDTA solution [1 mM Fe(NH4)2(SO4)2 and 1.1 mM

EDTA] into the mixing chamber through the quench syringe,

allowed to proceed for 5 msec, and the reaction mix was expelled

into a tube containing 100% ethanol. The temperature of the

mixing chamber and the reaction loops, contained within a box,

was maintained by circulating water through the box from

a temperature-regulated bath (Neslab RTE-111). Reaction prod-

ucts were precipitated and separated by 8% denaturing PAGE.

The dried gels were visualized by Storm PhosphorImaging (GE),

and band intensities were quantitated by the SAFA (Das et al.

2005) at single nucleotide resolution. The band intensities were

normalized and plotted to identify nucleotides that are at least

20%–30% protected from dOH cleavage between the unfolded

(without Mg2+) and the folded (pre-equilibrated sample in

10 mM Mg2+ at 50°C) controls. The normalized bands intensities

of protected residues were scaled to fractional saturation, Y , by

p = plower + ðpupper � plowerÞ3Y ð1Þ

where p denotes the integrated density of the bands and plower and

pupper represent the lower and upper limits to the transition,

respectively. plower denotes the average of the zero-time point

values (initial state without Mg2+, Y = 0), whereas pupper denotes

the average value of the pre-equilibrated controls (folded state in

10 mM Mg2+, Y = 1). Fractional values of �Y , for each tertiary

contact, indicate the extent of progress along the folding reaction

coordinate as a function of time.

Equilibrium dOH footprinting was performed as described in

Takamoto et al. (2004) and in the Supplemental legend to Figure S1C.

Analytical ultracentrifugation (AUC)

AUC studies were performed in a Beckman XL-I analytical

ultracentrifuge with a An-60 Ti 4 hole rotor. The scans were

analyzed with the software DCDT+ (Philo 2006). SEDNTERP was

used to estimate the density and viscosity of the buffer. The partial

specific volume ð�nÞ and the hydration of the RNA molecule were

assumed to be 0.53cm3/gm and 0.59, respectively.

Catalytic activity assays

Details of the assays are described in the Supplemental figures

(S5–S7). Briefly, 0.5 mM of unlabeled ribozyme was denatured at

95°C for 2 min in CEK buffer and cooled to 37°C. Folding was

initiated by adding MgCl2 (final concentration 10 mM) and

allowed to proceed for the desired time period. For slower time

points (>5 sec) RNA and MgCl2 were hand mixed, whereas for

faster time points (<5 sec) mixing was performed in the Kintek

quench flow apparatus. At the end of the folding time point, the

folding reaction mix was added to the cleavage reaction mix (CEK

at pH7.0, 10mM Mg2+, trace amounts 32P-labeled substrate, 1 mM

unlabeled substrate, 0.5 mM Guanosine). Aliquots were removed

at intervals of 10–15 sec and quenched by gel loading buffer II

Ambion (95% Formamide, 18 mM EDTA, and 0.025% SDS,

Xylene Cyanol, and Bromophenol Blue). Reaction products were

separated by 20% denaturing PAGE, dried gels visualized by Storm

PhosphorImaging (GE), and quantitated by Imagequant (GE).

Structural-kinetic modeling

The time progress curves were analyzed by KinFold as described

(Laederach et al. 2006, 2007; Martin et al. 2009). Briefly, the

sets of time-progress curves of each ribozyme are statistically

clustered using Gap statistics built in the KinFold algorithm
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(http://simtk.org/home/KinFold). Next, all possible kinetic

models are critically tested to determine the best-fit or ‘‘winning’’

kinetic topology (with lowest RMS) and the corresponding rate

constants. The reaction flux through each intermediate is calcu-

lated from the best-fit rate constants, providing a reasonable

estimate of the partitioning among pathways from the initial to

the final molecular ensemble. The structural models were gener-

ated in PyMOL (DeLano 2009).

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article. In addition, see

the ‘‘Intron type vs. exon’’ table at http://www.rna.ccbb.utexas.

edu/SAE/2C/Distributions/g12tte.php (section 2: structure and

evolution, subsection 2C: introns—Gr I/II intron distributions).
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