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Abstract

Background: The quantitative polymerase chain reaction (qPCR) is a widely utilized method for

gene-expression analysis. However, insufficient material often compromises large-scale gene-

expression studies. The aim of this study is to evaluate an RNA pre-amplification method to

produce micrograms of cDNA as input for qPCR.

Findings: The linear isothermal Ribo-SPIA pre-amplification method (WT-Ovation; NuGEN) was

first evaluated by measuring the expression of 20 genes in RNA samples from six neuroblastoma

cell lines and of 194 genes in two commercially available reference RNA samples before and after

pre-amplification, and subsequently applied on a large panel of 738 RNA samples extracted from

neuroblastoma tumours. All RNA samples were evaluated for RNA integrity and purity. Starting

from 5 to 50 nanograms of total RNA the sample pre-amplification method was applied, generating

approximately 5 microgams of cDNA, sufficient to measure more than 1000 target genes. The

results obtained from this study show a constant yield of pre-amplified cDNA independent of the

amount of input RNA; preservation of differential gene-expression after pre-amplification without

introduction of substantial bias; no co-amplification of contaminating genomic DNA; no necessity

to purify the pre-amplified material; and finally the importance of good RNA quality to enable pre-

amplification.

Conclusion: Application of this unbiased and easy to use sample pre-amplification technology

offers great advantage to generate sufficient material for diagnostic and prognostic work-up and

enables large-scale qPCR gene-expression studies using limited amounts of sample material.
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Introduction
Amongst the various methods available to measure gene-
expression, the reverse transcription quantitative
polymerase chain reaction (RT-qPCR) is the most rapid,
sensitive, and reproducible method [1-5]. However, it
often remains challenging to obtain from clinical samples
the amounts of mRNA required to perform a gene-expres-
sion analysis, especially for large-scale studies.

Therefore, it seems that a method capable of pre-amplify-
ing nanogram quantities of RNA is essential, to ensure
that sufficient material is available for high-throughput
gene-expression profiling. Various pre-amplification
methods have been proposed including as well PCR-
based [6,7] as linear isothermal [8-10] pre-amplification
strategies. Each method has proven to be effective in gen-
erating microgram quantities of cDNA from minute
amounts of input RNA. While various studies have evalu-
ated these methods for microarray-based procedures [11-
17], only limited information is available for qPCR appli-
cations.

This paper extensively evaluates the linear isothermal
Ribo-SPIA pre-amplification method for qPCR [10,18].
The method was first evaluated in RNA samples from neu-
roblastoma cell lines and commercially available refer-
ence RNA, and subsequently applied on a large panel of
RNA samples extracted from neuroblastoma tumours, to
be used in a prognostic multigene-expression signature
study [19].

Materials and methods
Sample preparation

Total RNA was extracted from 6 neuroblastoma cell lines
and 738 fresh frozen neuroblastoma tumour biopsies
according to three methods in collaborating laboratories.
Two commercial RNA samples were mixed (Universal
Human Reference RNA (UHRR) from Stratagene and
Human Brain Reference RNA (HBRR) from Ambion) to
generate the four MAQC (MicroArray Quality Control)
reference samples [20].

In order to assess the RNA purity and integrity, we per-
formed a SPUD assay for the detection of enzymatic
inhibitors [21] and a capillary gel electrophoresis analysis
(Experion; Bio-Rad) to establish an RNA quality index
(RQI).

RNA pre-amplification and cDNA synthesis

Starting from 5, 15, or 50 ng of total RNA, the WT-Ovation
RNA Pre-amplification method (NuGEN) was used
according to the manufacturer's instructions, generating
approximately 5 μg of cDNA [10,18].

In parallel the same RNA extracted from the neuroblast-
oma cell lines and the MAQC samples were used for con-
ventional cDNA synthesis using the iScript cDNA
Synthesis Kit according to the manufacturer's instructions
(Bio-Rad).

High-throughput real-time quantitative PCR based gene-

expression

A qPCR assay was designed for each gene [Additional files
1, 2] and validated through an extensive analysis pipeline
[22]. Real-time qPCR was performed in a 384-well-plate
instrument (LC480, Roche).

See [Additional file 3] for more details on this section.

Results
Pre-amplification yield as a function of RNA input

In order to assess the influence of the amount of input
RNA on the yield of pre-amplified cDNA we measured the
expression of ten reference genes after pre-amplification
starting from 5, 15 or 50 ng as input RNA from three cul-
tured neuroblastoma cells and UHRR. Figure 1 shows that
the method is highly reproducible and that the yield (as
defined by the quantification cycle (Cq) value of com-
monly used reference genes) is not dependent on the
amount of input RNA. For each gene (irrespective of the
abundance level), the standard deviation on the mean Cq-
value of the three pre-amplified products per sample is
low (range 0.06 to 0.97, mean 0.30).

Differential expression

The pre-amplification method induces a recognized
sequence-specific pre-amplification bias, meaning that
some sequences or parts of transcripts pre-amplify better
than others [Additional file 4, Figure S1]. However, most
critically is the preservation of the differential expression
levels between samples after pre-amplification. Using
three MYCN single copy (MNS) and three MYCN ampli-
fied (MNA) neuroblastoma cell lines, we first measured
the expression of 10 known differentially expressed genes
(MYCN itself and nine known MYCN regulated genes
[23]) before and after pre-amplification [Additional file
1]. The differential gene-expression (expressed as differ-
ence in Cq or delta-Cq (dCq) [Additional file 3 for an
example]) between two samples remains equal after pre-
amplification (Figure 2). We observed a high correlation
between differential gene-expression of the ten genes
between the MNS and MNA cell lines before and after pre-
amplification (Spearman correlation coefficient: 96.7; P <
0.0001) (Figure 3). Next we measured the expression of a
set of 194 genes (12 reference genes and 182 MAQC target
genes) [20] before and after pre-amplification in the
MAQC samples (replicates) [Additional file 2]. Quality
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control of the replicates showed that 83.3% of all repli-
cates had a standard deviation <0.2; 96.0% <0.5; and
99.1% <1.0. Figure 4a shows that the difference in dCq
(delta-delta-Cq or ddCq [Additional file 3 for an exam-
ple]) before and after pre-amplification is less than 1 in
80.1%, less than 1.5 in 91.3% and less than 2 in 96.7% of
the samples, indicating that the pre-amplification bias is
acceptable. As shown in Figure 4b, the lower the gene is
expressed (high Cq-value), the higher the ddCq, demon-
strating that initial low expression and especially low
expression after pre-amplification due to a lower pre-
amplification efficiency for the region targeted with qPCR
is associated with a higher bias.

Pre-amplification method does not pre-amplify DNA

In order to determine if residual DNA in the RNA extract
is co-amplified and consequently might confound the
results, we pre-amplified pure human genomic DNA
(HGDNA) and two RNA samples from neuroblastoma

cell lines verified for absence of DNA and subsequently
spiked with 1% and 10% HGDNA (2 ng DNA per 20 ng
RNA input for pre-amplification) (Roche). We next per-
formed qPCR with a DNA-specific primer pair
(NEUROD1; RTPrimerDB ID 8113 [22]) and used
HGDNA as positive control. No signal for NEUROD1
could be observed in the pre-amplified cell lines spiked
with DNA as resulting DNA concentration after a 200×
dilution of the pre-amplified product is lower than 0.5 pg/
μl, which is below the detection level for qPCR. Moreover,
the Cq-value of NEUROD1 was equal in the HGDNA that
had undergone the above described pre-amplification
procedure and in the HGDNA used as positive control.
These results indicate that DNA is not co-amplified (data
not shown).

No need for purification of the pre-amplified products

To determine if purification of the pre-amplification
product is required we performed a SPUD assay as

Pre-amplification yield as a function of RNA inputFigure 1
Pre-amplification yield as a function of RNA input. qPCR quantification (mean Cq of 3 pre-amplified samples starting 
from 5, 15 or 50 ng input RNA) of 10 reference genes in four pre-amplified samples (error bars denote standard deviation). 
The standard deviation on the mean Cq-value of the three pre-amplified products per sample is low indicating that the yield is 
not dependent on the amount of input RNA. UHRR: Universal Human Reference RNA.
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described in [additional file 3] [21] and we compared the
expression values of six reference genes using qPCR in 6
purified versus 6 non-purified pre-amplified neuroblast-
oma samples. The dCq between the negative control and
both the purified and non-purified samples did not
exceed 1, indicating absence of enzymatic inhibitors
[Additional file 5, Figure S2]. PCR efficiencies were evalu-
ated using two single curve efficiency algorithms (PCR
Miner [24] and LinReg [25]) and were similar for both
purified and non-purified samples, confirming the
absence of enzymatic inhibitors in non-purified pre-
amplified products [Additional file 6, Figure S3]. When
using the same mass input amount of purified and non-
purified products, we noticed on average 6.31 times (95%
CI: 4.89 - 8.14) more amplifiable target in the purified
products. This indicates that more than 80% of the non-
purified mass consists of free dNTPs, primers and other
molecules that are detected by spectrophotometric meas-
urement and that there is a need for relatively more input

for qPCR if non-purified pre-amplified material is used
(Table 1).

In a last step of the evaluation of the necessity of pre-
amplification clean-up, we measured the expression of ten
reference genes in ten samples before and after pre-ampli-
fication. Comparison of the cumulative distribution plots
of the ddCq-values obtained on purified and non-purified
pre-amplified product showed that the plots almost com-
pletely overlap, providing further evidence that purifica-
tion is not required [Additional file 7, Figure S4].

Pre-amplification as a function of RNA quality

In order to assess the RNA quality of 738 neuroblastoma
tumour samples, we performed a capillary gel electro-
phoresis analysis to establish an RQI. All samples were
pre-amplified and qPCR was performed to measure the
expression of two low abundant universally expressed ref-
erence genes (SDHA and HPRT1) [Additional file 8]. Both

Preservation of differential expression after pre-amplificationFigure 2
Preservation of differential expression after pre-amplification. Differential expression (expressed as difference in Cq 
or delta-Cq (dCq)) of 10 genes in three MYCN single copy (MNS) neuroblastoma cell lines (1: GI-ME-N; 2: SK-N-AS; 3: SK-N-
SH) and three MYCN amplified (MNA) neuroblastoma cell lines (1: IMR-32; 2: N206; 3: NGP) before (light grey bars) and after 
sample pre-amplification (dark grey bars). The x-axis represents the differentially expressed genes. 1:MYCN; 2:INHBA; 3:RGS4; 
4:DKK3; 5:NTRK2; 6:TGFBI; 7:PMP22; 8;PLAT; 9:CMYC; 10:MTHFD2. The dCq between MNS and MNA samples remains almost 
unchanged after pre-amplification indicating a preservation of differential expression.
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genes were undetectable in 22 (3.0%) samples, HPRT1
was undetectable in 14 (1.9%) additional samples, and
SDHA in 17 (2.3%) additional samples. The average RQI
was 2.7 (± 1.9 stdev) in the group of samples with missing
value for at least one reference gene compared to 7.2 (±
1.7 stdev) in the group of samples where both reference
genes were expressed (p < 0.0001). We found a negative
correlation between the Cq-values of both reference genes
and RQI (Figure 5).

Discussion
An import limitation of gene-expression analysis in the
current diagnostic workflow is the fact that often minimal
amounts of biomaterial are procured. As such, in many
cases only a few nanograms of total RNA are available. In
order to measure a large number of genes on this limited
material and to maximize the number of samples through
collaborative studies, a robust sample pre-amplification
method is required. In this study we evaluated the linear
isothermal Ribo-SPIA pre-amplification method for
qPCR-based gene-expression analysis in cancer cell lines
and commercially available reference samples, optimized
the pre-amplification workflow, and used the method in
a large clinical sample set.

First, we could clearly demonstrate that differential
expression is preserved after pre-amplification and that no
substantial bias is introduced. The fold-changes between
pre-amplified samples were compared to those observed
between non-amplified samples in the largest set to date
(194 genes, 4 samples, 1164 data points), revealing an
accurate preservation of relative transcriptome composi-
tion despite the pre-amplification process. This is in
accordance with previously reported findings on smaller
datasets using qPCR [10,26]. However, careful interpreta-
tion of the results is warranted in case of very small fold
changes in gene-expression between samples. We further
noticed that the observed bias (high ddCq) is mainly due
to a lower pre-amplification efficiency for the region tar-
geted with qPCR. Assays with a large difference in Cq-
value before and after pre-amplification may thus need
redesign. Further studies are required to investigate the
potential relationship between various factors (including
target localisation in the transcript) and the observed bias;
if conclusive, guidelines might be developed for design of
better qPCR assays to be used in pre-amplified products to
further reduce the bias. Important to note is that the com-
parison of gene-expression of non-amplified samples
with pre-amplified samples is not possible, which means
that all samples analysed in the same expression study
need pre-amplification. Moreover, since a sequence-spe-
cific pre-amplification bias has been recognized this tech-
nique is not suitable for splice-variant quantification or
any other study that aims at the comparison of expression
levels of two genes.

We also assessed the need of DNase treatment before and
of purification after pre-amplification. The results
obtained show that neither of these procedures is
required. This is an important finding, especially in large-
scale gene-expression studies, as both techniques are time-
consuming and add a substantial cost to the experiments.
Furthermore, DNase treatment may lead to a loss of mate-
rial and of mRNA integrity due to the exposure of the RNA
samples to a high temperature during heat inactivation
required for many commercial DNases.

Monitoring RNA quality and using intact RNA is of critical
importance to obtain reliable gene-expression data and to
ensure reproducibility of the results [27,28]. In this study
we assessed the RNA quality of 738 tumour samples
before pre-amplification and evaluated the pre-amplifica-
tion success by measuring the expression of two low abun-
dant reference genes (SDHA and HPRT1). As expected,
pre-amplification of highly degraded samples turned out
to be unsuccessful. In addition, there was a negative corre-
lation between the Cq-values of the reference genes and
the RQI. A possible explanation for the imperfect negative
correlation is the use of random primers in the RNA pre-

Correlation of differential gene-expression before and after pre-amplificationFigure 3
Correlation of differential gene-expression before 
and after pre-amplification. Correlation of differential 
gene-expression (expressed as difference in Cq or delta-Cq 
(dCq)) of ten genes in three MYCN single copy (MNS) and 
three MYCN amplified (MNA) neuroblastoma cell lines 
before (x-axis) and after pre-amplification (y-axis). Same data 
as in Figure 2. The observed correlation indicates preserva-
tion of differential expression after pre-amplification.
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amplification process, resulting in successful pre-amplifi-
cation of partially compromised RNA samples.

As the tumour sample size is often very limited, the
applied RNA pre-amplification procedure offers the possi-
bility to perform large multicenter studies. This enabled
us to establish and validate a robust prognostic multi-
gene-expression signature in the largest neuroblastoma
study cohort till now [19]. Moreover, the generated cDNA
library is available for future qPCR-based gene-expression
studies.

An additional advantage of the evaluated pre-amplifica-
tion method is its potential usefulness to generate a suffi-
cient nucleic acids concentration for use in ultra high-
throughput qPCR systems. These systems operate with
very low volumes and have the potential disadvantage of
compromised detection sensitivity as only limited vol-
umes of nucleic acids can be added. As the concentration
of the pre-amplified material is very high, this technique

may offer a solution and should be evaluated in future
studies.

In conclusion, the results obtained from this study indi-
cate that differential gene-expression is preserved after
sample pre-amplification using the linear isothermal
Ribo-SPIA pre-amplification method, that DNA is not co-
amplified, that a pre-amplification clean-up step is not
required, and that the pre-amplification product is free of
enzymatic inhibitors. Application of this unbiased and
straightforward pre-amplification technology offers a
great advantage in terms of accessibility of material for
diagnostic and prognostic work-up and enables large-
scale qPCR gene-expression studies.

List of abbreviations
Cq: quantification cycle; dCq: difference in quantification
cycle or delta-Cq (measure for differential gene-expres-
sion); ddCq: difference in dCq or delta-delta-Cq (see
additional file 3 for an example); HBRR: Human Brain
Reference RNA; HGDNA: human genomic deoxyribonu-

Unbiased pre-amplification procedureFigure 4
Unbiased pre-amplification procedure. a/Cumulative distribution plot of the absolute difference in delta-Cq-values (delta-
delta-Cq or ddCq) before and after pre-amplification for 194 genes (12 reference genes and 182 targets of interest) in 100% 
Universal Human Reference RNA (UHRR) versus 100% Human Brain Reference RNA (HBRR) versus (25% UHRR + 75% 
HBRR) versus (75% UHRR + 25% HBRR). Each dot represents a ddCq-value between 2 samples before and after pre-amplifica-
tion (in total 1164 data points). b/Three-dimensional representation of the ddCq (z-axis) versus the highest Cq-value amongst 
4 values (2 replicates each of the 2 samples being compared before pre-amplification (Cq, max, NA: x-axis) and after pre-ampli-
fication (Cq, max, A: y-axis)). The lower the gene is expressed (high Cq-value), the higher the ddCq. Red dots: Cq, max, A - 
Cq, max, NA ≤ 2. Light blue dots: Cq, max, A - Cq, max, NA > 2; ≤ 5. Dark blue dots: Cq, max, A - Cq, max, NA > 5.
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Table 1: Expression values of 6 reference genes using qPCR in purified versus non-purified pre-amplified samples

UBC GAPDH RPL13A YWHAZ SDHA HPRT1 mean dCq 2^dCq

sample 1 mean Cq NP1 (n = 2) 25.47 23.73 19.05 22.31 29.82 25.71

mean Cq P1 (n = 2) 21.54 22.19 15.87 18.29 25.94 22.03

dCq 3.93 1.54 3.18 4.02 3.88 3.68 3.37 10.34

sample 2 mean Cq NP2 (n = 2) 23.71 23.03 18.12 21.81 30.14 24.86

mean Cq P2 (n = 2) 20.95 21.54 15.63 18.53 28.14 21.89

dCq 2.77 1.49 2.49 3.28 2.01 2.97 2.5 5.65

sample 3 mean Cq NP3 (n = 2) 24.22 23.03 18.63 20.94 30.17 25.82

mean Cq P3 (n = 2) 21.1 21.75 16.04 17.66 28.67 22.72

dCq 3.12 1.29 2.6 3.28 1.5 3.1 2.48 5.57

sample 4 mean Cq NP4 (n = 2) 22.96 23.08 18.54 21.74 30.66 25.62

mean Cq P4 (n = 2) 19.69 21.89 16.07 18.63 28.83 22.48

dCq 3.27 1.19 2.48 3.11 1.83 3.14 2.5 5.66

sample 5 mean Cq NP5 (n = 2) 23.21 22.72 17.96 20.84 28.17 25.37

mean Cq P5 (n = 2) 20.64 21.22 15.6 17.83 25.73 22.11

dCq 2.57 1.51 2.36 3.01 2.44 3.26 2.52 5.74

sample 6 mean Cq NP6 (n = 2) 24.62 23.48 18.56 22.22 28.84 25.71

mean Cq P6 (n = 2) 21.52 21.87 15.91 19.03 26.97 22.67

dCq 3.1 1.61 2.65 3.19 1.88 3.04 2.58 5.96

average 6.31 (95% CI: 4.89 - 8.14)

Cq: quantification cycle
dCq: difference in Cq or delta-Cq
NP: non-purified after pre-amplification
P: purified after pre-amplification
2^dCq designates the pre-amplifiable target ratio (purified/non-purified products)

Pre-amplification as a function of RNA qualityFigure 5
Pre-amplification as a function of RNA quality. Correlation between the detection levels of HPRT1 and SDHA and RNA 
Quality Index (RQI), in pre-amplified samples in which HPRT1 (n = 702) and SDHA (n = 699) were detectable (Cq < 40).
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cleic acid; MAQC: MicroArray Quality Control; MNA:
MYCN amplified; MNS: MYCN single copy; RNA: Ribonu-
cleic acid; RQI: RNA quality index (determined by micro-
fluidic capillary electrophoresis as a measure for RNA
integrity); RT-qPCR: reverse transcription quantitative
polymerase chain reaction; UHRR: Universal Human Ref-
erence RNA.
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