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Abstract

Background: RNAs play key roles in cells through the interactions with proteins known as the RNA-binding proteins
(RBP) and their binding motifs enable crucial understanding of the post-transcriptional regulation of RNAs. How the
RBPs correctly recognize the target RNAs and why they bind specific positions is still far from clear. Machine
learning-based algorithms are widely acknowledged to be capable of speeding up this process. Although many
automatic tools have been developed to predict the RNA-protein binding sites from the rapidly growing
multi-resource data, e.g. sequence, structure, their domain specific features and formats have posed significant
computational challenges. One of current difficulties is that the cross-source shared common knowledge is at a
higher abstraction level beyond the observed data, resulting in a low efficiency of direct integration of observed data
across domains. The other difficulty is how to interpret the prediction results. Existing approaches tend to terminate
after outputting the potential discrete binding sites on the sequences, but how to assemble them into the
meaningful binding motifs is a topic worth of further investigation.

Results: In viewing of these challenges, we propose a deep learning-based framework (iDeep) by using a novel
hybrid convolutional neural network and deep belief network to predict the RBP interaction sites and motifs on RNAs.
This new protocol is featured by transforming the original observed data into a high-level abstraction feature space
using multiple layers of learning blocks, where the shared representations across different domains are integrated. To
validate our iDeep method, we performed experiments on 31 large-scale CLIP-seq datasets, and our results show that
by integrating multiple sources of data, the average AUC can be improved by 8% compared to the best
single-source-based predictor; and through cross-domain knowledge integration at an abstraction level, it outperforms
the state-of-the-art predictors by 6%. Besides the overall enhanced prediction performance, the convolutional neural
network module embedded in iDeep is also able to automatically capture the interpretable binding motifs for RBPs.
Large-scale experiments demonstrate that these mined binding motifs agree well with the experimentally verified
results, suggesting iDeep is a promising approach in the real-world applications.

Conclusion: The iDeep framework not only can achieve promising performance than the state-of-the-art predictors,
but also easily capture interpretable binding motifs. iDeep is available at http://www.csbio.sjtu.edu.cn/bioinf/iDeep
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Background
RNA-protein interactions are involved in many bio-

logical processes, such as gene regulation and splic-

ing [1]. Discovering the RNA-protein interactions has

a great potential for further understanding the mech-

anisms behind those biological processes. For example,

Argonaute (AGO) protein belongs to components of the

RNA-induced silencing complex (RISC), which trans-

fers microRNAs (miRNAs) to be bound with 3’UTR of

their target genes, thereby result in mRNA degradation

or translation repression [2]. Sequence-specific associa-

tions between RBPs and their RNA targets are mediated

by binding domains, which recognize binding sites on

RNAs.Where the RNA-protein binding sites on the RNAs

are usually short sequences with 4 to 30 nucleotides

long, typically referred as binding motifs. Detecting them

can facilitate the deeper insights into post-transcriptional

regulation.

Although there are many genome-wide RNA-binding

protein detection techniques, such as RNAcompete [3],

PAR-CLIP [4], they are still cost-heavy and time-intensive.

Fortunately, with the advent of these high-throughput

techniques, many useful genome-wide data associated

with RBPs are generated rapidly, including specific bind-

ing positions on RNAs with proteins. These data provides

important bases for developing computational approaches

to predict the RBP binding sites by using the advanced

computational methods [5–9].

At the very beginning of the methodology develop-

ment of this field, predictors are mainly constructed

by only using the sequence information. For instance,

MatrixREDUCE simply fits a statistical mechanical model

to infer the sequence-specific binding sites for transcrip-

tion factors from sequences [10]. DRIMust discovers

motifs by integrating the minimum hyper-geometric sta-

tistical framework with suffix trees for fast enumerating

motifs [11].

Besides the high-throughput sequences, actually multi-

ple sources of data are available from the genome-wide

RNA-protein CLIP-seq data, such as sequences, struc-

tures, genomic context. Each source of data has a different

kind of representation and correlation structure. A pop-

ular straightforward idea is to integrate these data to

construct a predictor, which is expected to be very use-

ful for enhancing the prediction accuracy. Two integration

schemes have been widely used in the literatures:

1. Feature-level fusion. This type of fusion strategy is to

encode the different sources into feature vectors,

which will be concatenated together. For instance,

the OliMoSS model has integrated tetranucleotide

sequence, binding motifs and secondary structures to

predict protein specific interactions on RNAs by

simply concatenating the different sources of features

into one high-dimensional features (525-D) [12],

which may result in difficulties for the following

statistical learning process. For instance, the learning

algorithm used in the OliMoSS is support vector

machine (SVM), which will easily suffer from the

curse of dimension problem. Similar strategy is also

applied in DNA-protein binding sites prediction [13].

The other implementation of feature-level fusion is

the multiple-kernel learning, which design multiple

kernels for different features, and then combine them

together [14, 15]. Similarly, GraphProt encodes the

sequence and structure information to graph kernel

to predict binding reference of RBPs [6].

2. Decision-level fusion. To solve the high-dimension

space learning problem, decision level-based fusion

system has been proposed. For instance, the iONMF

[5] is a predictor for predicting RNA-protein

interaction sites. It has trained a model for each of

available resource data, e.g. kmer sequence, secondary

structure, CLIP co-binding, Gene Ontology (GO)

information, and region type. These independent 5

models will work independently, which have no

interconnections between them during the training

processes. The final prediction outputs of the whole

system are the fusion of 5 independent predictions.

Despite the progresses of previously proposed methods,

they have a shared drawback that the models were con-

structed on the features extracted from the observed data,

where the frequent noise may make the subsequent clas-

sifiers learn wrong knowledge. Deep learning [16, 17] is

a recently developed approach, which works in a hybrid

multiple-layer abstraction way by mapping the observed

data to a much high-level abstraction space, where the

prediction model will be constructed. This new type

of approach has provided much attractive solutions for

integrating heterogeneous data and are effective in auto-

matically learning complex patterns from multiple simple

raw inputs.

One typical deep learning framework is known as the

convolutional neural network (CNN) [18]. The advantage

of CNN is that it does not separate feature extraction

and model learning into two independent steps any more

as done in the traditional statistical learning algorithms.

Instead it simultaneously learns features and classifica-

tion models from the original input in a data-driven way,

which will reduce the potential mismatch effects between

the feature extraction and learning classification models.

The CNN model has been applied in the binding pro-

teins prediction of DNA or RNA. For instance, a recent

CNN-based deep learning approach DeepBind was pro-

posed to predict sequence specificities for protein bind-

ing RNA/DNA [8]. Similarly, the DeepSEA [19] utilized

the deep CNNs to learn regulatory sequence motifs for
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predicting DNA functions from chromatin profiling data;

Basset [20] trained analogous deep CNN models to learn

impacts of DNA sequences variants on chromatin reg-

ulation from large-scale DNase-seq data. These studies

have shown that the convolution operation in CNN is able

to scan a set of weight matrix (filters) across the input

sequences to recognize relevant patterns that respond to

motifs, like patterns corresponding to edges and curve

fragments in images [21, 22], resulting in better prediction

accuracies [5, 12].

The deep belief network (DBN) is another deep learn-

ing algorithm to learn high-level features from large-scale

data [23], which is also a recent popular choice for con-

structing the computational models. For example, the

deepnet-rbp fuses the structural and k-mer sequence fea-

tures to predict RBP interaction sites [24] using DBNs.

DANN trains a DBN to annotate non-coding variants [25],

which is able to capture non-linear abstraction features.

We also developed a model called IPMiner by applying

the stacked autoencoder to learn high-level features for

predicting RNA-protein interactions from raw sequence

composition features, and it yielded promising perfor-

mance compared to other sequence-based methods [26].

It’s worth noting that many studies have shown that the

CNN and DBN hold their own advantages due to different

deep learning architectures, e.g. CNN is more appropriate

for sequence data and DBN prefers to the numeric inputs.

This motivates us to consider how to integrate the mer-

its of CNN and DBN for better prediction of RBP binding

sites and find the sequence motifs.

In this study, we propose a multimodal deep learning

framework iDeep, a hybrid framework with CNNs and

DBNs, to better integrate multiple heterogeneous data

sources for predicting RBP interaction sites on RNAs

(Fig. 1). For the data represented by the binary or numeric

features, the DBN networks will be used; While for the

sequence data, the CNN network will be applied. Dif-

ferent deep network models will be trained and tuned

together from the top shared layer to the individual bot-

tom layers using backpropagation, and then the shared

latent features are captured across them. Compared to the

existing approaches, the iDeep has the following merits:

1) the iDeep is constructed with a deep learning struc-

ture, and it consists of multiple neural networks stacked

together [16, 17], where the outputs of each layer are

the inputs of successive layer. Such layer-by-layer learn-

ing helps to reduce the noise effects in the original input.

2) The iDeep successfully integrates the CNN and DBN

for dealing with the different sources of protein-RNA

binding related data to enhance the discrimination abil-

ity. The CNN is able to capture regulatory motifs, which

are recurring patterns in RNA sequences with a biologi-

cal function. The DBN learns high-level features regarded

as a joint distribution determined by hidden variables

for different inputs. 3) The hybrid framework of flex-

ible multimodal learning and fusion at an abstraction

level makes the iDeep handle different features in an easy

manner. The top shared hidden layer at the fusion level

will help discover the shared properties across different

modalities [27, 28].

Results
In this study, we evaluated iDeep on independent test-

ing datasets, and also compared it with the performance

of DBN and CNN from individual sources of data.

To demonstrate the advantage of iDeep, some state-of-

art predictors of iONMF, DeepBind, and Oli were also

compared. Besides, a large-scale analysis has been con-

ducted to demonstrate the discovered binding motifs

using iDeep.

The iDeep’s performance

To demonstrate the ability of iDeep for predicting RNA-

protein binding sites, we evaluate iDeep on independent

testing dataset (see the dataset section). We firstly use

4000 training samples for model training, 1000 validation

sites are evaluated at the end of each training epoch to

monitor the convergence. For each experiment, iDeep is

trained with the same initializations. After we obtain the

trained model, we apply it to predict binding sites for 1000

independent testing samples. The ROC on 31 experiments

are shown in Fig. 2. It indicates that iDeep yields different

performance on different experiments with huge margin,

the AUC ranges from 0.68 for protein ELAVL1-MNase

to 0.98 for protein PUM2. In addition, iDeep achieves

the AUC greater than 0.90 on 23 of 31 experiments, and

the average AUC of iDeep on all experiments is 0.90. To

make a more accurate performance estimate of iDeep, we

also run the 5-fold cross-validation to evaluate the per-

formance, iDeep yields the average AUC 0.91 (Additional

file 1: Figure S1). The results indicate that iDeep accurately

predict RBP binding sites on a genome-wide scale.

Comparing iDeep with other state-of-the-art methods

We firstly compare it with state-of-the-art method

iONMF, which has shown better performance than other

existing methods [5], such as GraphProt [6] and RNA-

Context [29]. As shown in Table 1, we can see that

iDeep outperform iONMF onmost of the 31 experiments,

the average AUC of the 31 experiments increases from

0.85 ± 0.08 of iONMF to 0.90 ± 0.08 of iDeep. Further-

more, for some experiments, it improves the AUC over

24%, such as for protein hnRNPL-2, the AUC increases

from 0.66 of iONMF to 0.82 of iDeep. In addition, iDeep

also performes better than other matrix factorization-

based methods NMF [30], SNMF [31] and QNO [32],

which achieves the average AUC of 0.83±0.10, 0.71±0.14,

0.79±0.12 on 31 experiments, respectively.



Pan and Shen BMC Bioinformatics  (2017) 18:136 Page 4 of 14

Fig. 1 The flowchart of proposed iDeep for predicting RNA-protein binding sites on RNAs. It firstly extracted different representation for RNA-protein
binding sites within a windows size 101, then usemultimodal deep learning consisting of DBNs and CNNs to integrate these extracted representations
to predict RBP interaction sites

We further compare iDeep with another protein-

specific method Oli [12], which yields an average AUC

of 0.77 ± 0.16, and 17% lower than the iDeep . We find

that it has a bigger performance variance than other tested

methods. For example, Oli performs very bad on some

experiments, e.g. AUC 0.39 on hnRNPL-1 protein, but

on some experiments, its performance is very good, e.g.

0.94 on PUM2 protein. For the DeepBind [8] approach

using the same parameters of CNN integrated in iDeep,

it achieves an average AUC 0.83 ± 0.12 across 31 exper-

iments, which performs worse than iDeep. The reason

is that DeepBind cannot yield promising performance

across all 31 experiments from only sequences.

To demonstrate themerits of the designed framework of

iDeep, we also compare iDeep with its own variant iDeep-

kmer, whose input modalities are kmer, region type,

clip-cobinding and structure using the same network

architecture. The only difference is that iDeep uses

CNN sequence and motif modalities instead of high-

dimensional kmer modality. As indicated in Table 1,

iDeep-kmer yields an average AUC of 0.87±0.09, which

is worse than iDeep, indicating that CNN sequence and

motif modality have better discriminating ability than

high-dimensional kmer modality. On the other hand,

iDeep performs faster than iDeep-kmer both in the train-

ing and testing steps.

Overall, compared to other 6 tested methods, iDeep

yields the best performance on 18 of 31 experiments and

the same AUCs on other 8 experiments. And it achieves

a little lower AUC only on 5 of the 31 experiments, but it

still yields the AUCs above 0.90 on 4 of them. For those

experiments with AUCs below 0.90 in other six methods,

iDeep’s performance is very encouraging. These results

indicate that iDeep’s promising performance.

Comparison between individual modalities

To show the advantage of integrating multiple modali-

ties of data, we also tested the performance on individ-

ual modalities. The average AUCs of 31 experiments for

region type, clip-cobinding, structure, motif and CNN

sequence are 0.73 ± 0.11, 0.74 ± 0.11, 0.71 ± 0.12, 0.71 ±

0.08 and 0.83 ± 0.12, respectively, indicating that indi-

vidual deep networks have the ability of learning high-

level features for RBP binding sites prediction. From the

results, we can see that CNN sequence modality yield the

best average performance with roughly 12% improvement

over the second most informative region type. And CNN

sequence yields higher AUC on 22 experiments due to

sequence specificities of binding RNA [8], where CNN

sequence can automatically learn bindingmotifs as feature

representations for subsequent classifications. The other

4 modalities achieves similar average AUCs on all experi-

ments without a big difference. Furthermore, we also test

the performance of DBNwith only kmermodality, it yields

the average AUC of 0.76 ± 0.13 on 31 experiments, which

is found much worse than CNN sequence modality.

As indicated in Fig. 3, there exists big perfor-

mance differences on individual experiments for different
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Fig. 2 ROC Performance. The ROC curve for predicting RNA-protein binding sites on 31 experiment dataset

modalities. For instance, on U2AF2 (KD) experiment, the

5 individual modalities achieve the AUC of 0.66, 0.65, 0.53,

0.72 and 0.91, respectively. The CNN sequence modal-

ity obtains AUC 0.91, outperforming other 4 modali-

ties. While for experiment ELAVL1-MNase, they yield

the AUCs of 0.67, 0.70, 0.67, 0.54, and 0.54, respec-

tively. The CNN sequence achieves the worst AUC

of 0.54 and the clip-cobinding modality has the best

AUC of 0.70. The results showed that there were huge

differences between different modalities on different

experiments.

Among the 5 Ago2 experiments, structuremodality per-

forms a little better on 3 of them. It is because that Ago2

protein requires specific RNA structure binding interfaces

[33]. The motif and CNN sequence modalities perform

worse than other modalities on the 5 Ago2 experiments.

The reason is that Ago2 protein has a PAZ domain and a

PIWI domain, but there are no related binding motifs for

them in CISBP-RNA database [34], and hence deep net-

work of motif and CNN sequence modalities cannot learn

high discriminating features for predicting Ago2 bind-

ing sites on RNAs. Although motif and CNN sequence

modality are not able to detect binding sites for Ago2

with high accuracy, other modalities can complement

with them. The more diversity different modalities have,

the more accurate the integrated method is [35]. So inte-

grating the 5 different modalities using multimodal deep

learning makes iDeep perform much better than individ-

ual modalities.

Based on the above results, we can have the following

conclusions: (1) No single modality can beat others on all

datasets, their performance varies on different datasets.

(2) The deep network (CNN andDBN) of inputmodalities

are able to learn high-level features with stronger dis-

criminating ability for RBP interaction sites. (3) Integrated

iDeep performs better than deep networks of individual

modalities, it is because that multimodal deep learning is

able to learn shared representation across multiple modal-

ities with strong discriminating ability for RNA-protein

binding sites.

The correlations between different modalities in deep

architecture

In the proposed iDeep model, we integrated 5 sources of

data for an ensemble prediction. It will be interesting to

see how the 5 independent modalities will complement
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Table 1 The AUC performance comparison between iDeep and other methods on 31 experiments

Protein iDeep iONMF NMF SNMF QNO Oli iDeep-kmer DeepBind

1 Ago/EIF 0.90 0.89 0.89 0.85 0.87 0.61 0.87 0.69

2 Ago2-MNase 0.73 0.71 0.69 0.66 0.69 0.51 0.67 0.53

3 Ago2-1 0.91 0.81 0.81 0.76 0.83 0.80 0.82 0.81

4 Ago2-2 0.91 0.84 0.82 0.79 0.82 0.80 0.83 0.81

5 Ago2 0.74 0.73 0.71 0.65 0.66 0.53 0.65 0.58

6 eIF4AIII-1 0.94 0.92 0.91 0.78 0.95 0.92 0.95 0.93

7 eIF4AIII-2 0.97 0.93 0.93 0.67 0.64 0.93 0.94 0.93

8 ELAVL1-1 0.96 0.91 0.89 0.71 0.80 0.89 0.95 0.90

9 ELAVL1-MNase 0.68 0.71 0.70 0.68 0.70 0.49 0.66 0.54

10 ELAVL1A 0.94 0.94 0.93 0.91 0.92 0.84 0.95 0.87

11 ELAVL1-2 0.97 0.95 0.94 0.90 0.95 0.88 0.97 0.91

12 ESWR1 0.95 0.87 0.85 0.80 0.85 0.81 0.92 0.88

13 FUS 0.92 0.81 0.73 0.55 0.65 0. 85 0.87 0.92

14 Mut FUS 0.97 0.96 0.95 0.91 0.94 0.82 0.97 0.91

15 IGFBP1-3 0.95 0.93 0.92 0.89 0.91 0.57 0.93 0.68

16 hnRNPC-1 0.93 0.95 0.93 0.45 0.63 0.88 0.92 0.95

17 hnRNPC-2 0.97 0.97 0.96 0.48 0.70 0.94 0.95 0.97

18 hnRNPL-1 0.82 0.74 0.73 0.70 0.77 0.39 0.79 0.76

19 hnRNPL-2 0.82 0.66 0.62 0.56 0.61 0.47 0.72 0.74

20 hnRNPL-like 0.79 0.69 0.67 0.63 0.68 0.56 0.70 0.70

21 MOV10 0.97 0.96 0.96 0.89 0.92 0.78 0.97 0.80

22 Nsun2 0.87 0.81 0.80 0.69 0.82 0.75 0.81 0.84

23 PUM2 0.98 0.93 0.92 0.86 0.89 0.94 0.98 0.93

24 QKI 0.95 0.84 0.77 0.52 0.62 0.92 0.92 0.95

25 SRSF1 0.92 0.85 0.85 0.73 0.86 0.84 0.85 0.85

26 TAF15 0.97 0.91 0.89 0.82 0.91 0.80 0.95 0.95

27 TDP-43 0.89 0.84 0.78 0.45 0.57 0.88 0.85 0.89

28 TIA1 0.94 0.93 0.92 0.86 0.90 0.84 0.96 0.90

29 TIAL1 0.92 0.87 0.86 0.73 0.85 0.83 0.90 0.87

30 U2AF2 0.95 0.82 0.74 0.61 0.70 0.86 0.91 0.95

31 U2AF2(KD) 0.92 0.80 0.74 0.60 0.74 0.84 0.88 0.91

Mean 0.90±0.08 0.85±0.08 0.83±0.10 0.71±0.14 0.79±0.12 0.77±0.16 0.87±0.09 0.83 ± 0.12

The performance of iONMF, NMF, SNMF and QNO are taken from [5]. DeepBind, Oli and iDeep-kmer perform on the same data with iDeep, and iDeep-kmer used kmer to
replace CNN sequence and motif modalities in iDeep
The boldface indicates this performance is the best among the compared methods

with each other. We thus investigate the pairwise cor-

relation between the different modalities region type,

clip-cobinding, structure, motif, CNN sequence across

31 experiments. In addition, we also demonstrate the

correlations between the 5 modalities and unintegrated

high-dimensional k-mer modality.

We calculate the Pearson correlation coefficients (PCC)

based on the AUCs of 31 experiments from individual

modalities. If two modalities have high PCC, they per-

form similarly across all 31 experiments. As illustrated in

Fig. 4, there are two obvious subgroups between the 6

modalities. The region type, clip-cobinding and structure

formed the first group; kmer, motif and CNN sequence

formed the other group. These results show that dif-

ferent modalities contain various signals, and they can

complement with each other via integration in iDeep.

The region type and structure modalities have a PCC

of 0.89, showing that they are highly correlated. It is

because the same region type may have similar structures,

they share redundant information for predicting binding

sites. CNN sequence and kmer also have very high PCC

of 0.97, indicating that they are also highly related. As
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Fig. 3 Performance of individual modalities. The comparison for predicting RNA-protein binding sites on 31 experiment dataset using iDeep and
individual modalities

demonstrated in the iONMF [5], kmer modality can cap-

ture binding motifs. CNN sequence also learns motifs

using CNN network [8, 19]. In addition, both of them are

highly correlated to motif modality with PCCs of 0.91 and

0.92, respectively. It indicates that the high-level features

learned fromCNN sequences and kmer are closely related

to binding motifs, which is consistent with previous find-

ings. In summary, both the modalities try to learn binding

motifs, so they share similar signals associated with motifs

for RBPs across the 31 experiments. That is also the reason

why we used CNN sequence instead of high-dimensional

kmer in iDeep.

The iDeep is able to discover new bindingmotifs

The iDeep can predict RBP binding sites on RNAs with

high accuracy, however the principles behind it are still

not easily interpretable. So here we further use iDeep to

discover binding motifs for RBPs. In previous methods

[5, 12], they focus on directly detecting nucleotide binding

sites on RNAs from extracted features, but did not intro-

duce the motifs during feature learning. Although iONMF

tries to infer the binding motifs after model training, it

totally depends on the input kmer sequences and defines a

background distribution. In addition, it limits the learned

motifs to size k, which requires optimization for searching

potential motifs and the time cost exponentially increases

with k.

To explore the learned motifs, we investigate the con-

volve filters of the convolutional layers from CNNmodule

in iDeep, and convert them into position weight matri-

ces (PWM), which is matched against input sequences

to discover binding motifs, like DeepBind [8] and Basset
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Fig. 4 The correlation between different modalities on 31 experiment dataset. The pearson correlation coefficient values are calculated using the
AUCs from 31 experiments for individual modalities

[20] (Additional file 2). Then, these discovered motifs

are aligned against 102 known motifs in study [34] from

CISBP-RNA using the TOMTOM algorithm [36]. In addi-

tion, we also provide enrichment and occurrences analysis

for the predictive motifs (Additional file 2).

Using p-value <0.05, iDeep captures most of infor-

mative motifs for individual proteins. The significantly

matched known motifs for individual experiments are

listed in Fig. 5, where 15 experiments with known motifs

in study [34] are included. As can be seen from Fig. 5 that

the iDeep is able to mine known motifs for 13 of 15 exper-

iments. For example, there are 5 known motifs (M031,

M108, M112, M127, M232) in study [34] for protein

ELAVL1-2, and all of them have been correctly discov-

ered by iDeep. Fig. 6a illustrates the heatmap of learned

weights of convolve filters of CNN and corresponding

matched known motifs for these filters for protein TDP-

43, IGFBP1-3, and Ago2, respectively, and their enrich-

ment adjusted p-value are 1.12e−15, 2.38e−3 and 2.38e−15,

respectively. Besides the already well-known motifs dis-

covered by iDeep, it is able to find some novel motifs.

For instance, for protein TDP-43, currently there are no

verified motifs for it in CISBP-RNA database, although

TDP-43 have been discovered to bind to thousands of

RNAs in neuron [37]. Figure 6b shows the hierarchical

clustering of 102 new filters (motifs) for protein TDP-

43 discovered by iDeep. Of them, two newly identified

motifs with adjusted p-value 1.90e−15 and 3.35e−8 for pro-

tein TDP-43 are illustrated in Fig. 6c. These new motifs

(Additional file 3: Figure S2) will provide important clues

for further wet-lab verifications. Due to the incomplete-

ness of current database or the insensitivity of the TOM-

TOM software, many mined motifs by iDeep cannot be

matched. It is expected that with more RBP motifs being

verified and deposited in the database, more matches

will be found. All discovered motifs by iDeep and their

motif enrichment scores are available at https://github.

com/xypan1232/iDeep/tree/master/predicted_motifs.

Discussion
In iDeep, we do not integrate high-dimensional k-mer and

GO features, which possibly causes the over-fitting prob-

lem when calculating the partition functions. In addition,

for other 5 integrated features in iDeep, dropout layer

was applied for both CNN and DBN. It randomly sets 0s

for some unit activations with certain probabilities, which

can avoid over-fitting for model training [38]. Besides,

we also introduce batch normalization and early stopping

to prevent the possible over-fitting during the training

process [39].

https://github.com/xypan1232/iDeep/tree/master/predicted_motifs
https://github.com/xypan1232/iDeep/tree/master/predicted_motifs
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Fig. 5 iDeep captures known motifs in [34] from CISBP-RNA for proteins. We only compared our predicted motifs against known motifs in study [34]
and the motif name is from CISBP-RNA. If there is no motifs for this protein, then we ignore them. - means no matched motifs in our predictions with
e-value cut-off 0.05

In our 5 modalities integrated in iDeep, CNN sequence

modality outperforms other modalities on most experi-

ments. But for some proteins, such as Ago2, it performs

worse than structure modality, indicating structure infor-

mation has better informative signals for Ago2 binding

sites. Currently we just use simple probabilities pre-

dicted from RNAplfold [40] as the input features, which

contain some noises due to the accuracy below 100%.

So in future work, we will extend the CNN to struc-

tures, and design CNN to find high-level structure motifs

for RBP binding sites. As done in GraphProt [6], they

apply graph encoding to detect structure motifs. We can

adopt similar strategy for encoding RNA structure to 6

elements (stem, multiloop, hairpin loop, internal loop,

bulge and external regions), which can be fed into CNN

for learning structure motifs automatically to further

improve iDeep’s performance. In addition, Ago2 bind-

ing specificity is provided primarily by miRNAs [2], the

expressed miRNAs in a given cell type greatly influences

Ago2-RNA interactions, resulting in a much more vari-

able and cell type-dependent binding motifs than RNA-

binding proteins which bind their mRNA targets directly.
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A

B C

Fig. 6 The identified binding motifs by iDeep. a The heatmap of learned weights of convolve filters of CNN and corresponding matched known
motifs for this filter. From the left to the right, they are motifs of protein TDP-43, IGFBP1-3, and Ago2. b The hierarchical clustering using the cosine
distance of 102 filters for protein TDP-43. c The heatmap of learned weights of two convolve filters and corresponding motif logos for protein
TDP-43, they are still not verified novel motifs detected by iDeep

Integration of miRNA expression as an additional modal-

ity will conceivably improve the accuracy of iDeep for

Ago2 proteins.

The iDeep outperforms other state-of-the-art meth-

ods with the average AUC of 0.90 on 31 experiments.

iDeep goes a step further besides predicting the RBP bind-

ing sites, it also is able to identify the high-level motifs.

The motifs help to understand the correlations of the

binding sites and their biological functions. In addition,

iDeep also discovers some novel binding motifs besides

those reported motifs in CISBP-RNA, we expect to ver-

ify those novel motifs by investigating whether the genes

with the same predictedmotifs are significantly associated

with certain functions. Meanwhile, these candidate motifs

could provide a quick guide for the wet-lab experiments to

avoid very time-consuming search.

In addition, when selecting sequences in windows for

creating sequence motifs using WebLogo [41] for each

convolve filter, we use the cutoff 0.5 of the maximum

activation of this filter over all sequences (greater than

0). This cutoff will remove some positions with no sig-

nificant information to be selected for generating motifs.

However, if we use other cutoffs, e.g. 0, then it might

introduce noises. Thus, ReLU may result in the infor-

mation loss, but it has been found helpful in avoiding

the vanishing gradient problem and learning non-linear

features [42].

Despite the promising performance of iDeep, there are

still promising avenues to explore the ability of deep

learning. Currently we only use the standard CNNs

for sequences and similar DBNs for other data modal-

ities with only different number of hidden neurons,

which should be designed specifically for different input

data. Besides, more advanced network architecture could

be designed according to the special characteristics of

different input data. For example, DanQ designed a

hybrid convolutional and recurrent neural network to

predict the functions from non-coding DNA sequences

[43]. It uses CNN to detect regulatory motifs from

sequences, followed by bi-directional recurrent layer to

capture long-term dependencies between motifs. Fur-

thermore, instead of learning high-level features using

deep learning, another study aims at automatically learn-

ing hand-designed optimization algorithms, which can
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exploit the structures in network architecture of inter-

est [44]. All these studies indicate that we can further

improve the structure of current iDeep to improve the

performance in the future.

Conclusion
In this study, we present a deep learning based hybrid

framework to integrate different sources of data to pre-

dict RNA-protein binding sites on RNAs from CLIP-seq

data, which yields promising performance on large-scale

experiment data. The iDeep has the following advantages:

(1) It trains deep neural network on individual sources

of data to learn high-level representations for predicting

RNA-protein interaction sites. (2) Different from other

black-box machine learning based approaches, iDeep is

able to discover the interpretable binding motifs, which

provides better biological insights into RBPs compared to

other black-box machine learning models. (3) It makes

use of multimodal deep learning to extract shared fea-

tures across different sources of data, with the hypoth-

esis that no single one can overwhelm others across

all datasets. Multimodal deep learning is able to bet-

ter fuse them and achieve better performance on all

datasets. Our proposed deep learning framework pro-

vides a powerful approach and choice for heterogeneous

data integration.

Methods
In this section, we firstly introduce the CLIP-seq datasets

and multiple features extracted in this study, then we

design a multi data source driven multimodal deep learn-

ing framework to integrate them for predicting RNA-

protein binding sites on RNAs.

Datasets

In this study, to compare with the existing state-of-the-art

methods, we used the same benchmark human dataset as

iONMF [5], which was downloaded from https://github.

com/mstrazar/ionmf. In this dataset, the CLIP-seq data

consists of 19 proteins with 31 experiments and the anno-

tation is based on hg19. As described in the iONMF, each

nucleotide within clusters of interaction sites derived from

CLIP-seq were considered as binding sites. To reduce the

redundancy, the positive binding sites were further ran-

domly sampled with the highest cDNA count and without

consecutive sites on genome. Finally, from those sites

with less than 15 nucleotides apart, only one site with

the highest cDNA counts was selected as the positive

sample. The negative sites were sampled from genes that

were not identified as interacting in any of 31 experi-

ments. In the experiments, a total 4000 crosslinked sites

are used for training purpose, 1000 samples for model

optimization and validation, and the other 1000 samples

for independent testing.

Feature encoding

Feature encoding is critical for a statistical machine learn-

ing model. In order to integrate the merits from both the

sequence and numeric features, the iDeep model makes

use of 5 different groups of features, i.e., sequence, struc-

ture, clip-cobinding, region type and motif features. A

scale window of [-50, 50] centering the crosslinked sites is

used to generate the feature vectors, which is the same as

iONMF [5].

1. Region type. this feature value is assigned to each

position within the window using one of the 5 types

(exon, intron, 5‘UTR, 3‘UTR, CDS) from Ensembl

annotation [45], resulting in 101 x 5 = 505

dimensional features.

2. clip-cobinding. This feature represents the

correlation among 31 experiments. For each

experiment, the cDNA counts at each position

within the window was reported in the remaining 30

experiments, assign 0 for zero cDNA counts or 1

otherwise. We obtain 30 binary values for each

nucleotide in the window, resulting in 101 x 30

=3030 dimensional features.

3. Structure. RNAplfold in ViennaRNA Package 2.0

[40] with parameter -u 1 is used to calculate the

probability of RNA secondary structure for each

nucleotide within window, resulting in 101

dimensional features.

4. Motif. Motif scores are used for numerical

representation of the RNA sequences [46]. We firstly

downloaded 102 human RBP binding motifs from

CISBP-RNA [34], then Cluster-Buster [47] was

employed to score RNA sequences for binding sites

clusters. For individual sequence, we can get a score

per motif, resulting in a 102 dimensional features.

5. CNN sequence. The sequence is encoded into a 101

x 4 binary matrix corresponding to the presence of

A,C,G, U, which is fed into CNN to obtain high-level

sequence feature.

It’s worth noting that since the iDeep model is con-

structed with the CNN algorithm, the 25856-D kmer and

39560-D GO features originally used in the iONMF are

not used in our model. The main reasons are: 1) the

GO features has been indicated of lower discriminat-

ing power than other sources of data [5] and 2) these

two features are of too high dimensions, even more than

the training samples, which easily leads to over-fitting

and dimension disaster for neural networks. We also

added two new feature encoding methods, which have

not been applied in the iONMF, i.e., the sequence and

motif features. Our results below will show that the new

sequence feature encoding are critically important for

CNNs to learn binding motifs, and the motif features

https://github.com/mstrazar/ionmf
https://github.com/mstrazar/ionmf
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based on known motifs in CISBP-RNA database are use-

ful to correlate with functional regulatory regions in

RNA sequences.

Convolutional Neural Network

Convolutional Neural Network (CNN) is inspired by bio-

logical processes, it consists of one or more convolutional

layers, followed by the max pooling layers. And it enforces

a local connectivity pattern between neurons of layers to

exploit spatially local structures. In this study, CNN is

used to capture non-linear sequence features, e.g. motifs,

and pull out some high-level features associated with RBP

binding.

Here RNA sequence is one-hot representation encoded

into a 101 x 4 binarymatrix, whose columns correspond to

A, C, G and U [8, 19]. Then the inputs are convolved with

tunable patterns called filters, which are weight param-

eters corresponding to binding motifs and learned from

RNA sequences. After convolution, a rectified linear ReLU

is applied to avoid the vanishing gradient problem existing

in deep learning research. Finally, a max pooling operation

is used to pool adjacent positions within a small window,

which can reduce the number of parameters and yield

invariance to small sequence shifts.

Deep Belief Network

Deep Belief Network (DBN) consists of multiple layers

of Restricted Boltzmann machines (RBMs) [48], which

learns model parameters in bottom-up style and layer-

wise, but it is only able to learn abstract structure from

one input source of data.

Some of our extracted input features are binary, such as

region type of nucleotides. RBM is developed for binary-

valued inputs, which is a graphical model with visible v ∈

{0, 1} and hidden units h ∈ {0, 1}. Its joint distribution of

hidden and visible variables are defined as follows:

P(v,h, θ) =
1

Z(θ)
exp(−E(v,h, θ)) (1)

where E(v,h, θ) is defined:

E(v,h, θ) = −
∑

i

aivi −
∑

j

bjhj −
∑

i

∑

j

vihjwij (2)

where vi and ai are binary state and bias for visible unit

i, respectively. hj and bj are the binary states and bias for

hidden unit j respectively.

The partition function Z is calculated by summing over

hidden and visible variables, which is optimized using

maximum likelihood estimation based on Contrastive

Divergence algorithm [17]. Besides, we also extract struc-

ture probability features, which are real-valued inputs, and

its extension Gaussian RBMs are developed for modelling

real-valued inputs [49]. The parameters weight matrix

and biases are updated using a gradient descent algorithm

[17].

DBN is comprised of multiple RBMs, Here we take a

DBN with two hidden layers as example:

E(v,h, θ) = −vTW(1)h(1) − −h(1)TW(2)h(2) (3)

where h(1) and h(2) are hidden units for two hidden layers,

and W (1) and W (2) are weight parameters for visible-to-

hidden and hidden-to-hidden connection.

DBN is able to capture high-level features from indi-

vidual modalities, but it cannot interactively learn unified

feature representations across them.

Multimodal deep learning for Predicting RNA-protein

interaction sites

Considering the heterogeneous representations of RBP

binding sites, multimodal deep learning is developed to

learn shared features across different sources of data [27].

It consists of multiple layers of neural networks, which can

automatically learn high-level features hidden in original

features [16, 17] and achieve a huge success in different

applications. In this study, we use CNNs and DBNs as

the building blocks for deep learning framework shown

in Fig. 1. It adds an additional layer to combine the out-

puts from multiple DBNs and CNNs for different inputs.

During feature learning, individual DBNs and CNNs are

pre-trained independently and concatenated together for

final joint training using backpropagation. In each training

epoch, it will automatically tune the learned parameters in

respective models. After several training epochs, it learns

shared representations across region type, clip-cobinding,

structure, motif and CNN sequence for subsequent clas-

sification. In addition, it can also learn better features for

individual modalities via backpropagation when multiple

modalities exist.

We apply multimodal deep learning to integrate dif-

ferent sources of data to predict RNA-protein binding

sites on RNAs. It first extracts different representations

of different sources of data from CLIP-seq data, which

are subsequently integrated using multimodal deep learn-

ing to predict RNA-protein binding sites. The flowchart is

shown in Fig. 1.

In this study, we set the maximum number of epoch

to 20, the batch size is 100. The neural network models

are optimized using RMSprop algorithm [50] to learn all

model parameters, including those convolution filters of

CNNs. Validation dataset is evaluated to monitor the con-

vergence during each epoch of the training process, so the

training process can be stopped early.
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Table 2 The number of neurons used in fully connected layer
(FCL) for each DBN

Feature
# of neurons
of first FCL

# of neurons
of second FCL

CLIP-cobinding 768 256

Structure 128 64

Region type 256 128

Motif 128 64

The iDeep is implemented in python using keras

1.0.4 library https://github.com/fchollet/keras. The model

architecture consists of hybrid CNNs and DBNs for indi-

vidual inputs and additional layer for merging them.

For sequence modality, its one-hot encoding is fed into

CNN to learn high-level motif features. The parame-

ter nb_filter (number of motifs) is 102. The size of the

significantly verified RBP binding motifs in CISBP-RNA

database is 7 and the 7-mer motifs can consistently score

well [34]. According to the suggestion by DeepBind that

the parameter filter_length (motif width) should be 1.5

times the verified motif size, thus we set filter_length = 10.

The architecture of DBN for input modalities clip-

cobinding, Structure, Region type and Motif consists

of fully connected layer and dropout layers (Additional

file 1). In iDeep, for each DBN from individual modal-

ities, we configure different number of hidden units for

two Fully connected layer (FCL) listed in Table 2, and the

dropout probability for each dropout layer is 0.5. To eval-

uate the performance of predicting RBP binding sites, we

use Receiver Operating Characteristic(ROC) curve and

calculate the area under the ROC curve (AUC).

Baseline methods

There are many computational methods developed for

predicting RNA-protein binding sites. such as iONMF,

Oli, DeepBind, GraphProt and RNAContext. As indi-

cated in [5], iONMF performs a little better than Graph-

Prot, and much better than RNAContext. In [12]), Oli

with only tetranucleotide frequency features yield bet-

ter performance than its variant OliMoSS for predict-

ing RBP binding sites. So in this study, we compared

iDeep with other state-of-the-art iONMF, DeepBind and

Oli. iONMF integrates multiple data using orthogonality-

regularized nonnegative matrix factorization, it discovers

the hidden modules from non-overlapping features for

RNA-protein interactions. Oli applied linear SVC to clas-

sify protein-RNA binding sites based on their extracted

tetranucleotide frequency features. To compare with Oli

fairly, grid-search was used to select the best parame-

ter for linear SVC of Oli in individual experiments, and

the implementation from scikit-learn package was used

in this study [51]. For DeepBind, it only uses CNN from

sequences to predict RBP binding sites.

Additional files

Additional file 1: Figure S1. The AUCs of 5-fold cross-validation across 31
experiment datasets using iDeep. (PDF 24 kb)

Additional file 2: Supplementary text and Table. Some details of iDeep.
The principles about how to identify binding motifs by iDeep, the
architecture of deep belief network and the discovered number of known
motifs in CISBP-RNA. (PDF 127 kb)

Additional file 3: Figure S2. The novel motifs still not verified by other
studies are discoverd by iDeep. (PDF 65 kb)
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