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RNA-Seq analysis and annotation of a draft
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genes involved in fruit ripening, biosynthesis of
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Abstract

Background: Blueberries are a rich source of antioxidants and other beneficial compounds that can protect against

disease. Identifying genes involved in synthesis of bioactive compounds could enable the breeding of berry

varieties with enhanced health benefits.

Results: Toward this end, we annotated a previously sequenced draft blueberry genome assembly using RNA-Seq

data from five stages of berry fruit development and ripening. Genome-guided assembly of RNA-Seq read alignments

combined with output from ab initio gene finders produced around 60,000 gene models, of which more than half

were similar to proteins from other species, typically the grape Vitis vinifera. Comparison of gene models to the

PlantCyc database of metabolic pathway enzymes identified candidate genes involved in synthesis of bioactive

compounds, including bixin, an apocarotenoid with potential disease-fighting properties, and defense-related

cyanogenic glycosides, which are toxic. Cyanogenic glycoside (CG) biosynthetic enzymes were highly expressed in

green fruit, and a candidate CG detoxification enzyme was up-regulated during fruit ripening. Candidate genes for

ethylene, anthocyanin, and 400 other biosynthetic pathways were also identified. Homology-based annotation using

Blast2GO and InterPro assigned Gene Ontology terms to around 15,000 genes. RNA-Seq expression profiling showed

that blueberry growth, maturation, and ripening involve dynamic gene expression changes, including coordinated

up- and down-regulation of metabolic pathway enzymes and transcriptional regulators. Analysis of RNA-seq alignments

identified developmentally regulated alternative splicing, promoter use, and 3′ end formation.

Conclusions: We report genome sequence, gene models, functional annotations, and RNA-Seq expression data that

provide an important new resource enabling high throughput studies in blueberry.
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Background
A diet rich in blueberries can help protect against dia-

betes [1], cardiovascular disease, and age-related cogni-

tive decline [2,3]. Molecular or biochemical mechanisms

underlying these positive health benefits are not known,

but most research has thus far focused on the antioxi-

dant and anti-inflammatory properties of polyphenolic

phytochemicals that accumulate as the fruit ripen. Blue-

berry fruit are an especially rich source of polyphenolic

anthocyanin pigments, which give blueberries their dis-

tinctive color. Of these, malvidin, delphinidin, and peo-

nidin are the most abundant by weight [4]. The relative

abundance of anthocyanin species can differ between ge-

notypes [5,6], and in vivo research has shown that differ-

ent anthocyanins affect biological systems in different

ways [7-9], suggesting that berry varieties may offer dis-

tinct health benefits. Blueberries also contain relatively

large amounts of quercetin [4], another polyphenolic

that may have beneficial effects in Alzheimer’s disease

[10] and inflammation-related disorders [11]. Berries

may also contain other as-yet undiscovered beneficial

phytochemicals that could interact with anthocyanins or

other compounds to potentiate biological efficacy [12,6].

Genomic studies that catalog the full genetic repertoire

of blueberry could enable greater understanding of bio-

active compounds, a necessary step toward developing

new varieties bred for health benefits.

Blueberries are in the Cyanococcus section of family

Ericaceae, genus Vaccinium, which also includes cran-

berry (V. macrocarpon), lingonberry (V. vitis-idaea), and

more than 400 other species [13]. Commercially har-

vested blueberry species in North America include

lowbush (wild) blueberry Vaccinium angustifolium, a

low, spreading shrub grown in managed stands in the

Northern US and Canada, and the highbush blueberry

species Vaccinium corymbosum and Vaccinium ashei,

which are larger shrubs grown in orderly rows in or-

chards that require annual pruning to maintain product-

ivity. Of the two highbush species, V. corymbosum is the

most widely grown, while V. ashei is grown solely in the

Southern US. V. corymbosum was first domesticated in

the early 20th century by US Department of Agriculture

scientist Fredrick Coville working with New Jersey

farmer Elizabeth White, who recruited local pickers

to locate wild berry plants with unusually large fruit.

Coville’s breeding these early wild selections produced

varieties suitable for commercial production, some of

which are still grown today. Both lowbush and V. corym-

bosum highbush blueberries are deciduous and require a

period of low temperatures during the winter season to

induce flowering the following spring. To expand the

range where highbush blueberries can be grown com-

mercially, breeding programs have selected varieties with

reduced chilling requirement, leading to development of

sub-varieties called ‘southern highbush’ because they re-

quire fewer days of colder temperatures to trigger flow-

ering. Ploidy levels of berry species range from diploid

to hexaploid, and most varieties of highbush berry con-

tain genetic material introduced from diverse genotypes

and species, including V. darrowii Camp (evergreen

blueberry) and V. arboreum Mar. (sparkleberry), as well

as rabbiteye and lowbush blueberry. Although there is a

great diversity across varieties, highbush blueberry plants

within the same cultivar are highly uniform, as all are

clones propagated from a single selection. Thus se-

quences collected from individuals from the same culti-

var are expected to be highly homogenous with few

differences between individuals.

Estimates based on flow cytometry predict that a hap-

loid blueberry genome is around 600 million bases, five

times the size of the Arabidopsis thaliana genome [14].

In a related study, a draft genome assembly of a diploid

northern highbush blueberry was generated using HiSeq

Illumina reads [15]; the unassembled sequences are

available from the Short Read Archive under accession

SRA053499. This draft assembly consists of 225,479

contigs organized into 13,757 scaffolds with an N50 scaf-

fold size of 145 kb, meaning that at least half of the se-

quence data is organized into scaffolds of 145 kb or

larger. Plant genes are typically smaller than 2 kb, and

intergenic regions are often smaller, which means that a

145 kb or larger contig could accommodate 50 or more

genes. Although the genome assembly is still a work in

progress, its large N50 make this draft assembly an im-

portant new resource for RNA-Seq analysis and gene

discovery in blueberry.

To date, blueberry improvement efforts have focused

on agronomic traits, such as ability to withstand mech-

anical harvesting, or consumer-focused traits, such as

berry size, flavor, and mouth feel. Due to rising consumer

interest in the health-protective effects of blueberries and

other fruits and vegetables, breeding for nutritional and

health-protective qualities may become practical in the

near future. Breeding a more healthful berry will require

more complete knowledge of genes encoding enzymes of

secondary metabolism as well as their putative regulators.

Toward this end, we performed high-throughput tran-

scriptome sequencing (RNA-Seq) and differential gene ex-

pression analysis of five stages of berry development and

ripening. Genome data, RNA-Seq expression profiles, and

functional annotations have been made publicly available

and will provide an important new resource for interpret-

ation of high-throughput data from blueberry species.

Data description
Berry collection and RNA extraction

Blueberry samples were collected from the field from 4-

or 5-year-old blueberry plants growing at the North
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Carolina Department of Agriculture Piedmont Research

Station. Plants were labeled by row and position within

the row; for example, plant 2-41 occupied position 41

within row 2. All samples intended for RNA extraction

were flash-frozen on liquid nitrogen in the field immedi-

ately after collection and stored at -80°C until use. For

RNA extraction, whole berry samples were ground to

powder in a mortar and pestle with liquid nitrogen and

total RNA was extracted using the Spectrum Total Plant

RNA Kit (Sigma, St. Louis, USA). Extracted RNAs were

treated with DNase I prior to library construction using

RNAase-Free DNase (catalog number 79254) from Qiagen.

454 library construction and sequencing for

May 2009 samples

Two libraries were prepared from samples of green and

ripe fruit, respectively, from plants of the O’Neal variety

of southern highbush blueberry (V. corymbosum). The

green fruit library was prepared from a mix of unripe,

green fruits of varying sizes harvested on 18 May 2009

from plant 2-41. The ripe fruit library was prepared from

ripe fruits harvested on 15 June 2009 from plants 2-40,

2-41, and 2-42, also of the O’Neal variety. The libraries

for sequencing were constructed using the SMART PCR

cDNA synthesis kit from CloneTech, Mountain View,

USA. The 3′ and 5′ primers used in first strand cDNA

synthesis were aagcagtggtatcaacgcagagtact(30)VN and

aagcagtggtatcaacgcagagtacgcggg, respectively, where V

was a, g, or c and N was any nucleotide. The products

of first strand cDNA synthesis were amplified using a

poly(A) disruption PCR primer designed to introduce

non-A bases in the poly(A) tail region of the cDNA,

because homopolymeric sequences are difficult to se-

quence using the 454 technology. The poly(A) disrup-

tion primer sequence was attctagaggccgaggcggccgacatgt

(4)gtct(4)gttctgt(3)ct(4)VN, where numbers in paren-

theses indicate the number of times the preceding base

appeared in the sequence and V was a, g, or c. The se-

quence of the 5′ primer used for second strand cDNA

synthesis was aagcagtggtatcaacgcagagt. The two libraries

were sequenced in two sectors of the same plate on a

454-GS FLX Titanium sequencer (454 Life Sciences,

Roche Diagnostics, USA) at the David H. Murdock

Research Institute. Sequence data are available from the

Short Read Archive under accession SRP039977.

454 library construction and sequencing for

May 2010 samples

Green and ripe berries were harvested from O’Neal var-

iety plant 2-42 on 29 April 2010 and 26 May 2010, re-

spectively. For sequencing and library construction,

samples of total RNA were sent to the North Carolina

State University Genome Sciences Laboratory (GSL).

Each sample was used to synthesize two libraries, which

were sequenced on the same plate of a 454-GS FLX

Titanium sequencer. Libraries were synthesized at the

GSL following the protocol reported previously [16]. Se-

quence data are available from the Short Read Archive

under accession SRP039977.

Berry collection, library synthesis, and sequencing of

berry development samples

Berries from five stages were selected from three plants

(3-33, 2-41, and 2-42) of the O’Neal variety of southern

highbush blueberry V. corymbosum. We designated the

five stages as pads, cups, green, pink, and ripe. The

‘pads’ and ‘cups’ stages corresponded approximately to

stages S1/S2 (pads) and S3/S4 (cups) described in [17].

Green fruit were fully rounded green berries, pink ber-

ries were partially pigmented but still firm, and ripe ber-

ries were fully colored and soft. Samples were collected

during the growing season of 2011. Pads were collected

on 4 April, cups on 19 April, mature green fruit on 28

April, pink fruit on 20 May, and ripe fruit on 2 June.

Following RNA extraction and DNAase I treatment (as

described in the previous section) libraries were synthe-

sized using the TruSeq A kit (catalog number FC-121-

1001) from Illumina (San Diego, USA) following the

manufacturer’s instructions. Libraries were synthesized

using different TruSeq adapters to allow multiplexing,

combined and then sequenced in three lanes with five li-

braries per lane using a HiSeq sequencer from Illumina.

Sequence data are available from the Short Read Archive

under accession SRP039977.

Berry collection, library synthesis, and sequencing of

berry cultivars

Fully ripe and green berries from four berry cultivars

(Pamlico, Lenoir, O’Neal and Ozark Blue) were har-

vested in 2009 from plants growing at the Piedmont

Research Station (same field as above) and frozen on liquid

nitrogen in the field. RNA was extracted as described in

the preceding section. Libraries were synthesized using the

mRNA-Seq Sample Preparation kit (catalog number RS-

930-1001) from Illumina following manufacturer instruc-

tions. Libraries were sequenced using paired-end, 76 cycle

sequencing at the UNC Chapel Hill Lineberger Cancer

Research Center on a GAIIx sequencer from Illumina, San

Diego, USA. Sequence data are available from the Short

Read Archive under accession SRP039971.

Sequence processing and alignment

Prior to alignment, all sequences were trimmed to re-

move low-quality bases at the 5′ and 3′ ends of se-

quences. Single-end Hiseq reads (100 bp) from the berry

fruit development series were trimmed to 85 bases to re-

move lower quality bases. Five bases were trimmed from

the 3′ end and 10 bases were trimmed from the 5′ end
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of each read using the FASTX-Toolkit from Galaxy [18].

Similarly, the 76 bases long paired-end GAIIx sequences

were trimmed to 61 bases by removing ten bases on the

5′ end and three bases on the 3′ end of each sequence.

For 454-generated sequences, ten bases were removed

on the 5′ end only. The Illumina sequences were aligned

onto the blueberry draft genome assembly [15] using

TopHat2 [19] and Bowtie2 [20] using default parame-

ters, except for the maximum intron size parameter,

which was set to 6,000 bases consistent with typical in-

tron size distributions for plant genes. 454 sequences

were aligned onto the reference genome sequence using

GMAP [21] with default parameters except for intron

length, which was set to 6,000 bp.

Gene model generation, filtering, and protein sequence

assignment

Cufflinks [22] was used to generate transcript models using

paired-end and single-end Illumina sequences alignments

with maximum intron set to 6,000 bases. Three ab initio

gene-finding programs (Augustus [23], GlimmerHMM

[24], and GeneMark [25]) were used to generate gene

models from genomic sequence. Arabidopsis-trained

parameters were used for GlimmerHMM and default

parameters were used for Augustus and GeneMark.

Because many of the resulting ab initio and Cufflinks-

based gene models covered the same genomic regions,

a step-wise filtering protocol (Additional file 1: Figure S1)

was applied to reduce redundancy in the final gene set.

First, all genes generated by Cufflinks were selected for

inclusion in the final gene set, because these were pre-

dicted from the RNA-Seq expression data and thus the

level of evidence supporting them was high. Any ab initio

gene finder-predicted gene that overlapped one of the

Cufflinks-predicted genes was eliminated from the candi-

date gene list. Next, all remaining candidate genes that

were predicted by GeneMark were considered. If a candi-

date GeneMark gene had homology to a known protein

(by BLASTX) or overlapped with an expressed sequence

alignment, it was added to the final gene set and, as be-

fore, overlapping gene models were removed from the

remaining candidate gene set. The process was repeated

for genes predicted by Glimmer, Augustus, and GMAP.

The selection order of priority for ab initio gene pre-

diction programs was based on visual inspection of

predicted gene models and consistency with align-

ments of full-length blueberry sequences available from

GenBank. Protein coding sequences were detected in

the gene models using the TAU program [26]. Gene

models were formatted into a BED-detail (BED14) file

(V_corymbosum_scaffold_May_2013.bed) in which field

4 listed the transcript (gene model) name, field 13 listed

the gene name, and field 14 listed the name of the program

that generated the gene model. Note that many genes

predicted by Cufflinks were associated with multiple tran-

scripts, typically products of alternative splicing. Thus, in

the case of Cufflinks-predicted genes, the gene field con-

tained a name such as CUFF.11 while the gene model field

contained a name such as CUFF.11.1, the first reported

transcript generated from gene CUFF.11. Gene models in

bed format were added to the project bitbucket repository

[27] in subdirectory GeneModelAnalysis/results.

Functional annotation of gene models using BLASTX

against the NCBI non-redundant protein database

Sequences of spliced transcripts were searched against

the non-redundant protein database from NCBI (nr)

using a database that was downloaded in June 2013. Vir-

tual cDNA sequences obtained from the gene model an-

notations were searched against the nr database using

BLASTX. The resulting matches were used for annota-

tion if the e-value was 10-4 or better, the alignment

length was at least 30 amino acids, and the percent iden-

tity was 30% or higher. For each gene model with at

least one high-quality match meeting these criteria, an

annotation string was generated containing the GenBank

identifier and FASTA header for the best-matching

sequence, information about the BLASTX-generated

alignment, and the program that was used to gener-

ate the gene model. The annotation string was trans-

ferred onto the corresponding blueberry gene model

by replacing field 14 in the BED-detail file described

above. Field 14 data for gene models that did not

have high-quality matches meeting the criteria de-

scribed above were not modified. The modified gene

model file was added to the bitbucket repository sub-

directory titled BlastxAnalysis/results as V_corymbosum_

scaffold_May_2013_wDescr.bed.gz.

Functional annotation of gene models using Blast2GO

Blast2Go version 2.7.0 (Build 05122013) was obtained

via Java Web Start and used to associate Gene Ontology

(GO) terms and Enzyme Commission (EC) numbers

with individual gene models from blueberry. BLASTP and

InterProScan search results were loaded into Blast2GO

and the Blast2GO function Annotation > Perform Annota-

tion Step menu was used to perform GO annotation.

BLASTP results were obtained by searching predicted

blueberry protein sequences against the nr protein data-

base using an e-value cutoff of 10-3 and reporting a max-

imum of five ‘hit’ sequences per query. IPRScan version 4.8

was run using default parameter settings. Databases

current as of July 2013 were searched. MySQL databases

(‘b2 g_sep13’) from Blast2Go.com were downloaded and

installed on a local server to enable faster processing.

Blast2GO results were saved in plain text format

(Additional file 2) and in Blast2GO format and added to

the bitbucket in a subdirectory named Blast2GO.
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Functional annotation of gene models using BLASTX

against PlantCyc enzymes

FASTA-format sequence files containing amino acid

sequences for enzymes in Plant Metabolic Network

species-specific databases (e.g., AraCyc and GrapeCyc)

were downloaded in July 2013 and combined into one

database. The blueberry cDNAs were used as queries in

a BLASTX search of the combined database. Hits to

PlantCyc enzymes were then filtered so that hits with

at least 60% subject coverage, 45% identity or higher,

and e-value of 0.001 or less were retained. Details of

how this was done are explained in Markdown file

MakingAnnotationFiles.Rmd in the bitbucket repository

for the paper. The best hit for each blueberry gene model

was identified by e-value and used to generate annotation

text, which was inserted into field 14 of the gene models

bed file and saved to subdirectory PlantCyc/results as

V_corymosum_scaffold_May2013_wDescrPwy.bed. To en-

able keyword searching in Integrated Genome Browser,

this annotation text included the best matching PlantCyc

enzyme and a list of PlantCyc pathway identifiers when

available.

Analyses
Building and filtering blueberry gene models

To characterize gene expression in blueberries, Illumina

and 454/Roche sequencing of green and ripe blueberry

cDNA was done, including a developmental time course

experiment in which three biological replicates of five

berry fruit stages were sequenced using 100-base, single-

end Illumina HiSeq sequencing. Table 1 summarizes the

sequencing strategies used and amount of sequence

obtained, which totaled around 800 million sequence

RNA-Seq ‘reads’ and more than 75 billion bases. Most

sequence data were from the developmental time course

experiment, which surveyed berry samples collected

from three individuals of the O’Neal cultivar, an early

ripening variety of southern highbush blueberry that is

widely grown in North Carolina and other southern US

states. The second largest RNA-Seq dataset was from

paired-end, 75-base-pair Illumina sequencing of ripe and

green berries collected from the O’Neal, Arlen, Lenoir

and Pamlico southern highbush cultivars. Analysis of

genetic differences between the cultivars will be described

elsewhere, but the data were included here to enable a

more complete transcriptome assembly and analysis. In

addition, two full plates of 454 sequencing of ripe and un-

ripe berries from the O’Neal cultivar were done using ber-

ries collected during spring and summer of 2009 and

2010. Because of the abundance of data and availability of

easy-to-use software for generating gene models from

Illumina-based RNA-Seq data, we used the Illumina se-

quence data to generate a genome-guided transcriptome

assembly and reserved the 454 data for gene model valid-

ation and assessment.

To generate berry gene models from the RNA-Seq

data, the Illumina sequence reads were aligned onto the

May 2013 reference blueberry genome using the spliced

alignment program TopHat [19] and then merged into

gene models using Cufflinks [28]. This step produced

64,666 transcript models representing 57,925 genes. Of

the multi-exon genes, 24% were predicted to generate

multiple transcript variants due to alternative promoter

use or alternative splicing. To assess how realistic this

level of transcript variation was, we compared the fre-

quency of alternative transcripts in blueberry with alter-

native transcription rates in Arabidopsis and soybean,

using the genome annotations and assembly releases

that were available in July 2013 for those species. The al-

ternative transcription rates among multi-exon genes for

soybean and Arabidopsis were 25% and 26% respectively;

these rates were similar to blueberry, indicating that the

frequency of transcript variation found in the blueberry

gene models was reasonable and not likely to be an

artifact of incorrect transcript model assembly.

Because the Cufflinks gene models were based on berry

fruit RNA-Seq data, some genes that were expressed pri-

marily in other sample types (e.g., roots) might be missed.

To complement the Cufflinks-generated gene models,

ab initio gene prediction programs were used to gener-

ate additional gene models from the reference genomic

sequence (Additional file 1: Figure S1A). The ab initio

gene finding programs generated more than 185,000

gene models, of which 75% overlapped with genes iden-

tified in the RNA-Seq data by Cufflinks and therefore

were likely to be redundant. To eliminate duplicates

and create a non-redundant collection of blueberry

gene models, a stepwise filtering protocol was applied

Table 1 Summary of sequencing strategies and sequences obtained

Sequencing strategy Samples Number of reads (millions) Bases (billions)

Single-end Illumina, 100 bp reads Five fruit stages from O’Neal cultivar 485 48.6

Paired-end Illumina, 76 bp reads Ripe, unripe berries from O’Neal, Lenoir, Ozark blue, and
Pamlico cultivars

377 28.3

454 Ripe and unripe berries from 2009, 2010 harvests, O’Neal
cultivar

2.16 0.73

Total 864.16 77.63
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(Additional file 1: Figure S1B) that retained gene models

based on their relative level of evidence. To start with, all

gene models based on the aligned RNA-Seq data were

added to the non-redundant set. Next, gene models with

homology to known proteins were selected. Following

this step, gene models were kept according to which

ab initio gene finding program produced them. We

found through manual inspection in Integrated Genome

Browser (IGB) that some programs produced more real-

istic models when visually compared with the 454 align-

ments, so we configured the filtering pipeline based on

these observations. Note that this final filtering step

could be further optimized through systematic compara-

tive evaluation of ab initio models to RNA-Seq based

gene models, but due to the limitations of time and data

availability, we did not do this. Ultimately, the final non-

redundant set of gene models included 70,581 gene

models and 63,840 genes, of which most were based on

the RNA-Seq data (Table 2).

Next, an open reading frame (ORF)-finding program

(TAU [26]) was used to identify and annotate a concep-

tual translation for each gene model. Altogether, there

were 57,079 gene models from 51,515 genes that could

be annotated with a protein sequence of at least 30 resi-

dues, the expected lower range of protein sizes based

on Arabidopsis annotations. The remaining transcript

models for which no longer protein sequence could be

predicted had a broad range of sizes and exon numbers,

ranging from short, single-exon genes to longer models

with multiple exons, suggesting that in many cases, the

gene models were simply incomplete or the sequence it-

self contained insertions, deletions or other problems

that prevented conceptual translation. Another possibil-

ity was that many of these genes were non-coding genes

whose primary products were RNA and not protein. A

third possibility was that many of these were actually

pseudogenes. An analysis of Arabidopsis RNA-Seq data

[29] found that many non-coding genes, including both

pseudogenes and non-protein coding genes, were detect-

able in libraries that were prepared using the same

protocol as with the blueberry RNA-Seq libraries, and so

these latter two possibilities may have been correct in

many cases.

It is important for researchers to have access to the

blueberry data in formats that facilitate exploration,

visualization, and analysis of individual sequences, genes,

and gene families. To enable better use of the data, the

blueberry genome assembly, annotations, and RNA-Seq

data have been made available in the Integrated Genome

Browser, an open source, desktop genome visualization

platform. IGB uses a companion IGBQuickLoad Web

site to distribute datasets in formats that enable both

interactive visualization and larger-scale analysis. For ex-

ample, users can download datasets in formats that are

amenable to bioinformatic analysis, such as the BAM

and bed formats, or instead can simply view a listing of

the datasets in IGB and open them there. To open the

blueberry genome in IGB, users first select the blueberry

image shortcut from the IGB start screen (Figure 1).

Clicking the blueberry image triggers loading of the

non-redundant gene dataset described above along with

a listing of blueberry genome scaffold and their sizes (in

the ‘Current Genome’ tab) and a catalog of available

datasets (in the ‘Data Access’ tab). As of this writing, the

available datasets included the Illumina and 454 RNA-

Seq data described here as well as reference datasets

from other studies, including a 454-based sequencing

dataset that included multiple sample types and berry

fruit ripening stages [16]. Thus IGB allows researchers

to view and explore multiple datasets from diverse

sources, not just the current study.

Once the genes are loaded, users can search for genes

by name or by annotation key word using the ‘Quick

Search’ (top left) or ‘Advanced Search’ tab; the latter also

enables searching for sequence motifs. Gene models are

associated with descriptive text assembled from hom-

ology searches against BLAST databases from NCBI and

PlantCyc (described below), but users can investigate in-

dividual gene models in greater detail using the BLAST

features available through IGB. Right-clicking a gene

model displays a menu that displays options to run

BLASTX or BLASTP searches against the nr protein

database at NCBI. Selecting one of these options opens

a web browser window, which shows results from the

search. In addition to the BLAST search feature, the

right-click menu (also called a ‘context menu’) offers the

option to show the sequence of a genome model in a

separate window, which in turn enables selecting and

copying the protein sequence. Using this feature, users

can easily copy and paste the protein sequence into

other web-based search and analysis tools, such as the

InterproScan search tool, which can identify conserved

motifs in protein sequences.

Users can also load the RNA-Seq datasets and use the

observed pattern of expression to gain insights into the

function of individual genes. To illustrate, the image

shown in Figure 1 depicts a region from scaffold00001

Table 2 Genes predicted by Cufflinks RNA-Seq analysis or

ab initio gene-finding programs

Method Number of genes

Cufflinks (RNA-Seq) 56,087

GeneMark.hmm 4,794

Augustus 1,745

GlimmerHMM 933

454 Scaffolds (454 RNA-Seq) 281
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Figure 1 Blueberry genes in Integrated Genome Browser. (A) IGB start screen showing shortcut to the blueberry genome. (B) Clicking the

image labeled Vaccinium corymbosum triggers loading of blueberry genome assembly May 2013 and the non-redundant gene set. (C) Blueberry

datasets available in IGB. (D) Coverage graphs showing read density on a region of scaffold00001.
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showing gene models and RNA-Seq coverage graphs

from five berry developmental stages. Because the over-

all read counts for each track were similar, one can visu-

ally estimate and compare expression levels for genes

provided the coverage graphs are put onto the same

scale, which is possible using the IGB ‘Graph’ tab. In this

example, comparing graph heights between stages high-

lights ripening related expression of gene CUFF.187,

which is homologous to genes in many other plant spe-

cies but has no known function. The stage-specific

expression of CUFF.187 demonstrates the power and

usefulness of visualizing gene models alongside expres-

sion data within a visualization environment that also

enables rapid exploration of genes and their functions.

Functional annotation of blueberry gene models and

comparison with other plant species

To identify putative functions of newly annotated blue-

berry genes, we searched for homologous proteins using

BLASTX searches of the non-redundant nr database

from GenBank. We found that most blueberry genes

(58%) had significant homology (e-value ≤ 0.001 and per-

cent identity ≥ 30%) with at least one protein in the nr

protein database. Typically, the highest scoring, best

match to a blueberry protein was a protein from the

wine grape V. vinifera (Figure 2A). The abundance of

best-scoring hits from grape was probably due to two

factors: the similarity between grape and blueberry [30]

and the large number of grape sequences that were

present in the nr database at the time this analysis was

done. The nr database contained nearly 80,000 proteins

from grape, many of which were conceptual translations

from the sequenced grape genome, which has been avail-

able since 2007 [31]. The tea plant Camellia sinensis, also

represented in Figure 2A, is more closely related to blue-

berry than grape, but had fewer best hits overall primarily

because there were fewer tea sequences in the databases.

We found that in general, if a blueberry gene had a match

to a tea protein, the tea protein match had a better score

and higher percent identity than the corresponding best

match from grape.

Nonetheless, these results prompted us to explore re-

lationships between blueberry and other plant genomes.

For this, we used plant-specific RefSeq databases from

GenBank, including databases for grape, tomato, Arabi-

dopsis, and several other plant species where a close-to-

complete, well-annotated proteome was available [32].

To characterize relationships between blueberry and

these other plants, we searched the blueberry transcripts

against these close-to-complete plant RefSeq databases

and identified the best scoring protein from each gen-

ome for each blueberry gene model. Figure 2B shows

the distribution of percent identity scores obtained for

the best-matching sequences from each species. Grape

proteins had the highest median percent identity scores,

followed by poplar, castor bean, and tomato. Blueberry

and other Ericales species are part of the asterid clade of

flowering plants, and are more closely related phylogen-

etically to tomato than to rosids Populus trichocarpa

(poplar) and Ricinus communis (castor bean) [33]. The

BLAST results do not contradict this relationship but

instead highlight how sequence similarity may reflect

similarities in physical or biochemical characteristics.

Grape and blueberry are deciduous, berry-producing

plants with long generation times. Poplar is also a de-

ciduous, woody plant with a long generation time.

Biochemical or morphological similarities that could

explain the similarity between blueberry and castor

bean are less obvious, however. These results suggest

that in-depth comparison between grape, blueberry, and

castor bean seed transcriptomes could lead to new insights

into developmental programs at work in berries of the

three species.

Blast2GO annotation

Blast2GO is a popular annotation platform that uses re-

sults from homology searches to associate sequence with

GO terms and other functional annotations [34], a crit-

ical step toward enabling analysis of high-throughput

gene expression studies. To facilitate analysis of the

blueberry developmental time course data and also pro-

vide a resource for other blueberry researchers, we used

Blast2GO to annotate the blueberry proteins with GO

terms. Blueberry sequences were searched against the nr

protein database and the InterPro database [35] and the

results were imported into the Blast2GO program’s

graphical user interface, which assigned GO terms to

18,143 transcripts representing 15,308 genes. Plots sum-

marizing GO terms and the number of gene products

assigned to each term are shown in Figure 3, and a file

containing the GO term mappings is provided as

Additional file 3. Similar to Arabidopsis [36] and other

plants, a large number of genes were annotated with

terms related to transcription factors. Around 1,300

transcripts received GO annotation ‘DNA binding,’ of

which around 400 were also were annotated with the

more specific GO term ‘sequence-specific DNA binding

transcription factor activity.’ These sequences likely rep-

resented expressed transcription factors involved in

regulation of gene expression during fruit development

and ripening. More than 500 proteins were associated

with terms related to primary and secondary metab-

olism, lipid metabolic processes, or carbohydrate

metabolic processes, reflecting the dynamic processes

underway in fruit development. Thus the GO annotation

identified a large set of candidate genes likely to be in-

volved in regulation and synthesis of bioactive secondary

metabolites.
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Figure 2 Results from searching nr and RefSeq protein databases. (A) Number of best-matching proteins by species. Blueberry transcript

sequences were searched against the non-redundant protein database from NCBI and the best-matching protein for each blueberry sequence

was identified. The plot shows the number of blueberry genes whose best matching protein was from the indicated species. (B) Distribution of

percent identity scores by plant RefSeq database. Blueberry transcript sequences were used to search RefSeq protein databases for plants with

close-to-complete, annotated genomes. Boxplots show the distribution of percent identity scores by species. RefSeq databases include wine

grape (Vitis vinifera), castor bean (Ricinis communus), poplar (Populus trichocarpa), tomato (Solanum lycopersicum), strawberry (Fragaria vesca),

soybean (Glycine max), cucumber (Cucumus sativus), Arabidopsis (Arabidopsis thaliana), Medicago (Medicago trunculata), Brachypodium (Brachypodium

distachyon), rice (Oryza sativa), sorghum (Sorghum bicolor), corn (Zea mays), and a moss (Selaginella moellendorffii).
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Metabolic pathway annotation using PlantCyc enzyme

database

The PlantCyc database is a collection of curated and

computationally predicted enzymes, enzymatic reactions,

and metabolic pathways for 18 plant species, including

grape, Arabidopsis, cassava, poplar, and rice [37]. The

PlantCyc databases are closely tied with the Pathway

Tools software package [38], a visualization and database

system for pathways and biochemical reactions. At the

time of this writing, the pathways database for V. vinif-

era (GrapeCyc version 3.0) was one of the most

complete, containing annotations for 432 pathways. The

similarity between grape and blueberry sequences sug-

gested that comparing the blueberry sequences to en-

zymes in GrapeCyc and other PlantCyc databases would

identify candidate genes encoding enzymes of primary

or secondary metabolism. To identify enzymatic func-

tions for blueberry genes, the BLASTX algorithm was

used to search for matching PlantCyc sequences. To

eliminate matches arising from alignments between do-

mains that occur in many different sequences (e.g., ATP-

binding cassette), only matches that covered at least 60%

Figure 3 Gene Ontology annotations for the three sub-trees of GO. (A) Biological process; (B) molecular function; (C) cellular component.

Numbers indicate the number of protein-coding blueberry transcripts assigned to each category. Plots were made using Blast2GO. The number

of genes assigned to each category can be obtained from Additional file 3.
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of the subject sequence with at least 45% identity were

considered. Under these criteria, transcripts from more

than 7,100 blueberry genes were found to match at least

one PlantCyc enzyme sequence, and there were over 450

pathways from PlantCyc that had at least one enzyme

matching a blueberry sequence. As before, grape pro-

teins were typically the best matches for blueberry

sequences.

In-depth analysis of ethylene biosynthetic pathway gene

expression

Ethylene is a gaseous plant hormone that controls many

aspects of plant development and physiology, especially

ripening. In climacteric fruits such as tomato and ba-

nana, a burst of ethylene biosynthesis triggers ripening,

and post-harvest treatment with exogenous ethylene can

control ripening onset and progression. By contrast,

blueberries do not appear to undergo a burst of ethylene

synthesis prior to ripening, and post-harvest application

of ethylene has far less effect on the ripening process.

Nonetheless, ethylene can influence aspects of flowering

and ripening, as shown by experiments with ethephon, a

horticultural chemical that when applied to foliage is en-

zymatically converted to ethylene. When applied to blue-

berry plants during the harvest, ethephon accelerates

and synchronizes ripening, and when applied in the fall

(autumn), ethephon delays flowering the following spring

and increases the number of flower buds (reviewed in

[39]). This suggests that ethylene is important in flowering

and fruit development but its role is likely to be very differ-

ent than in climacteric fruits.

Ethylene is synthesized from L-methionine via three re-

actions that are catalyzed by SAM synthase (methionine

adenosyltransferase), ACC synthase (1-aminocyclopropane-

1-carboxylate synthase), and ACC oxidase (1-aminocyclo-

propane-1-carboxylate oxidase). In most plants, large

multi-gene families encode all three enzymes. The

PlantCyc database reports that the grape genome con-

tains 34 SAM synthase genes, 20 ACC synthase genes,

and 12 ACC oxidase genes. Consistent with this, the

PlantCyc-based annotation of blueberry identified simi-

larly large numbers of genes encoding ethylene biosyn-

thetic genes, including 22 genes encoding SAM synthase,

six genes for ACC synthase, and seven genes encoding

ACC oxidase (Additional file 1: Figure S2). Interestingly,

the expression patterns for SAM synthases were highly

variable and at least one SAM synthase gene was highly

expressed (more than 1,000 reads per kilobase of tran-

script per million reads mapped, RPKM) in each stage of

berry fruit development and ripening. Expression of

genes encoding ACC synthase, a key control point for

ethylene and ripening in tomato, was also highly variable.

Some genes encoding ACC synthases were expressed at

very low levels (close to 0 RPKM), while others were

expressed at 200 RPKM or higher, which was around the

95th percentile of gene expression as measured in RPKM.

Two ACC oxidase genes were expressed at 150 RPKM or

higher at each stage, while others were expressed at

much lower levels. Interestingly, one ACC oxidase gene

(CUFF.81159) was highly expressed during ripening and

reached more than 3,000 RPKM in ripe fruit. The uni-

formly high expression (>150 RKPM) of ethylene biosyn-

thesis genes at every stage, combined with the extremely

high expression of ACC oxidase gene CUFF.81159, sug-

gested that ethylene is produced throughout berry fruit

development and that these levels are likely to peak in

ripe fruit.

Anthocyanin biosynthetic pathways

Anthocyanins are the 3-O-glycosylated forms of anthocya-

nidins, which consist of a polyphenolic ring substituted

with -H, -OH, and -OCH3 groups at different positions.

The substituted group and its location on the polyphenolic

ring determine the type of anthocyanidin and may also

dictate aspects of biological activity. In blueberry, the an-

thocyanins containing malvidin, delphinidin, and peonidin

aglycones are especially abundant by weight [4]. Another

level of diversity arises from the type of sugars attached,

and these sugar groups may influence bioavailability in the

mammalian digestive tract [40,41]. Thus it is of interest to

identify enzymes that catalyze steps in anthocyanin bio-

synthesis and profile their expression pattern and relative

abundance in ripe fruit.

Comparison with PlantCyc enzymes identified 31

genes with homology to enzymes involved in anthocya-

nin synthesis, including two genes (CUFF.20951 and

CUFF.43605) that were highly expressed in pink and ripe

fruit in comparison with other genes in the pathway

(Figure 4). CUFF.20951 was the most highly expressed;

it reached more than 12,000 RPKM in pink and ripe

fruit, up from around 2000 RPKM in green fruit. The

best matching PlantCyc enzyme for CUFF.20951 was an

enzyme from poplar that was annotated as anthocyanidin-

3-O-glucosyltransferase, which transfers a glucose sugar

onto the 3-O position of the anthocyanidin polyphenolic

ring. Searching the nr database using BLASTP identified

even better matches, including predicted flavonoid galac-

tosyl and glucosyltransferases from a variety of plant

species. Based on its homology to other sequences, the

CUFF.20951 protein likely is involved in glycosylation of

flavonoids, but its preferred aglycone and sugar substrates

are impossible to determine based on sequence data alone.

However, judging from the extremely high expression of

this gene in blueberry, the CUFF.20951 protein is likely to

be responsible for a high percentage of anthocyanin (or

other flavonoid) production in ripe berry fruit.

The other highly expressed gene was CUFF.43605,

which reached a peak of around 2000 RPKM in pink

Gupta et al. GigaScience  (2015) 4:5 Page 11 of 22



and ripe fruit, up from around 900 RPKM in the earlier

stages. The best PlantCyc match for CUFF.43605 was a

protein from Brassica rapa (Bra019350, 78% identity)

annotated as a leucocyanidin oxygenase, also called

anthocyanidin synthase (ANS) or leucocyanidin dioxy-

genase (LDOX). Homologous enzymes from Arabidopsis

[42,43] and rice [44] convert leucoanthocyanidin to

anthocyanidins, precursors for anthocyanins, but they

can also catalyze formation of other bioactive flavonoid

precursors, notably dihydroquercetin, the precursor of

quercetin. Anthocyanins and quercetin are both abun-

dant in berries, but quercetin has greater bioavailability

and therefore may be a more potent bioactive compound

in berry fruit [45,46]. If the preferred end product of the

CUFF.43605 reaction is indeed dihydroquercetin, then

its remarkably high expression likely has a positive effect

on quercetin concentration in berry fruit. However, if its

major end product is cyanidin, then it likely acts to

decrease quercetin levels by consuming leucoantho-

cyanidin, the dihydroquercetin precursor. As with

CUFF.20951, sequence and expression analysis alone is

likely insufficient to distinguish these possibilities. None-

theless, the high expression of CUFF.43605 makes this

gene a fruitful candidate for investigating genetic control

of anthocyanin and quercetin abundance in berries.

Other pathways - bixin and dhurrin

Bixin is the primary component of annatto, a commonly

used food dye collected from the seeds of Bixa orellano,

which grows in the tropics and is also known as the lip-

stick plant. Annatto is used in folk medicine and for

body decoration and has also been investigated as a

plant-based treatment for diabetes [47], cancer [48], and

microbial infections [49]. We found that four blueberry

genes matched two of three annotated enzymes of the

pathway (Additional file 1: Figure S3). Expression of all

four genes peaked in the mature green stage of fruit de-

velopment, around the time when seeds were develop-

ing. Grape seed contains bixin [50], and, as discussed

previously, the grape and blueberry proteomes were re-

markably similar. These results suggested that blue-

berries may contain a bixin-like compound.

Blueberry genes similar to enzymes from a potentially

harmful pathway were also found. Blast analysis identi-

fied putative blueberry homologs for each of three bio-

synthetic enzymes involved in synthesis of dhurrin in

sorghum [51-53]; the blueberry genes shared between 45

and 60% identity with their putative homologs from sor-

ghum. Dhurrin, which reaches up to 10% dry weight in

sorghum seedlings, is one of a large class of cyanogenic

glycoside (CG) defense compounds plants synthesize

from amino acid precursors as a form of chemical war-

fare against insects and other herbivores [54,55]. Stored

as inactive glycosides, mechanical damage to cells (such

as from chewing) activates endogenous glycosidases that

remove the sugar group, triggering production of toxic

hydrogen cyanide (HCN) due to instability of the sugar-

free aglycone or to the activity of other catabolic en-

zymes. Interestingly, the putative blueberry homologs

were most highly expressed in the green fruit stages

(Additional file 1: Figure S3D), suggesting that green

berries synthesize a cyanogenic glycoside that discour-

ages insects and mammals from eating unripe berries.

Homology searches also identified putative berry ho-

mologs of enzymes involved in two CG catabolic path-

ways, one that removes the glycosyl group from the CG

Figure 4 Expression pattern of anthocyanin biosynthetic genes. Expression pattern for genes annotated to enzymatic reactions in

anthocyanin-related pathways in PlantCyc are shown. (A) Genes encoding leucoanthocyanidin dioxygenase, catalyzing EC 1.14.11.19, dihydroquercetin

synthesis from leucoanthocyanidin or cyaniding synthesis from leucoanthocyanidin. (B) Genes for enzymes catalyzing 3-O-glucosylation of delphinidin

(EC 2.4.1.115). Both are annotated to PlantCyc pathway anthocyaninin biosynthesis (delphinidin 3-O-glucoside).
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leading to production of HCN, and another pathway that

detoxifies CGs by converting them to harmless bypro-

ducts. Seven genes had significant similarity to enzymes

in the cyanogenic catabolic pathway, including four

genes resembling dhurrinase, which deglycosylates dhur-

rin, and three genes that were similar to hydroxynitrile

lyase, which catabolizes the dhurrin aglycone to HCN.

Similar to the biosynthetic enzymes, these catabolic, cy-

anogenic enzymes were most highly expressed in unripe

fruit. We also identified a blueberry candidate gene en-

coding nitrilase 4, an enzyme that detoxifies dhurrin and

possibly other cyanogenic glycosides by converting them

to aspartic acid and asparagine [56]. Searching with

nitrilase 4 from A. thaliana (AtNIT4, AT5G22300) iden-

tified blueberry gene CUFF.32314, which shared 83%

identity with the Arabidopsis protein. Plant nitrilase 4

enzymes are highly conserved [56], typically sharing

60 to 70% identify at the amino acid level, suggesting

that CUFF.32314 indeed encodes nitrilase 4. The pu-

tative blueberry nitrilase CUFF.32314 gene was highly

expressed in young fruit and ripe fruit, reaching more

than 70 RPKM in ripe berries, but had much lower ex-

pression (<40 RPKM) in mature green berries. Thus the

expression profile of the candidate gene involved in CG

detoxification was roughly complementary to profiles of

candidate genes involved in CG synthesis and cyanide re-

lease. This suggests that immature green berries produce

CG compounds that discourage herbivory, but that berry

NAT4-like genes then detoxify these CGs as part of the

ripening process.

Differential gene expression during blueberry

development and ripening

Fruit development and ripening are dynamic processes

involving cell division, expansion, differentiation, synthe-

sis of pigments and other secondary metabolites, as well

as import of sugars into the fruit (reviewed in [57]). To

better understand these processes in blueberry, we used

the developmental time course RNA-Seq data to exam-

ine global patterns of gene expression throughout fruit

development, maturation, and ripening. Statistical ana-

lysis of gene expression identified nearly 19,000 genes

that were differentially expressed between at least two

stages, even when a relatively stringent false discovery

rate cutoff of 0.001, corresponding to roughly 1 in 1,000

false discoveries, was applied. Table 3 reports the num-

ber of genes that were differentially expressed between

stages, broken down by up- and down-regulation. Except

for the pink versus ripe fruit comparison, there were

more up-regulated than down-regulated genes in every

comparison between a later stage and an earlier stage,

reflecting the greater diversity of genes that were

expressed in the later stages as tissues continued to de-

velop and differentiate and as the seeds formed within

the fruit. Viewed globally, the gene expression changes

that occurred during progression of fruit growth, matur-

ation, and ripening were extensive and dynamic.

Figure 5 reports the number of genes that were differ-

entially expressed (DE) between adjacent stages and

highlight the physiological transitions as fruits enlarge

from small, pad-like structures on the base of the pedicel

to round, mature berries harboring seeds, flesh, and

sugars. The most similar of the adjacent stages were the

pink and ripe fruit, collected 14 days apart. Fewer than

100 genes were DE between pink and ripe fruit. Of these,

most (75%) were down-regulated. The up-regulated genes

included genes of unknown function and genes involved

in enzymatic activity, such as UDP-glucosyltransferases,

an alcohol dehydrogenase, and hormone biosynthetic

genes. Down-regulated genes included many enzymes,

such as the putative dhurrin biosynthetic enzymes, as well

as other genes of unknown function. By contrast, the pad

and cup stages, which were collected 10 days apart, had

more than ten times as many DE genes. GO enrichment

analysis of genes differentially expressed between the pad

and cup stages found that a significant number of DE

genes were annotated with terms related to transcriptional

regulation, regulation of enzymatic activity, and cell wall

biosynthesis (Additional file 4). The type and high number

of DE genes in the pad-to-cup versus the pink-to-ripe

comparison reflects the extent of developmental changes

underway during early, rapid growth stages of berry

development.

However, the transition from fully rounded green fruit

to pink fruit involved by far the largest number of differ-

ences. The chief physical difference between the two

stages was color; pink berries had some reddish color in-

dicating the onset of ripening, but other than this, green

and pink berries were similar. Gene Ontology enrich-

ment analysis identified around 40 terms as being sig-

nificantly enriched among genes differentially expressed

between the green and pink fruit. Two terms were related

to photosynthesis and likely reflected down-regulation of

Table 3 Up- and down-regulated genes between sample

types

Pad Cup MG Pink Ripe

Pad - 566 2,390 6,010 6,077

Cup 526 - 1,221 5,270 5,003

MG 1981 919 - 3,583 3,726

Pink 6,765 6,594 3,038 - 18

Ripe 6,821 6,466 5,159 56 -

Each cell in the table represents a comparison between two sample types.

Cells above the diagonal report the number of genes that were up-regulated

in the later of the two compared stages. Cells below an empty cell report the

number of genes that were down-regulated in the later of the two compared

stages. Cutoff for differential expression was false discovery rate of 0.001.

Stages are shown in order of earlier (Pad) to later (Ripe).
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Figure 5 (See legend on next page.)
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photosynthetic functions, despite the fact that when the

pink berries were collected, they typically were only partly

pigmented and much of the berry surface was still green.

Of 43 genes annotated to the term ‘photosynthesis,’ 27

were differentially expressed and all were down-regulated

in pink fruit. Other significant terms were related to meta-

bolic pathway functions, including the terms metabolic

process, catalytic activity, catabolic process, hydrolase ac-

tivity, carbohydrate metabolic process, lipid metabolic

process, transferase activity, and biosynthetic process.

There was also enrichment in functions related to tran-

scriptional regulation of gene expression, including chro-

matin binding, nucleic acid binding, sequence-specific

DNA binding transcription factor activity, and signal

transduction.

Multi-dimensional scaling was used to cluster samples

according to their overall similarity of gene expression

pattern (Figure 5B). Samples from similar stages formed

clusters. Pink and ripe fruit formed a cluster, cup and

pad stages formed another cluster, and mature green

fruit formed another cluster separate from the others.

Interestingly, one ripe fruit sample (plant 2-41, P1) clus-

tered slightly distant from the other ripe fruit samples.

Visualization of RNA-Seq coverage graphs in IGB

showed that some genes were up- or down-regulated in

this sample relative to the other ripe fruit samples.

Genes that were down-regulated in P1 relative to the

other ripe berry samples had functions related to cell

wall degradation or modification, whereas genes that

were up-regulated had functions related to stress re-

sponses. This suggests that the P1 ripe berry sample was

undergoing a stress relative to the other samples. None-

theless, the possible presence of a possible confounding

factor related to stress did not significantly reduce power

to identify DE genes between samples types.

A time series clustering program (STEM [58]) was

used to identify groups of genes that varied in concert

over time. Scaled, averaged expression values for genes

found to be DE between any two fruit stages were pro-

vided as inputs to the STEM program, which identified

several gene expression profiles depicted graphically in

Figure 5C. Two of the most statistically significant

profiles had complementary patterns (clusters labeled

1 and 6). The ‘early high’ profile (number 1 in Figure 5C)

contained genes with high expression in early fruit stages

and lower expression in later stages. Gene Ontology en-

richment analysis showed that this early high cluster

contained an unusually large number of genes anno-

tated with GO terms related to photosynthesis, catalytic

activity, kinase activity, cell cycle, and DNA binding

(Additional file 4). The ‘late high’ profile (number 6),

contained genes with expression patterns complemen-

tary to the early high profile, with genes reaching their

peak expression in the pink and ripe fruit stages. The

genes in this cluster were enriched with GO terms related

to transport, sugar metabolism, and catalytic activity, but

had a lower than expected proportion of genes annotated

to term DNA metabolic process. Only 1% of DNA meta-

bolic process genes were in the late high cluster. These

two complementary profiles highlight the diverse bio-

logical processes underway in ripe, fully mature fruit ver-

sus immature, rapidly growing fruit [57,59-61]. In the

early stages, cell growth and cell division are underway,

while in later stages, sugars and other metabolites are be-

ing imported into the fruit and cell growth happens largely

through cell expansion, not cell division.

The next two most significant clusters also had com-

plementary patterns. The ‘green high’ (number 0) cluster

included around 1,200 genes that peaked in expression

in the mature green stage. This cluster contained un-

usually many genes annotated with terms related to

metabolic processes, transport, DNA binding, and sec-

ondary metabolism, suggesting that the green fruit stage

represents a developmental transition and also is rich in

production of secondary metabolites (Additional file 5).

The ‘green low’ cluster (number 2) contained around

1,500 genes but was significantly enriched with only one

term: catalytic activity. Interestingly, genes annotated

with this term were unusually prevalent among all genes

in all four profiles, suggesting that fruit development is

rich in biosynthetic processes. However, the nature of

these biosynthetic processes varies among stages, begin-

ning with photosynthetic processes in the early stages

and transitioning to secondary metabolism in the later

stages. Figure 5D-G show RNA-Seq coverage graphs for

genes exemplifying the four profiles.

(See figure on previous page.)

Figure 5 RNA-Seq analysis of gene expression changes during berry fruit development and ripening. (A) Photographs of berries

exemplifying five stages of berry fruit development and ripening and the number of differentially expressed (DE) genes between adjacent stages.

(B) Multi-dimensional scaling (MDS) plot of expression values from five sample types and three plants (P1-P3). Samples that are near each other

in the two-dimensional space are more similar with respect to gene expression. (C) Gene expression profiles detected by clustering program

Short Time-series Expression Minor (STEM). The x-axes represent stage (earlier to the left) and the y-axes represent expression level. Clusters 0

through 9 are listed in order of statistical significance, with clusters 1, 6, 2, and 0 being the most significant. (D-G) Cufflinks-predicted genes from

clusters 1, 6, 2, and 0 encoding proteins similar to (D) leucoanthocyanidin reductase, (E) MYB-like transcription factor up-regulated in ripening fruit,

(F) tryptophan synthase (indole-salvaging), and (G) abscisic acid signaling transcription factor ABI3, respectively. In (D-G), graphs represent the number of

reads overlapping genomic positions indicated on the ‘coordinates’ axis. RNA-Seq coverage graphs from P3 (plant 3-33) are shown.
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Transcript variation during fruit development

and ripening

As described above, nearly one quarter of multi-exon

genes were associated with multiple gene models corre-

sponding to putative products of alternative promoters,

alternative splicing, or alternative polyadenylation sites.

Any or all three of these mechanisms of alternative tran-

scription can play a role in developmental regulation of

gene expression. To test whether alternative transcrip-

tion was developmentally regulated during berry fruit

development and ripening, we used the the CuffDiff pro-

gram, a companion program to Cufflinks, to identify

genes whose patterns of splicing, promoter use, or poly-

adenylation changed during the development time series.

Cuffdiff reported more than 700 genes as undergoing

some type of differential transcript variation between

pairs of conditions. To assess the results, a subset of the

highest confidence CuffDiff results was selected at ran-

dom and manually inspected using IGB. RNA-Seq read

alignments were loaded into the viewer alongside the

gene models and read support for alternative transcripts

was compared between samples. In most cases involving

alternative splice sites, the region that was different be-

tween alternative transcripts had small numbers of sup-

porting reads, typically fewer than ten reads per splice

junction. By contrast, examples of alternative promoter

use (Additional file 1: Figure S4A) and alternative 3′

ends (Additional file 1: Figure S4B) had much stronger

support. In these instances, typically there were dozens

of reads supporting one or both alternatives in each

sample. Thus, the CuffDiff analysis was able to identify

differential use of alternative promoters and alternative

transcription sites but was not as good at distinguishing

differential splicing.

We therefore used an alternative approach based on

the ArabiTag algorithm [62] to test specifically for differ-

ential splicing between stages. For this, a splicing score

was calculated that represented the percentage of spliced

reads supporting alternative splice site choices from dif-

ferentially spliced regions. Hierarchical clustering of spli-

cing scores found that ripe and pink berry samples

formed a cluster, mature green berries formed a clus-

ter, while the cups and pad stages were intermixed

(Figure 6A). Interestingly, the P1 ripe fruit sample was

an outlier and formed a distinct cluster apart from the

others; this was consistent with previous results in

which P1 clustered apart from P2 and P3 in an MDS

plot (Figure 5B). Nonetheless, pairwise comparisons of

average splicing score found for most alternatively

spliced genes, the relative abundance of splice forms was

consistent between stages, with some outliers (Figure 6B),

and annotated spliced variants were co-expressed. Statis-

tical testing of the splicing score supported this observa-

tion, identifying around 90 genes with developmentally

Figure 6 Stage specific alternative splicing. (A) Clustering of

samples by similarity of splicing patterns. (B) Scatter plots showing

the relationship between average splicing index across different

stages. (C) Stage-specific alternative splicing in a gene encoding a

putative splicing regulator.
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regulated differential splicing, including some with pre-

dicted functions related to splicing. These included

CUFF.35730 (Figure 6C), which was similar to splicing-

related transformer-SR ribonucleoproteins from many

plant species. The best Arabidopsis match (AT4G35785)

is one of two transformer-like genes in Arabidopsis; both

genes (AT4G35785 and SR45a) contain alternatively

spliced ‘toxic exons’ that introduces a premature stop

(termination) codon (PTC), and splicing of the toxic exon

in SR45a is sensitive to stress [63]. Differential inclusion

of a PTC-containing toxic exon appears to be con-

served in blueberry, as CUFF.35730 also contained a

‘toxic exon’ that introduced a stop codon. According to

the RNA-Seq data, the full-length, exon-skipped form

represented a higher percentage of the splice variants

in cup and mature green fruit stages, while the exon-

included form was less abundant in pink fruit. Thus

splicing patterns in blueberry during fruit development

and ripening vary by stage, similar to overall gene ex-

pression levels.

Comparison with previous sequencing studies

of blueberry

Before now, several studies have been published that

used Sanger [64,17], 454 [16], or Illumina sequencing

[65] to characterize blueberry genes and profile gene

expression changes. Two studies used de novo tran-

scriptome assembly procedures to assemble transcript

models, which they then annotated using similar

methods to those described here. At the time of writing,

only a subset of the data reported in the Illumina-based

study was publicly available [65], but the others have

made their raw sequence reads available as part of dbEST

or the Short Read Archive. To provide a resource to re-

searchers and also assess the completeness of the new

transcriptome assembly reported here, we aligned pub-

licly available EST, 454 and Illumina sequences onto the

blueberry assembly and compared the alignments to the

non-redundant set of gene models generated by Cufflinks

and the ab initio gene prediction programs. Of the

22,415 Sanger ESTs from dbEST, 19,967 (89%) were

aligned onto the draft genome assembly. A comparable

percentage of sequences from the much larger 454 se-

quencing study [16] were also aligned. More than 85% of

these 454-based ESTs aligned to the genome, and around

75% of the 454 ESTs overlapped over one or more berry

gene models. Similar results were obtained for data

from the Illumina-based study [65]. We obtained around

15.5 million read pairs from the Short Read Archive using

object number SRR942391. Around 55.4% were mapped

as proper pairs while another 13.28% were mapped as sin-

gletons. Of the mapped reads on the genome, more than

95% overlapped a blueberry gene model. Thus the non-

redundant gene models presented here encompass the

vast majority of previously generated sequences from

blueberry.

The Sanger-EST-based study published by Zifkin and

co-workers reported in-depth analysis of several genes

involved in anthocyanin and proanthocyanidin biosyn-

thesis, two distinct branches of flavonoid biosynthesis

[17]. Proanthocyanidins (PAs), also called condensed

tannins, are colorless, have a bitter taste, and may play a

role in defense against disease and in discouraging

consumption of immature berries. Consistent with this,

Zifkin et al. found that PA genes were highly expressed

in early stages of berry development, while genes specific

to anthocyanin biosynthesis were most highly expressed

following onset of ripening. Moreover, genes required

for synthesis of precursors common to both pathways

exhibited a bi-phasic expression profile, where expres-

sion was highest in early and late stages and lowest in

the intermediate stages. To assess the degree of corres-

pondence between this earlier, EST-based study and the

current RNA-Seq-based study, EST accessions were ob-

tained from supplementary data [17], their sequences

were aligned onto the blueberry genome, and the

alignments were used to identify the corresponding

blueberry gene models. Alignments were also made

available as part of the IGBQuickLoad data repository

to enable searching and browsing of EST data. Mappings

between ESTs and blueberry gene models are shown in

Table 4.

In general, the RNA-Seq results were consistent with

the EST-based study. As shown in Additional file 1:

Figure S5, RNA-Seq based expression patterns for genes

encoding VcANR (anthocyanidin reductase), VcDFR

(dihydroflavonol reductase), and VcUFGT (UDP-Glc:

flavonoid-3-O-glycosyltransferase) were similar to those

reported previously. Interestingly, the gene correspond-

ing to VcUFGT was CUFF.20951, which was also the

most highly expressed gene in the anthocyanin bio-

synthesis pathway according to the RNA-Seq data

(Figure 4A). Zifkin et al. [17] also identified ESTs encod-

ing a Myb family transcription factor with biphasic ex-

pression and showed it was able to activate an ANR

promoter from poplar, demonstrating it is a likely regula-

tor of the PA pathway in blueberry. The EST reported for

this gene (JK664730) mapped to two different genes in

the blueberry genome assembly, only one of which

(CUFF.51789) exhibited the previously reported biphasic

expression pattern. The other gene (CUFF.14288) had an

expression profile more similar to the ‘high early, low

late’ cluster 1 in Figure 5C, suggesting that it may co-

regulate PA biosynthetic genes in early fruit stages.

Discussion
In recent years high-throughput sequencing technologies

have been used to investigate the transcriptomes of
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numerous plant species, including many for which no

reference genome sequence is available (reviewed in

[66]). As sequencing accuracy improves and the cost of

sequencing drops, more such projects will become feas-

ible. However, making use of these new data can be

challenging when a reference genome is not available to

guide the assembly of sequence reads into contigs that

are long enough to support functional annotation. Previ-

ously, we attempted de novo assembly of RNA-Seq reads,

but technical difficulties related to the large amount of

repetitive sequences in the data hindered these attempts

(data not shown). Although the blueberry genome as-

sembly used here is a draft, it was nonetheless complete

enough to enable formation of high-quality gene models

that could be annotated with GO terms, pathways, and

protein homologies. Moreover, the gene models obtained

were similar in structure and number to those of many

other well-annotated transcriptomes, with one excep-

tion, which was that many apparently single-exon genes

with no convincing homology to known protein se-

quences were obtained. Determination of the function

of these single-exon, apparently non-protein-coding

genes is beyond the scope of the current study, but it

seems likely that many of these genes may represent

long non-coding RNAs, pseudogenes, miRNAs, or

other genes whose primary product is RNA and not

protein. This possibility does not seem unlikely as

other non-coding RNAs as well as pseudogenes have

been observed to be expressed in other similarly pre-

pared RNA-Seq libraries [29,67].

Interestingly, blueberry sequences had highest overall

percent identity to sequences from the grape vine V. vi-

nifera, a basal eudicot with a slow mutation rate. The

next most similar species in terms of percent identity

was the castor bean R. communis, followed by poplar,

and then by tomato, the only other asterid species in the

RefSeq database at the time this analysis was done. The

454-based transcriptome analysis published by Rowland

and co-workers observed an almost identical result [16],

as did another group that annotated a de novo transcrip-

tome assembly for the tea plant C. sinensis, another Eri-

cales species [68]. These results seem to suggest that

blueberry and perhaps even other Ericales species are

closer to grape than to tomato; however, sequence simi-

larity does not necessarily imply phylogenetic closeness,

and a more likely explanation is that grape has diverged

at a slower rate than tomato and so is more similar to

the last common ancestor of grape and the Ericacae. It

is also a woody, deciduous plant that makes berry-like

fruit and so shares some morphological characteristics

with blueberry. The same explanation may also apply to

poplar, also a slow-evolving, woody, deciduous plant.

However, neither of these explanations serve to explain

why castor been, an herbaceous plant with a short gen-

eration time, appears to be more closely related to blue-

berry at the sequence level. More recently, phylogenetic

analysis of mitochondrial and chloroplast sequences

from cranberry (Vaccinium macrocarpon) confirmed

that cranberry belongs in the asterid grouping and is

clearly more closely related to other asterids than grape

[69]. It is beyond the scope of this paper to determine

correct placement of blueberry relative to these other

groups. Instead, the data provided here may provide a

means for experts in phylogenetic relationships to inves-

tigate these and other questions related to the evolution

of flowering plants.

Another important contribution is that for the first

time, we provide necessary resources for performing

high-throughput gene expression studies in blueberry.

The gene models provided here are a key resource for

processing and analysis of RNA-Seq expression data,

and to maximize their usefulness, we made the RNA-

Seq data analysis described here available as part of an

open source repository of data files and source code

[27]. To complement the gene structures, we provided

Gene Ontology and PlantCyc-based enzyme annotations

for more than half the protein-coding gene models. The

GO and enzyme annotations will provide critical re-

sources for future studies, especially high-throughput

studies such as RNA-Seq in which statistical analysis

typically identifies many hundreds or even thousands of

Table 4 Correspondence between blueberry flavonoid

biosynthesis ESTs and blueberry gene models

Gene ESTs Gene Id

VcANR CV091176, EG026069 CUFF.29797

anthocyanidin reductase

VcDFR JK655064, JK655458,
JK664855, JK666169

CUFF.50634

dihydroflavonol reductase

VcUFGT JK664803, JK666412,
JK661182, JK663155

CUFF.20951

UDP-Glc:flavonoid-3-O-
glycosyltransferase

VcMYBPA1 JK664730, JQ085966 CUFF.51789

R2R3 MYB transcription factor JK664730, JQ085966 CUFF.14288

VcF3′H JK654488 CUFF.39752

(JK663426, JK666734,
JK667006, JK667133,
JK667135, JK655710
not found)

VcF3′5′H JK666610 Gene.g10884.t1

flavonoid 3′,5′-hdroxylase JK666329, JK664585 CUFF.51728

JK665366, JK665058 CUFF.53209

JK664236 CUFF.51711

Previously identified ESTs encoding flavonoid biosynthesis enzymes and

regulators were aligned to the blueberry genome. Alignments were visualized

alongside the blueberry gene models in Integrated Genome Browser to

identify newly annotated genes for each EST.
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differentially expressed genes. As shown here, being able

to identify categories of over- or under-represented in

large gene lists enables deeper understanding of bio-

logical differences. Moreover, the pathway annotations

may further enable interpretation as well as functional

prediction. Prior analysis of the AraCyc database to-

gether with a compendium of microarray expression

data showed that enzymes belonging to the same meta-

bolic pathway are often highly co-expressed, a property

that enables identification of missing players in meta-

bolic or regulatory pathways through large-scale analysis

of expression data [70,71]. This approach has been used

in many studies that used co-expression to identify can-

didate genes, leading to a deeper understanding of genes

involved in metabolic pathways. Therefore, one import-

ant long-term result from the RNA-Seq analysis pre-

sented here, along with the pathway predictions, is that

we have laid the groundwork for further studies identify-

ing other enzymes in high value pathways. This work

may be particularly relevant to anthocyaninin biosyn-

thesis, since different types of anthocyanins have differ-

ent effects on mammalian biology, possibly due to

differences in bioavailability. Another benefit of these

data is that because the RNA-Seq data were from an au-

totetraploid blueberry, aligned onto a diploid genome

sequence, it may be possible to use these data to investi-

gate allele-specific gene expression, using SNPs or other

polymorphisms to distinguish alleles. This and other

studies may become possible thanks to the databases

and datasets presented there, and our future work will

focus on improving these resources to enable better un-

derstanding of metabolic pathways that are active in

blueberry.

Methods
Analysis code availability

R Markdown files, python scripts, and shell scripts used

in data analysis and data processing are version-

controlled in a git-based, publicly accessible repository

[27]. The repository contains files documenting which

subsections of the repository were used in the analyses

described above. Note that we will continue to update

and modify the code repository to meet the needs of

users; however, readers interested in retrieving older ver-

sions of the repository that existed at the time of publi-

cation can do so using the git program, which is well

documented at many sites.

Expression analysis

The number of reads per gene was counted using the

samtools view -c command. All single-mapping reads

that overlapped a gene region were counted, and gene

regions were defined as the smallest start and largest

end position of transcripts annotated to the gene. For

each comparison, the method ‘exactTest’ with tagwise

dispersion from Bioconductor library edgeR [72] was

used to identify differentially expressed genes. False dis-

covery rate for each comparison was calculated using

the p.adjust method in R, with option ‘BH’ for Benjamini

and Hochberg. For clarity, all results reported here ap-

plied an FDR cutoff of 0.001. Code used to perform dif-

ferential expression analysis is available in the project

bitbucket repository; readers interested in exploring

other cutoff options can obtain copies of source code

files, edit parameters in the file, and re-run the analysis.

Gene Ontology terms that were unusually enriched

among differentially expressed genes were identified

using GOSeq [73], also from Bioconductor.

Analysis of alternative splicing with CuffDiff

The non-redundant gene set was used as input to cuff-

compare, which produced a file (cuffcmp.combined.gtf )

suitable for use as input to cuffdiff. The cuffdiff was then

run using the full set of alignments (both multi- and

single-mapping) obtained for the blueberry development

and ripening time course dataset with cuffcomp.com-

bined.gtf file as reference gene models. For analysis of

splicing differences, the file splicing.diff output by cuff-

diff was used. It was observed that the most significant

splicing differences reported by cuffdiff all had the same

low p-value (10-5) and so these were selected for further

analysis. A random subset of the splicing differences

from genes that were annotated by the BLASTX step

above was selected for visual inspection in IGB.

Analysis of alternative splicing with ArabiTag

The non-redundant gene set, BAM files with read align-

ments, and junction files produced by the FindJunctions

program (Integrated Genome Browser tools package)

were provided to the AltSpliceAnalysis software [74],

which is based on the ArabiTag algorithm described in

[62]. The software identifies annotated alternative spli-

cing events and then uses the RNA-Seq data to count

reads supporting alternative splicing choices associated

with each event. Data analysis code written in R was

used to calculate the percentage of support (%S) for each

variant, using gapped reads to support alternative donor

or acceptor sites and non-gapped reads to support reten-

tion of introns. To identify differential splicing between

conditions, a t-test was performed on splicing scores.

Differential splicing was tabulated and highest confidence

differences were manually inspected using Integrated

Genome Browser.

Availability and requirements
Project name: BlueberryGenome.

Project home page: https://bitbucket.org/lorainelab/

blueberrygenome.
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Operating system(s): Platform independent.

Programming language: R, python.

Other requirements: RStudio, 0.98.507 or higher, R 3.0.3

or higher.

License: The MIT License.

Availability of supporting data
RNA-Seq data are freely available for visualization in

Integrated Genome Browser, and analysis code is avail-

able from a publicly available git repository [27].

All sequence data are available in the Short Read Archive

under accessions SRP039977 and SRP039971. Files con-

taining alignments, RNA-Seq coverage graphs, and output

from TopHat2 are available from a publicly accessible

IGBQuickLoad site [75] configured to serve data for

visualization in Integrated Genome Browser. Data files

including gene models and related annotations are avail-

able from the git source code repository. The git source

code repository also contains R code used to analyze

data. Archived snapshots of these files are also available

from the GigaScience repository, GigaDB [76].

Additional files

Additional file 1: Figure S1. Data processing and analysis pipeline. The

computational workflow used to generate blueberry gene models

and coding sequences is shown. (A) Sources of gene annotations.

(B) Step-wise selection protocol used to create the nonredundant

gene set. Figure S2. Expression pattern of candidate ethylene biosynthesis

genes. Expression of (A) SAM synthase, (B) ACC synthase and (C) ACC oxidase

genes are shown in RPKM. (D) Enzymes and intermediates in ethylene

biosynthesis pathway. Figure S3. Expression pattern for candidate bixin

and dhurrin biosynthetic genes. (A) Bixin biosynthesis as annotated in

PlantCyc as pathway id PWY-5305. The first step is catalyzed by a lycopene

cleavage oxygenase, which was not found in the blueberry annotations.

Subsequent reactions are catalyzed by enzymes BADH (bixin aldehyde

dehydrogenase) and nBMT (norbixin methyltransferase), which were found

in blueberry. (B) and (C) Expression of blueberry genes encoding BADH

and nBMT are shown on two plots with different y-axis scales as one gene

(CUFF.4231) is highly expressed in fruit. (D) Synthesis and breakdown of

cyanogenic glycoside dhurrin. (E-J) Expression of genes encoding putative

dhurrin synthesis and breakdown enzymes. Figure S4. Stage-specific

alternative promoter and three prime ends. (A) Read alignments

from mature green and ripe fruit showing an alternative promoter

in CUFF.24092, which encodes a conserved protein of unknown function.

(B) Coverage graphs showing read density at locus CUFF.32196, encoding a

conserved protein of unknown function. Graphs represent the number of

reads that overlap the base positions indicated on the coordinates axis track.

Figure S5. RNA-Seq coverage graphs illustrating expression of genes

involved in synthesis of proanthocyanidins, anthocyanins, or both.

Each image shows alignments of ESTs alongside blueberry gene models.

(A) CUFF.29797, encoding VcANR, anthocyanidin reductase (B) CUFF.20951,

encoding VcUFGT (C) VcDFR (D) VcMYBPA1a (E) VcMYBPA1b.

Additional file 2: Pathway and enzyme annotations for blueberry

genes and transcripts.

Additional file 3: Gene Ontology (GO) annotations for blueberry

genes and transcripts.

Additional file 4: GO term enrichment analysis of differentially

expressed genes.

Additional file 5: GO term enrichment analysis of genes from STEM

clusters 0, 1, 2, and 6.
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