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Abstract

The ability to easily and efficiently analyse RNA-sequencing data is a key
strength of the Bioconductor project. Starting with counts summarised at the
gene-level, a typical analysis involves pre-processing, exploratory data
analysis, differential expression testing and pathway analysis with the results
obtained informing future experiments and validation studies. In this workflow
article, we analyse RNA-sequencing data from the mouse mammary gland,
demonstrating use of the popular edgeR package to import, organise, filter and
normalise the data, followed by the limma package with its voom method,
linear modelling and empirical Bayes moderation to assess differential
expression and perform gene set testing. This pipeline is further enhanced by
the Glimma package which enables interactive exploration of the results so
that individual samples and genes can be examined by the user. The complete
analysis offered by these three packages highlights the ease with which
researchers can turn the raw counts from an RNA-sequencing experiment into
biological insights using Bioconductor.
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m Amendments from Version 2

The updated workflow makes use of current versions of software: R version 3.5.1 and Bioconductor project version 3.8.
The filtering strategy has been relaxed, using default settings in the filterByExpr function from the edgeR package which
retains approximately 2500 more genes than the previous version. Output downstream of filtering has been updated,
including adjustment to the vertical dotted line in Figure 1 marking the new log-CPM threshold. In “Transformations from
the raw-scale” and “Removing genes that are lowly expressed”, text has been added to give more details on log-CPM
values that are calculated and gene filtering strategy. Glimma MD plot and heatmap now uses Icpm values to represent
expression. The reference for Glimma has been updated, and the id.column argument in the gIMDPIot function was
renamed to side.main. Placement of some figures have been adjusted so that they appear around its associated text,
which previously affected the pdf version of the article. Xueyi Dong and Luyi Tian are added as authors for translation of
the article to Chinese which is available in the release version of the RNAseq123 workflow package from Bioconductor,
http://bioconductor.org/packages/RNAseq123. Xueyi Dong also updated the workflow to Bioconductor 3.8. These
changes have also been outlined in “Software availability” and “Author contributions”.

See referee reports

Introduction

RNA-sequencing (RNA-seq) has become the primary technology used for gene expression profiling, with the
genome-wide detection of differentially expressed genes between two or more conditions of interest one of the
most commonly asked questions by researchers. The edgeR' and limma packages’ available from the Bioconduc-
tor project’ offer a well-developed suite of statistical methods for dealing with this question for RNA-seq data. In
this article, we describe an edgeR - limma workflow for analysing RNA-seq data that takes gene-level counts as
its input, and moves through pre-processing and exploratory data analysis before obtaining lists of differentially
expressed (DE) genes and gene signatures. This analysis is enhanced through the use of interactive graphics from
the Glimma package’, that allows for a more detailed exploration of the data at both the sample and gene-level than
is possible using static R plots.

The experiment analysed in this workflow is from Sheridan et al. (2015)° and consists of three cell populations
(basal, luminal progenitor (LP) and mature luminal (ML)) sorted from the mammary glands of female virgin
mice, each profiled in triplicate. RNA samples were sequenced across three batches on an Illumina HiSeq 2000
to obtain 100 base-pair single-end reads. The analysis outlined in this article assumes that reads obtained from an
RNA-seq experiment have been aligned to an appropriate reference genome and summarised into counts associated
with gene-specific regions. In this instance, reads were aligned to the mouse reference genome (mm10) using the R
based pipeline available in the Rsubread package (specifically the align function® followed by featureCounts’
for gene-level summarisation based on the in-built mmI0 RefSeq-based annotation). Count data for these samples
can be downloaded from the Gene Expression Omnibus (GEO) http://www.ncbi.nlm.nih.gov/geo/ using
GEO Series accession number GSE63310. Further information on experimental design and sample preparation is also
available from GEO under this accession number.

Data packaging

Reading in count data

To get started with this analysis, download the file GSE63310 RAW.tar available online from http://www.
ncbi.nlm.nih.gov/geo/download/?acc=GSE63310&format=file, and extract the relevant files from
this archive. Each of these text files contains the raw gene-level counts for a given sample. Note that our analysis
only includes the basal, LP and ML samples from this experiment (see associated file names below).

files <- c("GSM1545535 10 6 5 11.txt", "GSM1545536 9 6 5 11.txt",

"GSM1545538 purep53.txt", "GSM1545539 JMS8-2.txt",
"GSM1545540 JMS8-3.txt", "GSM1545541 JMS8-4.txt",
"GSM1545542 JMS8-5.txt", "GSM1545544 JMS9-PT7c.txt",
"GSM1545545 JMS9-P8c.txt")

read.delim(files[1], nrow=5)

## EntrezID GeneLength Count
#4# 1 497097 3634 1
## 2 100503874 3259 0
## 3 100038431 1634 0
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## 4 19888 9747 0
## 5 20671 3130 1

Whilst each of the nine text files can be read into R separately and combined into a matrix of counts, edgeR offers
a convenient way to do this in one step using the readDGE function. The resulting DGEList-object contains a
matrix of counts with 27,179 rows associated with unique Entrez gene identifiers (IDs) and nine columns associated
with the individual samples in the experiment.

library (limma)

library (edgeR)

x <- readDGE (files, columns=c(1,3))
class (x)

## [1] "DGEList"
## attr(, "package")
## [1] "edgeR"

dim(x)

## [1]1 27179 9

If the counts from all samples were stored in a single file, the data can be read into R and then converted into a DGE-
List-object using the DGEL1 st function.

Organising sample information

For downstream analysis, sample-level information related to the experimental design needs to be associated with
the columns of the counts matrix. This should include experimental variables, both biological and technical, that
could have an effect on expression levels. Examples include cell type (basal, LP and ML in this experiment),
genotype (wild-type, knock-out), phenotype (disease status, sex, age), sample treatment (drug, control) and batch
information (date experiment was performed if samples were collected and analysed at distinct time points) to name
just a few.

Our DGEList-object contains a samples data frame that stores both cell type (or group) and batch (sequencing
lane) information, each of which consists of three distinct levels. Note that within x$samples, library sizes
are automatically calculated for each sample and normalisation factors are set to 1. For simplicity, we remove
the GEO sample IDs (GSM*) from the column names of our DGEList-object x.

samplenames <- substring(colnames(x), 12, nchar (colnames(x)))
samplenames

#4# [1] "10 6 5 11" "9 6 5 11" '"purep53" "JMS8-2" "JMS8-3" "JMS8-4" "JgMS8-5"

#4# [8] "JIMS9-P7c" "IMS9-P8c"

colnames (x) <- samplenames

group <- as.factor(c("LP", "ML", "Basal", "Basal", "ML", "LP", "Basal", "ML", "LP"))
x$samples$group <- group

lane <- as.factor(rep(c("L0O04","LO0O6","L0O08"), c(3,4,2)))

x$samples$lane <- lane

x$samples

## files group lib.size norm.factors lane
## 10 6 5 11 GSM1545535 10 6 5 11l.txt LP 32863052 1 L0oo4
## 9 6 5 11 GSM1545536_9 6 5 11.txt ML 35335491 1 L0oo4
## purepb53 GSM1545538 purep53.txt Basal 57160817 1 L004
## JMS8-2 GSM1545539 JMS8-2.txt Basal 51368625 1 LOO06
#4# JMS8-3 GSM1545540 JMS8-3.txt ML 75795034 1 LOO06
#4# JMS8-4 GSM1545541 JMS8-4.txt LP 60517657 1 LOO06
#4# JMS8-5 GSM1545542 JMS8-5.txt Basal 55086324 1 LOO06
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## JIMS9-P7c GSM1545544 JMS9-PTc.txt ML 21311068 1 LOOS8
## JMS9-P8c GSM1545545 JMS9-P8c.txt LP 19958838 1 LOOS8

Organising gene annotations

A second data frame named genes in the DGEList-object is used to store gene-level information associ-
ated with rows of the counts matrix. This information can be retrieved using organism specific packages such as
Mus.musculus® for mouse (or Homo.sapiens’ for human) or the biomaRt package'*'' which interfaces the Ensembl
genome databases in order to perform gene annotation. The type of information that can be retrieved includes gene
symbols, gene names, chromosome names and locations, Entrez gene IDs, Refseq gene IDs and Ensembl gene IDs
to name just a few. biomaRt primarily works off Ensembl gene IDs, whereas Mus.musculus packages informa-
tion from various sources and allows users to choose between many different gene IDs as the key. The Entrez gene
IDs available in our dataset were annotated using the Mus.musculus package to retrieve associated gene symbols
and chromosome information.

library (Mus.musculus)

geneid <- rownames (x)

genes <- select (Mus.musculus, keys=geneid, columns=c ("SYMBOL", "TXCHROM"),
keytype="ENTREZID")

dim (genes)

#4# [1] 27220 3

head (genes)

## ENTREZID SYMBOL TXCHROM
#4# 1 497097 Xkr4 chrl
#H# 2 100503874 Gml1l9938 <NA>
#4# 3 100038431 Gml0568 <NA>
## 4 19888 Rpl chrl
#4# 5 20671 Sox17 chrl
#H# 6 27395 Mrpll5 chrl

As with any gene ID, Entrez gene IDs may not map one-to-one to the gene information of interest. It is impor-
tant to check for duplicated gene IDs and to understand the source of duplication before resolving them. Our gene
annotation contains 28 genes that map to multiple chromosomes (e.g. gene Gm1987 is associated with “chr4”
and ‘“chr4_JH584294 random” and microRNA Mir5098 is associated with “chr2”, “chr5”, “chr8”, “chrl1l”
and “chr17”). To resolve duplicate gene IDs one could combine all chromosome information from the multi-
mapped genes, such that gene Gm1987 would be is assigned to “chr4 and chr4_JH584294 random”, or select
one of the chromosomes to represent the gene with duplicate annotation. For simplicity we do the latter, keeping
only the first occurrence of each gene ID.

genes <- genes|[!duplicated(genes$SENTREZID), ]

In this example, the gene order is the same in both the annotation and the data object. If this is not the case due
to missing and/or rearranged gene IDs, the match function can be used to order genes correctly. The data frame
of gene annotations is then added to the data object and neatly packaged in a DGEList-object containing raw
count data with associated sample information and gene annotations.

x$genes <- genes
x

## An object of class "DGEList"
## Ssamples

#4# files group lib.size norm.factors lane
## 10 6 5 11 GSM1545535 10 6 5 11.txt LP 32863052 1 L004
## 9 6 5 11 GSM1545536 9 6 5 11.txt ML 35335491 1 L004
## purepb53 GSM1545538 purep53.txt Basal 57160817 1 L004
## JMS8-2 GSM1545539 JMS8-2.txt Basal 51368625 1 L006
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## JMS8-3 GSM1545540 JMS8-3.txt ML 75795034 1 L006

## JMS8-4 GSM1545541 JMS8-4.txt LP 60517657 1 L006

## JMS8-5 GSM1545542 JMS8-5.txt Basal 55086324 1 L006

## JMS9-P7c GSM1545544 JMS9-PTc.txt ML 21311068 1 1L008

## JMS9-P8c GSM1545545 JMS9-P8c.txt LP 19958838 1 1L008

4

## Scounts

4 Samples

## Tags 10 6 511 9 6 5 11 purep53 JMS8-2 JMS8-3 JMS8-4 JMS8-5 JMS9-PTc JMSI-PSC
## 497097 1 2 342 526 3 3 535 2 0
## 100503874 0 0 5 6 0 0 5 0 0
## 100038431 0 0 0 0 0 0 1 0 0
#4# 19888 0 1 0 0 17 2 0 1 0
#4# 20671 1 1 76 40 33 14 98 18 8
## 27174 more rows

4

## Sgenes

## ENTREZID SYMBOL TXCHROM

## 1 497097 Xkr4 chrl

## 2 100503874 Gm19938 <NA>

## 3 100038431 Gml0568 <NA>

#+ 4 19888 Rpl chrl

## 5 20671 Sox17 chrl

## 27174 more rows

Data pre-processing

Transformations from the raw-scale

For differential expression and related analyses, gene expression is rarely considered at the level of raw counts
since libraries sequenced at a greater depth will result in higher counts. Rather, it is common practice to transform
raw counts onto a scale that accounts for such library size differences. Popular transformations include counts
per million (CPM), log,-counts per million (log-CPM), reads per kilobase of transcript per million (RPKM), and
fragments per kilobase of transcript per million (FPKM).

In our analyses, CPM and log-CPM transformations are used regularly although they do not account for gene
length differences as RPKM and FPKM values do. Whilst RPKM and FPKM values can just as well be used,
CPM and log-CPM values can be calculated using a counts matrix alone and will suffice for the type of compari-
sons we are interested in. Assuming that there are no differences in isoform usage between conditions, differential
expression analyses look at gene expression changes between conditions rather than comparing expression across
multiple genes or drawing conclusions on absolute levels of expression. In other words, gene lengths remain constant
for comparisons of interest and any observed differences are a result of changes in condition rather than changes in
gene length.

Here raw counts are converted to CPM and log-CPM values using the cpm function in edgeR. RPKM values are
just as easily calculated as CPM values using the rpkm function in edgeR if gene lengths are available.

cpm <- cpm(x)
lcpm <- cpm(x, log=TRUE)

A CPM value of 1 for a gene equates to having 20 counts in the sample with the lowest sequencing depth (JMS9-
P8c, library size =20 million) or 76 counts in the sample with the greatest sequencing depth (JMSS8-3, library
size =76 million).

The log-CPM values will be used for exploratory plots. When 10g=TRUE, the cpm function adds an offset to the
CPM values before converting to the log2-scale. By default, the offset is 2/L where 2 is the “prior count” and L is
the average library size in millions, so the log-CPM values are related to the CPM values by log,(CPM + 2/L).
This calculation ensures that any two read counts with identical CPM values will also have identical log-CPM
values. The prior count avoids taking the logarithm of zero, and also reduces spurious variability for genes
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with very low counts by shrinking all the inter-sample log-fold-changes towards zero, something that is helpful
for exploratory plotting. For this dataset, the average library size is about 45.5 million, so L = 45.5 and the mini-
mum log-CPM value for each sample becomes log,(2/45.5) = —4.51. In other words, a count of zero for this data
maps to a log-CPM value of —4.51 after adding the prior count or offset:

L <- mean (x$samplesS$lib.size) * le-6
M <- median (x$samples$lib.size) * le-6
c(L, M)

## [1] 45.5 51.4

summary (lcpm)

## 10 6 5 11 9 6 511 purep53 JMS8-2 JMS8-3

## Min. :=4.51 Min. :=4.51 Min. :=4.51 Min. :=4.51 Min. :=4.51

## 1st Qu.:-4.51 1st Qu.:-4.51 1st Qu.:-4.51 1st Qu.:-4.51 1st Qu.:-4.51
## Median :-0.68 Median :-0.36 Median :-0.10 Median :-0.09 Median :-0.43

## Mean 0 0.17 Mean : 0.33 Mean : 0.44 Mean : 0.41 Mean : 0.32
## 3rd Qu.: 4.29 3rd Qu.: 4.56 3rd Qu.: 4.60 3rd Qu.: 4.55 3rd Qu.: 4.58
## Max. :14.76 Max. :13.50 Max. :12.96 Max. :12.85 Max. :12.96
#4# JMS8-4 JMS8-5 JMS9-P7c JMS9-P8c

## Min. :=4.51 Min. :=4.51 Min. :=4.51 Min. :=4.51

## 1st Qu.:-4.51 1st Qu.:-4.51 1st Qu.:-4.51 1st Qu.:-4.51
## Median :-0.41 Median :-0.07 Median :-0.17 Median :-0.33

## Mean : 0.25 Mean : 0.40 Mean : 0.37 Mean : 0.27
## 3rd Qu.: 4.32 3rd Qu.: 4.43 3rd Qu.: 4.60 3rd Qu.: 4.44
## Max. :14.85 Max. :13.19 Max . :12.94 Max. :14.01

Log-CPM values are also used in downstream linear modeling via limma’s voom function, although voom recomputes
its own log-CPM values internally with a smaller prior count.

Removing genes that are lowly expressed

All datasets will include a mix of genes that are expressed and those that are not expressed. Whilst it is of interest
to examine genes that are expressed in one condition but not in another, some genes are unexpressed throughout
all samples. In fact, 19% of genes in this dataset have zero counts across all nine samples.

table (rowSums (x$counts==0)==9)

##
## FALSE TRUE
## 22026 5153

Plotting the distribution log-CPM values shows that a sizeable proportion of genes within each sample are either
unexpressed or lowly-expressed with log-CPM values that are small or negative (Figure 1A).

Genes that do not have a worthwhile number of reads in any sample should be filtered out of the downstream analyses.
There are several reasons for this. From a biological point of view, genes that not expressed at a biologically meaningful
level in any condition are not of interest and are therefore best ignored. From a statistical point of view, removing low
count genes allows the mean-variance relationship in the data to be estimated with greater reliability and also reduces
the number of statistical tests that need to be carried out in downstream analyses looking at differential expression.

The £ilterByExpr function in the edgeR package provides an automatic way to filter genes, while keeping as
many genes as possible with worthwhile counts.

keep.exprs <- filterByExpr (x, group=group)
x <- x[keep.exprs,, keep.lib.sizes=FALSE]

dim(x)

## [1] 16624 9
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B. Filtered data
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Figure 1. The density of log-CPM values for raw pre-filtered data (A) and post-filtered data (B) are shown for each
sample. Dotted vertical lines mark the log-CPM threshold (equivalent to a CPM value of about 0.2) used in the filtering

step.

By default, the function keeps genes with about 10 read counts or more in a minimum number of samples, where the
number of samples is chosen according to the minimum group sample size. The actual filtering uses CPM values rather
than counts in order to avoid giving preference to samples with large library sizes. For this dataset, the median library
size is about 51 million and 10/51 = 0.2, so the £ilterByExpr function keeps genes that have a CPM of 0.2 or
more in at least three samples. A biologically interesting gene should be expressed in at least three samples because all
the cell type groups have three replicates. The cutoffs used depend on the sequencing depth and on the experimental
design. If the library sizes had been larger then a lower CPM cutoff would have been chosen, because larger library
sizes provide better resolution to explore more genes at lower expression levels. Alternatively, smaller library sizes
decrease our ability to explore marginal genes and hence would have led to a higher CPM cutoff.

Using this criterion, the number of genes is reduced to 16,624, about 60% of the number that we started with. The log-
CPM values after filtering show a nearly unimodel distribution for each sample (Figure 1B). Note that subsetting the
entire DGEList-object removes both the counts and the associated gene information for the filtered genes. The filtered
DGEList-object keeps the gene information and the counts for the retained genes correctly associated.

Code to produce Figure 1 is given below:

lcpm.cutoff <- log2(10/M + 2/L)
library (RColorBrewer)
nsamples <- ncol (x)
col <- brewer.pal (nsamples,
par (mfrow=c(1,2))
plot (density(lcpm[,1]), col=col[l], lwd=2,
title (main="A. Raw data", xlab="Log-cpm")
abline (v=1lcpm.cutoff, 1lty=3)
for (i in 2:nsamples) {

den <- density(lcpm[,1i])

lines (den$x, denSy, col=col[i],

"Paired")

lwd=2)
}
legend ("topright", samplenames,
lcpm <- cpm(x, log=TRUE)
plot (density(lcpm([,1]), col=col[l], lwd=2,
title (main="B. Filtered data", xlab="Log-cpm")
abline (v=1lcpm.cutoff, 1ty=3)
for (i in 2:nsamples) {

den <- density(lcpm[,1i])

lines (den$x, denS$y, col=coll[i],

text.col=col,

lwd=2)
}
legend ("topright",

samplenames, text.col=col,

ylim=c(0,0.26),

bty="n"

ylim=c (0,0.26),

bty="n"

las=2, main="", xlab="")

)

las=2, main="", xlab="")

)
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Normalising gene expression distributions

During the sample preparation or sequencing process, external factors that are not of biological interest can affect the
expression of individual samples. For example, samples processed in the first batch of an experiment can have higher
expression overall when compared to samples processed in a second batch. It is assumed that all samples should have a
similar range and distribution of expression values. Normalisation is required to ensure that the expression distributions
of each sample are similar across the entire experiment.

Any plot showing the per sample expression distributions, such as a density or boxplot, is useful in determining
whether any samples are dissimilar to others. Distributions of log-CPM values are similar throughout all samples
within this dataset (Figure 1B).

Nonetheless, normalisation by the method of trimmed mean of M-values (TMM)"” is performed using the calc-
NormFactors function in edgeR. The normalisation factors calculated here are used as a scaling factor for
the library sizes. When working with DGEList-objects, these normalisation factors are automatically stored in
x$sampless$norm. factors. For this dataset the effect of TMM-normalisation is mild, as evident in the magni-
tude of the scaling factors, which are all relatively close to 1.

x <- calcNormFactors (x, method = "TMM")
x$samples$norm. factors

## [1] 0.894 1.025 1.046 1.046 1.016 0.922 0.996 1.086 0.984

To give a better visual representation of the effects of normalisation, the data was duplicated then adjusted so that the
counts of the first sample are reduced to 5% of their original values, and in the second sample they are inflated to be
5-times larger.

X2 <- X

x2$samples$norm. factors <- 1

x2$counts[,1] <- ceiling(x2$counts[,1]1*0.05)
x2$%counts[,2] <- x2Scounts[,2]*5

Figure 2 shows the expression distribution of samples for unnormalised and normalised data, where distributions
are noticeably different pre-normalisation and are similar post-normalisation. Here the first sample has a small

A. Example: Unnormalised data B. Example: Normalised data
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Figure 2. Example data: Boxplots of log-CPM values showing expression distributions for unnormalised data (A) and
normalised data (B) for each sample in the modified dataset where the counts in samples 1 and 2 have been scaled to
5% and 500% of their original values respectively.
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TMM scaling factor of 0.06, whereas the second sample has a large scaling factor of 6.08 — neither values are
close to 1.

par (mfrow=c(1,2))

lcpm <- cpm(x2, log=TRUE)

boxplot (lcpm, las=2, col=col, main="")

title(main="A. Example: Unnormalised data", ylab="Log-cpm")
x2 <- calcNormFactors (x2)

x2$8samples$norm. factors

## [1] 0.0577 6.0829 1.2202 1.1648 1.1966 1.0466 1.1505 1.2543 1.1090

lcpm <- cpm(x2, log=TRUE)
boxplot (lcpm, las=2, col=col, main="")
title (main="B. Example: Normalised data", ylab="Log-cpm")

Unsupervised clustering of samples

In our opinion, one of the most important exploratory plots to examine for gene expression analyses is the multi-
dimensional scaling (MDS) plot, or similar. The plot shows similarities and dissimilarities between samples in an
unsupervised manner so that one can have an idea of the extent to which differential expression can be detected
before carrying out formal tests. Ideally, samples would cluster well within the primary condition of inter-
est, and any sample straying far from its group could be identified and followed up for sources of error or extra
variation. If present, technical replicates should lie very close to one another.

Such a plot can be made in limma using the plotMDS function. The first dimension represents the leading-fold-
change that best separates samples and explains the largest proportion of variation in the data, with subsequent
dimensions having a smaller effect and being orthogonal to the ones before it. When experimental design involves
multiple factors, it is recommended that each factor is examined over several dimensions. If samples cluster
by a given factor in any of these dimensions, it suggests that the factor contributes to expression differences and
is worth including in the linear modelling. On the other hand, factors that show little or no effect may be left out of
downstream analysis.

In this dataset, samples can be seen to cluster well within experimental groups over dimension 1 and 2, and then
separate by sequencing lane (sample batch) over dimension 3 (Figure 3). Keeping in mind that the first dimension
explains the largest proportion of variation in the data, notice that the range of values over the dimensions become

A. Sample groups B. Sequencing lanes
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Figure 3. MDS plots of log-CPM values over dimensions 1 and 2 with samples coloured and labeled by sample groups
(A) and over dimensions 3 and 4 with samples coloured and labeled by sequencing lane (B). Distances on the plot
correspond to the leading fold-change, which is the average (root-mean-square) log,-fold-change for the 500 genes
most divergent between each pair of samples by default.
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smaller as we move to higher dimensions. Whilst all samples cluster by groups, the largest transcriptional differ-
ence is observed between basal and LP, and basal and ML over dimension 1. For this reason, it is expected that
pairwise comparisons between cell populations will result in a greater number of DE genes for comparisons
involving basal samples, and relatively small numbers of DE genes when comparing ML to LP. Datasets
where samples do not cluster by experimental group may show little or no evidence of differential expression
in the downstream analysis.

To create the MDS plots, we assign different colours to the factors of interest. Dimensions 1 and 2 are examined using
the colour grouping defined by cell types.

lcpm <- cpm(x, log=TRUE)

par (mfrow=c(1,2))

col.group <- group

levels (col.group) <- Dbrewer.pal (nlevels(col.group), "Setl")
col.group <- as.character (col.group)

col.lane <- lane

levels (col.lane) <- Dbrewer.pal(nlevels(col.lane), "Set2")
col.lane <- as.character(col.lane)

plotMDS (lcpm, labels=group, col=col.group)

title (main="A. Sample groups")

Dimensions 3 and 4 are examined using the colour grouping defined by sequencing lanes (batch).

plotMDS (lcpm, labels=lane, col=col.lane, dim=c(3,4))
title (main="B. Sequencing lanes")

Alternatively, the Glimma package offers the convenience of an interactive MDS plot where multiple dimensions
can be explored. The g1MDSPlot function generates an html page (that is opened in a browser if launch=TRUE)
with an MDS plot in the left panel and a barplot showing the proportion of variation explained by each dimen-
sion in the right panel. Clicking on the bars of the bar plot changes the pair of dimensions plotted in the MDS
plot, and hovering over the individual points reveals the sample label. The colour scheme can be changed as well
to highlight cell population or sequencing lane (batch). An interactive MDS plot of this dataset can be found at
http://bioinf.wehi.edu.au/folders/limmaWorkflow/glimma-plots/MDS-Plot.html

library (Glimma)
glMDSPlot (lcpm, labels=paste(group, lane, sep="_ "), groups=x$samples[,c(2,5)],
launch=FALSE)

Differential expression analysis

Creating a design matrix and contrasts

In this study, it is of interest to see which genes are expressed at different levels between the three cell popu-
lations profiled. In our analysis, linear models are fitted to the data with the assumption that the underlying data
is normally distributed. To get started, a design matrix is set up with both the cell population and sequencing lane
(batch) information.

design <- model.matrix ("0O+group+lane)
colnames (design) <- gsub ("group",
design

nn
14

colnames (design))

#4# Basal LP ML laneL006 laneL008
#4 0 1 0 0
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## attr(,"assign")

## (11 111 2 2

## attr(,"contrasts")

## attr(,"contrasts") $group

## [1] "contr.treatment"
#H

## attr(,"contrasts")$lane
## [1] "contr.treatment"

For a given experiment, there are usually several equivalent ways to set up an appropriate design matrix. For
example, ~0+group+lane removes the intercept from the first factor, group, but an intercept remains in
the second factor lane. Alternatively, ~group+lane could be used to keep the intercepts in both group
and lane. Understanding how to interpret the coefficients estimated in a given model is key here. We choose
the first model for our analysis, as setting up model contrasts is more straight forward in the absence of an inter-
cept for group. Contrasts for pairwise comparisons between cell populations are set up in limma using the
makeContrasts function.

contr.matrix <- makeContrasts (
BasalvsLP = Basal-LP,
BasalvsML = Basal - ML,
LPvsML = LP - ML,
levels = colnames (design))
contr.matrix

## Contrasts

## Levels BasalvsLP BasalvsML LPvsML
## Basal 1 1 0
#4# LP -1 0 1
#4# ML 0 -1 -1
## 1laneL006 0 0 0
## laneL008 0 0 0

A key strength of limma’s linear modelling approach is the ability accommodate arbitrary experimental
complexity. Simple designs, such as the one in this workflow, with cell type and batch, through to more compli-
cated factorial designs and models with interaction terms can be handled relatively easily. Where experimen-
tal or technical effects can be modelled using a random effect, another possibility in limma is to estimate
correlations using duplicateCorrelation by specifying a block argument for both this function and in the
1mFit linear modelling step.

Removing heteroscedascity from count data

It has been shown that for RNA-seq count data, the variance is not independent of the mean'’ — this is true
of raw counts or when transformed to log-CPM values. Methods that model counts using a Negative Bino-
mial distribution assume a quadratic mean-variance relationship. In limma, linear modelling is carried out on the
log-CPM values which are assumed to be normally distributed and the mean-variance relationship is accommodated
using precision weights calculated by the voom function.

When operating on a DGEList-object, voom converts raw counts to log-CPM values by automatically extract-
ing library sizes and normalisation factors from x itself. Additional normalisation to log-CPM values
can be specified within voom using the normalize.method argument.

The mean-variance relationship of log-CPM values for this dataset is shown in Figure 4A. Typically, the “voom-plot”
shows a decreasing trend between the means and variances resulting from a combination of technical variation in the
sequencing experiment and biological variation amongst the replicate samples from different cell populations. Experi-
ments with high biological variation usually result in flatter trends, where variance values plateau at high expression
values. Experiments with low biological variation tend to result in sharp decreasing trends.
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Figure 4. Means (x-axis) and variances (y-axis) of each gene are plotted to show the dependence between the two
before voom is applied to the data (A) and how the trend is removed after voom precision weights are applied to the
data (B). The plot on the left is created within the voom function which extracts residual variances from fitting linear
models to log-CPM transformed data. Variances are then rescaled to quarter-root variances (or square-root of standard
deviations) and plotted against the mean expression of each gene. The means are log,-transformed mean-counts with
an offset of 2. The plot on the right is created using plotSA which plots log, residual standard deviations against mean
log-CPM values. The average log, residual standard deviation is marked by a horizontal blue line. In both plots, each
black dot represents a gene and a red curve is fitted to these points.

Moreover, the voom-plot provides a visual check on the level of filtering performed upstream. If filtering of lowly-
expressed genes is insufficient, a drop in variance levels can be observed at the low end of the expression scale due to
very small counts. If this is observed, one should return to the earlier filtering step and increase the expression threshold
applied to the dataset.

Where sample-level variation is evident from earlier inspections of the MDS plot, the voomWithQualityWeights
function can be used to simultaneously incorporate sample-level weights together with the abundance dependent
weights estimated by voom'*. For an example of this approach, see Liu et al. (2016)".

v <- voom(x, design, plot=TRUE)
v

## An object of class "EList"

## Sgenes

## ENTREZID SYMBOL TXCHROM

## 1 497097 Xkr4 chrl

## 5 20671 Sox17 chrl

## 6 27395 Mrpll5 chrl

## 7 18777 Lyplal chrl

## 9 21399 Tceal chrl

## 16619 more rows

##

## Stargets

&l files group lib.size norm.factors lane
## 10 6 5 11 GSM1545535 10 6 5 11.txt LP 29387429 0.894 L004
## 9 6 5 11  GSM1545536 9 6 5 11l.txt ML 36212498 1.025 L004
## purepb53 GSM1545538 purep53.txt Basal 59771061 1.046 LOO4
## JMS8-2 GSM1545539 JMS8-2.txt Basal 53711278 1.046 LOO6
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## JMS8-3 GSM1545540 JMS8-3.txt ML 77015912 1.016 LOO6

## JMS8-4 GSM1545541 JMS8-4.txt LP 55769890 0.922 L0066

## JIMS8-5 GSM1545542 JMS8-5.txt Basal 54863512 0.996 L0066

## JIMS9-P7c GSM1545544 JMS9-P7c.txt ML 23139691 1.086 L008

## JMS9-P8c GSM1545545 JMS9-P8c.txt LP 19634459 0.984 1008

##

## SE

## Samples

## Tags 10 6 5 11 9 6 5 11 purep53 JMS8-2 JMS8-3 JMS8-4 JMS8-5 JMS9-P7c JMSI-P8c
## 497097 -4.29 -3.86 2.519 3.293 -4.46 -3.99 3.287 -3.210 -5.30
## 20671 -4.29 -4.59 0.356 -0.407 -1.20 -1.94 0.844 -0.323 -1.21
## 27395 3.88 4.41 4.517 4.562 4.34 3.79 3.899 4,340 4.12
## 18777 4.71 5.57 5.396 5.162 5.65 5.08 5.060 5.751 5.14
## 21399 4.79 4.75 5.370 5.122 4.87 4.94 5.138 5.031 4,98
## 16619 more rows

##

## Sweights

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

## [1,] 1.08 1.33 19.8 20.27 1.99 1.40 20.49 1.11 1.08

## [2,] 1.17 1.46 4.8 8.06 3.01 2.63 8.76 3.21 2.54

## [3,] 20.22 25.57 30.4 28.53 31.35 25.74 28.72 21.20 16.66

## [4,] 26.95 32.51 33.6 33.23 34.23 32.35 33.33 30.35 24.26

## [5,] 26.61 28.50 33.6 33.21 33.57 32.00 33.31 25.17 23.57

## 16619 more rows

##

## Sdesign

## Basal LP ML laneL006 laneL008

## 1 0 1 O 0 0

## 2 0O 0 1 0 0

## 3 1 0 O 0 0

## 4 1 0 O 1 0

## 5 0 0 1 1 0

## © 0 1 O 1 0

## 7 1 0 O 1 0

## 8 0 0 1 0 1

## 9 0O 1 O 0 1

## attr(,"assign")

## [1] 1 1 1 2 2

## attr(,"contrasts")

## attr(,"contrasts") $Sgroup

## [1] "contr.treatment"
##

## attr(,"contrasts") $lane
## [1] "contr.treatment"

Note that the other data frames stored within the DGEList-object that contain gene- and sample-level informa-
tion, are retained in the EList-object v created by voom. The v$genes data frame is equivalent to x$genes,
vS$targets is equivalent to x$samples, and the expression values stored in vS$E is analogous to x$counts,
albeit on a transformed scale. In addition to this, the voom EList-object has a matrix of precision weights
vSweights and stores the design matrix in védesign.

Fitting linear models for comparisons of interest

Linear modelling in limma is carried out using the 1mFit and contrasts.fit functions originally written
for application to microarrays. The functions can be used for both microarray and RNA-seq data and fit a sepa-
rate model to the expression values for each gene. Next, empirical Bayes moderation is carried out by borrowing
information across all genes to obtain more precise estimates of gene-wise variability'°. The model’s residual vari-
ances are plotted against average expression values in Figure 4B. It can be seen from this plot that the variance is no
longer dependent on the mean expression level.
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viit <- 1ImFit (v, design)

vfit <- contrasts.fit(vfit, contrasts=contr.matrix)
efit <- eBayes(viit)

plotSA(efit)

Examining the number of DE genes

For a quick look at differential expression levels, the number of significantly up- and down-regulated genes can be
summarised in a table. Significance is defined using an adjusted p-value cutoff that is set at 5% by default. For the
comparison between expression levels in basal and LP, 4,648 genes are found to be down-regulated in basal rela-
tive to LP and 4,863 genes are up-regulated in basal relative to LP — a total of 9,511 DE genes. A total of 9,598
DE genes are found between basal and ML (4,927 down- and 4,671 up-regulated genes), and a total of 5,652 DE
genes are found between LP and ML (3,135 down- and 2,517 up-regulated). The larger numbers of DE genes
observed for comparisons involving the basal population are consistent with our observations from the MDS plots.

summary (decideTests (efit))

## BasalvsLP BasalvsML LPvsML
## Down 4648 4927 3135
## NotSig 7113 7026 10972
## Up 4863 4671 2517

Some studies require more than an adjusted p-value cutoff. For a stricter definition on significance, one may
require log-fold-changes (log-FCs) to be above a minimum value. The freat method'” can be used to calculate
p-values from empirical Bayes moderated -statistics with a minimum log-FC requirement. The number of differ-
entially expressed genes are reduced to a total of 3,648 DE genes for basal versus LP, 3,834 DE genes for basal
versus ML, and 414 DE genes for LP versus ML when testing requires genes to have a log-FC that is significantly
greater than 1 (equivalent to a 2-fold difference between cell types on the original scale).

tfit <- treat(vfit, 1lfc=1)
dt <- decideTests(tfit)
summary (dt)

## BasalvsLP BasalvsML LPvsML
## Down 1632 1777 224
## NotSig 12976 12790 16210
## Up 2016 2057 190

Genes that are DE in multiple comparisons can be extracted using the results from decideTests, where Os represent
genes that are not DE, 1s represent genes that are up-regulated, and -1s represent genes that are down-regulated. A total
of 2,784 genes are DE in both basal versus LP and basal versus ML (Figure 5), twenty of which are listed below. The
write. fit function can be used to extract and write results for all three comparisons to a single output file.

de.common <- which(dt[,1]!=0 & dt[,2]!=0)
length (de.common)

## [1] 2784

head (tfit$genes$SYMBOL [de.common], n=20)

## [1] "Xkrd" "Rgs20" "Cpab" "A830018L16Rik" "Sulfl"
## [6] "Eyal" "Msc" "Sbspon" "pPil5" "Crispldl"
## [11] "Kcngb" "Rims1" "Khdrbs2" "Ptpnl8" "Prss39"
## [16] "Arhgefd" "Cnga3" "2010300C02R1ik" M"Aff3" "Npas2"

vennDiagram(dt[,1:2], circle.col=c("turquoise", "salmon"))
write.fit(tfit, dt, file="results.txt")
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Figure 5. Venn diagram showing the number of genes DE in the comparison between basal versus LP only (left), basal
versus ML only (right), and the number of genes that are DE in both comparisons (center). The number of genes that are
not DE in either comparison are marked in the bottom-right.

Examining individual DE genes from top to bottom

The top DE genes can be listed using topTreat for results using treat (or topTable for results using
eBayes). By default topTreat arranges genes from smallest to largest adjusted p-value with associated gene
information, log-FC, average log-CPM, moderated ¢-statistic, raw and adjusted p-value for each gene. The number
of top genes displayed can be specified, where n=Inf includes all genes. Genes Cldn7 and Rasef are amongst the
top DE genes for both basal versus LP and basal versus ML.

basal.vs.lp <- topTreat (tfit,
basal.vs.ml <- topTreat (tfit,
head (basal.vs.1lp)

n=Inf)
n=Inf)

coef=1,
coef=2,

#4 ENTREZID SYMBOL TXCHROM logFC AveExpr t P.Value adj.P.Val
## 12759 12759 Clu chrl4d -5.46 8.86 -33.6 1.72e-10 1.71le-06
## 53624 53624 Cldn7 chrll -5.53 6.30 -32.0 2.58e-10 1.71e-06
## 242505 242505 Rasef chr4 -5.94 5.12 -31.3 3.08e-10 1.71le-06
## 67451 67451 Pkp2 chrle -5.74 4.42 -29.9 4.58e-10 1.74e-06
## 228543 228543 Rhov chr2 -6.26 5.49 -29.1 5.78e-10 1.74e-06
## 70350 70350 Baspl chrl5 -6.08 5.25 -28.3 7.27e-10 1.74e-06
head (basal.vs.ml)

#H ENTREZID SYMBOL TXCHROM logFC AveExpr t P.value adj.P.Val
## 242505 242505 Rasef chr4 -6.53 5.12 -35.1 1.23e-10 1.24e-06
## 53624 53624 Cldn7 chrll -5.50 6.30 -31.7 2.77e-10 1.24e-06
## 12521 12521 cds2 chr2 -4.69 7.07 -31.4 2.91e-10 1.24e-06
## 20661 20661 Sortl chr3 -4.93 6.70 -30.7 3.56e-10 1.24e-06
## 71740 71740 Nectin4 chrl -5.58 5.16 -30.6 3.72e-10 1.24e-06
## 12759 12759 Clu chrl4d -4.69 8.86 -28.0 7.69e-10 1.48e-06

Useful graphical representations of differential expression results

To summarise results for all genes visually, mean-difference plots, which display log-FCs from the linear model
fit against the average log-CPM values can be generated using the plotMD function, with the differentially
expressed genes highlighted.

plotMD(tfit, column=1, status=dt[,1], main=colnames (tfit)[1l], xlim=c(-8,13))
Glimma extends this functionality by providing an interactive mean-difference plot via the g1MDPlot function.
The output of this function is an html page, with summarised results in the left panel (similar to what is output by
plotMD), and the log-CPM values from individual samples for a selected gene in the right panel, with a table of
results below the plots (Figure 6). This interactive display allows the user to search for particular genes based on the

annotation provided (e.g. Gene symbol identifier), which is not possible in a static R plot.
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Figure 6. Interactive mean-difference plot generated using Glimma. Summary data (log-FCs versus log-CPM values) are
shown in the left panel which is linked to the individual values per sample for a selected gene in the right panel. A table
of results is also displayed below these figures, along with a search bar to allow users to look up a particular gene using
the annotation information available, e.g. the Gene symbol identifier Clu.

glMDPlot (tfit, coef=1, status=dt, main=colnames (tfit) [1],
side.main="ENTREZID", counts=lcpm, groups=group, launch=FALSE)

The mean-difference plot generated by the command above is available online (see http://bioinf.wehi.edu.au/
folders/limmaWorkflow/glimma-plots/MD-Plot.html). The interactivity provided by the Glimma package allows
additional information to be presented in a single graphical window. Glimma is implemented in R and Javascript,
with the R code generating the data which is converted into graphics using the Javascript library D3 (https://
d37s.org), with the Bootstrap library handling layouts and Datatables generating the interactive searchable tables.
This allows plots to be viewed in any modern browser, which is convenient for including them as linked files from
an Rmarkdown report of the analysis.

Plots shown previously include either all of the genes that are expressed in any one condition (such as the Venn
diagram of common DE genes or mean-difference plot) or look at genes individually (log-CPM values shown in
right panel of the interactive mean-difference plot). Heatmaps allow users to look at the expression of a subset of
genes. This can give useful insight into the expression of individual groups and samples without losing perspective
of the overall study when focusing on individual genes, or losing resolution when examining patterns averaged
over thousands of genes at the same time.

A heatmap is created for the top 100 DE genes (as ranked by adjusted p-value) from the basal versus LP con-
trast using the heatmap.?2 function from the gplots package (Figure 7). The heatmap correctly clusters samples
by cell type and reorders the genes into blocks with similar expression patterns. From the heatmap, we observe
that the expression of ML and LP samples are very similar for the top 100 DE genes between basal and LP.
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Figure 7. Heatmap of log-CPM values for top 100 genes DE in basal versus LP. Expression across each gene (or
row) have been scaled so that mean expression is zero and standard deviation is one. Samples with relatively high
expression of a given gene are marked in red and samples with relatively low expression are marked in blue. Lighter
shades and white represent genes with intermediate expression levels. Samples and genes have been reordered by the
method of hierarchical clustering. A dendrogram is shown for the sample clustering.

library(gplots)

basal.vs.lp.topgenes <- basal.vs.lp$SENTREZID[1:100]

i <- which(v$genes$SENTREZID %in% basal.vs.lp.topgenes)
mycol <- colorpanel (1000, "blue","white", "red")

heatmap.2 (lcpm([i, ], scale="row",
labRow=v$genes$SYMBOL[i], labCol=group,
col=mycol, trace="none", density.info="none",
margin=c(8,6), lhei=c(2,10), dendrogram="column")

Gene set testing with camera

We finish off this analysis with some gene set testing by applying the camera method'® to the ¢2 gene signatures from
the Broad Institute’s MSigDB c2 collection'” that have been adapted for mouse and are available as Rdata objects from
http://bioinf.wehi.edu.au/software/MsigDB/. Other useful gene sets derived from MSigDB for both
human and mouse, such as the hallmark gene sets, are also available from this site. C2 gene sets have been curated
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from online databases, publications and domain experts, and hallmark gene sets are selected from MSigDB to have
well-defined biological states or processes.

load(url ("http://bioinf.wehi.edu.au/software/MSigDB/mouse c2 vb5pl.rdata"))
idx <- ids2indices (Mm.c2,id=rownames (v))

cam.BasalvsLP <- camera(v,idx,design,contrast=contr.matrix([,1])

head (cam.BasalvsLP, 5)

#4 NGenes Direction PValue FDR
#4% LIM MAMMARY STEM CELL_UP 791 Up 1.77e-18 8.36e-15
## LIM MAMMARY STEM CELI, DN 683 Down 4.03e-14 8.69e-11
#4# ROSTY CERVICAL CANCER PROLIFERATION CLUSTER 170 Up 5.52e-14 8.69%e-11
## LIM MAMMARY LUMINAL_ PROGENITOR UP 94 Down 2.74e-13 3.23e-10
## SOTIRIOU BREAST CANCER GRADE 1 VS 3 UP 190 Up 5.16e-13 4.87e-10

cam.BasalvsML <- camera (v,idx,design,contrast=contr.matrix([,2])
head (cam.BasalvsML, 5)

## NGenes Direction PValue FDR
## LIM MAMMARY STEM CELI, UP 791 Up 1.68e-22 7.92e-19
## LIM MAMMARY STEM CELL DN 683 Down 7.79e-18 1.84e-14
## LIM MAMMARY LUMINAL MATURE DN 172 Up 9.74e-16 1.53e-12
## LIM MAMMARY LUMINAL MATURE UP 204 Down 1.15e-12 1.36e-09
## NAKAYAMA SOFT TISSUE_TUMORS PCA2 UP 137 Up 2.24e-12 1.88e-09

cam.LPvsML <- camera (v, idx,design,contrast=contr.matrix[,3])
head (cam.LPvsML, 5)

## NGenes Direction PValue FDR
## LIM MAMMARY LUMINAL MATURE DN 172 UP 6.73e-14 2.35e-10
## LIM MAMMARY LUMINAL MATURE UP 204 Down 9.97e-14 2.35e-10
## LIM MAMMARY LUMINAL PROGENITOR_UP 94 Up 1.32e-11 2.08e-08
#4# REACTOME RESPIRATORY ELECTRON_ TRANSPORT 94 Down 7.01e-09 8.28e-06
## REACTOME RNA POL I PROMOTER OPENING 46 Down 2.04e-08 1.93e-05

The camera function performs a competitive test to assess whether the genes in a given set are highly ranked
in terms of differential expression relative to genes that are not in the set. It uses limma’s linear model frame-
work, taking both the design matrix and contrast matrix (if present) and accommodates the observational-level
weights from voom in the testing procedure. After adjusting the variance of the resulting gene set test statistic by
a variance inflation factor that depends on the gene-wise correlation (which is set to 0.01 by default, but can be
estimated from the data) and the size of the set, a p-value is returned and adjusted for multiple testing.

This experiment is the RNA-seq equivalent of the dataset generated by Lim er al. (2010)*’, who used Illumina
microarrays to profile the same sorted cell populations, so it is reassuring to see the gene signatures from this ear-
lier publication coming up at the top of the list for each contrast. We make a barcodeplot of the Lim et al. (2010)
Mature Luminal gene sets (Up and Down) in the LP versus ML contrast. Note that these sets go in the opposite
direction in our dataset due to our parameterization which compares LP against ML rather than the other way around
(if the contrast were reversed, the directions would be consistent).

barcodeplot (efit$t[,3], index=idx$LIM MAMMARY LUMINAL MATURE UP,
index2=idx$LIM MAMMARY LUMINAL MATURE DN, main="LPvsML")

Other gene set tests are available in limma, such as the self-contained tests by mroast”’. Whilst camera is ideal
for testing a large database of gene sets and observing which of them rank highly relative to others (as shown
above), self-contained tests are better for focused testing of one or a few specifically chosen sets to see if they
are DE in their own right. In other words, camera is more appropriate when “fishing” for gene sets of interest,
whereas mroast tests sets that are already of interest for significance.
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Figure 8. Barcode plot of LIM_MAMMARY_LUMINAL_MATURE_UP (red bars, top of plot) and LIM_MAMMARY_
LUMINAL_MATURE_DN (blue bars, bottom of plot) gene sets in the LP versus ML contrast. For each set, an
enrichment line that shows the relative enrichment of the vertical bars in each part of the plot is displayed. The
experiment of Lim et al. (2010) is very similar to the current one, with the same sorting strategy used to obtain the
different cell populations, except that microarrays were used instead of RNA-seq to profile gene expression. Note
that the inverse correlation (the up gene set is down and the down gene set is up) is a result of the way the contrast
has been set up (LP versus ML) — if reversed, the directionality would agree.

Software availability

This RNA-seq workflow makes use of various packages available from version 3.8 of the Bioconductor project, run-
ning on R* version 3.5.1. Besides the software highlighted in this article (limma, Glimma and edgeR) it requires a
number of other packages, including gplots** and RColorBrewer and the gene annotation package Mus.musculus.
This document was compiled using Kknitr* . Version numbers for all packages used are shown below.
The RNAseq123 Bioconductor workflow package available from https://bioconductor.org/packages/
RNAseql23 contains both an English and Chinese (Mandarin) vignette of this article along with code to perform
the complete analysis. Installation of this package manages all of the above-mentioned dependencies and is a useful
resource for delivering hands-on training on RNA-seq data analysis.
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jsonlite 1.5
assertthat 0.2.0
RBGL 1.58.1
Rsamtools 1.34.0
RSQLite 2.1.1
digest 0.6.18
Matrix 1.2-15
pkgconfig 2.0.2
gdata 2.18.0
magrittr 1.5
evaluate 0.12
tools 3.5.1
matrixStats_0.54.0
DelayedArray 0.8.0
caTools 1.17.1.1
RCurl 1.95-4.11
DBI 1.0.0
rtracklayer 1.42.1
KernSmooth 2.23-15

datasets methods

sessionInfo ()

## R version 3.5.1 (2018-07-02)

## Platform: x86 64-apple-darwinl5.6.0 (64-bit)

## Running under: macOS High Sierra 10.13.6

4

## Matrix products: default

## BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/1ibRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
4

## locale:

## [1] en AU.UTF-8/en AU.UTF-8/en AU.UTF-8/C/en AU.UTF-8/en AU.UTF-8
##

## attached base packages:

## [1] parallel stats4 stats graphics grDevices utils

## [9] base

##

## other attached packages:

## [1] gplots 3.0.1 RColorBrewer 1.1-2

## [3] Mus.musculus 1.3.1 TxDb.Mmusculus.UCSC.mml0.knownGene 3.4.4
## [5] org.Mm.eg.db 3.7.0 GO.db 3.7.0

## [7] OrganismDbi 1.24.0 GenomicFeatures 1.34.
## [9] GenomicRanges 1.34.0 GenomeInfoDb 1.18.1
## [11] AnnotationDbi 1.44.0 IRanges 2.16.0

## [13] S4Vectors 0.20.1 Biobase 2.42.0

## [15] BiocGenerics 0.28.0 edgeR 3.24.0

## [17] Glimma 1.10.0 limma 3.38.3

## [19] knitr 1.20 BiocStyle 2.10.0

##

## loaded via a namespace (and not attached) :

## [1] httr 1.3.1 bit64 0.9-7

## [4] R.utils 2.7.0 gtools 3.8.1

## [7] BiocManager 1.30.4 highr 0.7

## [10] blob 1.1.1 GenomeInfoDbData 1.2.0

## [13] yaml 2.2.0 progress 1.2.0

## [16] backports 1.1.2 lattice 0.20-38

## [19] XVector 0.22.0 htmltools 0.3.6

## [22] R.0o 1.22.0 XML, 3.98-1.16

## [25] biomaRt 2.38.0 zlibbioc 1.28.0

## [28] BiocParallel 1.16.2 SummarizedExperiment 1.12.0

## [31] crayon 1.3.4 memoise 1.1.0

## [34] R.methodsS3 1.7.1 graph 1.60.0

## [37] prettyunits 1.0.2 hms 0.4.2

## [40] stringr 1.3.1 locfit 1.5-9.1

## [43] Biostrings 2.50.1 compiler 3.5.1

## [46] rlang 0.3.0.1 grid 3.5.1

## [49] bitops 1.0-6 rmarkdown 1.10

## [52] R6_2.3.0 GenomicAlignments 1.18.0

## [55] bit 1.1-14 rprojroot 1.3-2

## [58] stringi 1.2.4 Rcpp 1.0.0

Author contributions
CWL, GKS and MER developed the workflow and wrote the article with input from MA (gene set testing), SS
(Glimma interactive plotting), XD (Chinese translation of vignette and all code and figure updates required for
Bioconductor 3.8) and LT (Chinese translation of vignette).

Grant information
This worked was funded by the National Health and Medical Research Council (NHMRC) (Fellowship GNT1058892
and Program GNT1054618 to GKS, Project GNT1050661 to MER and GKS and Fellowship GNT1104924 to

Page 21 of 29



F1000Research 2018, 5:1408 Last updated: 28 DEC 2018

MER), Victorian State Government Operational Infrastructure Support and Australian Government NHMRC

IRIISS.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the

manuscript.

Acknowledgements

We thank Dr Julie Sheridan for generating this dataset and for advice on its analysis.

References

1. Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor
package for differential expression analysis of digital gene
expression data. Bioinformatics. 2010; 26(1):139-40.

PubMed Abstract | Publisher Full Text | Free Full Text

2. Ritchie ME, Phipson B, Wu D, et al.: imma powers differential
expression analyses for RNA-sequencing and microarray
studies. Nucleic Acids Res. 2015; 43(7): e47.

PubMed Abstract | Publisher Full Text | Free Full Text

3. Huber W, Carey VJ, Gentleman R, et al.: Orchestrating high-
throughput genomic analysis with Bioconductor. Nat Methods.
2015; 12(2): 115-21.

PubMed Abstract | Publisher Full Text | Free Full Text

4. Su S, Law CW, Ah-Cann C, et al.: Glimma: interactive graphics for
gene expression analysis. Bioinformatics. 2017; 33(13):2050-2052.
PubMed Abstract | Publisher Full Text | Free Full Text

5. Sheridan JM, Ritchie ME, Best SA, et al.: A pooled shRNA screen
for regulators of primary y stem and progenitor cells
identifies roles for Asap1 and Prox1. BMC Cancer. 2015; 15(1): 221.
PubMed Abstract | Publisher Full Text | Free Full Text

6. Liao Y, Smyth GK, Shi W: The Subread aligner: fast, accurate and
scalable read mapping by seed-and-vote. Nucleic Acids Res. 2013;
41(10):e108.

PubMed Abstract | Publisher Full Text | Free Full Text

7. Liao Y, Smyth GK, Shi W: featureCounts: an efficient general
purpose program for assigning sequence reads to genomic
features. Bioinformatics. 2014; 30(7): 923-30.

PubMed Abstract | Publisher Full Text

8. Bioconductor Core Team: Mus.musculus: Annotation package
for the Mus.musculus object. R package version 1.3.1. 2016.
Publisher Full Text

9. Bioconductor Core Team: Homo.sapiens: Annotation package for
the Homo.sapiens object. R package version 1.3.1. 2016.
Publisher Full Text

10. Durinck S, Moreau Y, Kasprzyk A, et al.: BioMart and Bioconductor:

a powerful link between biological databases and microarray
data analysis. Bioinformatics. 2005; 21(16):3439—40.
PubMed Abstract | Publisher Full Text

11.  Durinck S, Spellman PT, Birney E, et al.: Mapping identifiers for
the integration of genomic datasets with the R/Bioconductor
package biomaRt. Nat Protoc. 2009; 4(8): 1184-91.

PubMed Abstract | Publisher Full Text | Free Full Text

12.  Robinson MD, Oshlack A: A scaling normalization method for
differential expression analysis of RNA-seq data. Genome Biol.
2010; 11(3): R25.
PubMed Abstract | Publisher Full Text | Free Full Text

13.  Law CW, Chen Y, Shi W, et al.: voom: Precision weights unlock
linear model analysis tools for RNA-seq read counts. Genome
Biol. 2014; 15(2): R29.
PubMed Abstract | Publisher Full Text | Free Full Text

20.

21.

22.

28.

24.

25.

26.

Liu R, Holik AZ, Su S, et al.. Why weight? Modelling sample
and observational level variability improves power in RNA-seq
analyses. Nucleic Acids Res. 2015; 43(15): €97.

PubMed Abstract | Publisher Full Text | Free Full Text

Liu R, Chen K, Jansz N, et al.: Transcriptional profiling of the
epigenetic regulator Smchd1. Genom Data. 2016; 7: 144-7.
PubMed Abstract | Publisher Full Text | Free Full Text

Smyth GK: Linear models and empirical bayes methods for
assessing differential expression in microarray experiments. Stat
Appl Genet Mol Biol. 2004; 3(1): Article3.

PubMed Abstract | Publisher Full Text

McCarthy DJ, Smyth GK: Testing significance relative to a fold-
change threshold is a TREAT. Bioinformatics. 2009; 25(6): 765-71.
PubMed Abstract | Publisher Full Text | Free Full Text

Wu D, Smyth GK: Camera: a competitive gene set test accounting
for inter-gene correlation. Nucleic Acids Res. 2012; 40(17): e133.
PubMed Abstract | Publisher Full Text | Free Full Text

Subramanian A, Tamayo P, Mootha VK, et al.: Gene set enrichment
analysis: a knowledge-based approach for interpreting genome-
wide expression profiles. Proc Natl Acad Sci U S A. 2005; 102(43):
15545-50.

PubMed Abstract | Publisher Full Text | Free Full Text

Lim E, Wu D, Pal B, et al.: Transcriptome analyses of mouse and
human mammary cell subpopulations reveal multiple conserved
genes and pathways. Breast Cancer Res. 2010; 12(2): R21.
PubMed Abstract | Publisher Full Text | Free Full Text

Wu D, Lim E, Vaillant F, et al.: ROAST: rotation gene set tests for
complex microarray experiments. Bioinformatics. 2010; 26(17):
2176-82.

PubMed Abstract | Publisher Full Text | Free Full Text

R Development Core Team: R: A language and environment for
statistical computing. R Foundation for Statistical Computing,
Vienna, 2016.

Reference Source

Warnes GR, Bolker B, Bonebakker L, et al.: gplots: Various R
Programming Tools for Plotting Data. R package version 3.0.1.
2016.

Reference Source

Xie Y: knitr: A comprehensive tool for reproducible research in
R. In: V. Stodden, F. Leisch, and R. D. Peng, editors, Implementing
Reproducible Computational Research. Chapman and Hall/CRC,
2014; ISBN 978-1466561595.

Reference Source

Xie Y: Dynamic Documents with R and knitr. Chapman and Hall/
CRC, Boca Raton, Florida, 2nd edition, 2015; ISBN 978-1498716963.
Reference Source

Xie Y: knitr: A General-Purpose Package for Dynamic Report
Generation in R. R package version 1.12.3. 2016.

Reference Source

Page 22 of 29


http://www.ncbi.nlm.nih.gov/pubmed/19910308
http://dx.doi.org/10.1093/bioinformatics/btp616
http://www.ncbi.nlm.nih.gov/pmc/articles/2796818
http://www.ncbi.nlm.nih.gov/pubmed/25605792
http://dx.doi.org/10.1093/nar/gkv007
http://www.ncbi.nlm.nih.gov/pmc/articles/4402510
http://www.ncbi.nlm.nih.gov/pubmed/25633503
http://dx.doi.org/10.1038/nmeth.3252
http://www.ncbi.nlm.nih.gov/pmc/articles/4509590
http://www.ncbi.nlm.nih.gov/pubmed/28203714
http://dx.doi.org/10.1093/bioinformatics/btx094
http://www.ncbi.nlm.nih.gov/pmc/articles/5870845
http://www.ncbi.nlm.nih.gov/pubmed/25879659
http://dx.doi.org/10.1186/s12885-015-1187-z
http://www.ncbi.nlm.nih.gov/pmc/articles/4399223
http://www.ncbi.nlm.nih.gov/pubmed/23558742
http://dx.doi.org/10.1093/nar/gkt214
http://www.ncbi.nlm.nih.gov/pmc/articles/3664803
http://www.ncbi.nlm.nih.gov/pubmed/24227677
http://dx.doi.org/10.1093/bioinformatics/btt656
http://dx.doi.org/10.18129/B9.bioc.Mus.musculus
http://dx.doi.org/10.18129/B9.bioc.Homo.sapiens
http://www.ncbi.nlm.nih.gov/pubmed/16082012
http://dx.doi.org/10.1093/bioinformatics/bti525
http://www.ncbi.nlm.nih.gov/pubmed/19617889
http://dx.doi.org/10.1038/nprot.2009.97
http://www.ncbi.nlm.nih.gov/pmc/articles/3159387
http://www.ncbi.nlm.nih.gov/pubmed/20196867
http://dx.doi.org/10.1186/gb-2010-11-3-r25
http://www.ncbi.nlm.nih.gov/pmc/articles/2864565
http://www.ncbi.nlm.nih.gov/pubmed/24485249
http://dx.doi.org/10.1186/gb-2014-15-2-r29
http://www.ncbi.nlm.nih.gov/pmc/articles/4053721
http://www.ncbi.nlm.nih.gov/pubmed/25925576
http://dx.doi.org/10.1093/nar/gkv412
http://www.ncbi.nlm.nih.gov/pmc/articles/4551905
http://www.ncbi.nlm.nih.gov/pubmed/26981392
http://dx.doi.org/10.1016/j.gdata.2015.12.027
http://www.ncbi.nlm.nih.gov/pmc/articles/4778621
http://www.ncbi.nlm.nih.gov/pubmed/16646809
http://dx.doi.org/10.2202/1544-6115.1027
http://www.ncbi.nlm.nih.gov/pubmed/19176553
http://dx.doi.org/10.1093/bioinformatics/btp053
http://www.ncbi.nlm.nih.gov/pmc/articles/2654802
http://www.ncbi.nlm.nih.gov/pubmed/22638577
http://dx.doi.org/10.1093/nar/gks461
http://www.ncbi.nlm.nih.gov/pmc/articles/3458527
http://www.ncbi.nlm.nih.gov/pubmed/16199517
http://dx.doi.org/10.1073/pnas.0506580102
http://www.ncbi.nlm.nih.gov/pmc/articles/1239896
http://www.ncbi.nlm.nih.gov/pubmed/20346151
http://dx.doi.org/10.1186/bcr2560
http://www.ncbi.nlm.nih.gov/pmc/articles/2879567
http://www.ncbi.nlm.nih.gov/pubmed/20610611
http://dx.doi.org/10.1093/bioinformatics/btq401
http://www.ncbi.nlm.nih.gov/pmc/articles/2922896
https://www.r-project.org/
https://cran.r-project.org/web/packages/gplots/gplots.pdf
https://books.google.co.in/books?hl=en&lr=&id=WVTSBQAAQBAJ&oi=fnd&pg=PA3&dq=knitr:+A+comprehensive+tool+for+reproducible+research+in+R+chapman+and+Hall/CRC,+2014&ots=qRBx77JjT0&sig=rxelY0gqq3x2SAs93GFWIUcr49s#v=onepage&q&f=false
https://books.google.co.in/books?id=lpTYCQAAQBAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q=78-1498716968716963&f=false
http://packages.renjin.org/package/org.renjin.cran/knitr/1.12.3

FIOOOResearch F1000Research 2018, 5:1408 Last updated: 28 DEC 2018

Open Peer Review

Current Referee Status: v Vv

Referee Report 06 July 2016

https://doi.org/10.5256/f1000research.9688.r14437

v

Jovana Maksimovic
Bioinformatics research group, Murdoch Childrens Research Institute, Murdoch Children's Research
Institute, Parkuville, Vic, Australia

This workflow outlines a step-by-step differential expression analysis of a publicly available RNA-seq
dataset using several well-established Bioconductor packages such as limma and edgeR and the novel
Glimma package. The workflow describes in detail the key steps that are generally performed as part of
most standard, count-based RNAseq analyses: pre-processing, exploratory data analysis, differential
expression testing and pathway analysis. Each of the steps is carefully explained and broken down into a
series of logical substeps, which also include R code and example output. Furthermore, this workflow is a
good example of how multiple Bioconductor packages can be applied in a real-world RNAseq analysis.

Overall, I think this is a very clearly written and well-explained workflow that not only highlights the utility of
combining Bioconductor packages for RNAseq analysis but also demystifies the process for those who
may be interested in learning what an RNAseq analysis involves. Although some familiarity with R and
statistical concepts would be advantageous, they are not necessary to be able to follow the logic behind
the steps and what each step is trying to achieve.

| have tested the R code under R 3.3.0 and Bioconductor 3.0 and it ran without errors.

Minor comments:
®  As this workflow will be of particular use for those who are very new to RNAseq analysis, | think it
should be explained why 1 CPM is chosen as the cutoff for lowly expressed genes. In addition, it
may be useful to show the relationship between CPM and raw counts and how the selected cutoff
relates to numbers of reads.

® |nthe gene set testing section, it is worth mentioning that the Hallmark gene sets (also available
from the Broad MSigDB) may be a good starting point for pathway analysis as they “summarise
and represent specific well-defined, states or processes”.

® Also, for those who are new to RNAseq analysis, it may be worth mentioning that there are other
gene set testing methods available in limma e.g. roast etc. and a very brief explanation of when the
different methods are appropriate.

o

General comment regarding Glimma plots: it would be handy to see the gene symbol (if available)
as well as EntrezID in the title of the scatter plot next to the MD plot.

Competing Interests: Matthew E. Ritchie and | are both organisers of the Bioconductor Asia-Pacific
Developer meeting, which is to be held in Brisbane in November 2016.
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I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Charity Law, The Walter and Eliza Hall Institute of Medical Research, Australia

Dear Jovana, thank-you for the helpful suggestions. We have added extra text to explain why a
CPM value of 1 was chosen and how this value relates to raw counts. We have also given more
detail on c2 and Hallmark gene sets, as well as mentioning roast and when one might chose to use
roast over camera.

Competing Interests: None

Referee Report 06 July 2016
https://doi.org/10.5256/f1000research.9688.r14439

«  Maria A. Doyle
Research Computing Facility, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia

Editorial Note from F1000Research - 7th July 2016:

the status of this review was changed after publication from "Approved with Reservations" to
“"Approved". The referee's reservation was caused by using the current release (Bioconductor
3.3) as opposed to the development release (Bioconductor 3.4) as used in the article.

The following text has been removed:

My only reservation to approving the article is that | encountered these two errors when running
the Glimma code in the article. | used R 3.3.0 and the most recent version of Glimma from
Bioconductor (Glimma 1.0.0) but the sessioninfo() in the article shows Glimma 1.1.1 was used
which may account for the errors:

1) With this line of code no plot was produced and it gave the error below:

gIMDSPIot(Icpm, labels=paste(group, lane, sep="_"),

+ groups=x$samples[,c(2,5)], launch=TRUE)

Error in glScatter.default(points, xval = "dim1", yval = "dim2", xlab = "Dimension 1", :
group does not correspond to a column

2) With this line of code the table (shown in Fig 6.) didn't appear, just the 2 plots:
gIMDPIot(tfit, coef=1, status=dt[,1], main=colnames(tfit)[1],
counts=x$counts, samples=colnames(x), anno=x$genes, groups=group,
id.column="ENTREZID", display.columns=c("SYMBOL", "ENTREZID"),
search.by="SYMBOL", launch=FALSE)

This article is a very nice description (nicely written, nicely explained) of an RNA-seq workflow, starting
from gene counts and proceeding through a standard differential expression analysis, using 3
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complementary Bioconductor packages edgeR, limma & Glimma. It explains clearly how to perform the
steps of a differential expression analysis and also how to generate useful plots for visualising the data
e.g. MDSplot, MDplot, barcodeplot, heatmap etc.

Two of the packages, edgeR and limma, are well established while Glimma is the new kid on the block.
It's a tool along the lines of the web-based Degust (http://www.vicbioinformatics.com/degust/), in that it
enables interactive exploration of RNA-seq data. It would seem to be a very useful addition to R RNA-seq
workflows as the interactive html plots it can generate (MDS, MD etc) make exploring the results easier
(especially by non-R savvy collaborators) and it could help save an analyst's time and effort through not
having to reproduce static plots e.g. to highlight different genes. With the Glimma MDplot | like that you
can search for a gene and see a plot of the log-cpm counts for that gene in the samples.

It was great to be able to try out the workflow really easily by downloading the data file linked to in the
paper (from GEO), with no processing required other than unzipping the files, and the code in the article
all worked, giving the same results shown in the paper with the exception of two errors described below.

Minor comments:

The article says the workflow is available from Bioconductor here
http://www.bioconductor.org/help/workflows/ but it doesn't seem to be there, however it is available at the
other location mentioned http://bioinf.wehi.edu.au/folders/limmaWorkflow/

The section title "Removing genes that are not expressed" suggests only genes with no expression are
removed, however the paragraph then explains that genes lowly expressed are also removed so for
greater clarity maybe that could be changed to something like "Removing genes that are not sufficiently
expressed".

In the section "Organising gene annotations" | think it's good the authors point out to check for duplicated
genes, however in this case the duplication appears to be due to extracting the TXCHROM column (as
some genes are reported as being present on more than one chromosome) but the TXCHROM
information is not used in this workflow and if the TXCHROM column is omitted then there are no
duplicates so it might be worth mentioning that.

With this bit "Differential expression analyses look at gene expression differences between conditions,
rather than comparing expression across multiple genes or drawing conclusions on absolute levels of
expression. In other words, gene lengths remain constant for comparisons of interest and any observed
differences are a result of changes in condition rather than changes in gene length." Wouldn't one caveat
to this be if there was a significant change in the length of the isoform(s) expressed from a gene (e.g. from
expression of a long isoform to a short isoform) as then the assumption of no change in gene length would
no longer be valid.

In the online version Fig.7 is in the middle of a code block could it be moved below.
Figs 5-8 have bold headings but Figs 1-4 don't is that an error.
Could perhaps modify title to reflect the order in which the tools are used - edger, limma & Glimma.

It would be nice for consistency if the colours in the Glimma interactive MDS plots matched the colours
used in the static MDS plots in Fig 3.
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Competing Interests: No competing interests were disclosed.

| have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Referee Response 06 Jul 2016
Maria A. Doyle, Peter MacCallum Cancer Centre, Australia

I've just requested that the status of this article be changed to Approved as the code works fine
with the development release of Bioconductor 3.4 but could it be made clearer in the article that 3.4
must be used for the code to work as shown.

Competing Interests: No competing interests were disclosed.

Author Response 30 Nov 2016
Charity Law, The Walter and Eliza Hall Institute of Medical Research, Australia

Dear Maria, we have made changes according to your suggestions, including a change in the
section title to "Removing genes that are lowly expressed"”, and we have added comments to point
out that our analysis assumes no differential isoform usage. We have also simplified our example
in the "Organising gene annotations" section.

Thanks for pointing out the inconsistencies in the figure captions. They have now been addressed.

Indeed, it would be nice to make the colours consistent between the interactive and static MDS
plots. We like the colours used in the static plot and can have the interactive version of the plot
updated once color specification becomes available to the MDS plotting function in Glimma.

Competing Interests: None

Referee Report 23 June 2016

https://doi.org/10.5256/f1000research.9688.r14436

v

James W. MacDonald
Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA,
USA

In this manuscript the authors perform a step-by-step analysis of a public RNA-Seq data set, using the
Bioconductor packages edgeR, limma, and Glimma. The analysis proceeds through four stages (data
preparation, preprocessing, univariate analyses, and gene set testing), with each stage broken up into
several discrete steps. Each step is clearly explained and is accompanied by R code and output, so the
reader can follow along if desired.

The target audience for this paper appears to be someone with passing familiarity with both R and
statistics, without requiring expertise in either. Most of the code should be easy to understand, and any
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complex sections are clearly explained in the text. Similarly, the authors outline the analytic choices they
make (e.qg., filtering out unexpressed genes, specifying model coefficients, etc) at a more accessible level.

While both edgeR and limma are well known, popular Bioconductor packages, Glimma is a new package
that was released in April 2016. This package uses the d3.js JavaScript library to generate interactive
HTML documents that can be viewed locally, rather than needing to be accessed from a server running R
(as, say a shiny app requires). This is an exciting development, and is unfortunately not as compelling as
it could be, if the Glimma plots were part of the HTML version of the manuscript rather than provided as
links.

This is a well written paper, and is a useful contribution to the literature; while each package has either an
extensive user's guide or vignette, by necessity these documents pertain only to the package at hand.
Most RNA-Seq analyses require a combination of multiple packages to complete, and this paper provides
a clear example.

Major comments

None.

Minor comments

In the section 'Organising gene annotations', the code used to subset the one-to-many mappings is
needlessly complex. Simply doing something like

genes <- genes[!duplicated(genesl[,1]),]

will accomplish the same thing, in a more straightforward way.

In the section 'Removing heteroscedasticity from count data’, the authors state:

"When operating on a DGEList-object, voom converts raw counts to log-CPM values by automatically
extracting library sizes and normalisation factors stored in the object. For a matrix of counts, the method
of normalisation can be specified within voom using the normalize.method (by default no normalisation is
performed).”

This is confusing; the authors already showed in an earlier section (‘Normalising gene expression
distributions') that converting to log-CPM using TMM normalization factors will do a shift-normalization

(which is what voom will do in this instance). The normalize.method argument to voom specifies
additional normalization methods that can be applied to the matrix of TMM normalized log-CPM values.

Competing Interests: No competing interests were disclosed.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Author Response 30 Nov 2016
Charity Law, The Walter and Eliza Hall Institute of Medical Research, Australia
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Dear James, thank-you for your comments. We have considered your suggestions and made
changes to simplify the section on ‘Organising gene annotations’ and to clarify that voom offers
additional normalisation ontop of the TMM-normsalisation that is carried out.

Competing Interests: None

Discuss this Article

Reader Comment 15 Feb 2017
Marc Teunis, University of Applied Sciences, Utrecht, The Netherlands

Dear authors,

| am testing the workflow on a CentOS RStudio Server (see session info below). | just wanted to point out a
minor glitch in the code for downloading the files for this workflow.

| have installed the workflow from BIOCONDUCTOR using:

source("http://bioconductor.org/workflows.R")
workflowInstall("RNAseq123")

The current code chunck for downloading the file should be changed to
utils::download.file(url, destfile="GSE63310_RAW.tar", mode="wb", method = "wget")
Not setting method to "wget" results in an incomplete download of the RAW.tar archive.
Hoping to have aided future users with this comment.

Sincerely,
Marc

output sessioninfo() (partly)

R version 3.3.2 (2016-10-31)
Platform: x86_64-redhat-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

locale:

[1]LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[8] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7]1 LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C
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[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

Competing Interests: No competing interests were disclosed.
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