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RNA-seq analysis reveals extensive transcriptional
plasticity to temperature stress in a freshwater
fish species
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Abstract

Background: Identifying genes of adaptive significance in a changing environment is a major focus of ecological
genomics. Such efforts were restricted, until recently, to researchers studying a small group of model organisms or
closely related taxa. With the advent of next generation sequencing (NGS), genomes and transcriptomes of virtually
any species are now available for studies of adaptive evolution. We experimentally manipulated temperature
conditions for two groups of crimson spotted rainbowfish (Melanotaenia duboulayi) and measured differences in
RNA transcription between them. This non-migratory species is found across a latitudinal thermal gradient in
eastern Australia and is predicted to be negatively impacted by ongoing environmental and climatic change.

Results: Using next generation RNA-seq technologies on an Illumina HiSeq2000 platform, we assembled a de novo
transcriptome and tested for differential expression across the treatment groups. Quality of the assembly was high
with a N50 length of 1856 bases. Of the 107,749 assembled contigs, we identified 4251 that were differentially
expressed according to a consensus of four different mapping and significance testing approaches. Once duplicate
isoforms were removed, we were able to annotate 614 up-regulated transfrags and 349 that showed reduced
expression in the higher temperature group.

Conclusions: Annotated blast matches reveal that differentially expressed genes correspond to critical metabolic
pathways previously shown to be important for temperature tolerance in other fish species. Our results indicate
that rainbowfish exhibit predictable plastic regulatory responses to temperature stress and the genes we identified
provide excellent candidates for further investigations of population adaptation to increasing temperatures.
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Background
The ability of species and populations to adapt to environ-
mental change is the cornerstone of the emerging field of
ecological genomics [1,2]. Until recently, genome-wide
studies of genetic adaptation in non-model organisms
were not possible. With the advent of massively parallel
next generation sequencing technologies (NGS), these
types of studies have become a reality [3] and while
many of the challenges and preferred strategies are still
being addressed [4-6], empirical studies are now starting
to be reported [7-14]. Studies of transcriptome level
responses to environmental change offer an opportunity
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to understand the underlying genetic basis for adaptation.
Such studies represent a powerful approach to assessing
the genes involved in adaptation to a changing climate,
particularly increasing temperatures. By profiling tran-
scriptional changes induced by temperature stress, it is
possible to identify the gene regions or pathways that are
likely to be the targets of selection. This information is
crucial to enable researchers to assess levels of variation
across these gene regions, at a landscape scale, to predict
the capacity of organisms to adapt to a warming climate.
Genes involved in physiological adaptation to tempera-

ture stress have been uncovered in many species. Heat
shock proteins [15], alcohol dehydrogenase [16] and
lactate dehydrogenase genes [17] have all been shown to
be related to heat tolerance. In fish, the list of candidates
also includes many from other gene regions related to
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respiration and protein binding [18-20]. Apart from differ-
ences in coding regions, transcriptional regulation is also a
source of variation that can potentially contribute to
adaptive evolutionary change, particularly in the early
stages of divergence. Studies in natural populations of
gobies (Gillichthys mirabilis) have shown that short
term exposure (<8 hours) to a temperature of 32°C
induces a strong upregulation of heat shock proteins
(Hsps) in both gill and muscle tissues [21]. Many other
transcripts related to a wide variety of biological
processes including protein homeostasis, cell cycle con-
trol, cytoskeletal reorganisations, metabolic regulation,
and signal transduction were differentially expressed in
treatment and control groups. The majority of these
genes displayed tissue-specific responses presumably re-
lated to the differing molecular functions associated with
each tissue type. Logan and Somero [22] found that, with
long-term acclimation to increased temperature (up to
28°C), there was no upregulation of stress-related pro-
teins and only slight, although detectable, differences in
expression of genes involved in protein biosynthesis,
transport and various metabolic categories. This they
suggest indicates evidence of long-term acclimation
showing a steady state condition involving relative
energy costs for different processes. They later showed
however, that stress related genes (HSP70, UBIQ, and
CDKN1B) were induced in long-term acclimatised fish
subsequently exposed to acute heating conditions (4°C/
hour) and that the onset temperature for significant
expression change varied according to acclimation
temperature [23]. Quinn et al. [24] also found increased
expression of HSPs and Ubiquitin in Arctic charr
(Salvelinus alpinus) exposed to temperature stress and
reported a down regulation of haemoglobin genes in
fish that showed tolerance to increased temperatures.
Another cold climate fish, Trematomus bernacchii, has
been shown to be unable to mount a heat shock re-
sponse despite retaining the heat shock gene Hsp70 and
the regulation factor HSF1 [25]. Further work showed
that many other genes associated with the cellular stress
response were induced by heat stress. The inability to
mount a heat shock response however, highlights the
susceptibility of this species to global warming and
raises the question as to how this and other species will
be able to adapt to increasing temperatures.
Buckley and Hofmann [26] examined the extensive

plasticity in Hsp induction in gobies acclimatised to
different thermal backgrounds (13°C, 21°C, and 28°C).
They found that the activation temperature of the tran-
scriptional regulator HSF1 was positively associated with
the acclimatisation temperature indicating that plasticity
in heat shock response is linked to plasticity in the regula-
tory framework governing Hsps. While adaptive plasticity
is often seen as a mechanism that can slow or dampen
divergent selection, it has been argued that it can also
lead to rapid speciation if there are strong correlations
between phenotype and environment combined with
significant population structure [27]. By examining the
transcriptomic response to temperature stress we can
develop a better understanding of the genes and biochem-
ical pathways that are fundamental to physiological accli-
matisation to a warming environment and gain insights
into the regulatory changes that accompany adaptation
over evolutionary timescales [28].
Australian rainbowfish are an ideal species group to test

hypotheses about the genetic responses to increasing tem-
peratures. In particular, the crimson-spotted rainbowfish
(Melanotaenia duboulayi) is a subtropical freshwater spe-
cies found along a north–south temperature gradient in
eastern Australia. Their distribution ranges over several
ecoregions which, coupled with a strong population struc-
ture and local abundance [29-31], makes them a well
suited model for studying local adaptation. The ease of
maintaining captive populations of rainbowfish also make
them amenable to a range of laboratory-based experimen-
tal studies [32-34]. In this study, we maintained groups of
M. duboulayi at ambient and elevated temperature levels
and then used an RNA-seq approach to assess transcrip-
tome level changes related to temperature stress. Our aim
is to provide an initial investigation of the transcriptomic
response to thermal stress in rainbowfish. As such, this
will allow for the screening of many more individuals via
genotyping of candidate SNPs. In addition we present the
first annotated transcriptome and gene catalogue for the
order Atheriniformes. Our goal is to identify key candidate
genes and make a first step towards understanding the
important biochemical pathways on which selection is
likely to act in a warming climate.

Methods
Source of fish and design of temperature trial
Crimson spotted rainbowfish were collected using a hand-
net from a location in the upper reaches of the Brisbane
River, near the township of Fernvale (27°26'37.39"S,
152°40'12.76"E). Water monitoring data from the
Queensland Department of Environment and Resource
Monitoring (DERM) show the average daily mean tem-
peratures for this location ranged between 12.2°C in
winter and 28.3°C in summer from January 1st 2004 to
January 1st 2011 (http://watermonitoring.derm.qld.gov.au).
Fish were transported live to Flinders University animal
rearing facility and acclimatised at a temperature of 21°C
for a period of 30 days prior to the start of the
temperature trials. For the trials we used only adult male
rainbowfish of about the same length (a proxy for age),
since gender and age can affect expression responses [35].
These individuals were randomly assigned to a treatment
or a control group (n = 6 per group). Temperature in the
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treatment group was increased by 2°C per day over a
period of six days towards a target of 33°C. This target
represents the projected average summer temperature
for this region in 2070 based on a high emission sce-
nario of the International Panel on Climate Change:
http://www.climatechangeinaustralia.gov.au/qldtemp15.
php. This temperature condition was then maintained
for 14 days. The control group was kept at 21°C for the
duration of the experiment. All animal handling was
performed in accordance with the Australian Code of
Practice for the Care and Use of Animals for Scientific
Purposes, 2004 and approved by the Flinders University
Animal Welfare Committee (AWC E342).

RNA extraction, Illumina library preparation and
sequencing
Upon completion of the temperature trial, fish were
sacrificed using AQUI-S® solution [36] and dissected im-
mediately to remove their livers. Although increased
temperature has been shown to differentially induce
expression changes in different tissue types [21,37], we
were restricted to examining just one tissue type due to
logistical constraints. We selected liver due to previous
research linking this tissue type to heat stress responses
[38-40]. Total RNAs were individually extracted using
the Ambion Magmax™-96 total RNA isolation kit (Life
Sciences) according to the manufacturer’s instructions.
Briefly, 5 mg of tissue was placed in the lysis solution
and homogenised in Qiagen Tissuelyzer™ for a period of
30 sec. Nucleic acids were captured onto magnetic
beads, washed and treated with DNase. Total RNA was
then eluted in 50 μl elution buffer. RNA quality and
concentration was measured using an RNA Pico chip on
an Agilent Bioanalyzer. Normalised starting quantities of
total RNA were then used to prepare 12 separate
Illumina sequencing libraries with the TruSeq™ RNA
sample preparation kit (Illumina). Library preparation
was performed as per the manufacturer’s instructions. In
the final step before sequencing, all 12 individual libraries
were normalised and pooled together using the adapter
indices supplied by the manufacturer (Illumina MID
tags 2, 4–7, 12–16, 18, 19). Pooled sequencing was then
performed as 101 bp, paired-end reads in a single lane
of an Illumina HiSeq2000 instrument housed at the
Ramaciotti Centre for Gene Function Analysis, University
of New South Wales.

Quality control and de novo assembly
Sequence data were sorted by individual and adapters
were trimmed by the service provider prior to analysis.
Quality filtering was performed using the FastX-toolkit
suite of pre-processing tools (http://hannonlab.cshl.edu/
fastx_toolkit/index.html) in a Galaxy setting [41]. Based
on the FastX quality statistics, the first two and last 5
bases were trimmed from each read as they had consist-
ently low phred scores (<Q15). Paired reads were then
joined and a quality filter applied such that any combined
reads having <90% of bases with a phred score of Q20 or
higher were discarded. Paired reads were then split and in-
terleaved to suit the input style of the de novo assembly
program. Transcriptome assembly was performed de novo
with the program Velvet/Oases [42]. This program recon-
structs independent assemblies based on different k-mer
values used to build a de Bruijn graph. The program then
uses dynamic error removal adapted to RNA-seq data and
implements a robust scaffolding method to predict full
length transfrags. Multiple single k-mer assemblies are
then merged to cover genes at different expression levels
without redundancy. Two individuals from each of the
treatment and control groups were pooled as input for the
assembly. Assemblies were compiled for a k-mer range of
19 to 49 with an expected insert size between paired ends
of 300 bp and a coverage cut-off value set to 4.2. We
tested different merged assembly ranges based on the
summary statistics for each individual k-mer assembly
[43]. The outcome of each merge was assessed with re-
spect to the optimal assembly parameters [4]. The optimal
assembly should achieve the best balance between large
median, mean and N50 contig lengths while minimising
the total number of contigs but maintaining a large
summed contig length. As Oases is vulnerable to mis-
assembly at low k-mer values, we adopted a conservative
approach of merging k-mer values > k = 19. Optimal
assembly was achieved with a k-mer range of 19 to 41.

Mapping of sequence reads and differential expression
analysis
To test for differential expression (DE), individual se-
quence reads for each sample were mapped back to the
assembled transcriptome with the alignment program
Bowtie [44]. Bowtie was implemented in the –v alignment
mode with the maximum number of mismatches set to 3.
Paired end reads were aligned to the transcriptome with
both read pairs needing a valid alignment within a given
locus to be counted as a match. If more than one align-
ment was possible the best match was reported according
to the least number of mismatches for each read and
overall for the pair. The reproducibility of the alignment
approach was tested by performing the mapping step
with BWA, an alternative alignment program [45]. The
number of reads aligning to each transfrag for each
sample was calculated with the IdxStats command of
Samtools [46]. Count data was then used as input for
the program DESeq [47] which estimates variance-mean
dependence in the data and tests for differential expres-
sion based on the negative binomial distribution. The six
samples from each treatment were used to generate mean
expression levels with associated variances. Differential
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expression was tested at a significance level of α= 0.05
adjusted to match a 5% false discovery rate using the
Benjamini-Hochberg procedure. The threshold for fold-
change differences is determined by the significance
testing as the power to detect significant differential
expression depends on the expression strength. For
weakly expressed genes, stronger changes are required
for the gene to be called significantly expressed. We also
compared DE methodology by running the EdgeR pro-
gram to assess significant differences in the count data.
A consensus list of DE genes was then generated from
the four analysis approaches adopted (i.e. Bowtie-DESeq,
Bowtie-EdgeR, BWA-DESeq, BWA-EdgeR). Significantly
up and down regulated transfrags were selected and
blasted against the NCBI database using blastx in the
program Blast2GO [48]. Blastx was performed against the
NCBI nucleotide database with the minimum E-value
score set to 1.0E-06. To assign gene ontology terms to
each annotated sequence, successful blast hits were
mapped and annotated using Blast2GO for the entire
assembled transcriptome with the annotation cut-off
threshold set to 55 and the GO level weighting set to 5.

Results and discussion
Raw sequencing data and quality statistics
The single lane of Illumina HiSeq2000 produced close to
128 million paired-end reads (2 × 101 bp). After trim-
ming and quality filtering, 12.3% of reads were discarded
leaving over 224 million reads for downstream analysis
(2 × 94 bp). The final number of reads per individual
ranged from 11.7 million to 29 million (mean = 18.7
million ± 1.4 million). The number of reads in each
treatment group was well balanced with 112.3 million in
the 21°C group and 112.0 million in the 33°C group
(Additional file 1: Table S1). We selected the best k-mer
merge range for assembly based on the distribution of
assembly statistics for the individual k-mer assemblies
from k = 19 to k = 49 (see Table 1). The merged assem-
bly from a k-mer range of 21 to 39 scored best on the
balance of these parameters with a N50 value of 1,856
and a total number of contigs of 107,749. While this
range may exclude some rare, low-abundant transcripts,
it presents a more conservative and reliable approach to
differential expression testing by emphasising the accur-
acy of the assembly rather than the identification of low-
abundant transcripts from both treatments. Annotation
of the transfrags with the Blast2Go software suite
resulted in 65,105 (60.4%) blast hits and 53,278 (49.4%)
successfully annotated sequences.

Differential expression analyses
The four different combinations of mapping and DE test-
ing produced vastly different numbers of DE transfrags
(see Table 1, Figure 1). The combination of BWA
alignment followed by EdgeR DE analysis identified the
most with 14,076 DE transfrags, whereas Bowtie followed
by DESeq identified the least with 5,577 (Figure 1). The
difference between the approaches likely arises from the
different characteristics of the two aligners combined with
the sensitivities of the DE tests. Bowtie does not allow
gapped alignments and makes use of the base quality
scores [49], making it more conservative than BWA in the
number of mapped reads. On the other hand DESeq has
also been shown to be more conservative than EdgeR
when identifying DE genes from low count data [50]
which likely explains the lower number of hits in multi-
plex sequencing strategies such as ours. The total num-
ber of DE transfrags identified by all four approaches
was 4,251 (Figure 2). We adopted a conservative ap-
proach and selected only these transfrags to blast
against the reference database. Future RNA-seq studies
should assess their priorities for DE gene discovery and
select the detection strategy based upon the need for
identifying lowly expressed genes versus the accuracy
expected given the number of replicates used [51]. Robles
et al. [50] showed that EdgeR could be used to detect
higher numbers of DE transfrags from low count data
without compromising accuracy when the number of bio-
logical replicates was at least six in each treatment group.
The Blast2GO program was able to find sequence

similarities for 2,740 of the DE transfrags but could not
find mapping or annotation information for a further
634 of them, leaving 2,106 DE transfrags which were
successfully annotated. The top 15 matching species
from the BLAST query were all fish species with the
most BLAST hits being for the Nile tilapia Oreochromis
niloticus with 583 matches. Duplicate gene isoforms
were detected by matching identical annotated gene
names from the Blast2GO output. These isoforms were
then combined and reported as single “genes”. Once
isoforms were combined, there were 614 genes that were
up-regulated in the high temperature treatment with
349 genes being down-regulated (see Additinal file 1:
Table S2a and b). For significantly down-regulated
transfrags, the mean fold-change between ambient and
high-temperature conditions was 4.0-fold, with a range
from 55.6-fold for g2/m phase specific e3 ubiquitin-
protein ligase to 2.2-fold for the Phytanoyl-peroxisomal-
like protein. The mean fold-change for significantly
up-regulated transfrags was 11.13, ranging from 1.98
(for the cyclin-dependent kinase 2 interacting protein)
to 259-fold (for the Heat shock protein Hsp-90-like).

Ontology of differentially expressed genes
Many functional classes of genes were affected by
temperature stress. As expected, heat shock protein
genes including HSPA4 (12.3 x), Hsp60 (6.6 x), Hsp70
(9.9 x) and Hsp90α (141.3 x) were significantly up-



Table 1 Assembly statistics for k-mer lengths 19–49 and different k-mer merge ranges from the Oases de novo assembly program

k19 k21 k23 k25 k27 k29 k31 k33 k35 k37

Total sequences 1.2E+05 7.3E+04 6.2E+04 5.5E+04 5.2E+04 5.0E+04 4.8E+04 7.0E+04 8.2E+04 8.1E+04

Total bases 6.7E+07 6.1E+07 5.6E+07 5.3E+07 5.1E+07 5.0E+07 4.9E+07 6.2E+07 7.2E+07 7.3E+07

Min sequence length 7.1E+01 1.0E+02 8.1E+01 1.0E+02 9.8E+01 1.0E+02 9.0E+01 1.0E+02 1.0E+02 1.0E+02

Max sequence length 1.5E+04 1.7E+04 2.0E+04 1.8E+04 2.1E+04 2.3E+04 1.8E+04 1.2E+04 1.3E+04 1.3E+04

Average sequence length 558.04 837.19 906.27 960.63 979.44 991.21 1010.47 884.15 888.33 901.83

Median sequence length 356 527 546 580 584 590 605 595 583 584

N50 length 873 1397 1585 1686 1746 1759 1801 1398 1460 1493

(A + T)s 55.25% 55.32% 55.25% 55.16% 55.16% 55.17% 55.12% 55.07% 55.21% 55.35%

(G + C)s 43.99% 44.27% 44.47% 44.60% 44.64% 44.67% 44.72% 44.83% 44.63% 44.49%

Ns 0.77% 0.41% 0.28% 0.23% 0.21% 0.16% 0.16% 0.10% 0.16% 0.16%
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Table 1 Assembly statistics for k-mer lengths 19–49 and different k-mer merge ranges from the Oases de novo assembly program (Continued)

k39 k41 k43 k45 k47 k49 k19_39 k21_39 k25_47 k21_49

Total sequences 8.2E+04 4.3E+04 4.1E+04 4.0E+04 3.9E+04 5.6E+04 4.5E+05 1.1E+05 4.0E+05 4.9E+05

Total bases 7.2E+07 4.4E+07 4.3E+07 4.2E+07 4.1E+07 5.1E+07 4.8E+08 1.3E+08 4.4E+08 5.5E+08

Min sequence length 1.0E+02 9.9E+01 1.0E+02 1.0E+02 1.0E+02 1.0E+02 1.0E+02 1.0E+02 1.0E+02 1.0E+02

Max sequence length 1.4E+04 1.7E+04 1.7E+04 1.7E+04 1.7E+04 1.4E+04 2.3E+04 1.7E+04 2.3E+04 2.3E+04

Average sequence length 884.62 1026.19 1037.21 1042.06 1049.7 903.57 1071.74 1245.3 1114.01 1124.62

Median sequence length 568 624 634 639 650 608 780 930 805 818

N50 length 1492 1785 1789 1795 1786 1457 1589 1856 1671 1689

(A + T)s 55.38% 55.04% 55.03% 55.05% 55.03% 54.85% 55.95% 55.11% 55.69% 56.13%

(G + C)s 44.48% 44.86% 44.87% 44.87% 44.89% 45.08% 44.05% 44.89% 44.31% 43.87%

Ns 0.14% 0.10% 0.10% 0.08% 0.08% 0.06% 0.00% 0.00% 0.00% 0.00%
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Figure 1 Overlap between the number of differentially
expressed transfrags detected from the four combinations of
mapping and significance testing methods for sequences
involved in transcriptomic response to increased temperature
for the rainbowfish Melanotaenia duboulayi. See text for details
of mapping and testing methods used.
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regulated in heat stressed fish. These transcripts are well
characterised as stress inducible and have been shown,
in many species, to be involved in protection against
apoptosis or as a molecular chaperone under extended
exposure to heat stress [15,19,20,52-56]. Further to these
well-characterised stress related genes, the gene ontology
analysis also identified transcripts involved in catabolism
(11% of annotated sequences) and lipid metabolism (12%
of annotated sequences) as being the important biological
processes in the response to temperature stress (Figure 3a).
As with other studies in fish, regulation of metabolic
processes are clearly important parts of the heat stress
response [21,22,24]. A large proportion of the individual
over-expressed genes in rainbowfish were related to
oxidoreductase activity, mitochondrial components and
organelle membranes. These gene categories are typic-
ally associated with increased metabolism, particularly
Figure 2 Differential expression of 107,749 transfrags
assembled for the rainbowfish Melanotaenia duboulayi under
different temperature treatments (21°C vs. 33°C). Results are
shown as the log2 fold change in expression versus the mean
expression level between treatment groups. Red dots above zero
fold change represent significantly up-regulated transfrags whereas
red dots below zero fold change represent significantly down-
regulated tranfrags at the 0.5 false discovery rate.
to cope with increased temperature and the related hyp-
oxic conditions. Additionally we found a role for genes
of the ubiquitin family and the gene 78 kDa glucose-
regulated protein precursor which, similar to Quinn
et al. [57], were upregulated in response to heat stress.
Gene ontology analysis also identified biomolecular
binding and catalytic activity as the major molecular
functions affected by exposure to different temperature
regimes (see Figure 3b). Within these broad categories,
protein binding and ATP binding were the major bio-
molecular binding functions affected by differentially
expressed transfrags with node scores of 244 and 226
respectively. For catalytic activity, transferase activity
(nodescore = 53) and oxidoreductase activity were prom-
inent (node score = 54). These functional categories, com-
bined with electron carrier activity (node score = 63), is
congruent with the expected role of aerobic respiration in
response to the increased temperature.
While the Hsp genes are commonly identified as

overexpressed in short-term temperature manipulation
experiments [24,37], they are less likely to be targets for
selection during gradual temperature shifts associated
with climate change [22,53]. Hsp genes represent a
physiological response to sudden stressors and therefore
plasticity in these traits is unlikely to be adaptive over
longer timescales [58]. The more likely candidates for an
adaptive genetic response are those genes involved in what
has been termed the “cellular homeostatis response” to
long-term temperature stress [59]. Unlike stress response
genes that provide an immediate early response to macro-
molecular damage and sudden changes in cellular redox
potential, the cellular homeostatasis response involves
effector proteins mediating parameter specific adaptation
to environmental change.

Responses associated with prolonged exposure to heat
stress
Prolonged exposure to increased temperatures has previ-
ously been associated with gene ontologies related to pro-
tein folding, oxidative stress and immune function [18,19].
Similarly, we detected significant upregulation of genes
with these ontologies in the high temperature treatment
such as Calnexin (2.8 x), NADH dehydrogenase (2.5 x),
and glutathione S-transferase (5.1 x) suggesting long-term
reallocation of energy resources. Plasticity in the expres-
sion of these genes is more likely to be adaptive and allow
localised populations to survive in a changing environ-
ment, eventually leading to divergent selection. Kassahn
et al. [53] grouped stress-response transcripts into four
different clusters according to the pattern of regulation
detected under short versus long-term exposure to heat
stress. They suggested that long-term exposure to heat
stress in a coral reef fish (31°C for five days) induces ex-
pression of genes involved in development and immune
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Figure 3 Distribution of annotated transfrags assigned to (a) biological processes or (b) molecular functions or (c) the cellular
components according to gene ontology association. Analysis carried out with the Blast2Go program for sequences involved in
transcriptomic response to increased temperature for the rainbowfish Melanotaenia duboulayi.
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Table 2 Candidate genes for broad scale studies of temperature response in the crimson spotted rainbowfish,
Melanotaenia duboulayi

Seq. description min. e value Fold change Primary gene Ontology

3-keto-steroid reductase-like 5.09E-49 2.25 C:endoplasmic reticulum membrane

hydroxymethylglutaryl- cytoplasmic 9.30E-32 2.25 P:isoprenoid biosynthetic process

smooth muscle cell-specific protein sm22 alpha 1.44E-126 2.28 P:muscle organ development

phospholemman precursor 1.98E-44 2.32 C:membrane

ap-2 complex subunit sigma 1.34E-91 2.32 P:axon guidance

acyl carrier mitochondrial precursor 1.87E-82 2.34 F:phosphopantetheine binding

nadh-cytochrome b5 reductase 2 3.52E-137 2.34 F:cytochrome-b5 reductase activity

sterol-4-alpha-carboxylate 3- decarboxylating-like 7.81E-44 2.36 P:steroid biosynthetic process

retinol-binding protein cellular 3.29E-86 2.38 P:transport

ribosomal rna processing protein 36 homolog 9.82E-58 2.38 C:nucleolus

protein cdv3 homolog 4.64E-64 2.38 C:cytoplasm

nadh dehydrogenase 1 alpha subcomplex subunit 6 1.63E-77 2.41 C:mitochondrial inner membrane

y chain e2~ubiquitin-hect 1.04E-45 2.41 P:endosome transport

monoamine oxidase 0 2.42 P:catecholamine metabolic process

small nuclear ribonucleoprotein sm d2 2.44E-64 2.42 P:ncRNA metabolic process

transketolase 6.63E-137 2.42 F:transketolase activity

rho-class glutathione s-transferase 1.95E-101 2.43 F:transferase activity

thioredoxin domain-containing protein 14 precursor 2.31E-72 2.44 P:cell redox homeostasis

ubiquitin-conjugating enzyme e2 variant 2 1.43E-85 2.45 F:acid-amino acid ligase activity

coiled-coil domain-containing protein 47 precursor 0 2.46 P:embryonic development

ubiquinol-cytochrome c reductase core protein ii 0 2.47 F:metalloendopeptidase activity

3-hydroxy-3-methylglutaryl-coenzyme a synthase 1 8.22E-40 2.99 P:response to tellurium ion

nuclear factor erythroid derived 2-like 1 2.00E-60 3.24 P:heme biosynthetic process

glutathione s-transferase 3.32E-30 5.07 F:glutathione transferase activity

cyclin-dependent kinase inhibitor 1 6.69E-65 5.86 P:cellular response to stimulus

catechol-o-methyltransferase domain-containing protein 1 1.45E-75 −2.44 F:O-methyltransferase activity

period homolog 3 1.01E-173 −2.44 C:cytoplasm

histamine n-methyltransferase 1.19E-130 −2.50 P:respiratory gaseous exchange

scinderin like a 0 −2.50 P:eye development

5-aminolevulinate erythroid- mitochondrial-like 0 −2.50 P:response to hypoxia

55 kda erythrocyte membrane protein 2.00E-91 −2.50 C:intracellular non-membrane-bounded organelle

plakophilin 3 0 −2.50 F:binding

cbp p300-interacting transactivator 3b 5.19E-44 −2.50 C:nucleus

lysosomal alpha-glucosidase-like 0 −2.56 F:carbohydrate binding

actin-binding lim protein 1 long isoform isoform cra_a 4.22E-35 −2.56 P:axon guidance

udp-glucuronosyltransferase 2a2-like isoform 2 1.10E-93 −2.56 F:transferase activity, transferring hexosyl groups

glucose-fructose oxidoreductase domain-containing protein 1-like 4.30E-38 −2.56 C:extracellular region

dual specificity tyrosine-phosphorylation-regulated kinase 1b 0 −2.56 P:protein amino acid autophosphorylation

synaptobrevin homolog ykt6 3.21E-121 −2.56 C:Golgi membrane

serine–pyruvate mitochondrial precursor 2.50E-25 −2.56 P:metabolic process

transmembrane protein 192 6.58E-112 −2.63 C:membrane

protein creg2-like 9.34E-142 −2.63 C:cytoplasmic part

ras-related protein rab-13-like 1.31E-67 −2.63 P:vesicle-mediated transport

c-jun-amino-terminal kinase-interacting protein 4 isoform partial 0 −2.63 F:protein binding

histone-lysine n-methyltransferase setd3-like 3.00E-148 −2.63 P:peptidyl-lysine monomethylation

peroxisome proliferator-activated receptor alpha 2.04E-78 −2.86 P:steroid hormone mediated signaling pathway
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Table 2 Candidate genes for broad scale studies of temperature response in the crimson spotted rainbowfish,
Melanotaenia duboulayi (Continued)

cytochrome p450 1a 5.02E-152 −3.70 C:endoplasmic reticulum membrane

thyrotrophic embryonic factor 9.16E-157 −3.85 P:cellular response to light stimulus

nuclear receptor subfamily 1 group d member 2 3.54E-102 −4.17 P:steroid hormone mediated signaling pathway

vitellogenin ab 0 −10.0 F:lipid transporter activity

Genes correspond to transfrags with mid-range differential expression values that match metabolic, developmental, or immune response processes from gene
ontology assignment by the Blast2Go program. Gene ontology abbreviations: P= biological process, F= molecular function, C= cellular component.
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function whereas genes related to metabolic function
are suppressed. Our data, from long-term exposure to
heat stress in rainbowfish (33°C for 14 days), support
those findings. Developmental processes and metabolic
processes accounted for 48% of dysregulated transfrags
(Figure 3a). Immune function seems less important in
our dataset and is covered by the “response to stimuli”
category representing 9% of DE transfrags including the
natural killer cell enhancement factor (upregulated 2.8 x).
It is possible that the longer exposure to heat stress in our
study allowed recovery from the immediate activation of
the immune function genes.
Under simulated models of divergence with plasticity,

selection is possible when plasticity is moderate, dispersal
ability is low and there are no fitness costs to plasticity
[60]. It may therefore be worthwhile to focus attention on
those gene regions that showed mid-range shifts in
expression level in the treatment group when looking for
evidence of adaptive evolution. In particular, the mid-
range transfrags related to metabolic and developmental
processes as well as immune function are likely to be good
candidates as genes of adaptive significance for increasing
temperatures (Table 2). Rainbowfish represent ideal candi-
dates for studies of local adaptation due to their reduced
dispersal and distribution over multiple ecoregions. The
suite of genes that we present here showing a response to
increased temperature are a good starting point for further
manipulative experiments or landscape wide surveys of
genetic variation. Creating a catalogue of polymorphisms
at these genes throughout the range of M. duboulayi will
provide insights into the adaptive potential of this species
in the face of a warming environment.

RNA-seq recommendations for non-model taxa
The results of this study highlight the appropriateness of
an RNA-seq approach for studies of adaptation (including
adaptive plasticity) in non-model organisms. With the
paucity of genomic resources available for most wildlife
species, NGS technologies offer the best hope for unravel-
ling the processes of evolutionary adaptation in a natural
setting. Rainbowfish are evolutionarily very different from
their nearest genome-enabled species, Oryzias latipes, yet
in this study we were able to generate a substantial list of
candidate genes involved in a response to increasing tem-
peratures. Over the past few years, the proliferation of
software resources and validated pipelines for RNA-seq
means that virtually any organism can now be the focus of
ecological genomic research and this is reflected in the
rapid increase in publications reporting RNA-seq analyses
in non-human taxa. The limiting factors that remain now
are bioinformatic expertise and incomplete reference data.
Over half of the dysregulated transfrags identified in our
study were unable to be identified or were of unknown
function. This continues to be a major challenge for stud-
ies of ecological and evolutionary genomics [6]. Interpret-
ation of genomic data lags well behind the current ability
to generate that data. The limitation stems from the fact
that annotation of genes of ecological interest still relies
upon inferring homologies with genomic features
established and developed in a few model species for
non-ecological purposes. Better data integration is
needed to facilitate the association of gene transcripts
with specific natural conditions or phenotypic re-
sponses. Further work to characterise the function of
these unknown genes via experimental studies of non-
model organisms will enhance our understanding of the
important biological pathways involved in responses to
temperature stress and other environmental changes.
We have shown that differing mapping and DE analysis
approaches lead to very different outcomes in terms of
the DE genes identified. While a combination of all
available approaches is preferable to identify overlap in
the candidate genes detected, we found that combining
output from just Bowtie mapping and DESeq signifi-
cance testing with BWA mapping and DESeq signifi-
cance testing delivered just 21 more DE genes than
combining all four approaches tested in our study (see
Figure 1). This conservative approach is an efficient way
to avoid large numbers of false positives being detected
in RNA-seq studies.

Conclusions
Temperature increases predicted over the coming de-
cades suggests species with limited dispersal abilities will
need substantial adaptive potential to avoid extinction.
That adaptive potential will likely come from a number
of sources including adaptive phenotypic plasticity,
standing genetic variation, and newly-derived mutations.
Regardless of the source, adaptation will be most im-
portant in those processes related to heat tolerance. We
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have presented a first insight into which processes are
likely to be important in the rainbowfish, M. duboulayi.
This provides a foundation for future research into
temperature-driven adaptive responses in freshwater
species but also invites more detailed study of the
phenome-genome interaction under conditions of
temperature stress.
We identified a predictable suite of heat shock genes

that responded sharply to increased temperatures in the
treatment group. However, we also identified transfrags
related to regulation of metabolic functions and develop-
mental processes that showed mid-range levels of
dysregulation and may be stronger candidates as genes
for long-term adaptation to a warming environment. We
present these candidate genes as targets for ongoing re-
search into populations representing different thermal
environments throughout the species range. We also ex-
pect that these candidates will be useful targets for stud-
ies of other freshwater species experiencing long-term
thermal challenges.
The expression level changes we have presented may

be an example of a plastic response. To check for an
adaptive component it is necessary to repeat the
temperature trial on other geographically distant popula-
tions and/or sister taxa. Parallel expression level changes
in these populations would indicate plasticity whereas al-
tered responses would be suggestive of adaptation at the
genome level. Such “common garden” experiments allow
the disentangling of pure plastic vs. genetic responses
and are ideal approaches for future research. Other ave-
nues to explore evolutionary adaptation to increased
temperatures include investigating if DNA polymor-
phisms are present within and between populations at
the gene regions we have identified in this study. Exten-
sions of this research to include adaptive traits from
other important environmental impacts will enable a
much broader understanding of how freshwater species
are likely to cope with human-induced habitat and cli-
matic change.

Availability of supporting data
Raw sequencing data is available through the NCBI Se-
quence Read Archive under Project ID PRJNA205235
(http://trace.ncbi.nlm.nih.gov/Traces/sra/). All samples
were sequenced as 101 bp paired-end reads on an
Illumina HiSeq2000 sequencer.
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matching up-regulated transfrags in the high temperature group of
M. duboulayi. Mean similarity is computed as the average similarity value
for all the hits of a given sequence. Gene ontology abbreviations:
P= biological process, F= molecular function, C= cellular component.
Table S2b. Annotated genes matching down-regulated transfrags in the
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