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RNA-seq and microarray complement each other
in transcriptome profiling
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Abstract

Background: RNA-seq and microarray are the two popular methods employed for genome-wide transcriptome
profiling. Current comparison studies have shown that transcriptome quantified by these two methods correlated

well. However, none of them have addressed if they complement each other, considering the strengths and the

limitations inherent with them. The pivotal requirement to address this question is the knowledge of a well known
data set. In this regard, HrpX regulome from pathogenic bacteria serves as an ideal choice as the target genes of

HrpX transcription factor are well studied due to their central role in pathogenicity.

Results: We compared the performance of RNA-seq and microarray in their ability to detect known HrpX target
genes by profiling the transcriptome from the wild-type and the hrpX mutant strains of γ-Proteobacterium

Xanthomonas citri subsp. citri. Our comparative analysis indicated that gene expression levels quantified by RNA-seq

and microarray well-correlated both at absolute as well as relative levels (Spearman correlation-coefficient, rs > 0.76).
Further, the expression levels quantified by RNA-seq and microarray for the significantly differentially expressed

genes (DEGs) also well-correlated with qRT-PCR based quantification (rs = 0.58 to 0.94). Finally, in addition to the 55

newly identified DEGs, 72% of the already known HrpX target genes were detected by both RNA-seq and
microarray, while, the remaining 28% could only be detected by either one of the methods.

Conclusions: This study has significantly advanced our understanding of the regulome of the critical transcriptional
factor HrpX. RNA-seq and microarray together provide a more comprehensive picture of HrpX regulome by

uniquely identifying new DEGs. Our study demonstrated that RNA-seq and microarray complement each other in

transcriptome profiling.

Keywords: RNA-seq, Microarray, Transcriptome profiling, Pathogenic bacteria, Virulence, Type 3 secretion system,
Effectors, HrpX, Xanthomonas, Citrus canker disease

Background
Transcriptome of an organism represents the entire rep-

ertoire of transcripts encoded by the genes as a pheno-

typic response to the condition in which they exist. The

sheer ability to simultaneously quantify the expression

levels for a vast number of genes has revolutionized the

biomedical research, facilitating the analysis of global

gene expression patterns at the genome-wide scale [1].

In the past decade, there has been a tremendous pro-

gress in the development of methods to deduce and

quantify the gene expression levels at the whole tran-

scriptome level [1]. Among the several transcriptome

profiling methods, RNA-seq and DNA microarray stand

out as the two widely used genome-wide gene expression

quantification methods [1-17].

RNA-seq method involves the conversion of isolated

transcripts into the complementary DNA (cDNA), which

is then directly sequenced in a massively parallel deep-

sequencing-based approach [18]. By mapping the resulting

short sequencing reads onto the reference genome, the ex-

pression levels of genes relative to the condition of interest

or absolute levels can be quantified [9,11]. This method

has been implemented in different platforms like Illumi-

na’s Genome Analyzer, Roche 454 Genome Sequence, and

Applied Biosystems’ SOLiD [4]. On the other hand,

microarray is based on the hybridization of specimen tar-

get strands onto the immobilized complementary probe

strands. For example, in a two-color microarray, transcripts
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extracted from different conditions are labeled with

distinct fluorescent dyes while being converted to

cDNA. These labeled samples are then hybridized to

the immobilized complementary probe strands in an

array representing the genes. By measuring the light in-

tensity of the distinct fluorescent dyes, the relative

abundance of each transcript in the two different con-

ditions can be measured [8,12,13,17,19,20]. Affymetrix

and Agilent are the two prevalent platforms in micro-

array technology [2,14].

Even though, initially microarray has been instrumental

in whole transcriptome analysis, currently RNA-seq is

becoming a preferred method of choice, since it is con-

sidered to effectively surmount the limitations of micro-

array [1,21-23]. RNA-seq technology, unlike microarray,

does not depend on the prerequisite knowledge of the

reference transcriptome [24]. Further, RNA-seq data

contains very low background signal, a higher dynamic

range of expression levels, and also relatively small

amount of total RNA required for quantification, when

compared to microarray [1,23]. Despite these advan-

tages, the efficiency of RNA-seq is marred with the

problem of overwhelming amount of ribosomal RNA

(rRNA) in the data, short reads, less base accuracy, and

variation of read density along the length of the tran-

script, posing a challenge for this high-throughput

method [21,25,26]. However, in spite of their strengths

and limitations, RNA-seq and microarray have become

the default popular methods of choices for genome-

wide transcriptome studies [1,2,23].

Currently several studies have been conducted to

compare the performance of RNA-seq and microarray

in quantifying the expression level of genes, by focusing

on various aspects like reproducibility, accuracy, statis-

tical issues, technical and biological variabilities

[1,15,21,27-30]. The main conclusion from these studies

has been that the expression levels quantified by these

two methods correlated to a large extent, and overall

favored the RNA-seq because of high reproducibility, ac-

curacy, and dynamic range [27,29]. However, none of

these comparison studies have addressed if these two

methods complement each other in transcriptome profil-

ing given the strengths and limitations associated with

them. In order to address this question, we require an

already well characterized dataset. The HrpX regulome

from Xanthomonas citri subsp. citri (Xcc) serves as an

ideal data model in this regard [31-33]. Xcc is a causal

agent of citrus canker, one of the serious and destructive

diseases in citrus that is resulting in significant losses to

citrus industry worldwide [34], while HrpX is a key glo-

bal transcription factor that regulates the expression of

hrp (hypersensitive response and pathogenicity) cluster

of genes, which are considered as the major pathogen-

icity factors [31,35]. HrpX contains AraC-type of DNA

binding domain, which specifically recognizes the plant-

inducible promoter (PIP) box (TTCGC-N15-TTCGC)

and imperfect PIP box (TTCGC-N8-TTCGT) present in

the cis-regulatory regions of hrp gene cluster [36-38].

Since HrpX has a key role in pathogenicity, tremendous

progress has been made in cataloguing the target genes

of HrpX [39-45]. We therefore assessed the performance

of RNA-seq and microarray in their ability to detect

known HrpX target genes. We chose Illumina and Agi-

lent as the corresponding platforms for RNA-seq and

microarray, as they are the most popular platforms for

these technologies [2,4].

Results
In order to uncover the regulome of HrpX transcription

regulator by profiling the wild-type and the hrpX mutant

strains transcriptome, we had designed a microarray

chip covering the whole genome under Agilent platform

in our previous study [33]. Here, we conducted genome-

wide transcriptome profiling of these two strains by

RNA-seq and compared the results to the previously

published microarray data, to assess the performance of

these two methods. Further, to avoid technical variation

associated with RNA isolation, we used the aliquots

from the same total RNA samples used for microarray

experiments also for RNA-seq.

We obtained 16,431,283, 17,289,220, 18,124,120 sequence

reads for the wild-type and 15,084,955, 17,831,920, and

18,115,115 for the hrpX mutant strain with a median

sequence length of 74-base pairs (bp) (Additional file 1:

Table S1). Raw reads often have high sequencing errors,

especially in the 30 end where there is a high chance of

sequencing errors to occur [46]. We therefore filtered the

reads for high quality ones by trimming off the base pairs

with low quality score assigned to them during down-

line processing of RNA-seq. More than 90% of the reads

passed the quality filter, as a result, the median sequence

length of quality filtered reads subsequently dropped to

68-bp (Additional file 1: Table S1). We then mapped

these high quality trimmed reads on to the Xcc genome.

Approximately more than 90% of the reads could be

mapped on to the reference genome, indicating good

sequence coverage (Additional file 1: Table S1). Overall

~97% of the annotated genes had more than one read

mapped, while merely ~3% of the annotated genes had

no reads mapped, indicating good sequencing depth.

Further, we also observed a difference in the sequence

coverage between the chromosome and the two en-

dogenous plasmids of Xcc. Annotated coding genes

from the chromosome with a size of 5.18 mega base

pairs (Mb) had 98% sequence coverage, whereas, it

was 78% for plasmid pXAC64 with a size of 0.06 Mb,

and relatively lower with only 62% sequence
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coverage for plasmid pXAC33 with a size of 0.03 Mb

(Additional file 1: Table S2).

Comparison at absolute levels of expression

RNA-seq had coverage for 4323 genes with one or

more reads mapped, while by microarray 4349 genes

were assigned the fluorescence intensity values after

the background correction. Among these 4312 genes

(~99% of the total genes) were common to both meth-

ods, while merely 37 (0.8%) and 11 genes (0.2%) were

uniquely called by microarray and RNA-seq respectively

(Additional file 1: Tables S2 and S3; Additional file 2: Fig-

ure FS1). We compared the absolute levels of gene ex-

pression in terms of RNA-seq counts and microarray

fluorescence intensities for all the listed genes called by

both the methods. These two independent measures of

transcript abundance associated with each gene for all

the biological replicates from the wild-type and the hrpX

mutant strains were compared separately. The resulting

correlation was mapped as a scatter plot, with an average

number of counts from Illumina sequencing against the

normalized fluorescence intensities from Agilent arrays

for each gene in the wild-type (Figure 1A) as well as in

the hrpX mutant (Figure 1B). Absolute levels of gene ex-

pression correlated well, when estimated in terms of

Spearman’s correlation coefficient (rs) with 0.78 (p-value

< 0.0001) for the wild-type and 0.80 (p-value < 0.0001)

for the hrpX mutant strain. This is in agreement with the

previous reports that expression levels measured by

microarray and RNA-seq had correlations ranging be-

tween 0.62 and 0.8 for prokaryotic and eukaryotic data-

sets [18,28,29]. However, there seems to be little or no

correlation for the genes with low level of expression.

We further estimated the correlation for the subset of

genes with fluorescence intensity values ≤100 assigned by

microarray (~360 genes) with the corresponding expres-

sion levels determined by RNA-seq. This subset of genes

revealed a very poor rs of 0.2 (p-value <0.0002) and 0.3

(p-value <0.0001) for the wild-type and the hrpX mutant

strains respectively. Although the expression levels of

these genes did not change much according to micro-

array, RNA-seq reported them to have different expres-

sion levels. This may be attributed to the high sensitivity

of RNA-seq method.

We further estimated the correlation between all the

combinations of biological replicates for the wild-type

and the hrpX mutant strains independently. The result-

ing rs values of these comparisons are represented in the

form of heat maps, for the wild-type (Figure 1C) and the

hrpX mutant strains (Figure 1D), which provide a global

view of these correlations. Overall, on an average the

wild-type with rs = 0.76 (p-value < 0.0001) and the hrpX

mutant with rs = 0.78 (p-value < 0.0001) were observed

for the biological replicates from all the correlation com-

binations. This level of comparison strongly suggested

that not only the absolute level of gene expressions
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Figure 1 Comparison of absolute levels of gene expression by RNA-seq and microarray. Upper panel shows for the (A) wild-type and (B)

hrpX mutant, the correlation between normalized fluorescence intensities of Agilent microarray with the RNA-seq counts from Illumina. Each dot

represents the average values for each gene from all the biological replicates. Spearman’s correlation coefficient (rs) is indicated for each

comparison. Lower panel shows rs between normalized fluorescence intensities of Agilent microarray with the RNA-seq counts from Illumina for

all the combination of biological replicates for the (C) wild-type, and (D) the hrpX mutant. The rs values are plotted in the form of a heat map,

where green color represents low rs value, while red represents highest rs value. The dendrogram provides a hierarchical clustering.
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determined by RNA-seq and microarray highly corre-

lated, but were also highly reproducible, in spite of the

technical as well as the biological variability associated

with the quantifications.

Comparison at relative levels of expression

We also compared the performance of these two meth-

ods at relative level of gene expression. For this purpose,

we first computed the relative expression level of genes

in terms of fold-change (FC) for the hrpX mutant in re-

lation to the wild-type strain, along with p-values to de-

note the statistical significance and false discovery rate

(FDR), for having a good control over the false positives

rate. We compared the relative expression levels for

4312 consensus genes both qualitatively and quantita-

tively, after transforming the FC values to logarithm base

2 (log2) scale without any statistical cut-off thresholds

(Additional file 1: Table S2). For the 2587 (~60% of the

consensus) genes, the expression levels agreed qualita-

tively, while 1725 (~40%) genes disagreed between the

two methods (Figure 2A). At this point, our comparison

was exclusively focused on whether the gene of interest

is up- or down-regulated based on the sign of the log2
transformed FC values, but not necessarily on the FC

magnitude. We further illustrated the quantitative rela-

tionship of log2FC between RNA-seq and microarray

in the form of a scatter plot as shown in Figure 2B.

Genes with no change in expression levels in the wild-

type and the hrpX mutant strains (FC = 1) clustered

around log2FC of zero (log2 of one is zero) in the scat-

ter plot (Figure 2B). The rs between the log2FCs deter-

mined by RNA-seq and microarray was found to be

0.30 (p-value < 0.0001) (Figure 2B). This lower correl-

ation value indicated that the magnitude of FCs be-

tween the two methods differed largely that might be

due to the background noise resulting from the many

imperfections, which are inherent to the high-

throughput technologies [47,48].

The correlation coefficient provides an overall estimate

of correlation between the expression levels determined

by RNA-seq and microarray methods. However, this

does not zoom into the data in a detailed manner. For

instance, no information is provided about how much of

FC magnitude that actually differs between the two
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Figure 2 Qualitative and quantitative comparison of relative levels of gene expression in the hrpX mutant with respect to the

wild-type strain, determined by RNA-seq and microarray methods. (A) Venn diagram showing the qualitative agreement in the log2 fold-

change values for expression of 4312 genes by RNA-seq and microarray. (B) Scatter plot showing the relative expression levels of genes in terms

of log2FCs, determined by RNA-seq and microarray. Correlation between the two methods is shown by Spearman’s correlation coefficient (rs). (C)

Frequency histogram showing the percentage of genes with the fold difference between RNA-seq and microarray, with a bin width of 0.5.

The lower panel D, E, and F are same as A, B, and C respectively, but for only those genes that have passed the statistical cut-off threshold

(FDR ≤ 5% and absolute log2 fold-change ≥ 0.6).
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methods for a given gene. In order to get an insight into

this aspect, we computed the fraction of genes deviating

in their FC magnitude values by dividing the FC magni-

tude value determined by RNA-seq with that of micro-

array (Figure 2C). Here, the fold difference of one

represents the fraction of genes that are determined to

have a FC magnitude of ± 0.5 (bin width) by both RNA-

seq and microarray methods. When we plotted this fre-

quency as a histogram for the whole 4312 consensus

genes, more than 75% of genes were found to have FC

magnitude values ± 0.5 by RNA-seq and microarray

methods. Since it is a relative expression comparison,

genes whose expression values did not change much in

the wild-type and the hrpX mutant strains, tend to have

FC values = 1. Subsequently, it is more sensible to con-

sider only differentially expressed set of genes for further

comparisons.

We therefore applied FDR ≤ 0.05 (5%) in conjunction

with FC (absolute log2FC ≥ 0.6) to filter the whole data

set. In total, 87 (2%) genes from RNA-seq and 64 (1.5%)

from microarray qualified at this cut-off threshold from

the 4312 consensus genes (Additional file 1: Table S4).

Together, 106 genes satisfied our selection criterion from

both the methods (Additional file 1: Table S4). Among

them 84 (79.2%) genes were up-regulated, while 22

(20.8%) genes were found to be down-regulated. Further,

45 (~42.45%) genes were common between both the

methods, whereas, 42 (39.63%) and 19 (~17.92%) genes

were uniquely detected by RNA-seq and microarray re-

spectively (Additional file 1: Table S4; Additional file 2:

Figure FS2). We further compared the FC values of the

45 consensus genes both qualitatively and quantitatively.

These genes qualitatively agreed 100% by having the

same trend of log2 transformed FC values by both RNA-

seq and microarray (Figure 2D). Likewise the quantita-

tive comparison was performed by estimating the correl-

ation between the magnitude of log2FC determined by

RNA-seq and microarray for the 45 consensus genes as

shown in Figure 2E. The magnitude of FC values be-

tween the two methods were found to be well correlated

(rs = 0.76, p-value < 0.0001), indicating that the same

trend of variation was observed in FC values between

the two methods without any dispersion. Thereby, the

magnitude of FC values determined by RNA-seq and

microarray agreed to a large extent for the 45 consensus

genes. In order to further pinpoint the deviation in the

FC magnitude quantified by the two methods, we plot-

ted the differences in the FC values determined by RNA-

seq with respect to microarray, and the percentage of

genes with that difference for the 45 consensus genes

(Figure 2F). Majority of the genes (~98%) were found to

have a magnitude of FC within the range of ≤ 1.5, while

for the remaining 2% of the genes, it was 4.7-times

higher in RNA-seq than the microarray based

quantification. Based on these comparisons, we con-

cluded that the relative gene expression levels quantified

by RNA-seq and microarray were consistent to a large

extent for the statistically differentially expressed set of

consensus genes.

Comparison with qRT-PCR

Traditionally, quantitative Reverse Transcription PCR

(qRT-PCR) is used to validate the gene expression levels

quantified by high-throughput technologies like RNA-

seq and microarray [49]. Therefore, we compared the

relative expression levels quantified by RNA-seq and

microarray by qRT-PCR for a subset of 43 (40.6%) genes

(Additional file 1: Table S5) that were randomly selected

from the 106 significantly differentially expressed genes.

Among them, 19 genes were found to be common be-

tween both the methods, 12 genes were unique to RNA-

seq, while remaining 12 genes were found to be unique

to microarray (Additional file 1: Table S4). The expres-

sion levels were found to be highly reliable for genes that

are determined to be significantly differentially expressed

by RNA-seq (rs = 0.94; p-value < 0.0001) as well as

microarray (rs = 0.97; p-value < 0.0001). For the consen-

sus genes, microarray had a slightly higher correlation

with qRT-PCR than RNA-seq (Figures 3A and 3B).

We further plotted the percentage of genes that

deviated in the magnitude of FC quantified by RNA-seq

and microarray with respect to qRT-PCR (Figures 3C

and 3D). For most of the genes, the magnitude of FC

quantified by RNA-seq and microarray were relatively

higher, when compared to qRT-PCR (fold difference >1).

Overall, the magnitude of FC quantified by RNA-seq

was in consistence with qRT-PCR based quantification

(Figure 3C). For microarray, the magnitude of FC was

observed to be consistent with qRT-PCR for a majority

of genes, however, we also noticed outlier genes with a

9-times higher FC magnitude (Figure 3D).

For the subset of 12 genes that were found to be

uniquely determined by RNA-seq, the magnitude of

FC quantified by RNA-seq correlated moderately with

qRT-PCR (rs = 0.58; p-value 0.05) (Figure 4A; Additional

file 1: Table S5). The 12 genes found to be uniquely

detected by microarray had a correlation of rs = 0.92

(p-value 0.002) with qRT-PCR (Figure 4B; Additional file 1:

Table S5). These correlations are slightly lower when com-

pared to the consensus genes (rs ≥ 0.94). This indicated

that the expression levels are more reliable for the genes

that are determined to be significantly differentially

expressed by both RNA-seq and microarray rather than by

any one method. Moreover, it also indicated that there is a

lot of variation in the magnitude of FC quantified by RNA-

seq and qRT-PCR. We further evaluated this variation

i.e. deviation from the magnitude of FC, by plotting the

frequency histogram for the 12 genes unique to RNA-seq
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Figure 3 Comparison of expression levels quantified by RNA-seq and microarray with qRT-PCR. (A) Comparison of expression levels

determined by RNA-seq with qRT-PCR. (B) Comparison of expression levels determined by microarray with qRT-PCR (C) Frequency histogram

showing the percentage of genes with the fold difference between RNA-seq and qRT-PCR, with a bin width of 0.5. (D) Frequency histogram

showing percentage of genes with the fold difference between microarray and qRT-PCR, with a bin width of 0.5.
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Figure 4 Comparison of expression levels of genes that are uniquely determined by RNA-seq and microarray with that of qRT-PCR.

Expression levels for the set of selected genes quantified by (A) RNA-seq, and (B) microarray with that of qRT-PCR. Frequency histogram showing

percentage of genes deviating from the magnitude of FC, quantified by RNA-seq (C), and microarray (D) with respect to qRT-PCR. Bin width of

0.5 and 0.05 are used respectively.
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(Figure 4C) and microarray (Figure 4D). For the genes

unique to RNA-seq, we observed that none of them had

the same magnitude of FC, with 50% genes having 0 to

0.5-time lower and for the remaining 50% of the genes the

magnitude of FC was observed to be 2 to 3-time higher,

when compared to qRT-PCR (Figure 4C). Because of this

inconsistence in the magnitude of FC, the expression levels

are moderately correlated. For the genes unique to micro-

array, we observed a good consistence in the magnitude of

FC with qRT-PCR (Figure 4D).

Comparison in terms of detection of genes encoding

T3SS and effectors

Extensive and detailed studies have been carried out

since past three decades in cataloguing the target genes

of HrpX in the genus Xanthomonas using various gen-

etic and biochemical methods [32,38,39,50-55]. HrpX is

known to regulate hrp gene cluster that encodes the type

III secretion system (T3SS) and effectors [31,56]. T3SS

are specialized macromolecular machinery that act as a

nano-injector to translocate the effector proteins into

the cytoplasm of host plant cells [50]. These translocated

effectors manipulate the host cellular processes by alter-

ing signal transduction, transcriptional activities like

suppression of basal plant defense responses, and pro-

tein turnover in host cells for the benefit of the pathogen

[50]. The T3SS machineries are evolutionarily conserved

across many Gram-negative animal- and plant-

pathogenic bacteria [57].

Xcc is comprised of 25 hrp genes, including 19 hrp-

conserved (hrc) and 6 hrp-associated (hpa) genes that

encode the T3SS [58]. These genes are clustered in a

~25 kb region spanning from 462712 to 488334 bp of

the genome [32]. We applied statistically significant dif-

ferentially expressed gene list that were derived from

RNA-seq and microarray methods to this cluster. We

counted for the number of known hrp cluster genes,

which passed the FC and FDR cut-off thresholds from

RNA-seq and microarray methods (Table 1). Among the

25 hrp cluster genes, 16 (64%) were detected by both

RNA-seq and microarray methods. Six genes were found

to be uniquely detected by microarray, whereas, none

uniquely detected by RNA-seq (Table 1). Three genes

namely, hrcC, hpa2, and hpaA could not pass our statis-

tical cut-off criteria by any of the methods, although

they followed the same qualitative expression pattern.

We further quantified the deviation in the magnitude of

FC for the 16 known hrp genes, found in consensus be-

tween RNA-seq and microarray (Figure 5A). The magni-

tude of FC for 5% genes found to be same, while for the

remaining 95% genes it was found to be between 1.2 to

1.8-time higher in RNA-seq than in microarray. Even

though, microarray overall detected more genes from

hrp cluster, RNA-seq reported higher magnitude of FC

(Table 1).

Xcc also encodes 25 putative effector genes regulated

by HrpX, which meditate the interaction with the host

plant, hence determine the host specificity [55]. Since

XAC2785, XAC1210 and XAC1209 were considered as

pseudo or inactive genes, they were excluded from our

analysis. We tabulated how many of these genes were

detected by RNA-seq and microarray methods with their

corresponding log2FC values along with p-value and

FDR from the respective methods (Table 2). In total, 10

(45.5%) genes were detected by both the methods. RNA-

seq and microarray uniquely detected one and three

genes respectively. The remaining 9 genes (36.4%) were

neither detected by RNA-seq nor by microarray, since

they could not pass both the FC and FDR cut-offs

(Table 2). For the 10 consensus genes, we calculated the

fold differences in the magnitude of FC quantified by

RNA-seq with respect to microarray. None of the genes

had the same magnitude of FC between the two meth-

ods. Microarray estimated higher magnitude of FC for

~64% genes than RNA-seq, while RNA-seq estimated

1.2 to 1.8-time higher magnitude of FC for the

remaining ~36% genes (Figure 5B). In contrast to hrp

gene cluster, where microarray qualitatively outper-

formed RNA-seq in its ability to detect more genes, here

RNA-seq complemented quantitatively with higher con-

fidence by reporting higher magnitude of FCs. Thereby,

for the effector gene data set, RNA-seq and microarray

complemented each other both qualitatively as well as

quantitatively.

Overall, considering T3SS and effector genes, in total

there are 47 genes, from which, 26 genes (55%) were

detected by both RNA-seq and microarray (Tables 1 and

2). RNA-seq uniquely detected 1 gene (2%), whereas,

microarray detected 9 genes (19%). Remaining 11 genes

(23%) were not detected by either one of the methods by

failing to pass the cut-off threshold (Tables 1 and 2).

Further, considering only the genes that are detected by

at least one method, 72% of the known were detected by

both methods, while remaining 28% were detected by ei-

ther one of the methods.

Genes uniquely detected by RNA-seq and microarray

Among the 87 statistically significant differentially
expressed genes from RNA-seq, 42 (39.63%) genes were
found to be uniquely detected by this method (Add-
itional file 2: Figure FS2). Of these 42 genes, 17 were
found to be down-regulated, while 25 were up-regulated
(Additional file 1: Table S4). Nearly 98% of these genes
(41 of 42 unique) could not pass the FC cut-off thresh-
old by microarray. The only exception is the gene fliO
(XAC1945) that encodes a flagellar protein for flagellum
apparatus, which passed the FC cut-off, but failed with
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Table 1 Summary of Type III secretion system (T3SS) hrp cluster genes detected by RNA-seq and microarray

Locus Tag Gene Symbol RNA-seq Microarray Detected by

log2FC p-value FDR log2FC p-value FDR

XAC0412 hrcN −2.2355 7.66E-09 1.27E-06 −0.8217 0.00E+00 0.00E+00 †

XAC0409 hrcJ −3.1488 4.20E-15 1.40E-12 −2.1840 0.00E+00 0.00E+00 †

XAC0406 hrcU −2.6729 1.01E-13 2.56E-11 −1.0507 0.00E+00 0.00E+00 †

XAC0405 hrcV −1.5755 3.27E-08 4.88E-06 −0.8427 4.00E-05 2.58E-03 †

XAC0407 hrpB1 −3.9638 7.53E-28 3.61E-25 −2.8603 0.00E+00 0.00E+00 †

XAC0408 hrpB2 −2.8155 2.48E-09 4.67E-07 −1.9507 0.00E+00 0.00E+00 †

XAC0410 hrpB4 −1.9274 7.42E-05 6.05E-03 −1.5237 0.00E+00 0.00E+00 †

XAC0403 hrcQ −2.0615 6.36E-07 7.64E-05 −0.8647 0.00E+00 0.00E+00 †

XAC0402 hrcR −1.7123 4.73E-06 5.53E-04 −0.8677 0.00E+00 0.00E+00 †

XAC0399 hrpD5 −1.7287 2.67E-10 5.50E-08 −1.5487 0.00E+00 0.00E+00 †

XAC0398 hrpD6 −1.5446 5.85E-07 7.43E-05 −1.6347 0.00E+00 0.00E+00 †

XAC0397 hrpE −2.1535 7.67E-16 2.76E-13 −1.8163 0.00E+00 0.00E+00 †

XAC0394 hrpF −2.0517 7.04E-15 2.17E-12 −1.2113 0.00E+00 0.00E+00 †

XAC0416 hpa1 −5.0096 1.49E-51 1.29E-48 −4.2917 0.00E+00 0.00E+00 †

XAC0396 hpaB −1.5429 1.56E-07 2.11E-05 −1.2527 0.00E+00 0.00E+00 †

XAC0393 hpaF −0.9235 1.96E-04 1.34E-02 −0.6083 1.00E-05 8.10E-04 †

XAC0411 hrpB5 −1.9690 3.92E-03 1.38E-01 −0.8457 0.00E+00 0.00E+00 ψ

XAC0401 hrcS −1.0156 4.00E-02 4.71E-01 −1.0837 0.00E+00 0.00E+00 ψ

XAC0404 hpaP −1.2673 1.10E-02 2.74E-01 −1.1110 0.00E+00 0.00E+00 ψ

XAC0395 XAC0395 −1.0817 4.73E-02 5.08E-01 −0.8640 0.00E+00 0.00E+00 ψ

XAC0415 hrcC −0.2713 2.49E-01 8.27E-01 −0.4053 4.75E-03 1.78E-01 $

XAC0413 hrpB7 −1.2107 1.08E-02 2.74E-01 −0.6590 0.00E+00 0.00E+00 ψ

XAC0417 hpa2 −1.4130 8.33E-03 2.31E-01 −0.4610 4.40E-04 2.64E-02 $

XAC0400 hpaA −1.0585 2.76E-03 1.10E-01 −0.7763 9.74E-03 2.05E-01 $

XAC0414 hrcT −1.0474 1.10E-02 2.74E-01 −0.6800 0.00E+00 0.00E+00 ψ

† Consensus between RNA-seq and microarray16 genes (64%).

ξ Only RNA-seq 0 gene (0%).

ψ Only microarray 6 genes (24%).

$ Undetected 3 genes (12%).

The list of known T3SS hrp cluster genes along with the information about the log2FC, p-value and FDR value from RNA-seq and microarray experiments.

"Detected by" column assigns by which method the known hrp cluster gene is found to be significantly differentially expressed.

A B

Figure 5 Comparison of expression levels of genes encoding T3SS and effectors that are commonly detected by RNA-seq and

microarray. (A) Frequency histogram showing percent of genes deviating from the magnitude of FC quantified by RNA-seq with respect to

microarray for hrp gene cluster. Bin width of 0.2 is used. (B) Frequency histogram showing percentage of genes deviating from the magnitude of

FC quantified by RNA-seq with respect to microarray for the T3SS and effector genes. Bin width of 0.5 is used.
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FDR threshold. The gene XAC0755 encoding KdpF, a
component of an integral membrane potassium-
transporting system [59], is down-regulated by a factor
of 3 (log2 FC of 1.6) according to RNA-seq, but, micro-
array could not capture this, as the probes for this gene
were missing on the chip. This shows the limitation of
microarray, where probes for all the genes need to be
defined while designing the chip. Furthermore, four
genes uniquely found by RNA-seq are involved in signal
transduction and gene regulation, i.e. XAC4116 encod-
ing a serine/threonine kinase, XAC1819 encoding a
tryptophan-rich sensory protein, and two regulatory
genes XAC3026, and XAC3363, whose function in citrus
canker disease development remain to be explored. Fur-
thermore, 21 genes (24%) are currently annotated as
hypothetical proteins (Additional file 1: Table S6).
Among them, four hypothetical proteins XAC0854,
XAC4131, XAC1203, and XACb0064 were predicted to
be T3SS secreted while 7 hypothetical proteins,
XAC3275, XAC3680, XAC1943, XAC0527, XAC0599,

XAC0239, and XAC0755 were predicted to be Type 2
Secretion System (T2SS) substrates (Additional file 1:
Table S6) by Effective database [60]. Gram-negative bac-
teria employ T2SS to transport proteins to the extracellular
milieu, where the T2SS exo-proteins containing N-terminal
signal peptides are used for inner-membrane transloca-
tion through either the Sec translocon or the Tat com-
plex [61]. Genes encoding proteins secreted by T3SS and
T2SS have been experimentally proved to be regulated
by HrpX [33,62,63].

Among the 64 statistically significant differentially

expressed genes from microarray, 19 (29.7%) genes

were found to be uniquely detected by this method

(Additional file 2: Figure FS2). 18 were found to be

down-regulated, while one gene was up-regulated

(Additional file 1: Table S4). Unlike that of RNA-seq,

nearly 63% genes (12 of 19 unique) could pass the FC

cut-off threshold, but failed to pass the FDR threshold

by RNA-seq. The remaining 37% genes (7 of 19

Table 2 Summary of Type III effector genes detected by RNA-seq and microarray

Locus Tag Gene Symbol RNA-seq Microarray Detected by

log2FC p-value FDR log2FC p-value FDR

XAC0286 xopE −1.3432 1.21E-07 1.69E-05 −1.1813 0.00E+00 0.00E+00 †

XACb0011 avrXacE3 −0.9098 2.20E-04 1.51E-02 −1.6363 0.00E+00 0.00E+00 †

XAC0754 xopI −1.1830 5.40E-04 3.11E-02 −0.7287 0.00E+00 3.00E-05 †

XAC3085 xopK −2.1505 0.00E+00 0.00E+00 −1.7157 0.00E+00 0.00E+00 †

XAC2786 xopN −3.5117 0.00E+00 0.00E+00 −2.9897 0.00E+00 0.00E+00 †

XAC1208 xopP −1.1860 1.00E-05 6.20E-04 −0.7583 0.00E+00 0.00E+00 †

XAC0277 xopR −1.1202 6.00E-05 5.10E-03 −1.2360 0.00E+00 0.00E+00 †

XAC0543 xopX −3.0765 0.00E+00 0.00E+00 −3.4423 0.00E+00 0.00E+00 †

XAC3230 xopAI −1.4353 0.00E+00 0.00E+00 −1.1510 0.00E+00 0.00E+00 †

XAC2922 hrpW −2.0833 0.00E+00 0.00E+00 −2.7723 0.00E+00 0.00E+00 †

XAC4213 xopAD −0.8816 2.60E-04 1.68E-02 −0.3960 2.17E-02 2.72E-01 ξ

XAC4333 xopQ −0.6779 1.95E-02 3.51E-01 −1.1190 0.00E+00 0.00E+00 ψ

XAC0601 xopV −0.5197 5.44E-02 5.33E-01 −0.7367 0.00E+00 2.70E-04 ψ

XAC0076 avrBs2 −0.8632 1.79E-03 7.90E-02 −0.566 5.00E-05 3.53E-03 $

XAC3090 xopL −0.3402 2.58E-01 8.37E-01 −0.6040 0.00E+00 0.00E+00 ψ

XAC3224 xopE −0.5716 2.45E-02 3.85E-01 −0.2397 2.68E-02 4.48E-01 $

XAC2009 xopZ −0.6456 9.45E-03 2.56E-01 −0.4160 1.30E-04 9.38E-03 $

XAC3666 xopAK −0.2756 2.89E-01 8.59E-01 −0.2060 3.23E-01 9.82E-01 $

XACa0022 pthA1 0.0225 8.00E-01 9.80E-01 0.0790 6.69E-01 9.98E-01 $

XACa0039 pthA2 −0.4501 2.09E-01 7.97E-01 0.0413 8.25E-01 9.98E-01 $

XACb0015 pthA3 −1.1700 3.52E-03 1.28E-01 0.0723 7.13E-01 9.98E-01 $

XACb0065 pthA4 −0.3423 8.51E-01 1.00E+00 0.0315 7.23E-01 9.98E-01 $

† Consensus between RNA-seq and microarray 10 genes (45.5%).

ψ Only microarray 3 genes (13.6%).

ξ Only RNA-seq 1 genes (4.5%).

$ Undetected 8 genes (36.4%).

The list of known T3SS effector genes along with the information about the log2FC, p-value and FDR value derived from RNA-seq and microarray experiments.

"Detected by" column assigns by which method the following effector genes are found to be significantly differentially expressed.
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unique) could not pass both FC and FDR cut-off

threshold. Furthermore, six genes were found to be

hypothetical. Among them XAC2876, XAC1241, and

XAC2370 were predicted as T2SS substrates. XAC1241

predicted as a T2SS substrate, shared 73% identity with

a putative secreted protein from X. campestris pv. vesi-

catoria strain 85–10. Another T2SS candidate

XAC2370 shared 95% identity with a secreted protein

from X. fuscans subsp. aurantifolii str. ICPB 10535.

XAC1124 shared 100% identity with MEKHLA domain

protein from X. axonopodis pv. punicae str. LMG 859

[33]. This domain is found in bacteria associated with

plants. It further shares similarity with the PAS do-

main and might be involved in light, oxygen, and

redox potential sensation [64].

Comparison at the level of functional annotations of

genes

For comparison based on the biological function for the

differentially expressed genes from RNA-seq and micro-

array, we utilized the ClueGO to integrate the Gene

Ontology (GO) [65] terms and KEGG [66] pathway

terms and create a functionally organised GO/KEGG

network. Functional annotation with biological processes

category resulted in 13 (14.94%) genes found from clus-

ter for RNA-seq, while for microarray it was 12

(19.35%).

The ClueGO overview pie chart highlighted that sig-

nificant proportion of the genes differentially regulated

are involved in “protein secretion by the T3SS” by both

RNA-seq and microarray (Additional file 3: Figure FS3A

& D). Additionally, RNA-seq also identified genes

involved in “secretion activity by cell” as well as “single

organism catabolic process” (Additional file 3: Figure

FS3A). On the other hand, microarray highlighted the

genes involved in “protein transmembrane transport”,

“polycyclic aromatic hydrocarbon degradation” and “es-

tablishment of localization in cell” (Additional file 3:

Figure FS3D). Majority of the genes are involved in “bac-

terial secretion system”, as shown by both RNA-seq and

microarray. Also the differentially expressed genes are

found to be significantly involved in the “transport of

monovalent inorganic cation” (Additional file 3: Figure

FS3B) and “protein transport” (Additional file 3: FS3E).

Genes have also been found uniquely by microarray as

significantly involved in “polycyclic aromatic hydrocar-

bon degradation” (Additional file 3: Figure FS3E). Genes

from RNA-seq have been found to be involved in “ribofla-

vin metabolism” as well as “single organism catabolic

process” (Additional file 3: Figure FS3B). Further,

visualization of the functionally grouped annotation net-

work for the differentially regulated genes derived from

RNA-seq (Additional file 3: Figure FS3C) and microarray

(Additional file 3: Figure FS3F) methods highlighted the

relationships between the terms. RNA-seq highlighted “pro-

tein secretion by the T3SS” along with the “small molecule

catabolic process”, while microarray reflected “polycyclic

aromatic hydrocarbon degradation” and “establishment of

localization in cell”, as the most significant terms of the

group. This analysis also showed that RNA-seq and micro-

array together provide more comprehensive functional in-

formation than the individual methods.

PIP box detection

HrpX is known to regulate the target gene expression by

specifically binding to PIP box motif present in the

cis-regulatory regions. PIP box consists of direct

repeats of “TTCGC” with a spacer of 8 to 26-bps in

between the repeats, even though ideally 8-bps and

15-bps are considered as the canonical PIP box [37].

We exploited this feature and looked for PIP boxes in

the promoter regions of the 106 significantly differen-

tially expressed genes (Additional file 4). All the 106

differentially expressed genes could be assigned to 90

transcriptional units based on MetaCyc database [67]

(Additional file 1: Table S8). However for simplicity,

genes under the control of the same cis-regulatory

regions were counted separately. Among the consensus

45 genes, 36 (80%) were shown to have canonical PIP

boxes (Figure 6A, Additional file 1: Table S7). Of the 42

genes that are uniquely determined by RNA-seq, 13

(31%) genes were confirmed to have PIP boxes; whereas,

among the 19 genes that are uniquely determined by

microarray 11 (57.8%) genes were confirmed to have PIP

boxes (Figure 6A, Additional file 1: Table S7).

In this study, we identified newly PIP box motif in 7

(19.4%) genes among consensus, 13 (100%) genes unique

to RNA-seq and 1 (9%) gene unique to microarray

(Figure 6B). Overall, 60 of the 106 (~57%) signifi-

cantly differentially expressed genes were confirmed to

have PIP boxes in their cis-regulatory regions (Add-

itional file 1: Table S7, Additional file 4). The pres-

ence of PIP box confirmed that these genes may be

directly regulated by HrpX, while the remaining 46

that do not have PIP boxes may be indirectly regu-

lated by HrpX via the other transcription factors. In

this regard, we looked for genes with sequence spe-

cific DNA binding activity in the 106 differentially

expressed genes. Six genes namely hrpG, pcaQ, blal,

XAC3026, XAC3445, and XAC3446 were known to

have sequence specific DNA binding activity according

to GO annotation. Among them, XAC3446, XAC3445,

and blaI have been newly identified in this study con-

taining PIP box motif (Additional file 1: Table S7,

Additional file 4). Thereby these 3 transcription regu-

lators are directly regulated by HrpX, which in turn

we assume regulate the 46 genes, which do not
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contain the PIP box motif and hence indirectly regu-

lated by HrpX. The DNA binding signatures for many

of these transcription factors are unknown; hence, ob-

scure the further confirmation of regulation by these

transcription factors. Nevertheless, the fact that many

of the genes that were uniquely determined by each

method showed a clear PIP box in their cis-

regulatory regions reiterates that RNA-seq and micro-

array complement each other.

Discussion
Currently, RNA-seq is becoming the preferable choice

for gene expression profiling in place of microarrays.

Although, all the parameters that influence the various

aspects of this method are yet to be understood com-

pletely, RNA-seq undoubtedly is playing a very important

role in deciphering the complexity of the transcriptome

by giving a new direction to isoforms, allelic expression,

untranslated regions, splice junctions, antisense regula-

tion and intragenic expression [10,16,29,68-74]. Several

studies have begun to investigate on the parameters like

sequencing depth, precision, GC bias, length bias, lane

effects, and processing artifacts [16,29,48,75-77]. On the

other hand, microarrays are in usage for more than two

decades. Therefore, most of the biases inherent to this

method have become more apparent [78]. For instance,

biases in the hybridization of the samples labeled with

Cyanine5 (Cy5) and Cyanine3 (Cy3) are sufficiently

explored, and currently several approaches are practiced

to minimize such effects [79-82]. Further, systematic

variability like influence of the image scanner settings on

the dye intensity measurements have now been robustly

handled by applying various normalization techniques

[83-86]. Despite these developments, some inherent

genes–specific biases like differential hybridization

efficiencies of the labeled target transcript to the

same probe are still found to be inevitable in micro-

arrays. In RNA-seq as well as microarray, all these

known and unknown parameters influence the final

outcome. Therefore, in this study, we focused on the

assessment of RNA-seq and microarray based on the

final outcome .i.e. statistically significant differentially

expressed genes.

In comparison with previous RNA-seq studies, with a

sequence coverage of 97% we observed for our data set,

is in consistence with the reported 89.5% to 95% cover-

age observed in other bacterial RNA-seq studies [87-89].

In our study, RNA-seq has identified more significantly

differentially expressed genes (82%), when compared to

microarray (63%) as in previous studies [18,29,30]. The

overall correlation (rs 0.76) in the magnitudes of FC for

the consensus genes between the two methods was

found to be similar or higher than previous studies

[18,29,30,72]. Furthermore, our comparison analysis with

qRT-PCR suggested that the expression levels were

highly reliable for those genes that were determined to

be differentially expressed by both RNA-seq and micro-

array. Hence, confirming the differential expression of

genes by multiple methods reduces false positives

thereby enhances the biological discovery.

Even though microarray overall outperformed RNA-

seq by detecting more known HrpX target genes from

the T3SS in hrp cluster by satisfying both FC and FDR

cut-off threshold, in principle RNA-seq also detected

genes hrpB5, hrcS, hpaP, XAC0395, hrpB7, and hrcT, in

terms of FC, but failed to pass FDR threshold. This

parameter is more directly influenced by error model

considered in the statistical method that is used to

A B

Figure 6 Statistics of HrpX binding sites in the cis-regulatory regions of significantly differentially expressed genes from RNA-seq and

microarray. The genes belonging to consensus and unique to each method are shown (A) Percentage of genes containing PIP box in the

cis-regulatory regions of genes that belong to three different groups are shown. The known (black bar) and novel (red bar) are indicated. (B) Only

genes with PIP box are shown, percentage of which already known (black bar) and novel (red bar) are indicated.
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infer the differential expression rather than RNA-seq

itself. For the same read counts, one can get slightly

different FDR values depending on the statistical

method [90]. But the implementation of all the statis-

tical methods is not feasible for every dataset. From

the T3SS in hrp cluster, three genes namely, hrcC,

hpa2, and hpaA were not found to be detected by

both RNA-seq and microarray, mainly because they fail

to pass FDR threshold. Interestingly, our previous

microarray analysis confirmed that all these three

genes are regulated by HrpX, but only at a later stage

of the growth phase by satisfying both FC and FDR

cut-off thresholds [33]. This consolidates the regulation

of some of the genes at later stages of the growth

phase. Further, in case of Type III effector genes, 8

genes (36.4%) were not detected by both RNA-seq and

microarray within considered cut-off threshold limit.

However, among them xopL, avrBs2, xopAK and xopZ

were found to be regulated by HrpX only at the later

stage of the growth phase (OD600 time point 0.5),

according to our previous microarray analysis [33].

Further, four genes namely, pthA2, pthA1, pthA3,

pthA4 were regulated by another transcription regula-

tor HrpG at early stage of growth phase (OD600 =

0.25 and 0.4) as observed in our previous study, while

another undetected gene xopE was found to be also

regulated by HrpG, but only at OD600 = 0.25 time

point of growth phase [33]. Thereby this study further

validated our previous results. Subsequently, both

methods detected 100% of the genes known to be

regulated by HrpX (at time point OD600 = 0.4) without

any false positives. Among them, 72% were detected

by both the methods while interestingly 28% of the

known target genes were detected by either one of the

methods. Hence, both the methods together could

complement each other.

In addition 55 genes (~51%) were newly identified as

differentially expressed by applying both microarray as

well as RNA-seq methods, thereby adding up to the

already existing repertoire of HrpX regulated genes. Fur-

thermore, 46 (83.6%) genes among them were uniquely

identified by either one of the methods. Overall, 21

newly identified genes were found to have PIP box in

their promoter regions, wherein 14 (58.3%) genes were

uniquely identified by either RNA-seq or microarray.

The presence of the PIP box in the promoter regions of

the HrpX-regulated genes uniquely identified by RNA-

seq and microarray further not only confirmed that

these genes are directly regulated by HrpX, but also that

these candidates are not false positives. Consequently,

100% of the known HrpX regulated genes could only be

detected together by both the methods, since each

method missed out on some of the known genes; hence

both the methods together enhance the understanding

of HrpX regulome by providing a more comprehensive

picture.

Conclusions
This study has significantly advanced our understanding

of the regulome of the critical transcriptional factor

HrpX and demonstrates that RNA-seq and microarray

complement each other in transcriptome profiling. Con-

sequently, our study demonstrates the advantage of ap-

plying multiple transcriptome profiling methods to

reveal a more comprehensive picture of a transcriptome,

rather than relying solely on one method.

Methods
Bacterial strains and growth conditions

The wild-type X. citri subsp. citri [32], and the hrpX mu-

tant strains used in this study were described in our pre-

vious study [33]. Both the strains were grown at 28°C in

nutrient broth (NB), on nutrient agar (NA), or in NYG

medium [91]. Antibiotics rifamycin and kanamycin were

added to the media at 50 μg/ml final concentrations.

RNA extraction

Total RNA was extracted from the wild-type and the

hrpX mutant strains as described in our previous study

[33]. Briefly, strains from NA plates were grown in NB

medium at 28°C until mid-exponential phase. Cultures

were harvested by centrifugation and inoculated in to

nutrient-deficient XVM2 medium, after washing the pel-

let once with the same medium. Cultures were finally

harvested for RNA extraction, when the optical density

at 600 nm reached the value of 0.4, and mixed immedi-

ately with RNAprotect bacterial reagent (Qiagen, Valen-

cia, CA, and U.S.A.). Total RNA was extracted from

each replicate separately using RiboPure bacteria kit

(Ambion, Austin, TX, USA), according to manufacturer’s

instructions. Genomic DNA contamination from the

extracted RNA samples was removed using TURBO

DNA-free kit (Ambion). Amount and the quality of the

RNA samples was initially determined using NanoDrop™

1000 spectrophotometer (NanoDrop Technologies, Inc.,

Wilmington, DE). Samples with absorbency at 260/280

and 260/230 nm ratios > 2 were subjected to further

processing. Three biological replicates of the wild-type

and the hrpX mutant samples were used for RNA-seq

analysis.

Microarray data

The microarray data used in this study was generated

during our previous study [33]. Three unique 60-mer

oligonucleotide probes were designed for each of the

4,427 protein coding genes of X. citri subsp. citri [33]. 8-

by-15-K DNA microarray chips covering the whole gen-

ome were implemented under the Agilent platform.
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These microarrays were processed at the Interdisciplin-

ary Center for Biotechnology Research Microarray Core

Facility, University of Florida. The raw data is available

at National Center for Biotechnology Information

(NCBI) Gene Expression Omnibus (GEO) data reposi-

tory under the accession number GSE24016 [33].

mRNA enrichment and RNA-seq

Total RNA samples were enriched for mRNA, by depleting

rRNA using MICROBExpress kit from Ambion following

the manufacturer’s instructions. Enriched samples were

checked for integrity using Agilent 2100 Bioanalyzer

(Agilent Technologies, Santa Clara, CA, USA). RNA

samples that passed the quality control were sequenced

using the Illumina Genome Analyzer IIx (GAIIx) system

by following the standard protocol at the Center for

Genome Analysis at Yale University. Real-time analysis

and base calling were performed using the CASAVA

v1.6 pipeline. The raw sequence data has been submit-

ted to the NCBI Sequence Read Archive and assigned

with an accession number SRA052842.

Reads mapping and statistical analysis

The X. citri subsp. citri whole genome sequence consisting

of one chromosome [GenBank: NC_003919.1], and two

plasmids [GenBank: NC_003921.3 and NC_003922.1],

along with the annotation information were downloaded

from NCBI repository (ftp://ftp.ncbi.nih.gov/genomes/

Bacteria/). Quality-filtered reads were aligned on to the

genome using CLC Genomics Workbench v4.7.2 (CLC

bio, Aarhus, Denmark). Reads uniquely aligned to each

gene were tabulated from each replicate separately. Differ-

entially expressed genes were estimated using DESeq

package [92], available under the open-source Bioconduc-

tor suite of programs [93]. DESeq is a powerful tool to es-

timate the variance in RNA-seq data and test for

differential expression [92]. As an input, DESeq accepts a

table of read counts for each gene from different biological

replicates, and estimates the differentially expressed genes

using negative binomial distribution [92]. Statistically sig-

nificant differentially expressed genes from both micro-

array and RNA-seq data were obtained by applying a cut-

off threshold of FDR ≤ 0.05 (5%) and an absolute log2
fold-change ≥ 0.6.

Bioinformatics analysis

Similarity searches were performed online using position-

specific iterative BLAST (PSI-BLAST) at NCBI site

against non-redundant protein database [94]. T3SS and

T2SS predictions were performed using Effective database

[60]. The promoter regions of the significantly differen-

tially expressed genes were retrieved manually using NCBI

genome browser to look for the presence of PIP boxes.

The differentially expressed genes were assigned to the

transcriptional units by referring to the MetaCyc database

[67]. Biological interpretation of the differentially expressed

genes was carried out using the ClueGO v1.5 [95], a

Cytoscape plug-in [96].

qRT-PCR

All the qRT-PCR assays were performed as detailed

elsewhere [33]. Briefly, gene-specific primers were

designed for the selected genes using PrimerQuestSM

from Integrated DNA technologies (IDT), Coralville,

Iowa (Additional file 1: Table S6). qRT-PCR experi-

ments were performed in triplicates, at least three

times for each gene using 7500 fast real-time PCR system

(Applied Biosystems, Foster City, CA, USA), using a

QuantiTect SYBR green RT-PCR kit (Qiagen) with simi-

lar results, by following the manufacturer’s instructions.

The relative fold change of target gene expression was

calculated using 16S rRNA as an endogenous control

with the formula 2–∆∆CT [97].

Data availability

The raw RNA-seq data from this study is deposited at

the NCBI sequence read archive (http://www.ncbi.nlm.

nih.gov/Traces/sra/sra.cgi), under the accession number

SRA052842, while the raw microarray data is available at

the NCBI Gene Expression Omnibus (http://www.ncbi.

nlm.nih.gov/geo) with the accession number GSE24016.

Additional files

Additional file 1: The following excel format file contains the

following 8 additional tables: Table S1: Summary of RNA-seq reads

from wild-type and hrpX mutant strains of X. citri subsp. citri. Table S2: List

of genes that are called by both RNA-seq and microarray. Table S3: List of

genes that are uniquely called by RNA-seq and microarray. Table S4: List
of statistically significant differentially expressed genes by RNA-seq and

microarray filtered by cut-off thresholds. Table S5: List of randomly

selected genes for the comparison with qRT-PCR from the statistically

significant differentially expressed genes from RNA-seq and microarray.
Table S6: Gene specific primers used in qRT-PCR experiment. Table S7:

Summary of bioinformatics analysis of statistically significant differentially

expressed genes to be part of Type III Secretion System (T3SS) and Type

II Secretion System (T2SS) along with the occurrence of PIP box. Table S8:
List of 90 transcriptional units from X. citri subsp. citri to which the 106

differentially regulated genes belong.

Additional file 2: Contains the following two additional figures,

Figure FS1: Venn diagram summarizing genes called by both
technologies, when comparison is carried out between the total currently

annotated open reading frames (ORFs) available transcripts from the

transcriptome of X. citri subsp. citri. Fold-change values are available from

RNA-seq (4323) and microarray (4349). Gene’s called by both
technologies are indicated by the overlap between the two circles. 4312

are found in consensus, while 11 and 37 are unique to RNA-seq and

microarray respectively. Figure FS2: Venn diagram summarizing genes

that are significantly differentially expressed determined by RNA-seq and
microarray. Gene’s common to both methods are indicated by the

overlap between the two circles.

Additional file 3: Figure FS3 - Comparison at the level of the functional

annotations of the significantly differentially expressed genes from RNA-
seq and microarray. GO term and KEGG pathway information enrichment
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analysis is shown for the genes from RNA-seq (left panel) and microarray

(right panel). The overview of the analysis is shown in the form of pie

chart for gene set from RNA-seq (A), and microarray (D). The histogram
shows the number of genes associated with terms for the genes from

RNA-seq (B) and microarray (E). Significantly enriched terms are indicated

with ’*’. The terms that are functionally related are shown as a network

with terms as nodes and relatedness is indicated with thickness of the
edges that is based on their kappa score. The most significant term per

group are shown for genes from RNA-seq (C) and microarray (F).

Additional file 4: Figure FS4 - Snapshot of the PIP box motif present in

the cis-regulatory region of significantly differentially expressed genes is
shown in the context of the whole genome of X. citri subsp. citri. The

absolute position of each PIP box motif occurrence is shown on the

whole genome map along with the −10 ‘TATA’ regions and the gene

start site.
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