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Abstract

Background: The use of low quality RNA samples in whole-genome gene expression profiling remains controversial.

It is unclear if transcript degradation in low quality RNA samples occurs uniformly, in which case the effects of

degradation can be corrected via data normalization, or whether different transcripts are degraded at different rates,

potentially biasing measurements of expression levels. This concern has rendered the use of low quality RNA

samples in whole-genome expression profiling problematic. Yet, low quality samples (for example, samples

collected in the course of fieldwork) are at times the sole means of addressing specific questions.

Results: We sought to quantify the impact of variation in RNA quality on estimates of gene expression levels

based on RNA-seq data. To do so, we collected expression data from tissue samples that were allowed to decay

for varying amounts of time prior to RNA extraction. The RNA samples we collected spanned the entire range of

RNA Integrity Number (RIN) values (a metric commonly used to assess RNA quality). We observed widespread

effects of RNA quality on measurements of gene expression levels, as well as a slight but significant loss of library

complexity in more degraded samples.

Conclusions: While standard normalizations failed to account for the effects of degradation, we found that by

explicitly controlling for the effects of RIN using a linear model framework we can correct for the majority of these

effects. We conclude that in instances in which RIN and the effect of interest are not associated, this approach can

help recover biologically meaningful signals in data from degraded RNA samples.
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Background

Degradation of RNA transcripts by the cellular machin-

ery is a complex and highly regulated process. In live

cells and tissues, the abundance of mRNA is tightly reg-

ulated, and transcripts are degraded at different rates by

various mechanisms [1], partially in relation to their bio-

logical function [2-5]. In contrast, the fates of RNA tran-

scripts in dying tissue, and the decay of isolated RNA

are not part of normal cellular physiology and, therefore,

are less likely to be tightly regulated. It remains largely

unclear whether most transcript types decay at similar

rates under such conditions or whether rates of RNA

decay in dying tissues are associated with transcript-

specific properties.

These questions are of great importance for studies

that rely on sample collection in the field or in clinical

settings (both from human populations as well as from

other species), in which tissue samples often cannot im-

mediately be stored in conditions that prevent RNA deg-

radation. In these settings, extracted RNA is often partly

degraded and may not faithfully represent in vivo gene

expression levels. Sample storage in stabilizers like RNA-

Later lessens this problem [6] but is not always feasible.

Differences in RNA quality and sample handling could,

therefore, confound subsequent analyses, especially if

samples subjected to different amounts of degradation

are naïvely compared against each other. The degree to

which this confounder affects estimates of gene expres-

sion levels is not well understood.

There is also no consensus on the level of RNA decay

that renders a sample unusable or on approaches to con-

trol for the effect of ex vivo processes in the analysis of

gene expression data. Thus, while standardized RNA
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quality metrics such as the Degradometer [7] or the

RNA Integrity Number (RIN; [8]), provide well-defined

empirical methods to assess and compare sample qual-

ity, there is no widely accepted criterion for sample in-

clusion. For example, proposed thresholds for sample

inclusion have varied between RIN values as high as 8

[9] and as low as 3.95 [10]. The recent Genotype-Tissue

Expression (GTEx) project [11], for instance, reports

both the number of total RNA samples they collected as

well as the number of RNA samples with RIN scores

higher than 6, presumably as a measure of the number

of high quality samples in the study.

Broadly speaking, three approaches can be adopted to

deal with RNA samples of variable quality. First, RNA

samples with evidence of substantial degradation can be

excluded from further study; this approach relies on es-

tablishing a cut-off value for ‘high quality’ versus ‘low

quality’ samples and suffers from the current lack of

consensus on what this cut-off should be. It also could

exclude the possibility of utilizing unique and difficult to

collect samples from remote locations or historical col-

lections. Second, if investigators are willing to assume

that all transcript types decay at a similar rate, variation

in gene expression estimates due to differences in RNA

integrity could be accounted for by applying standard

normalization procedures. Third, if different transcripts

decay at different rates, and if these rates are consistent

across samples for a given level of RNA degradation –

for example, a given RIN value – a model that explicitly

incorporates measured, sample-specific, degradation levels

could be applied to gene expression data to correct for the

confounding effects of degradation.

To date, most studies apply a combination of the first

two approaches: an application of an arbitrary RNA

quality cutoff (typically based on RIN score), followed by

standard normalization of the data, which assumes that

RNA samples at any RIN value higher than the chosen

cutoff are not subjected to transcript-specific decay

rates. However, current work on the effects of RNA

decay has not yet provided clear guidelines with respect

to these approaches. In addition, nearly all published

work that focuses on RNA stability in tissues following

cell death and/or sample isolation predates, or does not

employ, high throughput sequencing technologies. These

studies broadly suggest that both the quantity and qual-

ity of recovered RNA from tissues can be affected by

acute pre-mortem stressors, such as pyrexia or pro-

longed hypoxia [12-14], and by the time to sample pres-

ervation and RNA extraction. The quantity and quality

of recovered RNA are strongly dependent on the type of

tissue studied [15], even when sampling from the same

individual [16,17]. These differences in yield across tis-

sues have resulted in a wide range of recommendations

for an acceptable post-mortem interval for extracting

usable, high-quality RNA, ranging from as little as 10 mi-

nutes [18] to upwards of 48 hours [19], depending on

tissue source and preservation conditions.

Similarly, studies examining changes in the relative

abundance of specific transcripts as a result of ex vivo

RNA decay have reached somewhat contradictory recom-

mendations. Some of this conflict may be attributable to

methodological differences. Studies that focused on small

numbers of genes assayed through quantitative PCR con-

sistently report little to no effect of variation in RNA qual-

ity on gene expression estimates [6,19-22]. Conversely,

microarray-based studies have repeatedly reported signifi-

cant effects of variation of RNA quality on gene expression

estimates, even after applying standard normalization ap-

proaches. Increasing the time from tissue harvesting to

RNA extraction or cryopreservation from 0 to only 40 or

60 minutes, for example, significantly affected expression

profiles in roughly 70% of surveyed genes in an experiment

on human colon cancer tissues [20]. Likewise, a substantial

fraction of genes in peripheral blood mononuclear cells

(PBMCs) appears to be sensitive to ex vivo incubation

[21]. Other microarray-based studies have reached similar

conclusions, both in samples from humans [15,16,22,23]

and other organisms [24], and have urged caution when

analyzing RNA samples with medium or low RIN scores,

although the definition of an acceptable RNA quality

threshold remains elusive.

To examine the effects of RNA degradation in a set-

ting relevant to field study sample collection, we se-

quenced RNA extracted from PBMC samples that were

stored unprocessed at room temperature for different

time periods, up to 84 hours. We collected RNA decay

time-course data spanning almost the entire RIN quality

scale and examined relative gene-specific degradation

rates through RNA sequencing. Due to the high sensitiv-

ity and resolution of high-throughput RNA sequencing,

our data provide an unprecedentedly detailed picture of

the dynamics of RNA degradation in stressed, ex vivo

cells. Based on our results, we develop specific recom-

mendations for accounting for these effects in gene ex-

pression studies.

Results
We extracted RNA from 32 aliquots of PBMC samples

from four individuals. The PBMC samples were stored

at room temperature for 0 hours, 12 hours, 24 hours,

36 hours, 48 hours, 60 hours, 72 hours and 84 hours prior

to RNA extraction. As expected, time to extraction sig-

nificantly affected the RNA quality (P <10−11), with mean

RIN = 9.3 at 0 hours and 3.8 at 84 hours [see Additional

file 1: Table S1]. Based on the RIN values we chose to focus

on 20 samples from five time points (0 hours, 12 hours,

24 hours, 48 hours and 84 hours) that spanned the entire

scale of RNA quality. We generated poly-A-enriched RNA
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sequencing libraries from the 20 samples using a standard

RNA sequencing library preparation protocol (see [25]).

We added a spike-in of non-human control RNA to each

sample, which allowed us to confirm the effects of RNA

degradation on the RNA sequencing results (see Methods

for more details). Following sequencing, we randomly sub-

sampled all libraries to a depth of 12,129,475 reads, the

lowest number of reads/library observed in the data. We

used BWA 0.6.3 to map reads, calculated reads per kilo-

base transcript per million (RPKM), and normalized the

data using a standard quantile normalization approach (for

example, as in [26]). We observed that sample RIN is

associated with both the number of uniquely mapped

reads (analysis of variance (ANOVA) P <10−3) and the

number of reads mapped to genes (P <10−3; Additional

file 2: Figure S1), with high RIN samples having greater

numbers of both. Furthermore, the proportion of exogen-

ous spike-in reads increases significantly as RIN decreases

(P <10−10), as expected given degradation-driven loss

of intact human transcripts in poor quality samples. Se-

quence reads from individual 2 were poorly mapped, espe-

cially in the later time-points (see Methods and Additional

file 2: Figure S1); we thus excluded the data from all sam-

ples from this individual in subsequent analysis.

The effect of RNA degradation on RNAseq output

Principal component analysis of our data demonstrates

that much of the variation (28.9%) in gene expression

levels in our study is strongly associated with RNA sam-

ple RIN scores (Figure 1A; principal component 1 (PC1)

associated with RIN scores P <10−7; no other PCs are

significantly associated with either sample storage time

or RIN score; Additional file 3: Table S2). We also ob-

served a residual presence of inter-individual variation in

the data, in spite of variable RNA quality (PCs 4 and 5;

Additional file 4: Figure S2 and Additional file 3: Table

S2). A correlation matrix based on the gene expression

data (Figure 1B) indicates that while samples of relatively

high quality RNA cluster by individual, data from RNA

samples that experienced high yet similar degradation

levels are more correlated than data from samples from

the same individual across the time-points. This pattern

contrasts with the naïve expectation that gene expres-

sion differences between individuals should be the

strongest signal in the normalized data. Instead, inter-

individual differences only predominate in the early stages

of degradation, at the early time-points of 0 hours (mean

RIN = 9.3) and 12 hours (mean RIN = 7.9). These observa-

tions are robust with respect to the approach used to esti-

mate gene expression levels and – importantly – are not

explained by unequal rates of degradation occurring at dif-

ferent distances from the 3′ poly-A tail. For example, we

found nearly identical patterns when we estimated expres-

sion levels based only on reads that map to the 1,000 bp at

the 3′ end of each gene (Additional file 5: Figure S3). Simi-

larly, these effects are robust to the choice of mapping al-

gorithm. Because BWA does not map reads across exon

splice junctions, we also remapped our data (excluding in-

dividual 2) using TopHat 2.0.8 [27]. As expected, we found

a high correlation between RPKM estimates based on

Figure 1 Broad effects of RNA degradation. A) PCA plot of the 15 samples included in the study based on data from 29,156 genes with at

least one mapped read in a single individual. Different colors identify different time-points, while each shape indicates a particular individual in

the data set. B) Spearman correlation plot of the 15 samples in the study. PCA, principal component analysis.
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alignments with both approaches (Spearman’s ρ = 0.82

when we consider all genes with at least one observation

of RPKM> =0.3 in the entire data set; Spearman’s ρ = 0.85

when we only consider genes with at least one observation

of RPKM> =0.3 using data mapped with BWA, Additional

file 6: Figure S4 and Additional file 7: Figure S5). Finally,

we found that the global effects of RNA degradation on

estimated gene expression levels could not be elimi-

nated by globally regressing out RIN scores [see Additional

file 8: Figure S6].

The possibility of reduced sequencing library complexity

is often cited as a reason to exclude RNA samples of low

quality. This concern is primarily based on the observation

that sequencing RNA samples of lower RNA quality results

in relatively decreased proportions of mappable reads, an

observation corroborated in our study [see Additional

file 2: Figure S1]. Yet, it is unclear to what extent this

property affects the ability to estimate gene expression

levels in RNA samples of low quality. To assess the effects

of RIN on sample complexity, we plotted the distribution

of RPKM values within individuals at different time points.

Our data indicate that mean RPKM increases as sample

RIN decreases (P <10−5, Additional file 9: Figure S7). This

seems counterintuitive, but can be explained by the pres-

ence of a few highly expressed genes in the samples of low

RNA quality. Indeed, relative to 0 hours, low RIN samples

at 48 hours and 84 hours have an excess of low RPKM

genes and a deficit of high RPKM genes, shifting the me-

dian RPKM downwards (P <10−4; Figure 2). We further

found a positive association between the number of genes

with at least one observation of RPKM ≥0.3 and RIN

(P <10−4). Even when we subsampled all samples to the

same number of sequencing reads, we still observed a high

proportion of genes with low RPKM values in RNA sam-

ples of lower quality (P <10−4; Additional file 10: Figure S8).

This suggests that a non-uniform effect of RNA degrad-

ation on gene expression levels results in somewhat lower

complexity of the sequencing library (Figure 2, Additional

file 10: Figure S8). On the other hand, both within a single

individual and across the whole dataset, we found that

Figure 2 Changes in library complexity over time. Dashed lines indicate median RPKM at each time-point. A) Density plots of RPKM values

among all three individuals at 0 hours and 12 hours. B) as A, but 0 hours and 24 hours. C) as A, but 0 hours and 48 hours. D) as A, but 0 hours

and 84 hours. RPKM, reads per kilobase transcript per million.
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nearly all genes whose expression could be measured at

0 hours are also detected as expressed throughout the en-

tire time-course experiment. Only a few genes (Table 1)

present in all individuals up until a given time point were

completely absent from the data at later time points.

Different transcripts are degraded at different rates

We sought to understand better the nature of transcript

degradation in the RNA samples of lower quality. Given

our time course study design, we were able to estimate

degradation rates for all genes detected as expressed at all

five time-points. To do so, we fit a log-normal transform

of a simple exponential decay function (see Methods) to

quantile-normalized RPKM values for each gene that was

detected as expressed in all individuals at all time-points.

We considered the slope of this function, k, to be a proxy

for the decay rate of the gene. We then compared this

slope to the mean transcript degradation rate across all

genes, which, as a result of our quantile normalization ap-

proach, is equal to 0 (thus, a value of 0 indicates no change

in the relative rank of that transcript’s expression level

across time points). If all genes decay at the same rate, then

no slopes should significantly differ from the mean value.

However, at a false discovery rate (FDR) threshold of 1%,

we found that 7,267 of the 11,923 genes tested (60.95%; see

Methods) were associated with degradation rates that were

significantly different from the mean (Figure 3; Additional

file 11: Table S3). Of these genes, 3,522 had a negative

slope (that is, they were degraded significantly faster than

the mean degradation rate) and 3,745 had a positive

slope (that is, these transcripts were degraded signifi-

cantly slower than the mean degradation rate).

Although we might expect RNA degradation in decaying

cells to be a random process, gene ontology (GO) analysis

identified 118 and 293 significantly overrepresented cat-

egories among slowly and rapidly degraded genes, re-

spectively (FDR = 5%; Additional file 12: Tables S4 and

Additional file 13: Table S5). We present the functional

enrichment results only as an indication that the rate of

transcript decay is not random. These observations are

robust to different normalization approaches, to the in-

clusion of RIN as a covariate in our linear model, and to

fitting slopes using RIN instead of time-points. Limiting

our analyses to the 1,000 bp closest to the 3′ end of

transcripts also yields similar results.

We asked what properties, beyond GO functional cat-

egories, might be associated with the observed variation

in transcript degradation rates. We found that the cod-

ing DNA sequence (CDS) length (P <10−12), %GC content

(P <10−4), and 3′UTR length (P <10−15) are all significantly

correlated with estimated transcript degradation rate

(Figure 4A-C), with higher %GC content and increased

length of both the 3′ UTR and CDS all associated with fas-

ter degradation. However, we found that total transcript

length (5′ UTR+CDS+ 3′ UTR) is not significantly corre-

lated with degradation rates; instead, targets of both fast and

slow degradation have longer transcripts than those that are

degraded at an average rate (Figure 4D). The correlation

between %GC content and CDS length is high (ρ=−0.19,

P <10−16), but even when we control for the effects of either

variable, the individual effects remain significant predictors

of degradation rates (P <10−7). Our data thus suggest that

both CDS length and %GC content affect degradation rate,

and that observed degradation rates result from complex in-

teractions between multiple forces. We again present these

results as evidence for the non-random nature of the tran-

script degradation rate (yet, we do not presume at this time

to offer mechanistic explanations for these correlations).

We also sought to investigate whether targets of slow,

fast, or average degradation differ meaningfully in terms

of broad biological categories. As expected given our

poly-A enrichment strategy, most transcripts in our data

originate from intact protein-coding genes, but we also

observed four other biotypes represented by more than

100 distinct transcripts. The distribution of these bio-

types across rapidly and slowly degraded transcripts is

not random, with a significant enrichment of pseudo-

genes among transcripts that degrade slowly (P = 0.015),

and an enrichment of intact protein-coding genes among

the rapidly degraded transcripts (P <10−16, Figure 4E).

Controlling for the effect of RNA degradation in analyses

of differential expression

Ultimately, the goal of most RNA sequencing studies is

to estimate variation in gene expression levels or to

identify genes that are differentially expressed between

conditions, individuals or states. We thus considered

the effects of RNA quality on measures of relative gene

expression levels between time-points and on overall es-

timates of inter-individual variation in gene expression.

Table 1 Genes observed in all individuals until or after a particular time point

Seen until 0 hours 12 hours 24 hours 48 hours 84 hours

#genes 14 9 72 52 11,923

Mean RPKM when seen 0.68 0.679 1.29 1.09 32.689

Unseen before 0 hours 12 hours 24 hours 48 hours 84 hours

#genes n/a 4 2 19 35

Mean RPKM when seen n/a 1.078 2.212 2.769 3.034
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As a first step we analyzed the normalized expression

data using a generalized linear model (GLM) approach (see

Methods) to classify genes as differentially expressed be-

tween 0 hours and any other time-point. We only consid-

ered genes with at least one mapped read in all individuals

at all time-points (n = 14,094). At an FDR of 5%, we identi-

fied 608 (4%) genes as differentially expressed by 12 hours.

Both the number of differentially expressed genes and

the magnitude of expression changes increase drastically

along the time-course experiment (Table 2). By 84 hours,

9,998 genes (71%) are differentially expressed (FDR = 5%).

Roughly half of these genes appear to be more highly

expressed in the later time-points than at 0 hours. This

may seem counterintuitive given that the change in expres-

sion is most likely the result of RNA degradation, yet this

apparent increase in expression is due to our normalization

approach (all transcripts in our experiment experience

some level of degradation throughout the time course).

Post normalization of the data, an apparent elevated ex-

pression level in the later time points, therefore, indicates

slow degradation relative to the genome-wide mean rate of

RNA decay.

As expected, when we include RIN as a covariate in the

model the number of differentially expressed genes across

time-points is drastically reduced (fewer than 50 genes are

classified as differentially expressed between 0 hours and

any other time-point; Table 2). These observations confirm

that RIN is a robust indicator of degradation levels. With-

out accounting for RIN, the effect of variation in RNA

quality on our data is overwhelming. To understand these

effects better, we explored whether accounting for variation

in RIN increased the power to detect other sources of (bio-

logically relevant) variation in RNA-seq data, such as the

variation in gene expression between individuals. We also

investigated several alternative approaches for controlling

for variation in RNA quality.

Figure 3 Log10 median abundance of genes across all three individuals relative to 0 hours. Plots are separated by slope. A) Transcripts

with significantly slow rates of degradation relative to the mean rate (identified at 1% FDR, n = 3,745). B) Transcripts that are degraded at a rate

close to the mean cellular rate (n = 4,656). C) Transcripts with significantly fast rates of degradation relative to the mean rate (identified at 1%

FDR, n = 3,522). In all plots, the thick dashed line indicates the median degradation rate for all genes in that group, whereas the thin dashed line

denotes no change in degradation rate relative to 0 hours. FDR, false discovery rate.
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Without accounting for RIN, we classified few genes (48 to

100; Table 2) as differentially expressed between pairs of indi-

viduals. This property of the data is captured by a heat map

of sample pairwise correlation calculated using only the top

10% (1,410) most variable genes across individuals at 0 hours.

As can be seen in Figure 5A, while at the early time-points

inter-individual differences are the predominant source of

variation in the data, degradation overwhelms these differ-

ences in the low quality (low RIN) RNA samples from

48 hours and 84 hours. Hence, inclusion of these time points

in our GLM, which considers samples from the same indi-

vidual but different time points as ‘technical replicates’, ob-

scures much of the true signal of inter-individual variability.

To recover this signal, we tested two approaches for

explicitly accounting for RIN when estimating differen-

tial gene expression across individuals: (1) incorporating

RIN as a covariate in our GLM; and (2) analyzing the re-

siduals of gene expression levels after first regressing out

Figure 4 Characteristics of rapidly and slowly degraded transcripts. In all plots, rapidly degraded transcripts are plotted in gold, transcripts

degraded at an average rate are plotted in grey and slowly degraded transcripts are in red. A) By transcript %GC content. B) By coding region

length. C) By 3′UTR length. D) By complete transcript length. E) By ENSEMBL biotype.

Table 2 Number of identified DE genes

GLM: reads approximate time point

Time point GLM GLM + RIN Regress RIN, GLM

0 h versus 12 h 608 5 26

0 h versus 24 h 3,704 5 203

0 h versus 48 h 8,756 47 5

0 h versus 84 h 9,998 42 0

GLM: reads approximate individual b

Individuals GLM GLM + RIN Regress RIN, GLM

Ind 1 versus Ind 3 69 553 268

Ind 1 versus Ind 4 48 401 190

Ind 3 versus Ind 4 100 573 299

b, Treating time as technical replicates; DE, Differentially expressed; GLM, generalized linear model; H, hours; RIN, RNA integrity number.
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RIN from the normalized gene expression data (Table 2).

Both approaches result in the identification of many more

genes as differentially expressed between individuals (401

to 573 when incorporating RIN directly into our GLM,

190 to 299 when testing for differential expression using

residuals; Table 2). We also repeated the pairwise correl-

ation analysis using the same 1,410 most variable genes

identified above, but this time we used the residuals after

regressing the effect of RIN from the data. The residuals

cluster well by individual throughout the entire time

course experiment, regardless of RNA quality (Figure 5B).

Finally, we examined the overlap between the subset

of the 10% of most variable genes across individuals at

0 hours (the 1,410 genes used to generate Figure 5) and

those identified as differentially expressed across individ-

uals as described above (Table 3). Of the two approaches

we employed to account for the effect of RIN, testing for

differential expression after removing the effects of RIN

on the data (method 2) yielded higher concordance be-

tween DE genes and those with high inter-individual

variance at 0 hours, suggesting it may be a better ap-

proach than simply including RIN as a covariate.

Discussion

Our observations indicate that the effects of RNA deg-

radation following death or tissue isolation are pervasive

and can rapidly obscure inter-individual differences in

gene expression. Yet, we also found that by using RNA-

seq nearly all genes observed at our first time-point

could still be detected even in severely degraded RNA

samples, although the estimated relative expression levels

were drastically affected by degradation. Although post-

mortem RNA degradation is considered a non-regulated

process, some of the traditional predictors of regulated

RNA decay rates in the cell are also associated with vari-

ation in RNA quality in our data. For example, longer pro-

tein coding regions and 3′ UTRs are correlated with more

rapid degradation, similar to previously reported trends

[5,28,29]. Total transcript length, however, which is a

significant predictor of regulated RNA decay in the cell,

is not associated with variation in degradation rates in

our data.

The effect of RNA degradation can be accounted for

We confirmed previous observations of decreasing data

quality as time from tissue extraction to RNA isolation in-

creased [see Additional file 2: Figure S1], both with respect

to the number of high quality reads we were able to gener-

ate from our sequencing libraries and library complexity.

While increased time to RNA extraction did not generally

result in the complete loss of transcripts (less than 8% of

transcripts are lost), the relative expression levels of many

transcripts were drastically altered over the time-course

experiment, with 61% of genes classified as differentially

expressed between 0 hours (mean RIN of 9.3) and 84 hours

(mean RIN of 3.78). This proportion of differentially

expressed genes is in line with previous reports of the ef-

fects of warm ischemia on human gene expression in

tumor biopsies, as assessed using microarrays [20,22]. The

potential of RNA degradation to skew measurements of

Figure 5 Spearman correlation matrices of the top 10% genes with high inter-individual variance at 0 hours. A) Before RIN correction.

B) After regressing the effects of RIN. RIN, RNA integrity number.

Gallego Romero et al. BMC Biology 2014, 12:42 Page 8 of 13

http://www.biomedcentral.com/1741-7007/12/42



gene expression levels and obscure biologically meaningful

signals is, therefore, apparent. If there are systematic dif-

ferences in RNA quality between two classes of samples

being compared, we predict that the effect of RNA quality

on relative estimates of gene expression levels would be

responsible for much of the signal in the data. Further-

more, as degradation rate is to some degree associated

with biological function [see Additional file 11: Tables S3

and Additional file 12: Table S4], it has the potential to

confound naïve comparisons of functional annotations

as well.

However, the marked effects of RNA degradation on

the relative expression level of most genes can be cor-

rected, to a large degree, using relatively simple statis-

tical methods. Indeed, we found that the inclusion of

RIN in our model was sufficient to account for much of

the effect of degradation and allowed us to identify a

reasonable number of differentially expressed genes be-

tween pairs of individuals in our data. These were not

spurious signals generated by our approach; they recapit-

ulated observations made at 0 hours (when RNA quality

was excellent), but were originally dwarfed by the mag-

nitude of degradation-driven expression changes in the

uncorrected data. A similar approach – taking into ac-

count variation in RIN – has been previously proposed

for the analysis of RTq-PCR data abundance [30]. Never-

theless, our observations suggest that some of the effects

of transcriptional degradation in ex vivo samples cannot

be corrected. Library complexity decreases somewhat

with lower RNA quality, and some genes (approximately

5%) can no longer be detected at the later time-points.

Based on our data we conclude that these effects cannot

be corrected by simply sequencing more degraded librar-

ies to a greater depth.

In a study similar to our own, Opitz et al. [31] sub-

jected extracted RNA samples from three advanced hu-

man rectal cancer biopsies to degradation through

increasingly longer incubation at 60˚C and then consid-

ered the evidence of time-point/RIN–driven degradation

using microarray data. The RIN values spanned by their

data mirror values in ours, but the results do not. In

contrast to the large RIN-associated effects we observed,

Opitz et al. reported that of 41,000 tested probe-level

2data points only 275 demonstrated significant degrad-

ation effects, with inter-individual differences being the

predominant signal in the data. Assuming that differ-

ences in the platforms used (microarrays and RNAseq)

are not the reason for this discrepancy, one possible ex-

planation for this stark difference between the studies is

that lower RIN scores as a result of degradation of ex-

tracted RNA samples (Opitz et al.) may reflect substan-

tially different properties than lower RIN scores that are

the result of degradation of RNA in decaying cells (our

study). Based on the observations of Opitz et al. we

hypothesize that degradation rates of isolated RNA may

be mostly linear and uniform; thus, the degradation ef-

fects can be accounted for by employing standard

normalization approaches. In contrast, degradation rates of

RNA in a dying tissue sample, a situation that mirrors

more closely conditions likely to be faced by investigators

in clinical or field settings, is not uniform across tran-

scripts. Because these differences cannot be neglected in

downstream analyses, knowledge of the context in which

degradation occurs is, therefore, crucial.

Our observations suggest that actively mediated degrad-

ation of transcripts may occur during necrosis; namely,

degradation of RNA in a dying tissue may not be a com-

pletely random process. Biologically mediated degradation,

whether actively driven by the cell’s decay machinery [1],

or simply the consequence of the leakage of RNases into

cells as membranes are disrupted, is different from the

heat-driven degradation of naked RNA, which in turn is

likely to be different from the degradation caused by con-

tinued freeze-thaw cycles [32]. It is likely that in a dying

tissue, most degradation is initially biologically mediated

and directed towards specific classes of transcripts, but as

the cellular environment continues to deteriorate, the rela-

tive importance of stochastic degradation may increase

such that at later time-points degradation becomes in-

creasingly uncoupled from biological function.

Additionally, the increased resolution of RNA sequen-

cing relative to other platforms used to assay gene ex-

pression levels [25] is both a hindrance and a boon in

this situation, allowing for detection of subtler differ-

ences than ever before, but also warranting greater cau-

tion when analyzing samples of differing quality.

Table 3 DE genes across pairs of individuals and overlap with top 10% most variable genes at 0 hours

GLM individual GLM, individual + RIN Regress RIN, GLM individual

Test Number DE genes % overlap Number DE genes % overlap Number DE genes % overlap

Ind 1 vs Ind 3 69 86.96% 553 45.39% 268 75.00%

Ind 1 vs Ind 4 48 89.58% 401 50.12% 190 78.95%

Ind 3 vs Ind 4 100 87.00% 573 49.21% 299 73.91%

All individuals 160 85.00% 1053 42.64% 521 71.98%

DE, Differentially expressed; GLM, generalized linear model; RIN, RNA integrity number.
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Recommendation regarding the inclusion of RNA samples

in a study

Previous studies [8-10,23,32-34] have sought to provide

an RNA degradation threshold below which in-depth

analysis of RNA is not recommended. However, these

studies have reached conflicting conclusions. Our data

suggest that if a simple cut-off value is to be used, a con-

servative cut-off in the context of RNA degradation in

dying tissue samples lies between 7.9 and 6.4, the mean

RIN scores associated with 12 hours and 24 hours in our

time course experiment, respectively. We observed few

differences in measurements of gene expression between

0 hours and 12 hours, as evidenced by the low number

of genes identified as differentially expressed between

the two time-points. Thus, it may be tempting to con-

clude that so long as all samples in any particular study

have roughly similar RINs explicit correction is not ne-

cessary. However, when we test for differential expres-

sion between other close time-points we identify 3,020

genes as differentially expressed between 48 hours and

84 hours (difference in mean RIN = 1.3), and 5,293

between 24 hours and 48 hours (difference in mean

RIN = 1). It is clear that measurements of gene expres-

sion are extremely sensitive to starting sample quality.

Conclusions

Our observations indicate that useful data can be col-

lected using RNA sequencing even from highly degraded

samples. As long as RIN scores are not associated with

the effect of interest in the study (namely, different clas-

ses of samples in the study are not associated with dif-

ferent distributions of RIN scores), accounting for RIN

scores explicitly can be an effective approach. In our

study, we were able to identify differently expressed

genes between individuals even when RNA samples with

RIN scores around 4 were included. Excluding the sam-

ples with RIN values lower than 6.4 in our study would

have resulted in a less powerful design than including

these samples and globally correcting for RIN values.

Given these results, we believe that under most circum-

stances, the most effective approach may be to include

all samples regardless of quality, and explicitly model a

measure of RNA quality in the analysis.

Methods

RNA degradation

We obtained Buffy coat samples from four adult Caucasian

males from Research Blood Components LLC (Boston,

MA, USA) and separated PBMCs through a standard

Ficoll gradient purification. Each sample was split into ali-

quots of four million live cells and resuspended in 200 uL

of PBS. Cells were kept at room temperature and aliquots

from each sample lysed every twelve hours by addition of

700 uL of RLT buffer (Qiagen, Valencia, CA, USA) with

beta-mercaptoethanol (Sigma-Aldrich, St Louis, MO,

USA) added at 10 uL BME/1 mL RLT according to the

manufacturer’s instructions. Lysed cells were immediately

frozen and not thawed until RNA extraction.

Extraction and sequencing

RNA was extracted using the Qiagen RNeasy kit. Extracted

RNA quality was assessed with a BioAnalyzer (Agilent

Technologies, Wilmington, DE, USA). From these results

we selected five time-points – 0 hours, 12 hours, 24 hours,

48 hours and 84 hours – that encompassed a large stretch

of the degradation spectrum. We then prepared poly-A-

enriched RNA sequencing libraries for all 20 individual/

time-point combinations according to a previously pub-

lished protocol [25], using 1.5 μg of total RNA per library

in all instances. In all instances, we added 15 ng (1%) of an

exogenous RNA spike-in during library preparation, com-

posed of equal parts Caenorhabditis elegans, Drosophila

melanogaster and Danio rerio total RNA. Samples were

multiplexed and sequenced on four lanes (two per library

preparation strategy) of an Illumina HiSeq2000 using

standard protocols and reagents. Reads were 50 bp in

length. All generated reads have been deposited into the

Sequence Read Archive (SRA) under accession numbers

SAMN02769865-SAMN02769884.

Data mapping and normalization

Data were combined across lanes and data for all libraries

were randomly subsampled to the lowest observed number

of reads, 12,129,475. Reads were independently mapped

to the human (hg19), D. rerio (danRer7), D. melanogaster

(dm3), and C. elegans (ce10) genomes using BWA 0.6.2

[35]. All reference genomes were obtained from the UCSC

Genome Browser [36]. Only reads that mapped exclusively

to a single site in the human genome with one or zero mis-

matches were retained for downstream analyses. Following

mapping, we removed all reads that mapped to more than

one genome. At this point we also discarded one individ-

ual – individual number 2 - due to low mappability and

read quality in the later time points [see Additional file 2:

Figure S1]. We also mapped all reads using TopHat 2.0.8

and the same quality thresholds and filtering steps.

We calculated RPKM [37] for all ENSEMBL v71 [38] hu-

man genes in our data. Genes with multiple transcripts

were collapsed into a single transcript containing all exons

of the gene; where multiple exons of different size over-

lapped the same genomic region, the entire region was

kept. We discarded all exonic regions transcribed as part of

more than one gene. Additionally, we quantile-normalized

both RPKM and read count-level data across individuals

using the lumiN function in the Bioconductor [39] package

lumi [40], which controls for, and dampens, technical

sampling variance in highly expressed genes. Read counts

were log2 transformed prior to quantile normalization to
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generate a normal distribution; analyses were carried out

on subsequently untransformed counts.

All statistical analyses were carried out using R 2.15.2.

Calculation of decay rates

We estimated the decay rate of the 11,923 genes with an

RPKM >0.3 in all individuals at all time-points by fitting

a first order log-normal transform of the classical first-

order decay equation:

ln y tð Þð Þ ¼ B0−kt þ ε

where y(t) is the mRNA abundance of a given gene at

time t (in quantile-normalized RPKM), B0 is the abun-

dance at the initial time-point, and k the decay rate, with

the variance term ε being normally distributed. Data

from all three individuals were considered simultan-

eously; that is, we obtained a single decay constant for

each gene across all three individuals. To control for the

high FDR of expressed genes at low expression levels, all

RPKM observations <0.3 were discarded for all subse-

quent analyses, as in [41].

Length and per-transcript %GC content were calcu-

lated using BEDTools (version 2.16.2 [42]), using the

same gene models described above. Biotype as well as 5′

and 3′ UTR length were retrieved from ENSEMBL v71.

In those instances where there are multiple UTRs asso-

ciated with the same gene, we used the median UTR

length for each gene in all calculations.

Differential expression and gene enrichment

Differentially expressed genes were identified using the

R package edgeR [43], utilizing a GLM framework with

time, individual ID and sample RIN as covariates, as

described above. Only those genes with a minimum ob-

servation of one mapped read across all individuals at

all time-points were included. Instead of quantile nor-

malization as described above, all data were normalized

using trimmed mean of M values normalization (TMM,

[44]), which corrects for the observed differences in

informative reads between sequencing libraries. Inter-

individual variance estimates were generated after variance

stabilization of read counts using the predFC function in

edgeR.

Downstream gene enrichment analyses were carried

out using the R package topGO [45], using the ‘classic’

algorithm and a minimum node size of five. All signifi-

cance values given in the text have been corrected to an

FDR of 5% or 1%, using the qvalue method of [46]. In all

cases, the background data set included all 14,094 genes

with complete observations.

Additional files

Additional file 1: Table S1. Relationship between RIN and time to RNA

extraction.

Additional file 2: Figure S1. Fraction of reads mapped from generated

libraries. All samples were randomly subset to the same depth prior to

mapping.

Additional file 3: Table S2. Correlations between PCs and covariates.

Additional file 4: Figure S2. PCA plot of principal components 4 and

5, the only components significantly associated with inter-individual

variation in the data. Different colors identify different time-points, while

each shape indicates a particular individual in the data set.

Additional file 5: Figure S3. A) PCA plot of the 15 samples included in

the study based on data from 27,856 genes with at least one mapped

read to the 1,000-most 3′ base pairs in a single individual. Different colors

identify different time-points, while each shape indicates a particular

individual in the data set. B) Spearman correlation plot of the 15 samples

in the study, using only data trimmed to the 1,000-most 3′ bp.

Additional file 6: Figure S4. Density plot of RPKM estimates per gene

after mapping with BWA and TopHat. Only genes with an RPKM > =0.3

after mapping with BWA are shown.

Additional file 7: Figure S5. Spearman correlation plot as in Figure 1

using data mapped by TopHat. A) Correlations across 33,438 genes with

at least one instance of one read mapped by TopHat. B) Correlations

across 29,156 genes with at least one instance of one read mapped by

BWA.

Additional file 8: Figure S6. A) PCA plot of the 15 samples included in

the study based on data from 29,156 genes with at least one mapped

read in a single individual, after correcting for the effects of RIN on the

data. Different colors identify different time-points, while each shape

indicates a particular individual in the data set. B) Spearman correlation

plot of the 15 samples in the study, after correcting for the effects of RIN

on the data.

Additional file 9: Figure S7. Mean RPKM as a function of time (h) to

sample collection.

Additional file 10: Figure S8. Effects of sequencing depth on library

complexity. Dashed red lines indicate median RPKM in each subset. (A to

D) Density plots of RPKM values in the 0-hour data when subsampled to

indicated depths. For comparison, the observed distribution of RPKM

values in the 84-hour data is plotted in each figure in blue.

Additional file 11: Table S3. Estimated decay rates for 11,923

tested genes.

Additional file 12: Table S4. Significantly overrepresented GO terms

among slowly degraded genes.

Additional file 13: Table S5. Significantly overrepresented GO terms

among rapidly degraded genes.
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