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Abstract

Background: Multiple gene expression studies have been performed separately in peripheral blood, lung, and

airway tissues to study COPD. We performed RNA-sequencing gene expression profiling of large-airway epithelium,

alveolar macrophage and peripheral blood samples from the same subset of COPD cases and controls from the

COPDGene study who underwent bronchoscopy at a single center. Using statistical and gene set enrichment

approaches, we sought to improve the understanding of COPD by studying gene sets and pathways across these

tissues, beyond the individual genomic determinants.

Methods: We performed differential expression analysis using RNA-seq data obtained from 63 samples from 21

COPD cases and controls (includes four non-smokers) via the R package DESeq2. We tested associations between

gene expression and variables related to lung function, smoking history, and CT scan measures of emphysema and

airway disease. We examined the correlation of differential gene expression across the tissues and phenotypes,

hypothesizing that this would reveal preserved and private gene expression signatures. We performed gene set

enrichment analyses using curated databases and findings from prior COPD studies to provide biological and

disease relevance.

Results: The known smoking-related genes CYP1B1 and AHRR were among the top differential expression results

for smoking status in the large-airway epithelium data. We observed a significant overlap of genes primarily across

large-airway and macrophage results for smoking and airway disease phenotypes. We did not observe specific

genes differentially expressed in all three tissues for any of the phenotypes. However, we did observe hemostasis

and immune signaling pathways in the overlaps across all three tissues for emphysema, and amyloid and telomere-

related pathways for smoking. In peripheral blood, the emphysema results were enriched for B cell related genes

previously identified in lung tissue studies.

Conclusions: Our integrative analyses across COPD-relevant tissues and prior studies revealed shared and tissue-

specific disease biology. These replicated and novel findings in the airway and peripheral blood have highlighted

candidate genes and pathways for COPD pathogenesis.
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Background
Chronic obstructive pulmonary disease (COPD) is charac-

terized by progressive airflow obstruction accompanied by

chronic inflammation. It is a major and growing cause of

morbidity and mortality worldwide [1]. Although environ-

mental exposures such as cigarette smoking are risk fac-

tors, a genetic component to susceptibility has been

observed [2–5]. Genomic regions influencing COPD sus-

ceptibility have been identified at multiple loci through

genome-wide association studies [6–12]. Airway inflam-

mation and remodeling and emphysematous destruction

in the lung contribute to disease severity and progression

[13, 14], with macrophage activity having an important

role [15, 16]. The recapitulation of these gene expression

signals in peripheral blood remains elusive. However, gene

expression in blood has been used as proxy in identifica-

tion of COPD subtypes [17], and peripheral blood gene

expression underlines the systemic effects of COPD in-

flammation [18–20].

Several published COPD studies have performed

microarray gene expression profiling [21]. Specifically,

studies in the airway epithelium have focused on expres-

sion changes related to smoking [22, 23] and COPD sta-

tus [24, 25], including targeted RNA-seq profiling [26].

Studies of gene expression in peripheral blood have also

focused on COPD [19, 27, 28] and smoking [29, 30], in-

cluding RNA-seq profiling [31]. Given the putative role

macrophages have in inflammatory lung disease [32],

gene expression profiling of these cells has been per-

formed in the context of COPD [33] and smoking [34].

In addition to the airway studies, there have also been

several COPD and emphysema gene expression studies

involving resected lung tissue [35–39], including

RNA-seq profiling in a cohort of males [40] and

RNA-seq profiling of early COPD and emphysema in

males [41].

Despite the volume of this previous work, the expres-

sion signatures for alveolar macrophages, bronchial epi-

thelium, and peripheral blood have not previously been

studied within the same population at the same time.

However, gene expression in nasal and bronchial brush-

ing samples from the same subjects has been compared

[42]. Another study of nasal and bronchial gene expres-

sion was performed in independent cohorts [43]. A

study of lung tissue, small airway, and peripheral blood

gene expression, with tissue samples obtained from sep-

arate cohorts, involved both emphysema and lung func-

tion phenotypes [44]. Overlapping gene expression

signatures have been studied in alveolar macrophages

and peripheral monocytes isolated from separate cohorts

[45]. Gene expression signatures have been explored

across many tissues in the Genotype-Tissue Expression

(GTEx) project [46], leveraging network methods to

identify tissue-specific gene and transcription factor

regulation [47–49] and examining the overall blood-lung

gene expression overlap [50].

The foundation of this study is the integration of

RNA-seq profiling across three COPD-relevant tissues

from the same COPDGene (Genetic Epidemiology of

COPD) study subjects, mitigating variation typically seen

when studying tissue samples from different subjects.

Gene expression in the airway epithelium, alveolar mac-

rophages and whole blood samples were tested for asso-

ciation with measures of lung function, airway disease,

emphysema severity and cigarette smoke exposure.

Given data across three tissues and 11 phenotype vari-

ables, we believed a comprehensive hypothesis could not

be the goal. Instead, highlighting private and overlapping

gene signatures when present was the more effective

approach. Using statistical methods and a gene set en-

richment framework, we sought to detect expression

signatures across the tissues, highlighting systemic and

tissue-specific signatures of lung disease and damage. By

integrating these findings with previous COPD lung

tissue studies and a recent COPD Genome-wide Associ-

ation Study (GWAS), we sought to place our results in

the context of lung disease biology and shed light on the

functional role of genes previously identified at

genome-wide significant COPD GWAS loci. Similar in-

tegration approaches have been previously applied in

COPD [43, 44, 51]. Systems biology has the potential to

reveal the molecular architecture of complex traits and

disease [52] in part by examining broad biological infor-

mation rather than individual genomic determinants.

We hypothesized that this systems biology study would

inform blood biomarker identification, motivate hypoth-

eses regarding the systemic functions of lung disease,

and potentially identify novel genes and pathways for

COPD and emphysema, as targets for functional, trans-

lational and diagnostic studies.

Methods

Study subjects and bronchoscopy procedure

Subjects were enrolled in the COPDGene study [53] and

participated in the five-year follow-up phase. COPD-

Gene is a longitudinal cohort study that includes

non-Hispanic Whites and African Americans enrolled at

21 centers across the United States. The subjects include

a small number of non-smokers and more than 10,000

current and former cigarette smokers with a minimum

10 pack-years smoking history. Cases have airflow ob-

struction (FEV1/FVC < 0.7) and control subjects had

normal spirometry (FEV1% predicted ≥80% and FEV1/

FVC ≥ 0.7). Subjects returned for the follow-up visit ap-

proximately 5 years after enrollment. At this second

phase visit, the subjects completed questionnaires and

underwent pre- and post-bronchodilator spirometry,

volumetric computed tomography (CT) of the chest,
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and had blood drawn for a complete blood cell count

and biomarker studies. Emphysema severity was quanti-

fied via image analysis of chest CT data as the percent-

age of lung voxels below − 950 HU [54].

A single physician performed flexible bronchoscopy on

all subjects in the substudy, using intravenous sedation

and topical anesthesia. Bronchoalveolar lavage (BAL)

was performed in two lung segments with 60ml of nor-

mal saline in each segment, and the BAL fluid obtained

from each subject was pooled. Large airway brushings

were performed in the right mainstem bronchus and

placed in RLT buffer (Qiagen). Whole blood was col-

lected in a PaxGene RNA tube on the day of bronchos-

copy. Study subjects provided separate written informed

consent for the bronchoscopy study, which was ap-

proved by the institutional review board at Partners

Healthcare.

Differential gene expression

We performed differential gene expression (DGE) ana-

lysis in each tissue individually using the R/Bioconductor

package DESeq2 [55], testing associations between tran-

script expression levels and lung function, emphysema,

smoking and airway disease phenotypes. The base statis-

tical model included the covariates age, sex, race,

pack-years of smoking, a categorical variable for smok-

ing status, and RIN (RNA Integrity Number). For ana-

lysis of emphysema variables, BMI was included as a

covariate. We controlled for cell distribution in periph-

eral blood using the covariates: white blood cell (WBC)

count, and the percentages of neutrophils, lymphocytes,

monocytes and eosinophils. A summary of all models is

provided in Table 1. Latent effects were addressed using

surrogate variables as covariates. These were obtained

using the function svaseq in the R/Bioconductor package

sva [56]. Prior to svaseq processing, coarse filtering was

performed by excluding transcripts with an average

count per sample of less than one. Only the surrogate

variables lacking a statistically significant association

with the phenotype variable of interest were included as

covariates. For the differential expression analysis,

adjustment for multiple testing controlled for false dis-

covery rate (FDR). In this FDR calculation, the method

DESeq2 excludes transcripts with mean normalized

counts across all samples that are below a set threshold.

By default, this threshold maximizes the number of sig-

nificant results found at a user-specified FDR. The FDR

was chosen to be 10% for this study, as the smaller sam-

ple size dictates a value greater than 5%. Results lacking

an adjusted p-value (NA/not available) are not statisti-

cally significant, as they represent genes with mean nor-

malized counts below the threshold. For the continuous

variables, the log2 fold change is per unit of change of

that variable.

Results

Differential gene expression

RNA-seq data were available in one or more of the three

tissues for 39 subjects, encompassing 94 total samples

(Additional file 1: Figure S1). This study focused on the 21

subjects having data available in all three tissues (see Add-

itional file 2: Methods). We performed RNA-seq profiling

followed by pathway and enrichment analysis (Fig. 1) on

the 63 samples from these 21 subjects (6 COPD cases and

15 controls; Additional file 3: Table S1). We observed

greater clustering by tissue than by individual. Emphysema

Table 1 Models for expression association with outcomes of interest

Phenotype category Variable of interest Model

Lung function COPD case-control EXP ~ COPD + age + sex + race + pack-years + smoking + RIN + SVs

FEV1% predicted EXP ~ FEV1.PP + age + sex + race + pack-years + smoking + RIN + SVs

FEV1/FVC EXP ~ FEV1FVC + age + sex + race + pack-years + smoking + RIN + SVs

Smoking pack-years EXP ~ pack-years + age + sex + race + RIN + SVs

Smoking status EXP ~ smoking + age + sex + race + RIN + SVs

Emphysema pctEmph EXP ~ pctEmph + age + sex + race + BMI + pack-years + smoking + RIN + SVs

perc15 EXP ~ perc15 + age + sex + race + BMI + pack-years + smoking + RIN + SVs

adj_density EXP ~ adj_density + age + sex + race + BMI + pack-years + smoking + RIN + SVs

Airway disease Pi10 EXP ~ Pi10 + age + sex + race + pack-years + smoking + RIN + SVs

AWT EXP ~ AWT + age + sex + race + pack-years + smoking + RIN + SVs

WallAreaPct EXP ~ WallAreaPct + age + sex + race + pack-years + smoking + RIN + SVs

Models for peripheral blood also included: WBC, and the percentages of neutrophils, lymphocytes, monocytes and eosinophils

smoking (ordinal variable): 0 non-smoker, 1 former smoker, 2 current smoker

Abbreviations: SVs = surrogate variables; FEV1 = forced expiratory volume in 1 s; FVC = forced vital capacity; pctEmph =% emphysema; perc15 = 15th percentile of

lung density histogram; adj_density = adjusted lung density, sponge model adjustment; Pi10 = SRWA-Pi10 = square root wall area of a hypothetical airway with 10

mm internal perimeter; AWT = airway wall thickness; WallAreaPct = wall area percent; EXP = gene expression values; WBC = white blood cell count
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and airway data from CT scans are available for a subset

of the subjects. Subjects who never smoked were excluded

from analyses, except analyses for the two models asses-

sing the impact of smoking. Association between gene ex-

pression and 11 phenotype variables (Table 1) was tested

in each tissue. We viewed the overlapping gene expression

signatures of all results included in the DESeq2 FDR cal-

culations (Additional file 3: Table S2), using a correlation

heatmap (Fig. 2). Within this heatmap, we observed clus-

tering by both tissue and phenotype, presenting as blocks

of higher correlation. Specifically, the clustering by pheno-

type variable (mirroring our phenotype category grouping)

is nested within the clustering by tissue. However, some

smoking results in bronchial epithelium grouped with the

peripheral blood module (top left in Fig. 2). Delving into

this heatmap reveals this clustering is driven by the correl-

ation between the emphysema signature in blood and the

smoking signature in the bronchial epithelium (rows 12 &

13; columns 5–7 within black outline, Fig. 2). These signa-

tures reside within the complete differential expression re-

sults for the specific tissue and phenotype. Another

feature of note is the clustering of the smoking signature

in blood with the airway-disease signature in blood, driven

by the correlation between the smoking and emphysema

Fig. 1 Overview of the study design illustrating the statistical and

gene enrichment framework and the tissues (bronchial epithelium,

peripheral blood and alveolar macrophages) and the phenotypes

investigated. Findings are integrated with prior GWAS, prior lung

tissue studies and the Connectivity Map

Fig. 2 Heatmap of differential gene expression correlation across all analyses. The row and column labels indicate the phenotype variable and

the tissue. The results for each analysis were sorted by log2FoldChange and the Spearman correlation was calculated for each pair of results. The

absolute value of these correlations is plotted in the heatmap. Clustering by euclidean distance is shown in the dendrograms. The region of

correlation between the emphysema signature in blood and the smoking signature in the bronchial epithelium is outlined in the bottom black

box (rows 12 & 13; columns 5–7). The region of correlation between the smoking and emphysema signatures in blood is outlined in the top

black box (row 3; columns 5–7)
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signatures in blood (row 3; columns 5–7 within black out-

line, Fig. 2).

The number of significant (q-value < 0.1) results across

all 33 analyses (11 variables across 3 tissues) varied from

zero to 1886 (Additional file 3: Table S3). Since log2 fold

change depends on the units for each variable, we did

not apply a set fold change filter when determining sig-

nificance. Of these 33 sets of results, 26 contained at

least one significant result (Additional file 3: Tables

S4-S6); the intersection pattern across the results was

complex and mixed (Additional file 1: Figure S2). Next,

to enhance the gene expression signal for each pheno-

type, we combined the significant (q-value < 0.1) genes

across the phenotype variables in each of the four

phenotype categories (lung function, airway disease, em-

physema severity and cigarette smoke exposure), retain-

ing the unique genes in each category. Venn diagrams

highlight any cross-tissue intersections of these

combined results (Fig. 3, Additional file 3: Table S7). We

performed hypergeometric tests of gene enrichment

across the tissues within each phenotype category (Fig. 3

and Additional file 3: Table S8). The backgrounds in

these tests were the unique common genes across each

pair of tissues having an average of at least two reads in

each tissue. We observed statistically significant enrich-

ment primarily across bronchial epithelium and alveolar

macrophages. Although there were statistically meaning-

ful overlaps in the macrophage and blood sets, the num-

ber of intersecting genes was less than five. We did not

observe genes differentially expressed in all three tissues

for any of the four phenotype categories.

Enrichment and signature analyses

We performed pathway analyses on the results for each

phenotype association using gene set enrichment, and

combined the significant (q-value < 0.05) findings across

A B

C D

Fig. 3 Venn diagrams of the combined DESeq2 results intersected across tissue for the four phenotype categories (a. emphysema, b. lung function,

c. smoking status, d. airway disease); an asterisk denotes significant overlap (p < 0.01)
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the four phenotype categories (Fig. 4, Additional file

3: Table S9). In contrast to the results for individual

genes, we did observe pathway overlaps across all

three tissues for emphysema and smoking. We per-

formed hypergeometric tests of pathway enrichment

across the tissues within each phenotype category

(Fig. 4 and Additional file 3: Table S8). The back-

ground for these tests were the set of pathways

tested. We observed statistically significant enrich-

ment across two or more pairs of tissues for each of

the phenotype categories. To provide a graphical

pathway summary, we created an Enrichment Map in

Cytoscape using the overlapping pathways for blood

and bronchial epithelium in emphysema (Additional

file 1: Figure S3). We observed network modules

characterized by metabolic, cancer, and immune sig-

naling pathways, with smaller groups containing adhe-

rens junction and focal adhesion pathways.

To further assess disease relevance, we performed

gene set enrichment tests to compare the differential

gene expression signatures with findings from three pre-

vious studies (see Additional file 2: Methods). The set of

significant (q-value < 0.1) genes from the analysis of air-

way phenotypes in the bronchial epithelium was

included as a disease tissue reference. We summarized

these enrichment findings for both up- and

down-regulated genes in a p-value heatmap (Fig. 5).

From the heatmap, we observed enrichment of the bron-

chial epithelium airway-disease genes in macrophage re-

sults across all four phenotype categories. Within the

integration with previous studies (lung tissue gene ex-

pression, lung tissue DNA methylation and COPD

GWAS), we observed enrichment of lung tissue COPD

and emphysema genes in our bronchial epithelium re-

sults for both lung function and emphysema. The

down-regulated lung tissue genes were found enriched

A B

C D

Fig. 4 Venn diagrams of the overlap across tissue of the combined gene set enrichment results for the four phenotype categories (a. emphysema, b. lung

function, c. smoking status, d. airway disease); an asterisk denotes significant overlap (p< 0.01) and lines join non-zero counts contributing to a significant overlap
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in the genes up-regulated in bronchial epithelium by dis-

ease status. We also observed enrichment of our previously

published COPD-associated B cell lung tissue expression

module [38] and lung tissue DNA methylation genes [57]

within the emphysema results for peripheral blood. We did

not find enrichment for the lung emphysema genes in these

phenotype variables nor did we find enrichment of the B

cell module in the bronchial epithelium or macrophage re-

sults. We extracted the significant (q-value < 0.1) differen-

tial expression genes intersecting the external gene sets

(Additional file 3: Table S10). These enrichment experi-

ments provided lung disease context by linking to gene ex-

pression and epigenetic signatures of COPD in lung tissue.

We queried the Connectivity Map (CMap CLUE)

using our bronchial epithelium results for airway disease.

The perturbagens of interest have negative scores, as

these signatures demonstrate reversal of disease severity

for both the A549 cell line (Additional file 3: Table S11)

and HCC515 cell line (Additional file 3: Table S12). The

top chemical pertubagen from the A549 results was

lomerizine and the top result for HCC515 was

ephedrine.

Discussion
We integrated RNA-sequencing across three matched

COPD-relevant tissues using tests of association with

Fig. 5 Heatmap summary of p-values from gene set enrichment tests using a set of significant (q-value < 0.1) airway disease results in the bronchial

epithelium, and findings from previous GWAS and lung tissue studies. The top p-value corresponds to enrichment test in the up-regulated genes and

the bottom (p-value) refers to enrichment in down-regulated genes. The row labels are color-coded by phenotype category (blue = lung function, red

= smoking; green = emphysema, brown = airway)
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lung function, airway disease, emphysema severity and

cigarette smoke exposure, and a gene set enrichment

framework. This has revealed expression signatures

across the tissues in the context of each phenotype,

highlighting systemic and tissue-specific signatures and

pathways of lung disease and damage. We did not ob-

serve any genes differentially expressed across all three

tissues. However, we did find pathways overlapping the

three tissues in emphysema and smoking. Disease rele-

vance and biology were elucidated through integration

with previous COPD lung tissue studies and a recent

COPD GWAS.

Replication of airway differential gene expression

Our top two results from the differential expression ana-

lysis of smoking status in the bronchial epithelium were

CYP1A1 (cytochrome P450 family 1 subfamily A mem-

ber 1) and CYP1B1 (cytochrome P450 family 1 subfamily

A member 1). These replicate previous findings in stud-

ies of smoking in the airway [23, 58] and oral mucosa

[59], with CYP1B1 also identified in the lung [60]. Sig-

nificant in our analysis of smoking was AHRR (aryl-hy-

drocarbon receptor repressor), previously found to be

differentially expressed by smoking status in lung tissue

[60] and in the oral mucosa [59]. Both CYP1B1 and

AHRR were also significant in our analysis of smoking

status in macrophages, and Poliska et al. also found

CYP1B1 correlated with COPD status in alveolar macro-

phages [45].

In our bronchial epithelium analysis of airway dis-

ease, the genes CLDN10 (claudin 10), TMEM2

(CEMIP2 - cell migration inducing hyaluronidase 2)

and ALDH1A3 (aldehyde dehydrogenase 1 family

member A3) were significant across the three

airway-disease variables. CLDN10 is believed to have

a role in idiopathic pulmonary fibrosis (IPF) progres-

sion [61]. A gene-by-environmental tobacco smoke

interaction study on the level of FEV1 identified a

locus intronic to the gene TMEM2 [62] and TMEM2

was previously associated with lung function in the

small airway [44]. Last, the gene ALDH1A3 was found

to be differentially expressed by smoking status in

both the bronchial and nasal epithelium [42].

The top gene in our bronchial epithelium analysis

of percent emphysema was APOD (apolipoprotein D),

a gene found differentially expressed in a study of

emphysema severity and bronchiolitis [37]. The sec-

ond gene in this emphysema analysis was CYP2A6

(cytochrome P450 family 2 subfamily A member 6)

from a locus previously identified in GWAS of smok-

ing behavior [63] and COPD [7]. These replications

suggest a link to smoking-related lung disease and

progression, with relevance throughout the respiratory

tract.

Pathways overlap across tissues

We observed a mixed and complex overlap pattern of

significant genes across all differential expression results.

To better glean information from the overlaps, we

focused on private and cross-tissue signatures. We com-

bined the differential expression and pathway results

across phenotype variables, based on our observations of

clustering by phenotype categories in the correlation

heatmap. In this context, we observed statistically

significant enrichment primarily across the bronchial

epithelium and alveolar macrophages. We did not

observe genes differentially expressed in all three tissues

for any of the four phenotype categories. However, for

emphysema and smoking we did observe pathway over-

laps across all three tissues. We also observed statisti-

cally significant pathway overlaps across pairs of tissues

in each of the four phenotype categories. In emphysema,

the pathways at the three-tissue intersection were related

to hemostasis and immune signaling, both markers of

systemic inflammation. The three-tissue overlap for

smoking included amyloid and telomere related path-

ways. This is concordant with observations of amyloids

as putative biomarkers of systemic inflammation and

COPD [64] and the association between lung disease,

lung aging, and telomere length [65].

In addition to the three-tissue intersections, the robust

two-tissue pathway overlap in airway disease for the

bronchial epithelium and macrophages appears to be lo-

calized with signatures of oxidative stress, highlighted by

enrichment of nonsense mediated decay and metabolic

pathways. The cell-cycle pathways also present in this

overlap are suggestive of cellular senescence mechanisms

[66, 67], particularly given the findings in emphysema

for these cells [68]. A differentially expressed gene ob-

served at this intersection and the bronchial epithelium

and macrophage intersection for smoking was SCGB1A1

(secretoglobin family 1A member 1). This gene is

expressed at high levels in the lung and encodes for

CC16 (Club Cell Secretory Protein) a blood biomarker

of COPD [69, 70].

Another significant pathway overlap was observed

between blood and bronchial epithelium in emphy-

sema, characterized by clusters of metabolic, cancer,

and immune signaling pathways, with adherens junc-

tion and focal adhesion pathways also present. These

pathways highlight signals of structural damage and

systemic immune response in airway disease and em-

physema [14, 71]. The significantly differentially

expressed gene at this intersection was FCN1 (ficolin

1), a gene found to be differentially expressed in per-

ipheral blood in mild IPF [72]. In addition, functional

polymorphic sites in the promoter region of FCN1

regulate ficolin-1 expression and influence outcomes

during systemic inflammation [73].
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Airway signatures overlap in blood and recapitulate in

lung

We observed clustering of the smoking signature in

the bronchial epithelium with the smoking signature

in blood in our differential expression correlation

heatmap, brought about by the relationship between

the emphysema signature in blood and the smoking

signature in the bronchial epithelium. We also ob-

served clustering of the smoking signature in blood

with the airway-disease signature in blood, owing to

the correlation between the smoking and emphysema

signatures in blood. Taken together, these suggest a

common and systemic marker of emphysema with a

gene expression signature of smoke-induced damage

[18, 44, 74].

We integrated our differential expression results

with findings from previous COPD studies, along with

the significant bronchial epithelium results in airway

disease. We observed enrichment of the bronchial

epithelium airway-disease genes in macrophage results

across all four phenotype categories. This was in line

with the findings when we intersected the significant

genes and pathways for these tissues. Lung tissue

COPD and emphysema genes were enriched in our

bronchial epithelium results for both the lung func-

tion and emphysema phenotype categories, demon-

strating disease relevance in lung tissue. We found

that the down-regulated lung tissue genes were found

enriched in the genes up-regulated in the bronchial

epithelium by disease status. Although not an equiva-

lent comparison, this finding is similar in nature to

that of Obeidat et al., [44], where the lung tissue and

blood gene expression directionality was opposite

across their two tissue cohorts for a majority of the

genes of interest.

Within the emphysema results for peripheral blood,

we also observed enrichment of the COPD-relevant

lung tissue B cell expression module [38] and DNA

methylation [57] gene sets. The direction of effect for

these enrichments were concordant with respect to

disease status. The methylation directionality relation-

ship is more difficult to resolve given the various

gene regulation mechanisms [75]. We did not find

enrichment for the lung emphysema genes in these

phenotype variables. Overall, this suggests a systemic

B cell signature observed previously in the lung [38],

recapitulated here in peripheral blood. The significant

gene at B cell module intersection with the bronchial

epithelium results for COPD was CD28 (CD28 mol-

ecule). This gene may play a role in immunologic

senescence [71] and COPD inflammation [76], owing

to its role as a co-stimulatory molecule, constitutively

expressed by naïve T cells and required for full activa-

tion (and survival) of T cells.

Reversal of bronchial epithelium disease signature

Using Connectivity Map, we identified perturbing

compounds that produce gene expression signatures

in two lung cell lines opposing the disease gene ex-

pression signature we observed in the bronchial epi-

thelium. The top chemical pertubagen from the A549

results was lomerizine, a calcium channel blocker,

suggesting potential drug repurposing. Others on the

list include glucocorticoid receptor agonists, used in

the treatment of inflammatory lung diseases [77]

through their activation of specific glucocorticoid re-

ceptor mechanisms. Among the HCC515 compounds,

fluticasone is a current therapeutic for treatment of

respiratory disease [78], and as the top result for

HCC515, ephedrine is a known bronchodilator.

Some limitations to the current study involve blood

and bronchial epithelium cellular heterogeneity. We

have partially addressed the heterogeneity in blood using

the measured leukocyte counts. However, remaining

variation (e.g. lymphocyte composition) may influence

the gene expression signatures, as GPR15 was differen-

tially expressed in our smoking analysis in blood and

was found to be expressed in a T cell dependent manner

with cigarette smoking [79]. Single cell or single cell type

sequencing will better resolve specific gene expression

signatures. We have not addressed the polarization of

the alveolar macrophages, that increases with COPD se-

verity and cigarette smoke exposure [80]. The study of

early and intermediate phenotypes of COPD would help

to link the temporal changes in the tissue gene expres-

sion overlap with disease progression, as would longitu-

dinally repeated gene expression experiments. Last,

despite the use of RNA-seq to improve the resolution of

gene expression signatures and use of gene set enrich-

ment to extract signals from all results, our sample size

does limit our power to detect these signatures. Given

this limited power, our focus was not on the identifica-

tion of specific biomarkers. Future work will involve lar-

ger study cohorts with greater power to also resolve

individual biomarkers.

Conclusions

In this integrative genomics study, we have performed

RNA-seq profiling of gene expression in three matched

COPD-relevant tissues. Using statistical and gene set en-

richment methods, we have identified overlapping differ-

entially expressed genes and pathways across the tissues,

providing lung disease biomarker insight. We observed

no common genes across all three tissues. However, we

did observe shared pathways across all three. By inte-

grating the gene expression profiles with previous COPD

findings to provide additional disease context, we identi-

fied a lung disease signature in our emphysema results

in the bronchial epithelium and peripheral blood, while
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also suggesting recapitulation of a systemic B cell lung

signature in peripheral blood. Together this hints that

peripheral blood has the potential to capture relevant

lung pathobiology. Connectivity Map provided some

translational context, identifying known and putative

compounds that elicit a gene expression signature in

lung cell lines that opposes the disease signature we ob-

served in the bronchial epithelium.

Additional files

Additional file 1: Supplemental Figures: Additional figures to support

the findings of this study. (PDF 780 kb)

Additional file 2: Supplemental Methods. Additional detail regarding

the methods in this study. (PDF 56 kb)

Additional file 3: Supplemental Tables: Additional tables to support the

findings of this study. Table S4. Differential gene expression results in

bronchial epithelium. Table S5. Differential gene expression results in

alveolar macrophages. Table S6. Differential gene expression results in

peripheral blood. (ZIP 674 kb)

Abbreviations

AHRR: Aryl-hydrocarbon receptor repressor; ALDH1A3: Aldehyde

dehydrogenase 1 family member A3; APOD: Apolipoprotein D;

BAL: Bronchoalveolar Lavage; CC16: Club Cell Secretory Protein;

CLDN10: Claudin 10; CMap: Connectivity Map; COPD: Chronic Obstructive

Pulmonary Disease; COPDGene: Genetic Epidemiology of COPD;

CT: Computed Tomography; CYP1A1: Cytochrome P450 family 1 subfamily A

member 1; CYP1B1: Cytochrome P450 family 1 subfamily A member 1;

CYP2A6: Cytochrome P450 family 2 subfamily A member 6; DGE: Differential

Gene Expression; FCN1: Ficolin 1; FDR: False Discovery Rate; GTEx: Genotype-

Tissue Expression; GWAS: Genome-wide Association Study; IPF: Idiopathic

Pulmonary Fibrosis; RIN: RNA Integrity Number; SCGB1A1: Secretoglobin

family 1A member 1; TMEM2: CEMIP2 - cell migration inducing hyaluronidase

2; WBC: White Blood Cell

Acknowledgements

Not applicable

Funding

Funding: NIH grants K25 HL136846, P01 HL105339, P01 HL114501, R01

HL125583, R01 HL130512, P01 HL132825, R01 HL089856, R01 HL089897.

Availability of data and materials

The dataset supporting the conclusions of this article is available in the GEO

repository (GSE124180):

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124180

Authors’ contributions

JM: concept and design, analysis and interpretation of data, manuscript

preparation, approval of final manuscript. RC: analysis and interpretation of

data, approval of final manuscript. MP: analysis and interpretation of data,

approval of final manuscript. KG: analysis and interpretation of data, statistical

support, approval of final manuscript. MS: analysis and interpretation of data,

statistical support, approval of final manuscript. MD: acquisition of data,

approval of final manuscript. CO: acquisition of data, approval of final

manuscript. PC: analysis and interpretation of data, approval of final

manuscript. DD: analysis and interpretation of data, manuscript preparation,

approval of final manuscript. ES: concept and design, acquisition of data,

manuscript preparation, approval of final manuscript. CH: concept and

design, acquisition of data, analysis and interpretation of data, manuscript

preparation, approval of final manuscript.

Ethics approval and consent to participate

Written informed consent was obtained from each subject and the study

was approved by the institutional review boards at Partners Healthcare.

Consent for publication

Not applicable

Competing interests

Drs. Morrow, Chase, Parker, Glass, Seo, and Divo declare that they have no

competing interests related to this manuscript.

Dr. Owen is currently an employee of Vertex Pharmaceuticals Inc., Boston,

MA but has no competing interests related to this manuscript.

Dr. Castaldi has received consulting fees and grant support from GSK.

Dr. DeMeo has received compensation from Novartis.

In the past three years, Edwin K. Silverman received honoraria from Novartis

for Continuing Medical Education Seminars and grant and travel support

from GlaxoSmithKline.

Dr. Hersh has received consulting fees from AstraZeneca, Concert

Pharmaceuticals, Mylan, and 23andMe and grant support from Boehrinher

Ingelheim and Novartis.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Author details
1Channing Division of Network Medicine, Brigham and Women’s Hospital,

181 Longwood Avenue, Boston, MA 02115, USA. 2Division of Pulmonary and

Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115,

USA.

Received: 6 January 2019 Accepted: 25 March 2019

References

1. Vestbo J, Hurd SS, Agustí AG, Jones PW, Vogelmeier C, Anzueto A, et al.

Global strategy for the diagnosis, management, and prevention of chronic

obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit

Care Med. 2013;187(4):347–65.

2. Hersh CP, Hokanson JE, Lynch DA, Washko GR, Make BJ, Crapo JD, et al.

Family history is a risk factor for COPD. Chest. 2011;140(2):343–50.

3. McCloskey S, Patel B, Hinchliffe S, Reid E, Wareham N, Lomas D. Siblings of

patients with severe chronic obstructive pulmonary disease have a

significant risk of airflow obstruction. Am J Respir Crit Care Med. 2001;164:

1419–24.

4. Silverman EK. Genetics of Chronic Obstructive Pulmonary Disease. In:

Chadwick D, Goode JA, editors. Chronic Obstructive Pulmonary Disease:

Pathogenesis to Treatment. New Jersey: Wiley; 2000. p. 45–64.

5. Silverman EK, Chapman HA, Drazen JM, Weiss ST, Rosner B, Campbell EJ, et

al. Genetic epidemiology of severe, early-onset chronic obstructive

pulmonary disease. Risk to relatives for airflow obstruction and chronic

bronchitis. Am J Respir Crit Care Med. 1998;157(6 Pt 1):1770–8.

6. Cho MH, Boutaoui N, Klanderman BJ, Sylvia JS, Ziniti JP, Hersh CP, et al.

Variants in FAM13A are associated with chronic obstructive pulmonary

disease. Nat Genet. 2010;42(3):200–2.

7. Cho MH, Castaldi PJ, Wan ES, Siedlinski M, Hersh CP, Demeo DL, et al. A

genome-wide association study of COPD identifies a susceptibility locus on

chromosome 19q13. Hum Mol Genet. 2012;21(4):947–57.

8. Cho MH, McDonald M-LN, Zhou X, Mattheisen M, Castaldi PJ, Hersh CP, et

al. Risk loci for chronic obstructive pulmonary disease: a genome-wide

association study and meta-analysis. Lancet Respir Med. 2014;2(3):214–25.

9. Cho MH, Castaldi PJ, Hersh CP, Hobbs BD, Barr RG, Tal-Singer R, et al. A

genome-wide association study of emphysema and airway quantitative

imaging phenotypes. Am J Respir Crit Care Med. 2015;192(5):559–69.

10. Hobbs BD, de Jong K, Lamontagne M, Bossé Y, Shrine N, Artigas MS, et al.

Genetic loci associated with chronic obstructive pulmonary disease overlap

with loci for lung function and pulmonary fibrosis. Nat Genet. 2017;49(3):

426–32.

11. Sakornsakolpat P, Prokopenko D, Lamontagne M, Reeve NF, Guyatt AL,

Jackson VE, et al. Genetic landscape of chronic obstructive pulmonary

disease identifies heterogeneous cell-type and phenotype associations. Nat

Genet. 2019;51(3):494–505.

12. Wain LV, Shrine N, Artigas MS, Erzurumluoglu AM, Noyvert B, Bossini-Castillo

L, et al. Genome-wide association analyses for lung function and chronic

Morrow et al. Respiratory Research           (2019) 20:65 Page 10 of 12

https://doi.org/10.1186/s12931-019-1032-z
https://doi.org/10.1186/s12931-019-1032-z
https://doi.org/10.1186/s12931-019-1032-z
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124180


obstructive pulmonary disease identify new loci and potential druggable

targets. Nat Genet. 2017;49(3):416–25.

13. Castaldi PJ, Dy J, Ross J, Chang Y, Washko GR, Curran-Everett D, et al. Cluster

analysis in the COPDGene study identifies subtypes of smokers with distinct

patterns of airway disease and emphysema. Thorax. 2014;69(5):416–23.

14. McDonough JE, Yuan R, Suzuki M, Seyednejad N, Elliott WM, Sanchez PG, et

al. Small-airway obstruction and emphysema in chronic obstructive

pulmonary disease. N Engl J Med. 2011;365(17):1567–75.

15. Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, et al. The

nature of small-airway obstruction in chronic obstructive pulmonary disease.

N Engl J Med. 2004;350(26):2645–53.

16. Suzuki M, Sze MA, Campbell JD, Brothers JF, Lenburg ME, McDonough JE, et

al. The cellular and molecular determinants of emphysematous destruction

in COPD. Sci Rep. 2017;7(1):9562.

17. Chang Y, Glass K, Liu Y-Y, Silverman EK, Crapo JD, Tal-Singer R, et al. COPD

subtypes identified by network-based clustering of blood gene expression.

Genomics. 2016;107(2–3):51–8.

18. Bhattacharya S, Tyagi S, Srisuma S, Demeo DL, Shapiro SD, Bueno R, et al.

Peripheral blood gene expression profiles in COPD subjects. J Clin

Bioinforma. 2011;1(1):12.

19. Morrow JD, Qiu W, Chhabra D, Rennard SI, Belloni P, Belousov A, et al.

Identifying a gene expression signature of frequent COPD exacerbations in

peripheral blood using network methods. BMC Med Genet. 2015;8(1):1.

20. Oudijk E-JD. Systemic inflammation in COPD visualised by gene profiling in

peripheral blood neutrophils. Thorax. 2005;60(7):538–44.

21. Hobbs BD, Hersh CP. Integrative genomics of chronic obstructive

pulmonary disease. Biochem Biophys Res Commun. 2014;452(2):276–86.

22. Spira A, Beane J, Shah V, Liu G, Schembri F, Yang X, et al. Effects of cigarette

smoke on the human airway epithelial cell transcriptome. Proc Natl Acad

Sci. 2004;101(27):10143–8.

23. Tilley AE, O’Connor TP, Hackett NR, Strulovici-Barel Y, Salit J, Amoroso N, et

al. Biologic Phenotyping of the Human Small Airway Epithelial Response to

Cigarette Smoking. Königshoff M, editor. PLoS ONE. 2011;6(7):e22798.

24. Steiling K, Lenburg ME, Spira A. Airway gene expression in chronic

obstructive pulmonary disease. Proc Am Thorac Soc. 2009;6(8):697–700.

25. Steiling K, van den Berge M, Hijazi K, Florido R, Campbell J, Liu G, et al. A

dynamic bronchial airway gene expression signature of chronic obstructive

pulmonary disease and lung function impairment. Am J Respir Crit Care

Med. 2013;187(9):933–42.

26. Yeo J, Morales DA, Chen T, Crawford EL, Zhang X, Blomquist TM, et al.

RNAseq analysis of bronchial epithelial cells to identify COPD-associated

genes and SNPs. BMC Pulm Med. 2018;18:42.

27. Obeidat M, Nie Y, Chen V, Shannon CP, Andiappan AK, Lee B, et al. Network-

based analysis reveals novel gene signatures in peripheral blood of patients

with chronic obstructive pulmonary disease. Respir Res. 2017;18(1):72.

28. Reinhold D, Morrow JD, Jacobson S, Hu J, Ringel B, Seibold MA, et al. Meta-

analysis of peripheral blood gene expression modules for COPD

phenotypes. Chotirmall SH, editor. PLOS ONE. 2017;12(10):e0185682.

29. Beineke P, Fitch K, Tao H, Elashoff MR, Rosenberg S, Kraus WE, et al. A whole

blood gene expression-based signature for smoking status. BMC Med

Genet. 2012;5:58.

30. Huan T, Joehanes R, Schurmann C, Schramm K, Pilling LC, Peters MJ, et al. A

whole-blood transcriptome meta-analysis identifies gene expression

signatures of cigarette smoking. Hum Mol Genet. 2016;25(21):4611–23.

31. Parker MM, Chase RP, Lamb A, Reyes A, Saferali A, Yun JH, et al. RNA

sequencing identifies novel non-coding RNA and exon-specific effects

associated with cigarette smoking. BMC Med Genet. 2017;10:58.

32. Hiemstra PS, McCray PB, Bals R. The innate immune function of airway

epithelial cells in inflammatory lung disease. Eur Respir J. 2015;45(4):

1150–62.

33. Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, et al.

Transcriptome-based network analysis reveals a Spectrum model of human

macrophage activation. Immunity. 2014;40(2):274–88.

34. Heguy A, O’Connor TP, Luettich K, Worgall S, Cieciuch A, Harvey B-G, et al.

Gene expression profiling of human alveolar macrophages of

phenotypically normal smokers and nonsmokers reveals a previously

unrecognized subset of genes modulated by cigarette smoking. J Mol Med.

2006;84(4):318–28.

35. Bhattacharya S, Srisuma S, DeMeo DL, Shapiro SD, Bueno R, Silverman EK, et

al. Molecular biomarkers for quantitative and discrete COPD phenotypes.

Am J Respir Cell Mol Biol. 2009;40(3):359–67.

36. Campbell JD, McDonough JE, Zeskind JE, Hackett TL, Pechkovsky DV,

Brandsma C-A, et al. A gene expression signature of emphysema-related

lung destruction and its reversal by the tripeptide GHK. Genome Med. 2012;

4(8):67.

37. Faner R, Cruz T, Casserras T, López-Giraldo A, Noell G, Coca I, et al. Network

analysis of lung transcriptomics reveals a distinct B cell signature in

emphysema. Am J Respir Crit Care Med. 2016;193(11):1242–53.

38. Morrow JD, Zhou X, Lao T, Jiang Z, DeMeo DL, Cho MH, et al. Functional

interactors of three genome-wide association study genes are differentially

expressed in severe chronic obstructive pulmonary disease lung tissue. Sci

Rep. 2017;7:44232.

39. Spira A, Beane J, Pinto-Plata V, Kadar A, Liu G, Shah V, et al. Gene expression

profiling of human lung tissue from smokers with severe emphysema. Am J

Respir Cell Mol Biol. 2004;31(6):601–10.

40. Kim WJ, Lim JH, Lee JS, Lee S-D, Kim JH, Oh Y-M. Comprehensive analysis of

transcriptome sequencing data in the lung tissues of COPD subjects. Int J

Genomics. 2015;2015:1–9.

41. Jeong I, Lim J-H, Oh DK, Kim WJ, Oh Y-M. Gene expression profile of human

lung in a relatively early stage of COPD with emphysema. Int J Chron

Obstruct Pulmon Dis. 2018;13:2643–55.

42. Imkamp K, Berg M, Vermeulen CJ, Heijink IH, Guryev V, Kerstjens HAM, et al.

Nasal epithelium as a proxy for bronchial epithelium for smoking-induced

gene expression and expression quantitative trait loci. J Allergy Clin

Immunol. 2018;142(1):314–7.

43. Boudewijn IM, Faiz A, Steiling K, van der Wiel E, Telenga ED, Hoonhorst SJM,

et al. Nasal gene expression differentiates COPD from controls and overlaps

bronchial gene expression. Respir Res. 2017;18(1):213.

44. Obeidat M, Nie Y, Fishbane N, Li X, Bossé Y, Joubert P, et al. Integrative

genomics of emphysema-associated genes reveals potential disease

biomarkers. Am J Respir Cell Mol Biol. 2017;57(4):411–8.

45. Poliska S, Csanky E, Szanto A, Szatmari I, Mesko B, Szeles L, et al. Chronic

obstructive pulmonary disease-specific gene expression signatures of

alveolar macrophages as well as peripheral blood monocytes overlap and

correlate with lung function. Respiration. 2011;81(6):499–510.

46. Mele M, Ferreira PG, Reverter F, DeLuca DS, Monlong J, Sammeth M, et al.

The human transcriptome across tissues and individuals. Science. 2015;

348(6235):660–5.

47. Pierson E, the GTEx Consortium, Koller D, Battle A, Mostafavi S. Sharing and

Specificity of Co-expression Networks across 35 Human Tissues. Rigoutsos I,

editor. PLOS Comput Biol. 2015;11(5):e1004220.

48. Saha A, Kim Y, Gewirtz ADH, Jo B, Gao C, McDowell IC, et al. Co-expression

networks reveal the tissue-specific regulation of transcription and splicing.

Genome Res. 2017;27(11):1843–58.

49. Sonawane AR, Platig J, Fagny M, Chen C-Y, Paulson JN, Lopes-Ramos CM, et

al. Understanding tissue-specific gene regulation. Cell Rep. 2017;21(4):1077–

88.

50. Halloran JW, Zhu D, Qian DC, Byun J, Gorlova OY, Amos CI, et al. Prediction

of the gene expression in normal lung tissue by the gene expression in

blood. BMC Med Genet. 2015;8:77.

51. Morrow JD, Cho MH, Platig J, Zhou X, DeMeo DL, Qiu W, et al. Ensemble

genomic analysis in human lung tissue identifies novel genes for chronic

obstructive pulmonary disease. Hum Genomics. 2018;12:1.

52. Civelek M, Lusis AJ. Systems genetics approaches to understand complex

traits. Nat Rev Genet. 2013;15(1):34–48.

53. Regan EA, Hokanson JE, Murphy JR, Make B, Lynch DA, Beaty TH, et al.

Genetic epidemiology of COPD (COPDGene) study design. COPD J Chronic

Obstr Pulm Dis. 2011;7(1):32–43.

54. Diaz AA, Valim C, Yamashiro T, Estépar RSJ, Ross JC, Matsuoka S, et al.

Airway count and emphysema assessed by chest CT imaging predicts

clinical outcome in smokers. Chest. 2010;138(4):880–7.

55. Love MI, Huber W, Anders S. Moderated estimation of fold change and

dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

56. Leek JT, Storey JD. Capturing heterogeneity in gene expression studies by

surrogate variable analysis. PLoS Genet. 2007;3(9):e161.

57. Morrow JD, Cho MH, Hersh CP, Pinto-Plata V, Celli B, Marchetti N, et al. DNA

methylation profiling in human lung tissue identifies genes associated with

COPD. Epigenetics. 2016;11(10):730–9.

58. Buro-Auriemma LJ, Salit J, Hackett NR, Walters MS, Strulovici-Barel Y, Staudt

MR, et al. Cigarette smoking induces small airway epithelial epigenetic

changes with corresponding modulation of gene expression. Hum Mol

Genet. 2013;22(23):4726–38.

Morrow et al. Respiratory Research           (2019) 20:65 Page 11 of 12



59. Boyle JO, Gumus ZH, Kacker A, Choksi VL, Bocker JM, Zhou XK, et al. Effects

of cigarette smoke on the human Oral mucosal transcriptome. Cancer Prev

Res (Phila Pa). 2010;3(3):266–78.

60. Bosse Y, Postma DS, Sin DD, Lamontagne M, Couture C, Gaudreault N, et al.

Molecular signature of smoking in human lung tissues. Cancer Res. 2012;

72(15):3753–63.

61. Fukumoto J, Soundararajan R, Leung J, Cox R, Mahendrasah S, Muthavarapu

N, et al. The role of club cell phenoconversion and migration in idiopathic

pulmonary fibrosis. Aging. 2016;8(11):3091–109.

62. de Jong K, Vonk JM, Imboden M, Lahousse L, Hofman A, Brusselle GG, et al.

Genes and pathways underlying susceptibility to impaired lung function in

the context of environmental tobacco smoke exposure. Respir Res. 2017;

18(1):142.

63. Thorgeirsson TE, Gudbjartsson DF, Surakka I, Vink JM, Amin N, Geller F, et al.

Sequence variants at CHRNB3–CHRNA6 and CYP2A6 affect smoking

behavior. Nat Genet. 2010;42(5):448–53.

64. Bu X-L, Cao G-Q, Shen L-L, Xiang Y, Jiao S-S, Liu Y-H, et al. Serum amyloid-

Beta levels are increased in patients with chronic obstructive pulmonary

disease. Neurotox Res. 2015;28(4):346–51.

65. Jin M, Lee EC, Ra SW, Fishbane N, Tam S, Criner GJ, et al. Relationship of

absolute telomere length with quality of life, exacerbations, and mortality in

COPD. Chest. 2018;154(2):266–73.

66. Meiners S, Eickelberg O, Königshoff M. Hallmarks of the ageing lung. Eur

Respir J. 2015;45(3):807–27.

67. Thannickal VJ, Murthy M, Balch WE, Chandel NS, Meiners S, Eickelberg O, et

al. Blue journal conference. Aging and susceptibility to lung disease. Am J

Respir Crit Care Med. 2015;191(3):261–9.

68. Tsuji T, Aoshiba K, Nagai A. Alveolar cell senescence in patients with

pulmonary emphysema. Am J Respir Crit Care Med. 2006;174(8):886–93.

69. Lomas DA, Silverman EK, Edwards LD, Miller BE, Coxson HO, Tal-Singer R, et

al. Evaluation of serum CC-16 as a biomarker for COPD in the ECLIPSE

cohort. Thorax. 2008;63(12):1058–63.

70. Zemans RL, Jacobson S, Keene J, Kechris K, Miller BE, Tal-Singer R, et al.

Multiple biomarkers predict disease severity, progression and mortality in

COPD. Respir Res. 2017;18:117.

71. Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive

pulmonary disease. J Allergy Clin Immunol. 2016;138(1):16–27.

72. Yang IV, Luna LG, Cotter J, Talbert J, Leach SM, Kidd R, et al. The peripheral

blood transcriptome identifies the presence and extent of disease in

idiopathic pulmonary fibrosis. PLoS One. 2012;7(6):e37708.

73. Munthe-Fog L, Hummelshoj T, Honoré C, Moller ME, Skjoedt MO, Palsgaard

I, et al. Variation in FCN1 affects biosynthesis of ficolin-1 and is associated

with outcome of systemic inflammation. Genes Immun. 2012;13(7):515–22.

74. Bahr TM, Hughes GJ, Armstrong M, Reisdorph R, Coldren CD, Edwards MG,

et al. Peripheral blood mononuclear cell gene expression in chronic

obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2013;49(2):316–23.

75. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies

and beyond. Nat Rev Genet. 2012;13(7):484–92.

76. Sharma G, Hanania NA, Shim YM. The aging immune system and its

relationship to the development of chronic obstructive pulmonary disease.

Proc Am Thorac Soc. 2009;6(7):573–80.

77. Sundahl N, Bridelance J, Libert C, De Bosscher K, Beck IM. Selective

glucocorticoid receptor modulation: new directions with non-steroidal

scaffolds. Pharmacol Ther. 2015;152:28–41.

78. Calverley PMA, Jones PW. Salmeterol and fluticasone propionate and

survival in chronic obstructive pulmonary disease. N Engl J Med. 2007;

356(8):775–89.

79. Bauer M, Fink B, Seyfarth H-J, Wirtz H, Frille A. Tobacco-smoking induced

GPR15-expressing T cells in blood do not indicate pulmonary damage. BMC

Pulm Med. 2017;17:159.

80. Bazzan E, Turato G, Tinè M, Radu CM, Balestro E, Rigobello C, et al. Dual

polarization of human alveolar macrophages progressively increases with

smoking and COPD severity. Respir Res. 2017;18:40.

Morrow et al. Respiratory Research           (2019) 20:65 Page 12 of 12


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Study subjects and bronchoscopy procedure
	Differential gene expression

	Results
	Differential gene expression
	Enrichment and signature analyses

	Discussion
	Replication of airway differential gene expression
	Pathways overlap across tissues
	Airway signatures overlap in blood and recapitulate in lung
	Reversal of bronchial epithelium disease signature

	Conclusions
	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

