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RNA sequencing and transcriptome arrays
analyses show opposing results for
alternative splicing in patient derived
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Abstract

Background: RNA sequencing (RNA-seq) and microarrays are two transcriptomics techniques aimed at the
quantification of transcribed genes and their isoforms. Here we compare the latest Affymetrix HTA 2.0 microarray
with Illumina 2000 RNA-seq for the analysis of patient samples - normal lung epithelium tissue and squamous cell
carcinoma lung tumours. Protein coding mRNAs and long non-coding RNAs (lncRNAs) were included in the study.

Results: Both platforms performed equally well for protein-coding RNAs, however the stochastic variability was higher
for the sequencing data than for microarrays. This reduced the number of differentially expressed genes and genes
with predictive potential for RNA-seq compared to microarray data. Analysis of this variability revealed a lack of reads
for short and low abundant genes; lncRNAs, being shorter and less abundant RNAs, were found especially susceptible
to this issue. A major difference between the two platforms was uncovered by analysis of alternatively spliced genes.
Investigation of differential exon abundance showed insufficient reads for many exons and exon junctions in RNA-seq
while the detection on the array platform was more stable. Nevertheless, we identified 207 genes which undergo
alternative splicing and were consistently detected by both techniques.

Conclusions: Despite the fact that the results of gene expression analysis were highly consistent between
Human Transcriptome Arrays and RNA-seq platforms, the analysis of alternative splicing produced discordant
results. We concluded that modern microarrays can still outperform sequencing for standard analysis of gene
expression in terms of reproducibility and cost.
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Background
High throughput RNA sequencing (RNA-seq) opened

new horizons for transcriptomic studies and has evolved

into a standard tool for biological and medical research.

So far it has been employed for a large variety of pur-

poses including estimation of gene expression, identifica-

tion of non-coding genes, detection of new genomic

features and drug discovery. It is well established that

RNA-seq has strong advantages over the previously

developed high-throughput RNA analysis by microar-

rays. Since quantification is based on sequence reads it

can provide data on the expression of exons and exon

junctions and thus of genes and their isoforms at a

higher dynamic range than microarrays. The data can be

reanalysed in silico for identification and separation of

different organisms and the initial mapping can be up-

dated if an improved version of the genome is released.

Recently, Finotello and co-workers suggested that due to

the high reproducibility of RNA-seq [1] technical repli-

cates may be replaced by biological replicates, improving

the analysis of biological gene expression variability [2].
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However, despite continuous improvement of library

preparation protocols, RNA-seq application has its limi-

tations too, which can lead to biases and overvaluation

of the results [3–7]. Sequencing is sensitive to the quan-

tity of transcripts. Abundant mRNAs are overrepre-

sented in RNA-seq libraries, attracting the majority of

reads. These mRNAs are evaluated with low stochastic

variability between samples and thus have increased

chances to be found significant by differential expression

analysis (DEA) [3]. At the same time, low abundant

transcripts receive few reads, which makes them more

susceptible to noise and penalizes their chances to be se-

lected by DEA. The quality of the RNA is another source

of error. As over 90% of total RNA in the extracts be-

longs to ribosomal RNA (rRNA) and only 2% to mRNA,

special methods must be used to either enrich mRNA

(polyA selection) or reduce rRNA levels [3]. Both

methods are widely used, but can substantially affect the

results. It was found that polyA selection leads to a 3′-

end bias in the distribution of reads [5, 8, 9]. At the

same time, rRNA depletion can lead to strong unpredic-

table changes at exon level [5]. The length of a transcript

itself can also influence its detection in RNA-seq experi-

ments. A longer transcript has a higher chance to be

present in the library and thus to be considered signifi-

cant after DEA. This in turn may affect the functional

annotation of significant genes [6, 10, 11]. Interestingly,

for small non-coding RNAs, such as microRNAs,

there are evidences that microarrays can outperform

sequencing [12].

Finally, the library size has a significant influence on

the quality of the analysis. While several million reads

may be enough to quantify highly expressed genes, the

correct quantification of low abundant genes and tran-

scripts can require as much as 100–200 M reads [13]

due to the large differences in abundance between low

and high expressed transcripts (spanning 5–6 orders of

magnitude). This fact was also illustrated by different

studies aimed at the detection of alternative splicing:

some studies were performed with only ~30 M–read li-

braries [14], while others point out that over 400 M of

mapped reads should be used [7].

The performance comparison of RNA-seq with micro-

arrays has already been addressed by many studies (e.g.

Table 1 in Perkins et al. [15]). In general, a high level of

correlation between the two techniques has been re-

ported with a strong emphasis on the advantages of

RNA-seq [2, 16–21]. Of great consequence is the fact

that most of the researchers, who claim a strong per-

formance advantage of RNA-seq over microarrays, used

older versions of these arrays, mainly focused on the

abundance of 3′ UTRs, not of entire genes. New

array platforms like the Affymetrix Human Transcrip-

tome Arrays 2.0 (HTA) use improved methods for the

quantification of transcripts. As the probes in these

arrays are evenly spread among all exons and cover

exon junctions, they allow estimating the unbiased

abundance of a transcript and allow for the analysis

of differential exon usage between sample groups. A

first comparison was already made by Xu et al. [22]

using the previous version of HTA arrays – Glue

Grant human transcriptome arrays (GG-H). In this

work, it was demonstrated on the reference RNA

samples, that these arrays are cost effective, need

much less material (50 ng vs 2 μg RNA), show lower

between-replicate variability and can detect more sig-

nificantly expressed genes and exons than RNA-seq

with ~46 M uniquely mapped reads. The same group

claimed that the overlap of detected alternative

spliced exons between microarrays and sequencing

was ~50% for the reference samples [23].

The HTA 2.0 probe sets were redesigned based on the

GG-H array and optimized. The new HTA has less re-

dundant probe sets, no SNP-specific probes, updated

transcript models and it includes more exon-exon junc-

tions. Importantly, microarrays account now for over

40 k non-protein-coding genes including intergenic

RNAs, antisense RNAs and premature miRNAs. The dy-

namic range of gene expression and log fold-change

estimated by the arrays were recently measured on syn-

thetic samples and compared to three other microarray

platforms as well as two sequencing techniques [24].

HTA arrays showed promising results in this titration

experiment, however the low number of replicates was a

limiting factor of this study.

In this work, we compare RNA-seq using a 200 M li-

brary to the latest Affymetrix HTA microarrays on

tumour and control samples from patients with lung

squamous cell carcinoma (SCC). We include here not

only the quantification of expressed genes but also the

identification of alternatively spliced transcripts that may

be implicated in biologically important processes.

Methods

Tumour and normal samples

Nine matched pairs of primary tumour and adjacent tis-

sue from lung squamous cell carcinoma patients were

Table 1 Detection limits and dynamic range of signal and fold
change values for RNA-seq and HTA platforms, in log2 units

Measure (in log2 units) RNA-seq HTA

Lower limit of log expression −0.80 3.83

Higher limit of log expression 9.20 8.89

Dynamic range of log expression 10.00 5.06

Lower limit of absolute logFC 0.67 0.17

Lower limit of absolute logFC 7.55 3.58

Dynamic range of absolute logFC 6.87 3.41
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collected at the Maison Blanche Hospital, Reims, ac-

cording to the current EU and French regulations. Upon

a careful histological analysis, tissue specimens were

stored in liquid nitrogen until use.

RNA extraction

Total RNA was extracted from biological samples using

miRNeasy Mini Kit (Qiagen, Hilden, Germany) accor-

ding to the manufacturer’s instructions. RNA purity was

assessed using a NanoDrop ND-1000 Spectrophoto-

meter (Isogen Life Science) whereas RNA quality was

checked using RNA 6000 NanoChips with the Agilent

2100 Bioanalyzer (Agilent, Diegem, Belgium). Only RNA

preparations with a RNA integrity number (RIN) >7

were considered for further microarray analysis.

Transcriptome profiling

Human Transcriptome arrays 2.0 (HTA)

100 ng of total RNA was used to process the Affymetrix

GeneChip® Human Transcriptome 2.0 Arrays using the

GeneChip® WT Plus Reagent Kit according to manufac-

turer’s instructions (GeneChip® WT PLUS Reagent Kit

Manual Target Preparation for GeneChip® Whole Tran-

script (WT) Expression Arrays P/N 703174 Rev. 2,

2013). The arrays were washed and scanned after 16 h

of hybridization.

Quality of Affymetrix HTA microarrays was ad-

dressed by Affymetrix spike-in controls, perfect match

expression and relative log expression (RLE) during

data summarization and normalization in Partek®

Genomic Suite.

Illumina HiSeq 2000 (RNA-seq)

Preparation of the library for RNA-seq analysis was per-

formed using 1.0 μg of total RNA from each sample and

the TruSeq total RNA Sample Preparation Kit version

1.0 (Illumina, San Diego, CA) according to the manufac-

turer’s instructions. Briefly, total RNAs were fragmented

upon depletion of ribosomal RNAs. RNA fragments

were used as templates for first-strand cDNA synthesis

by reverse transcription with random hexamers. Upon

second-strand cDNA synthesis, double-stranded cDNAs

were end-repaired and adenylated at the 3′ ends. Follow-

ing the ligation of universal adapters to cDNA frag-

ments, the sequencing library was generated by PCR,

and used to produce the clusters thereafter sequenced

on an Illumina HiSeq 2000 (Illumina, San Diego, CA) in-

strument. Each sample was sequenced in a separate flow

cell lane, producing 120–280 M paired-end reads, with a

final length of 77 bases.

Microarray and RNA-seq expression data are available

at Gene Expression Omnibus under the reference

GSE84788.

Data pre-processing

Microarray data pre-processing

The pipeline of data processing for Affymetrix HTA ar-

rays as well as for RNA-seq is illustrated in Additional

file 1: Figure S1. Pre-processing of Affymetrix CEL-files

was performed with Partek® Genomics Suite version 6.6

(Partek® GS) using the robust multi-chip analysis (RMA)

algorithm, which performs background adjustment,

quantile normalisation and probe summarisation [25].

GC-content correction was used, as suggested by the

default pipeline of Partek® GS. In order to estimate

the effect of the normalization procedure, expression

data without normalization and with standard RMA

normalization (without GC-content correction) were

also generated. Further analysis was performed in R/

Bioconductor [26].

In order to be able to work with the Ensembl annota-

tion, we matched Affymetrix HTA probe sets to exon

coordinates from the human genome release GRCh37.69

(hg19) using the GenomicRanges library of R/Bioconduc-

tor, and calculated the average expression for each gene

and exon. Based on Affymetrix recommendation, junc-

tion probe sets were omitted during estimation of gene

and exon expression, but were used later for the splicing

analysis.

Protein-coding and long non-coding RNAs (lncRNAs)

were analysed separately. Several biotypes of genome re-

lease GRCh37.69 were combined together in order to

cover this species of RNA: “lincRNA”, “antisense”, “pro-

cessed_transcript”, “sense_intronic”, “sense_overlapping”,

“3prime_overlapping_ncrna” and “non_coding”.

RNA-seq data pre-processing

Illumina’s pipeline was used to generate the raw FASTQ

files, which were then submitted to TopHat (v2.0.6) [27].

Bowtie (v2.0.2.0) was used as the core read-alignment

engine [28]. The mapping was made using default pa-

rameters to the reference human genome GRCh37.69

from Ensembl annotation. TopHat alignment was able

to place 85–95% of the reads from each sample on the

human genome (Ensembl GRCh37); the numbers of

mapped reads for each sample are given in Additional

file 1: Figure S2. Next, aligned BAM files were indexed

and sorted with SAMtools (v0.1.18.0) for downstream

convenience [29].

Counts for gene expression were obtained using

HTSeq [30]. However, this method cannot be used for

exon-level counting due to the high level of exon overlap

in the human genome. Exon counting was obtained

using the featureCounts function of the Rsubread R/

Bioconductor package, which implements a flexible and

powerful counting algorithm [31]. Between-sample

normalization at gene level was performed by the R/

Bioconductor package edgeR [32] using the weighted
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trimmed mean method (TMM) [33]. Relative scaling

factors for the libraries were calculated, and normalized

counts per million (CPM) values in edgeR were ob-

tained. Additionally, we used fragments per kilobase of

transcript per million mapped reads (FPKM) as a mea-

sure that should be invariant to the length of genomic

features in RNA-seq. FPKM were calculated using the

Cuffdiff 2 algorithm [34]. As this measure is not recom-

mended for differential expression analysis [35], we

used it only for correlation analysis.

Exon-level data were normalized within the standard

DEXSeq pipeline [36] by the median ratio method [37].

Data transformations for exploratory analysis

Exploratory data analysis was performed on log2-trans-

formed values of signal intensity. Two measures for gene

expression were used. The first measure was log2 expres-

sion (intensity, counts or CPM) of a genomic feature.

Calculated as the mean of log2 expression of corre-

sponding probe sets, it is an absolute measure that char-

acterizes each sample independently and allows, to some

extent, estimating the quantity of the corresponding

mRNA. To avoid infinity after log-transformation of

RNA-seq data, a small constant offset was added to the

measurements. For CPM, we used 0.5, as proposed by

the developers of the edgeR package [38], therefore

logCPM = log2(CPM + 0.5). For FPKM, which can have

very small positive values, the constant offset was calcu-

lated as 1% percentile of all non-zero values (0.005 in

our dataset); therefore logFPKM = log2(FPKM + 0.005).

The second measure was log2 fold change (logFC). It

provides a relative expression of a gene or exon in

tumour versus near-by normal tissue. When calculated

for a pair of samples, it removes the part of the tran-

scription signal common to both tissues for the same pa-

tient and allows concentrating on the differences

between paired tumour and normal adjacent tissues.

Exploratory analysis of RNA expression

Principal component analysis (PCA) was used to visualize

and investigate the clustering of our data. Features

(mRNAs) with no signal in RNA-seq were excluded from

consideration to avoid zero variance, expression values

from each platform were centred and scaled inde-

pendently and the standard PCA function implemented

in R/Bioconductor (prcomp) was applied.

In order to characterize the global inter- and intra-

group variability of the data in each platform, we used the

principal variance component analysis (PVCA) method,

which was developed as a hybrid approach and includes

advantages of both PCA and variance component analysis

[39]. The method estimates fractions of the total variability

which are explained by experimental factors. Unexplained

variability can then be used as a measure of data quality,

as it should decrease with the reduction of intra-group

variability and with the increase of inter-group variability.

Comparison between transcription profiles of samples

measured by different techniques was performed by

Spearman’s rank correlation which reduces the effect of

different scales and influential outliers. Confidence inter-

vals for the mean correlation, calculated over a set of

samples, were assigned based on the Student distribution

of mean values. When reported, p-values for Spearman’s

correlations were computed within the cor.test function of

R/Bioconductor. Mean and standard deviation of gene ex-

pression calculated independently for each tissue state and

each platform were used to characterize the variability of

genes between biological replicates.

Differential expression analysis (DEA)

Microarray data were analysed by linear models with

empirical Bayes statistics from the limma package of R/

Bioconductor in order to detect differentially expressed

genes [40]. For RNA-seq we selected one of the most

used methods – edgeR [32] – which is based on negative

binomial models for counting data. The method was re-

cently reported as adequate for analyses with low num-

ber of replicates [41]. We tried both paired analysis,

which accounts for patient effect, and unpaired analysis,

which assumes no linkage between tumour and normal

samples coming from the same patient. As no improve-

ment was seen with paired DEA, we used unpaired ana-

lysis for the genes. Benjamini-Hochberg correction was

used to control false discovery rate (FDR) among se-

lected significant features (mRNAs or lncRNAs).

We performed DEA on all available features for the two

considered types of molecules separately: protein-coding

mRNAs and lncRNAs. Significant protein-coding genes

identified in this analysis were used afterwards for the

functional enrichment analysis. To measure the similarity

between the gene lists we used the Jaccard index [42]:

(NHTA ∩ NRNA-seq) / (NHTA ∪ NRNA-seq), where NHTA,

NRNA-seq are the numbers of the selected features identi-

fied by HTA and RNA-seq platforms.

Next, public data for lung squamous cell carcinoma

(LUSC RNA-seq v2 dataset) from The Cancer Genome

Atlas (TCGA) Research Network (http://cancergenome.-

nih.gov) was used as a reference dataset. This dataset, gen-

erated by highly standardized procedures with thorough

quality control, contains RNA-seq data from 51 normal

and 502 tumour samples. Due to the high number of sam-

ples, around 70% of all genes were found significantly dif-

ferentially expressed (FDR < 0.01) after limma analysis

with voom correction [38]. Therefore, only the top signifi-

cant genes were considered as reference. Here, limma was

used instead of edgeR as raw counts were not accessible

via the TCGA repository at the time.
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Dynamic range and detection limits

We estimated both dynamic range and detection limits

considering only informative features – those which

were found significantly differentially expressed between

cancer and normal groups (FDR < 0.01). The following

conservative approach was used to identify expression

borders. For all significant genes we calculated lower

and upper signal estimates by taking the 1st and 99th

percentile of the average expression. In addition, we

quantified the lowest and highest log2 fold changes of

significant gene expression using the same approach.

The 1st percentile of log2 fold changes can be used as

a signal sensitivity estimation as it characterizes the mi-

nimal detectable levels for expression differences in two

conditions.

Predictive capacity evaluation

To find out which technique provides more and better

potential marker genes for the classification of tumour

and normal tissues, we calculated the areas under the

ROC curve (AUC) for each gene measured by both plat-

forms. Calculations were performed using the caTools

package of R/Bioconductor. The behaviour of potential

marker genes was then compared to the markers found

in the SCC reference dataset from TCGA.

Functional analysis

Enrichment analysis on significantly differentially expressed

genes was performed using Gene Ontology (GO) terms

from all the available domains (biological processes, mo-

lecular functions and cellular components) [43]. The main

analysis was performed for genes with FDR < 10−4 in order

to get a manageable number of significant genes, compa-

tible with regular practice of functional annotation, and to

level the size of the selected gene lists. However, in order

to avoid stochastic effects and artefacts selecting a fixed

threshold for the platforms, we verified our findings in pa-

rallel with 4 thresholds for FDR (10−2, 10−3, 10−4 and 10−5)

and 4 thresholds for the number of top significant genes

(500, 1000, 2000, 4000). The enrichment analysis was

repeated on these lists using the topGO package of R/

Bioconductor. Enrichment of gene ontology categories

with significant genes was quantified by Fisher’s exact

test and resulting p-values adjusted by Benjamini–

Hochberg’s FDR procedure. Next, we summarized the

extensive lists of enriched ontology terms by removing re-

dundant terms using REVIGO tools (http://revigo.irb.hr)

[44] with the semantic similarity measure “Resnik” and

dispensability scores of the categories <0.4.

To avoid a tool-related bias, we confirmed our fin-

dings using the ReactomePA package of R/Bioconductor

[45]. In addition, in order to reduce the transcript length

effect on the results of the enrichment analysis, we ap-

plied the goseq package of R/Bioconductor. This package

was developed specifically to address the problem of

length-related bias in RNA-seq data when performing

functional annotation of significant genes [10].

Finally, we checked the behaviour of lung squamous

cell carcinoma oncogenes [46]. These genes are involved

in tumorigenesis and can be considered as potential

therapeutic targets.

Analysis of differential exon usage

The analysis of the differential exon usage was per-

formed by R/Bioconductor tools widely used in the field:

diffSplice method from limma for HTA arrays and DEX-

Seq package aimed at RNA-seq data analysis [36]. Both

diffSplice and DEXSeq are based on the splicing index

(SI) – the difference between exon and gene logFC –

and provide the significance of SI. Both algorithms were

used twice for each platform: for expression of exons

and for expression of exon-exon junctions. Following

the requirements of DEXSeq, paired analysis was used

for exon level. Resulting p-values were corrected by the

Benjamini-Hochberg’s method. Note that SI based

methods can detect exons with zero logFC when the ab-

solute gene logFC is high. To prevent this scenario, we

combined FDR and exon logFC selecting significant

exons. The logFC of exon expression was calculated

from the normalized data.

Next we investigated the potential sources of bias in

the detection of splicing events, namely exon length, the

relative location of spliced exons and their GC-content.

In order to calculate relative exon locations, we used a

straightforward approach. We ordered the exons of each

gene from 5′ to 3′ terminus, accounting for the strand,

assigned them with ranks (from 1 to the number of

exons) and then scaled the ranks by the total number of

exons. This resulted in values in the [0,1] range for the

exons of each gene.

Results

Exploratory analysis of the gene expression data

Sequencing shows higher variability in the expression data

We started the gene expression analysis by mapping

Affymetrix probe-sets on Ensembl-defined exons. This

increased the compatibility between the platforms in

terms of the lists of characterized genes, especially for

protein coding mRNAs: almost 100% of these genes were

found in common between both platforms (Additional

file 1: Figure S3). Regarding lncRNAs, 5855 (93%)

were also found in HTA data. Overlap of exon IDs

was high as well: 92% for protein coding mRNAs and 90%

for lncRNAs. Therefore, the list of common genes was

considered representative enough and further exploratory

analyses, such as principal component, variance and cor-

relation analysis, were performed on this list.
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Initially, principal component analysis (PCA) of the ex-

pression data showed a strong platform effect (Fig. 1a),

which naturally came from the difference in the scale of

gene expression offered by each platform. However, a sim-

ple linear normalization, such as centring and scaling per-

formed on log-transformed data, strongly reduced this

effect (Fig. 1b). Normalized data formed two distinct clus-

ters in the PCA-plot: tumour and normal. As expected,

tumour samples demonstrated much higher variability

than normal samples, due to the high heterogeneity of tu-

mours between patients. Next, the ranks of the genes in

all the samples were compared by Spearman correlation

(Fig. 1c). Clearly, the two groups identified by hierarchical

clustering, corresponded to the two tissue states: tumour

and normal. For tumours, the closest distance was seen

for the same samples measured by different platforms.

To further estimate the impact of the experimental

factors on mRNA and lncRNA expression data, we ap-

plied a principal variance component analysis (PVCA)

[39] method which quantified fractions of variability as-

sociated with two factors: patient and tumour/normal

tissue state. The part of variability that could not be ex-

plained by these factors, or “within-group” variability,

was represented by residuals. For both types of RNA,

the highest fraction of variability detected by HTA arrays

was associated with the tissue state (Fig. 1d,e). The pa-

tient effect was less pronounced than the tissue effect

and comparable between the platforms. Importantly, the

highest residuals were observed in RNA-seq data, sug-

gesting higher levels of stochastic noise in this dataset.

To prove this, we investigated the variability between

biological replicates in normal and tumour tissues with

respect to the average expression level (Additional file 1:

Figure S4). For both tissues, higher variability was ob-

served in RNA-seq data, especially for low expressed

genes (Additional file 1: Figure S4a,d). This is in agree-

ment with the fact that RNA-seq may be insensitive to

transcripts of reduced abundance. In microarrays

(Additional file 1: Figure S4b,e), the variability was lo-

west for the least expressed genes and gradually in-

creased up to a certain plateau (around log2 expression

of 6) (Additional file 1: Figure S4c,f ). The same analysis

was repeated using the length-normalized FPKM measure

for RNA-seq data, and the results strongly supported the

conclusions based on CPM (data not shown).

Altogether, these observations suggested that the vari-

ability found in the normalized expression data was

mainly attributable to the biological state of the samples

Fig. 1 Data variability in two tissue states captured by different platforms: HTA and RNA-seq. PCA of log2 expression data for protein coding
genes shows clustering based on platform for original data (a) and clustering based on tissue state for standardized data (b). Lines connect
the same samples measured by the two platforms. The heatmap of Spearman correlations between expression profiles measured by both

platforms shows that the major difference in gene order is tissue-related, not platform-related (c). The fraction of variability, determined
by PVCA, is presented for protein-coding genes (d) and lncRNAs (e). Variability which cannot be explained by patient or tissue state is

presented in the “residuals” group
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(normal vs tumour), with a minor bias linked to the plat-

form, and that higher stochastic variability should be

expected in RNA-seq compared to HTA, at least under

the considered experimental conditions.

Effect of data normalization on the correlation between

platforms

As a next step, we compared the observed transcription

profiles between the two platforms. Two measures were

considered: log2 expression and log2 fold change between

tumour and normal samples coming from the same pa-

tient. While the first directly reflects the observed signals,

the second reduces the patient effect and highlights the dif-

ferences between tumour and normal tissue transcrip-

tomes. Spearman correlation was calculated between the

expression profiles of the platforms for each sample (or pa-

tient for logFC). We observed a relatively good consensus

between HTA and RNA-seq platforms for protein-coding

mRNA: log-expression signals showed a mean correlation

(with a 95% confidence interval) of 0.760 ± 0.007, and a

logFC of 0.743 ± 0.053 (all p-values were below 10−16).

However, for lncRNAs these correlations were strongly re-

duced to 0.319 ± 0.008 and 0.349 ± 0.039, respectively. We

detected much higher variability in the correlation coeffi-

cients calculated for logFC (F-test resulted in p-values of

2.5⋅10−7 and 2.0⋅10−4 for mRNA and lncRNA, respec-

tively). Due to such variability, we did not detect significant

differences in the mean correlations between these mea-

sures (p-values of 0.49 and 0.12).

We also investigated potential effects of microarray

data pre-processing (normalization, GC-content and

background correction) that could affect the correlation

with RNA-seq data. Not normalized HTA data showed a

Spearman correlation of 0.580 ± 0.019 and data norma-

lized by classical RMA – a correlation of 0.588 ± 0.019.

As mentioned previously, the default analysis was made

with GC-correction and resulted in much higher corre-

lation. Thus, GC-correction is an important step that

strongly increases the similarity between Affymetrix

HTA and Illumina RNA-seq results.

Next, we checked whether a length-corrected measure

of gene expression (such as FPKM) could improve the cor-

relation between the platforms. Indeed, FPKM showed a

slight, but consistent, improvement in the correlation be-

tween platforms: 0.782 ± 0.006 and 0.376 ± 0.007 for

mRNAs and lncRNAs, correspondingly. However, logFC

measures calculated over FPKM showed significantly lower

correlations than corresponding expressions: 0.690 ± 0.045

and 0.317 ± 0.036 for mRNAs and lncRNAs (p-values of

0.001 and 0.005).

Gene length has a significant influence on detection levels

Microarray and sequencing expression profiles were

compared using scatter plots of the expression values for

each sample (one example is given in Fig. 2a). The range

of the detected log2 intensity values varied from 3 to 13

in HTA and from −1 to 14 in RNA-seq, which under-

lines the higher dynamic range of RNA-seq. The plot

shows a non-linear relation between the two platforms

for low expressed genes. This is probably due to back-

ground fluorescence, which starts playing a considerable

role in microarrays, when the signal from hybridized

transcripts is low. Some protein-coding genes that were

not detected by RNA-seq, were captured and showed a

moderate signal in HTA (dots within the blue box in

Fig. 2a). Partially, this can be explained by the length of

the transcripts: short genes (blue dots in Fig. 2) had

lower chance to be detected by RNA-seq. At the same

time, long genes (red dots) showed highest expression in

RNA-seq. The fold change between tumour and normal

tissues of a patient (Fig. 2b) depended less on the length

of the genes. Nevertheless, a cluster with zero logFC in

RNA-seq was mainly formed by short genes.

Differential expression analysis

In order to investigate how many genes could be found

significantly differentially expressed by the platforms, we

applied the two most accepted DEA approaches: limma

and edgeR. The first question addressed was whether

paired or unpaired analysis should be used. Paired ana-

lysis allows for efficient removal of patient-to-patient

variability, allowing detection of minor variability linked

to the factor of interest, especially when the effect of the

treatment is comparable or lower than the patient va-

riability. At the same time, introducing an additional

variable into a statistical model can reduce its power and

increase the resulting p-values, if the patient variability

is low. Our analysis of data variability suggested that the

patient effect was minor compared to the effect of the

tissue state and even lower than the noise level (Fig. 1d).

Nevertheless, both paired and unpaired analyses were

tested. We observed that pairing of the samples (dotted

lines in Fig. 3a) slightly increased the number of signifi-

cant genes in RNA-seq analysed by edgeR but reduced

the number of significant genes in HTA analysed by

limma. In addition, pairing also reduced the list of com-

monly identified genes. In order to investigate this prob-

lem deeper, we repeated the RNA-seq analysis using

limma with voom data transformation [38] (yellow lines

in Fig. 3a). Interestingly, voom/limma applied to the

same RNA-seq data as edgeR, showed a behaviour simi-

lar to limma on HTA, strongly penalizing pairing.

Therefore, the effect of pairing was linked to the proper-

ties of the statistical model and test used: an algorithm

using a specific negative binomial model for gene ex-

pression and a likelihood ratio test improved the results

(although slightly in our case). Limma, which uses a

more general normal model for the signal, tends to
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Fig. 2 Scatter plots of coding mRNA expression captured by the two platforms. RNA-seq and HTA expression data for one sample (a) and logFC
for one patient (b). Protein coding genes are visualized by gene length: blue – short, green – intermediate, red – long. The blue boxes highlight
the genes missed by sequencing, but detected by microarrays

Fig. 3 Differentially expressed genes identified by the platforms. Evolution of the number of significant genes identified with variable FDR thresholds
(a), using edgeR and limma with voom correction for analysis of RNA-seq data, and using limma for HTA data. Solid lines show unpaired analyses, while

dotted lines show analyses paired by patient. Differentially expressed protein coding mRNAs (b) and lncRNAs (c) were obtained by unpaired differential
expression analysis using edgeR for RNA-seq and limma for HTA (FDR < 0.01) and represented as proportional Euler-Venn diagrams. The lists
of differentially expressed genes were confirmed by the top 25% significant genes detected in the LUSC-TCGA dataset: 4569 protein coding

genes (FDR < 10−18) and 111 lncRNAs (FDR < 10−8) were used. Evolution of Jaccard index for coding mRNAs with variable FDR thresholds (d)
between the two platforms (violet) shows a monotonic behaviour. Similarity between the TCGA validation gene list and each of the platforms–

RNA-seq (red) and HTA (blue) showed a slight outperformance of HTA (marked by an arrow)
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penalize additional factors strongly. Taking these facts

into account we decided to continue the study using the

unpaired analysis.

Interestingly, RNA-seq data analysed by edgeR re-

ported fewer genes than HTA data analysed by limma

for moderate FDR values (0.05–10−4). For the standard

threshold (FDR < 0.01), 6173 protein-coding mRNAs

were detected from HTA data while only 4777 were ob-

tained from RNA-seq data, with 3683 genes in common

(Jaccard index of 0.507), as shown in Fig. 3b. Likewise,

1219 lncRNAs were found to be significant on the HTA

platform against 892 in the RNA-seq experiment (Fig.

3c), but with much lower similarity (0.217). However,

genes with a more stringent threshold (FDR < 10−4)

were observed mainly for edgeR with its negative bino-

mial model. When the analysis assumed the normal

model, the reported number of significant genes fell

even faster with the decrease of FDR for RNA-seq than

for HTA arrays (Fig. 3a). As the two curves representing

the number of significant genes in HTA and RNA-seq

crossed around FDR < 10−4 (Fig. 3a), this threshold was

used to select the similar-size sets of significant genes

for the functional annotation.

In order to verify the obtained lists of differentially

expressed genes, we compared them with external results

obtained on squamous cell carcinoma samples from

TCGA (LUSC dataset). This dataset can be used as a re-

ference due to its high quality and the large size of the pa-

tient cohort used. As mentioned in Methods, 25% of the

most significant genes in the TCGA dataset were selected

– creating a validation gene set of similar size to the set of

significant genes in our experiments. For protein-coding

mRNAs the validation set was composed of 4569 signifi-

cant genes with an FDR < 10−18. The number of genes

identified in our analysis and confirmed by the TCGA

dataset are summarized in Fig. 3b,c. HTA showed a higher

number of confirmed mRNAs, but proportionally the con-

firmation level varied only slightly: 37% for HTA, and 39%

for RNA-seq. Common mRNAs showed the highest con-

firmation level (43%), while the uniquely identified genes

had lower confirmation rates of 23% and 26% for sequen-

cing and microarrays, respectively. We also investigated

the evolution of overlap between platforms and the confir-

mation rate within each platform (Fig. 3d). Overlap bet-

ween significant genes detected by both platforms

increased with the increase of the FDR threshold. Interes-

tingly, HTA was more similar to TCGA data than RNA-

seq for FDR thresholds within the range 10−5–10−2.

Unlike protein-coding genes, lncRNAs showed very

low similarity between our data and the TCGA dataset

as only 442 lncRNAs were quantified in TCGA. There-

fore, the top 111 were used (FDR < 10−8) as a reference

list. The confirmation level was only 5% for lncRNAs

commonly detected by both platforms.

In summary, the differential expressed analysis showed

a higher number of significant genes in HTA compared

to RNA-seq (for FDR < 0.01). The genes commonly

identified by both platforms exhibited a higher confirm-

ation rate by comparison to the results from the TCGA

dataset. The results of the differential expression analysis

are provided in Additional file 2.

Dynamic range and sensitivity

Current literature repeatedly mentions a significant dif-

ference in the dynamic range of these two platforms.

Here the detection limits and dynamic ranges of the

platforms were determined using the significantly diffe-

rentially expressed protein-coding genes. The lower and

upper limits of the average log2 expression and fold

change are given in Table 1 (in log2 units) and can be vi-

sualized in Additional file 1: Figure S5-S6. The lowest

detection limit for RNA-seq was −0.8 in logCPM scale

(Additional file 1: Figure S5a), with a theoretical mini-

mum for logCPM = −1, as defined by the added con-

stant of 0.5. In our experiments, this corresponded to a

detectable increase from 0 raw counts in one condition

to 2–4 raw counts per gene (on average) in another con-

dition. HTA expression was shifted to higher values with

a minimum around 3.8 due to the background signal al-

ways observed in microarrays. As expected, the dynamic

range of RNA-seq outperformed the one of HTA (10 vs

~5 log2 units). This can also be seen in MA-plots in

Additional file 1: Figure S6 (comparing left panels to

right ones). These figures suggest that lower expressed

genes tend to show higher logFC in RNA-seq, but not in

microarrays.

In order to compare the sensitivity in detecting diffe-

rences of gene expression we also calculated logFC. The

dynamic range of logFC changed less dramatically –

6.87 for RNA-seq and 3.4 log2 units for HTA (Additional

file 1: Figure S5b,d). Of note, the detection limit of

logFC was lower for HTA (0.17) than for RNA-seq

(0.67). The majority of protein coding genes showed

expression above the defined lower detection limits:

81.0 ± 0.7% for RNA-seq and 90.1 ± 0.4% for HTA. For

lncRNA, a somewhat smaller proportion was observed:

57.2 ± 2.7% and 63.4 ± 1.5% for RNA-seq and HTA, re-

spectively. As can be noted, higher factions of mRNA

and lncRNA were observed as expressed in HTA. Thus,

HTA microarrays provided a higher number of genes with

small but statistically significant logFCs than sequencing.

Predictive capacity of expression data

The next step was to investigate which platform pro-

vided more genes with predictive capacity in discrimi-

nating cancer from normal samples. Calculations were

performed as described in Methods. Distributions of

AUC values for protein coding mRNAs and lncRNAs
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are shown in Fig. 4. A higher number of genes with

AUC values close to 1, and therefore higher diagnostic

capacity, were seen for the HTA platform, for both types

of RNA. An AUC > 0.95 was shown by 4287 protein-

coding mRNAs in microarray data, while only 3012

genes showed the same predictive capacity in RNA-seq

(Fig. 4a). Both platforms were able to detect 2344

mRNAs as markers (Jaccard index of 0.473). As for the

DEA, these results were verified with the TCGA dataset,

where 2016 genes with AUC > 0.95 were selected as a

validation set for predictive markers. Almost the same

similarity was observed between the individual marker

lists and the TCGA-based list (~0.16). Unlike for DEA,

intersection of the markers from the two platforms did

not improve the similarity with the TCGA-based

markers. The same tendency was observed for lncRNAs:

HTA detected more genes with higher predictive cap-

acity. However, a much smaller portion of non-coding

genes was found with AUC > 0.95 and both distributions

in Fig. 4b show higher density near small AUC values.

Nevertheless, 528 markers were identified for RNA-seq

and 868 for HTA with slightly higher similarity (0.22).

Functional annotation of differentially expressed genes

Significantly differentially expressed protein-coding genes

were functionally annotated considering gene ontology

biological processes, molecular functions and cellular

components categories as described in Methods. A strin-

gent FDR < 10−4 was used, in order to reduce and adjust

the number of significant genes to 2390 genes in RNA-seq

and 2382 genes in HTA. More categories were signifi-

cantly enriched (FDR-adjusted Fisher’s p-value <0.01) in

the data from the HTA platform: 241 for biological pro-

cesses, 37 for molecular functions and 105 for cellular

components (Fig. 5). RNA-seq data enriched categories in-

cluded 228 genes for biological processes, 19 for molecu-

lar functions and 84 for cellular components terms. The

similarity in enriched GO terms was lower than for genes

(e.g. Jaccard index of 0.321 for biological processes). By

cross-validation (leaving 10% of genes out) we identified,

that ontology terms with high FDR and low number of

member genes were particularly responsible for this

dissimilarity. Enriched terms found in common and spe-

cifically by each platform were then combined into ge-

neralized categories by REVIGO as mentioned in the

Methods section (Additional file 1: Figure S7). Signifi-

cantly enriched terms are listed in Additional file 3.

Results from both platforms pointed to strong diffe-

rences between tumour and normal tissues associated

with cell cycle-related processes and cilium activity. As

expected, genes involved in cilium activity of normal

lung epithelium are less expressed in tumour cells. This is

in line with the phenotype of degenerated differentiation

and unlimited cellular growth in tumours. Other common

processes found by the platforms were cell division,

microtubule-based movement, DNA reorganization and

DNA repair. In contrast to the genes involved in these

processes, we identified a clear difference between RNA-

seq and HTA results. Among the biological processes

(Additional file 1: Figure S7a) a stronger signal was seen

in RNA-seq data for tissue development and extracellular

matrix organization, while in HTA a stronger change in

DNA-related processes was observed. For cellular compo-

nents (Additional file 1: Figure S7c), extracellular matrix

and cell-cell junction were uniquely identified in RNA-

seq, while nucleoplasm and intracellular part were mainly

observed in HTA data. Despite the fact that only a few

molecular functions were found enriched (Additional

file 1: Figure S7b), the same tendency was seen with

protein binding involved in cell adhesion detected

uniquely in RNA-seq, and poly(A)-RNA binding and

nucleoside-triphosphatase activity observed exclusively

in HTA. In order to explain this discrepancy, the hy-

pothesis that gene length can bias the enrichment

results [10] was tested by comparing the distribution

of lengths from genes involved in unique GO terms.

Fig. 4 Distribution of AUC values for classification of tumour and normal samples. The red curve corresponds to RNA-seq data and the blue to
HTA data for protein coding mRNA (a) and lncRNA (b). More genes with high AUC, and therefore higher predictive power, were seen for the HTA

platform. Fluctuations of RNA-seq distribution for low AUC values are artefacts linked to the limited number of samples
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However, no effect was observed. The enrichment

analysis of significant RNA-seq genes was repeated

using the goseq package, designed to account for

gene length variability, but the results supported the

findings of topGO and did not remove the bias. We

also excluded the effect of the background gene list.

As suggested in the work of Timmons et al., we re-

peated the analysis leaving out not- or low expressed

genes from the enrichment analysis (both from query

and background gene lists) [11]. Only genes with an

expression level above the median in at least 50% of

the samples were kept. This correction decreased the

number of enriched ontology terms in general, but

did not remove the bias in the cellular components.

Finally, in order to exclude database or tool-specific

biases, we repeated the enrichment with the Reacto-

mePA tool. The categories found enriched supported

the general trend observed for GO: more enriched

pathways were observed in the microarray-derived

list of significant genes and the similarity between

the pathways was 0.298. Top common pathways were

linked to cell cycle (FDR < 10−21). Top HTA-specific

pathways were chromosome maintenance and DNA

repair (FDR < 10−7), while the top RNA-seq-specific

pathway was extracellular matrix organization

(FDR < 10−9).

The bias found in the enriched biological functions

may be linked to the abundance of the transcripts.

Indeed, a group of low expressed genes may stay

undetected or be detected with high variability. The

expression of the genes related to GO terms uniquely

found by RNA-seq or HTA was consequently investi-

gated. The distributions of the expression of the

genes related to cellular component ontology terms

which were uniquely identified by each of the plat-

forms are shown in Fig. 5b,c. Both platforms showed

that genes from RNA-seq-specific GO terms (i.e.

extracellular region) are expressed at higher levels

than those from HTA-unique ontology terms (nu-

cleoplasm). Therefore, the difference in sensitivity to

low expressed transcripts may at least partially ex-

plain the observed bias in cellular components.

Fig. 5 The results of the functional annotation of significant genes. Enriched gene ontology (GO) biological processes (BP), molecular functions (MF)

and cellular components (CC) by significant (FDR < 10−4) protein coding genes from unpaired RNA-seq (edgeR) and HTA (limma) analyses
are intersected (a). Only ontology terms with FDR < 0.01 were considered. The complete list is given in Additional file 3 and summarized

in Additional file 1: Figure S7. The expression of genes related to cellular component ontology terms uniquely identified by RNA-seq (red
lines) or HTA (blue lines) is shown (b-c). The distributions of gene expressions are based on sequencing (b) and microarray (c) data.
Both analyses show that genes associated with an ontology uniquely found in RNA-seq analysis have a higher expression than genes

with HTA-specific ontology terms (arrows and yellow area)
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Finally, the expression of known lung squamous cell

carcinoma oncogenes [46] was tested. The scatterplot of

average logFC measured by the two platforms showed

a strong concordance (Additional file 1: Figure S8) be-

tween the platforms with a Spearman’s correlation of

0.991 (p-value 3.2⋅10−6). Some oncogenes showed low

absolute fold-change between tumour and normal tissue

as a consequence of being affected by mutations at DNA

level rather than being differentially expressed.

Thus, both platforms were able to capture crucial ac-

tivities of cancer cells related to an increased rate of cell

division and to a loss of normal functionality of the air-

way epithelium, such as cilium motility. Oncogenes of

lung squamous cell carcinoma also showed concordant

behaviour. However, we detected a bias between the

platforms: RNA-seq tended to detect more abundant

genes, active at the extracellular matrix, while HTA

showed more genes active within the nucleus.

Exon level analysis

Both platforms are capable of analysing alternative spli-

cing: they can measure the abundance of exons and their

junctions. We compared their similarity at exon level.

Correlation between expression of exons decreased

(r = 0.658 ± 0.010) compared to gene expression (Fig. 2a)

and the scatter plot showed stronger variability between

the platforms (Additional file 1: Figure S9a). Between-

replicate variability also increased for both platforms

(Additional file 1: Figure S9b,c). This is reasonable, as ex-

pression of gene level is based on the total number of

reads mapped to exons or probes targeting them.

The alternative splicing analysis was performed using

two approaches as described in Methods. First, differen-

tial usage of exons was analysed based on exon expres-

sion. Then, differential usage of exon-exon junctions was

estimated. Unlike gene-level DEA, differential exon

usage analysis returned quite divergent results, as shown

in Fig. 6. RNA-seq resulted in 23,934 differentially used

exons, with FDR < 0.05 and |logFC| > log2(1.5); HTA

identified 26,999 alternatively spliced exons. However,

only 3698 of these exons were found in common between

the two lists (Jaccard index of 0.078). The Spearman rank

correlation between FDR values was small (r = 0.056) but

significantly above zero (p-value <10−16). An even smaller

concordance was observed analysing exon junctions: 7063

junctions were found differentially used by RNA-seq and

40,384 by HTA, with 1551 junctions in common (Jaccard

index of 0.034). We identified exons which were detected

as spliced by both methods for each platform indepen-

dently and noticed that within platform similarity was

slightly higher (0.107 for RNA-seq and 0.159 for HTA).

Comparing the lists of genes with detected differentially

used exons we noticed a much higher overlap (Jaccard

index of 0.305, considering only exons, and 0.234,

considering exons and junctions). However, the majority

of exons with splicing events were not concordant.

The lists of exons detected by both exon and junction

expression analysis for each platform were intersected

in Fig. 6c and resulted in 662 common exons that

were reported in Additional file 4. These common

differentially used exons belong to 207 distinct pro-

tein coding mRNAs.

Six genes were also selected for exon level analysis

based on literature (Table 2). Isoforms of these genes

were previously reported as potentially important in lung

cancer. All genes, excluding HLA-G, were alternatively

spliced according to both RNA-seq and HTA analyses.

However, only RUNX1 had exons and junctions that

were repeatedly identified by exon usage and junction

usage in both platforms.

Surprisingly, the reproducibility between the platforms

for differential exon and junction analysis was low. In

order to investigate this observation in detail we fo-

cussed on the potential bias in the location of spliced

exons in a gene, their length and GC-content. RNA-seq

tended to identify more differentially used exons in the

3′ end of a gene (red line in Fig. 6d), while HTA found

more significantly spliced exons in the middle (blue

line). This may be mainly linked to the length of the

exons as 3′ exons are on average longer. The distribu-

tions on Fig. 6e confirm it: the exons identified by RNA-

seq were longer compared to the exons detected by

HTA. No bias was observed in the GC content of signi-

ficant exons.

Next, we investigated the linkage between significance

of differential exon usage and two potentially linked pa-

rameters: average gene expression and differential gene

expression. The growth of significantly spliced exons

for both platforms are compared in Additional file 1:

Figure S10a. As HTA has much smaller dynamic

range and thus faster growth, we corrected the num-

bers by considering quantiles of average gene expres-

sion (Additional file 1: Figure S10b). Based on these

images, HTA detects more splicing events in lowly

and moderately expressed genes, while RNA-seq has a

bias towards highly expressed genes. Differential ex-

pression of a gene can influence the detection of its

differential splicing. We compared intersections be-

tween differentially expressed and differentially spliced

genes in Additional file 1: Figure S10c,d and observed

a higher overlap between lists of differential expressed

and spliced genes in HTA data than in RNA-seq.

We then visually inspected the exon expression pro-

files and also identified several biases in RNA-seq data.

The RUNX1 gene was taken as an example to illustrate

the general tendency observed (Fig. 7). RNA-seq re-

ported on average higher expression for exons in the 3′

end (left side of Fig. 7b) and lower expression in the 5′-
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end (right side of Fig. 7b). In the RUNX1 gene, these

exons were essential to identify several short transcripts

(Fig. 7c). Differential usage of exons captured by HTA

data was more consistent (Fig. 7a).

The discrepancy in exon usage can result from diffe-

rences in the data or from disagreement of the analysis

algorithms. In order to investigate this issue, we applied

the same DEA paradigm, which was used for gene ex-

pression, directly to the expression of exons. The DEA

of exons is much simpler than the analysis of differential

usage of exons, as no normalization of gene expression

is required. Remarkably, DEA showed strongly improved

concordance between the lists of differentially expressed

exons for the platforms, with a Jaccard index of 0.44 (the

same thresholds for differential exon usage were used:

FDR < 0.05, |logFC| > log2(1.5)). Thus, the disagreement

between the splicing analysis algorithms played a strong

role in the observed discrepancy.

Fig. 6 Differential usage of exons detected by RNA-seq and HTA show low similarity. The analysis was based on exon (a) or junction (b) expression
with FDR < 0.05 and |logFC| ≥ log2(1.5). The intersection of exons confirmed by both approaches within RNA-seq and HTA platforms is shown (c). The

exon parameters distribution among differentially used exons detected by the two platforms is also show in (d,e). The relative position of the exons
within their genes, varying from 5′ end (relative position = 0) to 3′ end (relative position = 1), shows a 3′ bias in RNA-seq (d). Exon length shows that

RNA-seq tends to find more significantly splice events among long exons than HTA (e)
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We finalized the splicing analysis by functional annota-

tion of the spliced genes (Additional file 1: Figure S11a,b).

For each platform, we considered only genes that were

consistently found by exon and junction analyses. The re-

sults were similar to those from the functional annotation

of differentially expressed genes: HTA data revealed more

enriched GO terms (Additional file 1: Figure S11a), RNA-

seq showed higher preference for the extracellular matrix

and HTA for the nuclear compartment. Consistently

spliced genes (207) were also functionally annotated and

the results are shown in Additional file 1: Figure S11b; they

suggest that splicing occurred in genes involved in cyto-

skeleton formation, cell projection, cilium movement and

processes at the extracellular matrix (Additional file 4).

Discussion
In general, microarray and sequencing showed similar

results and a high level of correlation (r = 0.76) when

Fig. 7 Exon differential usage in the RUNX1 gene. The results from HTA (a) and RNA-seq (b) are presented. Transcripts of RUNX1 are shown in

(c) and significant exons are highlighted by diamonds. Exons are presented based on their Ensembl annotation, therefore the same exon can
be shown by several equivalent pairs of boxes. RNA-seq shows a higher number of reads at the 3′ end than at the at 5′ end, where the important splicing

events are found

Table 2 Some alternatively spliced genes involved in lung cancer identified in both platforms

Gene Ensembl ID Reference Sites found by RNA-seq for Sites found by HTA for Concordant

exons junctions exons junctions

TP63 ENSG00000073282 Lo Iacono et al. [57] 6 10 2 27 No

TP73 ENSG00000078900 Lo Iacono et al. [57] 0 2 2 6 No

CD44 ENSG00000026508 Wang et al. [58] 34 32 19 43 No

HLA-G ENSG00000204632 Yan et al. [59] 2 0 0 0 No

POSTN ENSG00000133110 Morra et al. [60] 3 5 1 7 No

RUNX1 ENSG00000159216 Ito et al. [61] 8 2 18 13 Yes
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measuring the expression of protein coding mRNAs

from clinical samples. We observed that GC-correction

strongly improved the correlation between HTA and

RNA-seq results. The obtained correlation is in the

range of previous observations: Raghavachari et al. re-

ported a correlation of 0.64 between RNA-seq and Affy-

metrix Human Exon 1.0 ST arrays [47]. The value of

correlation may be affected by other factors even within

one platform. In fact, different biochemical protocols

used in RNA-seq technology were found to be respon-

sible for correlation fluctuations between 0.83–0.86 [48].

High correlation between the two platforms was also ob-

served in the analysis of known oncogenes for lung

squamous cell carcinoma. Regarding differences between

tumour and normal samples, over 50% of significantly

differentially expressed genes were equally found by both

platforms. The genes found in common were better con-

firmed by the large reference TCGA dataset than the

genes uniquely identified by one platform. Finally, both

platforms identified the key differences between tumour

and normal samples at functional level. Increased cell

division and loss of normal tissue functions, such as

cilium activity, were only observed in tumour samples.

Despite the general similarity of the data sets, we re-

peatedly detected higher variability in sequencing data

than in microarray data. Indeed, the fraction of unex-

plained variability was much higher for RNA-seq, espe-

cially for lncRNAs. Biological replicates also showed

more variability in sequencing data, notably for the

genes that were characterized by a low number of

mapped reads. Finally, a higher number of genes were

found to be differentially expressed (FDR < 0.01) or to

have strong predictive power (AUC > 0.95) discrimina-

ting tumour from normal tissue using the microarray

platform.

One cause for the high RNA-seq variability is linked to

the sensitivity of sequencing to the length of the genes.

Many genes with a length below 2000 nt are either

missed or underestimated by sequencing. The length fac-

tor may explain the strong decrease in correlation between

the two platforms (r = 0.32) regarding lncRNA expression:

the lengths of the considered lncRNAs were substantially

lower (medial length ~ 700 nt) than the lengths of protein

coding mRNAs (median length ~ 3800 nt). Transcripts of

lncRNAs contain less exons (median is 3) than transcripts

of mRNAs (median is 5). Another cause for this variability

may be linked to gene abundance. When comparing

biological replicates, RNA-seq repeatedly showed higher

variability, especially for low expressed genes. A similar

observation was made by Zhao et al. [17]. This factor also

influenced the results of the gene enrichment analysis.

HTA identified more genes enriched in biological func-

tions specific to the nucleus while functions uniquely iden-

tified by RNA-seq were related to the extracellular matrix.

Expression of the genes from the former group was lower

than expression of genes from the later. This can be ex-

plained by the fact that proteins active in the nucleus are

required, on average, in lower quantity than proteins active

at the cellular membrane. Thus, mRNA of genes related to

the extracellular matrix is expressed at a higher level com-

pared to nucleus related genes. These findings contradict

to some extent the conclusions of Zhang et al. [49], who

found that microarrays are more sensitive to genes coding

for membrane proteins, and sequencing – for genes

in the nucleus. However, these authors used a com-

pletely different paradigm: they considered housekee-

ping genes, while we performed the analysis based on

differentially expressed ones.

Important characteristics of each platform are the de-

tection limit and the dynamic range. In literature, there

is no consensus on which expression level should be

considered as a limit of detection in RNA-seq. This

threshold value should be related to the quality of the

samples and sequencing depth. In terms of reads per

kilobase per million (RPKM), a threshold of 0.125 [50]

or 0.3 [51] was proposed after analysis of false discovery

rate behaviour. Some works suggest setting a threshold

on detected counts. McIntyre et al. observed a strong in-

crease of variability in exon expression when the num-

ber of counts per exon falls below 5 [52]. In the paper of

the SEQC/MAQC-III consortium, genes with more than

16 reads are considered as expressed [53]. In our work,

we calculated the detection limit and dynamic range of

the platforms using only significantly differentially

expressed protein-coding genes as described in Methods.

Using this approach, overestimation of the dynamic

range was avoided. As expected, higher dynamic range

was observed for the RNA-seq approach, nevertheless

the microarray was able to detect smaller variations in

expression level than RNA-seq. Summarising our obser-

vations, it should be concluded that the larger dynamic

range of RNA-seq is limited by its larger variability of

expression, especially for low abundant transcripts. If

there is a need to detect only slight changes in gene ex-

pression, especially for low expressed transcripts, the use

of microarrays may be advisable.

The final topic to be considered is the platform per-

formance in identification of gene isoforms which may

originate from alternative splicing in normal tissue and

aberrant splicing in cancer. This task is the most chal-

lenging one in transcriptomics studies and can be prone

to high variability of outcomes and lack of accuracy

[5, 54]. The problem has so far been considered by

many authors; some claim that transcript reconstruc-

tion should be performed in the form of deconvo-

lution of mixed transcripts rather than considering

individual exons [55], others oppose this statement as

the task of deconvolution is inherently difficult, and
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its outcome strongly dependent on the completeness

of transcript annotation and questionable in terms of

accuracy and robustness [56]. We selected the second

approach and aimed at the detection of exons and

exon junctions that are differentially used in transcripts

produced by tumour and normal cells. Estimating the ex-

pression of exons with RNA-seq data, we first tried to use

the same counting method for exon expression that we

used for genes – HTSeq. However, a very low correlation

between the platforms for exon expression was observed

– around 0.2 (the correspondent correlation at gene level

was 0.76). This discrepancy was caused by two facts: first,

the human genome contains many overlapping exons

which are considered as different entities in the Ensembl

annotation; second, the size of many exons is comparable

to the size of a read (77 bases in our case), and thus the

same read is shared between two exons via exon-exon

junctions. These facts make a large portion of sequencing

reads ambiguous – belonging to several exons. Such reads

are omitted by HTSeq counting, as this tool is not de-

signed for exon quantification. Therefore, in order to

count exons in a reasonable way we used the recently pre-

sented method of Rsubread package of R/Bioconductor,

which resulted in an increase of the average Spearman

correlation to 0.66. Despite the high correlation for exon

expression, the results of differential exon/junction usage

analysis were very discordant. Even within one platform

the similarity index between the lists of differentially used

exons (originated from exon and junction analyses) was

low: the best concordance was observed for HTA (Jaccard

index of 0.16). Similarity between the two platforms varied

between 0.03–0.08. Once again, two reasons may be re-

sponsible for this discordance, at least partially: depen-

dency of RNA-seq on the length of gene/exon and lack of

reads mapped on low abundant exons. Regarding the

length, RNA-seq expression of shorter exons is not corre-

lated with HTA-based expression, contrary to the expres-

sion of long exons. In addition, we observed a strong bias

for splicing detection towards the 3′ end and an increased

detection of alternative splicing for long exons in RNA-

seq. These two facts are linked, as the last 3′ terminal

exons are usually longer than other exons in the tran-

scripts, they drag more reads and therefore their expres-

sion has a higher signal to noise ratio. Finally, a large

number of the spliced exons that were found significant

from RNA-seq data originated from highly expressed

genes. At the same time, HTA detected more differentially

expressed genes among those that were differentially

spliced, which can be an artefact of the analysis method.

The second issue results from the low exon coverage,

which is not enough for accurate quantification of exon

abundance. While microarrays can work with low quan-

tities of RNA, a large library size is needed for RNA-seq

in order to estimate the expression of short and low

abundant regions. In our experiments, 43% of the genes

had less than 100 reads on average, which was enough

to estimate gene expression, but produced highly va-

riable results at exon level.

Both methods were able to identify splicing events in a

small selected group of genes which were linked to can-

cer at isoform level in literature [57–61]. However, only

the RUNX1 gene was found spliced at the same point by

both platforms. Nevertheless, in our view, the limited

set of alternatively used exons, which were detected by

both platforms, are quite interesting. They originate

from 207 genes which are strong candidates for further

biological investigation, as they undergo alternative or

aberrant splicing in lung squamous cell carcinoma.

These genes are linked mainly to the cytoskeleton and

extracellular matrix.

Finally, we determined that the methods of alternative

splicing analysis were at least partially responsible for

the discordant results obtained. Simple DEA at exon

level showed much higher concordance, similar to DEA

at gene level (Jaccard index of 0.44), between the plat-

forms. A recent report from Dapas et al. [62] shows that

DEA results show high similarity at the transcript level

as well. In addition, the lists of genes with differential

splicing usage were more similar between the platforms

than the lists of differentially used exons. This may be

caused by a tendency of certain genes (for example –

differentially expressed) to be found differentially spliced

more often.

This observation supports the statement that analysis

of differential exon usage based only on RNA-seq data

may be inadvisable [4, 5]. We recommend prudence

interpreting the results of alternative splicing. Interse-

ction of the outcomes from several platforms and

additional validation are required when identifying alter-

natively used exons.

Conclusions

Evaluated expressions of protein-coding genes were con-

sistent in HTA and RNA-seq platforms: expression pat-

terns were highly correlated, differentially expressed

gene lists were similar and relevant biological processes

were successfully identified. At the same time, RNA-seq

always showed higher stochastic variability of the results

compared to HTA arrays. This mainly originated from

an insufficient number of reads from short and low

abundant genes.

Both RNA-seq and HTA can be applied for detection

of non-coding lncRNAs, however larger libraries are

needed to quantify lncRNAs properly, as their length

and abundance are lower than for protein coding

mRNAs.

Analysis of alternative splicing or, more specifically,

differential exon usage, produced discordant results
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between the platforms and even within the same plat-

form. We expect that applying platforms independently

will generate a high level of false positive detection and

only by combining microarray and sequencing results

true splicing events may be identified. Alternatively,

these results should undergo experimental validation.

Based on our considerations, when researchers need to

compare relatively large groups of samples and are aiming

at known genes, they should rather choose microarray

techniques, which will provide them with fast, cheap and

concordant results. Contrary, for thorough analysis of a

small number of samples, especially when unknown tran-

scripts should be discovered, the only reasonable option

would be the deep sequencing approach.
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