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RNA sequencing identifies novel non-
coding RNA and exon-specific effects
associated with cigarette smoking
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Abstract

Background: Cigarette smoking is the leading modifiable risk factor for disease and death worldwide. Previous
studies quantifying gene-level expression have documented the effect of smoking on mRNA levels. Using RNA
sequencing, it is possible to analyze the impact of smoking on complex regulatory phenomena (e.g. alternative
splicing, differential isoform usage) leading to a more detailed understanding of the biology underlying smoking-
related disease.

Methods: We used whole-blood RNA sequencing to describe gene and exon-level expression differences between
229 current and 286 former smokers in the COPDGene study. We performed differential gene expression and
differential exon usage analyses using the voom/limma and DEXseq R packages. Samples from current and former
smokers were compared while controlling for age, gender, race, lifetime smoke exposure, cell counts, and technical
covariates.

Results: At an adjusted p-value <0.05, 171 genes were differentially expressed between current and former smokers.
Differentially expressed genes included 7 long non-coding RNAs that have not been previously associated with
smoking: LINC00599, LINC01362, LINC00824, LINC01624, RP11-563D10.1, RP11-98G13.1, AC004791.2. Secondary analysis of
acute smoking (having smoked within 2-h) revealed 5 of the 171 smoking genes demonstrated an acute response
above the baseline effect of chronic smoking. Exon-level analyses identified 9 exons from 8 genes with significant
differential usage by smoking status, suggesting smoking-induced changes in isoform expression.

Conclusions: Transcriptomic changes at the gene and exon levels from whole blood can refine our understanding of
the molecular mechanisms underlying the response to smoking.
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Background
Cigarette smoking is the leading modifiable risk factor
for disease and death worldwide. In the United States,
smoking accounts for more than 438,000 deaths per year
[1], and since 1964 more than 20 million Americans
have died because of smoking [2]. Cigarette smoking in-
creases risk of many diseases including cancer, chronic
obstructive pulmonary disease, coronary heart disease,

and stroke [3]. However, research shows smoking cessa-
tion can reduce risk of many diseases, in some cases
reverting disease risk to the level of non-smokers [4, 5].
This suggests specific molecular changes occur in active
smoking (as compared to former smoking) that increase
disease risk.
To identify the molecular mechanisms underlying re-

sponse to smoke exposure, previous studies have character-
ized gene expression changes in a number of human tissues
including, peripheral whole blood [6–9], lymphocytes [10],
monocytes [11], bronchial epithelial cells [12, 13], alveolar
macrophages [14], and lung tissue [15–17]. This includes a
recently published meta-analysis of 1421 current, 3955
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former, and 4860 never smokers that identified 1270 differ-
entially expressed genes between current and never smokers
and 39 differentially expressed genes between former and
never smokers in peripheral blood [6]. These results focused
on gene level quantification from microarrays. However,
alternative splicing and differential isoform usage play a crit-
ical role in human biology, but little is known about alterna-
tive splicing with respect to cigarette smoking.
RNA sequencing (RNA-seq) facilitates the ability to look

at more complex regulatory phenomena such as isoform-
switching, alternative promoter usage, and exon inclusion/
exclusion events. Moreover, it can interrogate not only
known mRNA transcripts, but additional populations of
RNA including long non-coding RNAs (lncRNAs), small
RNAs and microRNAs. We hypothesized that: 1) RNA-
seq of peripheral blood from smokers could refine our un-
derstanding of the molecular mechanisms underlying the
response to cigarette smoking; and 2) that some
transcripts show an acute response to smoke exposure
above and beyond the chronic changes. We sought to an-
swer these questions by performing gene-level differential
expression and differential exon usage (DEU) analysis in
515 current and former smokers from the COPDGene
study [18], a large, well-characterized cohort that included
both Non-Hispanic White and African American
participants.

Methods
Study participants
Our study included 515 participants of the COPDGene
study. A complete study protocol for COPDGene had been
described elsewhere [18], but briefly, self-identified Non-
Hispanic Whites and African Americans between the ages
of 45 and 80 years with a minimum of 10 pack-years life-
time smoking history (1 pack-year = 1 pack of cigarettes
smoked daily for 1 year) were enrolled at 21 centers across
the United States. Subjects returned for a second study visit
approximately 5 years after initial enrollment, at which
point they completed detailed questionnaires, pre- and
post- bronchodilator spirometry, volumetric computed
tomography of the chest, and provided blood for complete
blood counts (CBCs) with differentials and RNA sequen-
cing Subjects were cancer-free at time of study enrollment.
Smoking history was ascertained by self-report.

Participants defined as current smokers answered yes to
the question “Do you smoke cigarettes now (as of one
month ago?)”. Participants defined as acute smokers
answered yes to the question “Have you smoked a
cigarette(s) in the past 2 hours?”. Sequenced subjects in-
cluded COPD cases (GOLD spriometric stage 2,3 or 4
[19]) and smokers with normal lung function (GOLD
stage 0 or 1) with available chest computed tomography.
Institutional review board approval and written informed
consent was obtained for all subjects.

RNA extraction
Total RNA was extracted from PAXgene ™ Blood RNA
tubes using the Qiagen PreAnalytiX PAXgene Blood
miRNA Kit (Qiagen, Valencia, CA). The extraction
protocol was performed either manually or with the
Qiagen QIAcube extraction robot according to the com-
pany’s standard operating procedure. Extracted RNA
samples with RIN > 7 and concentration > =25 μg/ul
were sequenced.

cDNA library preparation and sequencing
Globin reduction and cDNA library preparation for total
RNA was performed with the Illumina TruSeq Stranded
Total RNA with Ribo-Zero Globin kit (Illumina, Inc.,
San Diego, CA). Libraries were QCed by quantification
with picogreen, size analysis on an Agilent Bioanalyzer
or Tapestation 2200 (Agilent, Santa Clara, CA) and
qPCR quantitation against a standard curve. 75 bp
paired end reads were generated on a HiSeq 2500 flow
cell. Libraries are loaded at an empirically determined
concentration in order to generate the optimal number
of clusters per lane of the flow cell. Samples were se-
quenced to an average depth of 20 million reads.

Read alignment, expression quantification, and
sequencing quality control
Reads were trimmed of TruSeq adapters using Skewer
with default parameters [20]. Trimmed reads were
aligned to the GRCH38 genome using the STAR
aligner version 2.4.0 h [21]. Gene and exon level
counts were generated using RSubreads [22] with the
Ensembl version 81 annotation [23]. Quality control
was performed using the FastQC [24] and RNA-SeQC
programs [25]. Samples were included for subsequent
analysis if they had >10 million total reads, >80% of
reads mapped to the reference genome, XIST and Y
chromosome expression was consistent with reported
gender, <10% of R1 reads in the sense orientation,
Pearson correlation > = 0.9 with samples in the same
library construction batch, and concordant genotype
calls between variants called from RNA sequencing
reads and DNA genotyping. The gene count data
used for this analysis are available in GEO [26, 27]
(accession number GSE9753).

Technical covariates
To remove unwanted batch effects and confounders, we
applied SVAseq [28] to the gene or exon count matrices.
Surrogate variables (SVs) were estimated while specifying
the following covariates: age, gender, race, pack-years of
smoking history, library construction batch and cell
count percentages.
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Gene-level differential expression analyses
We performed differential gene expression analysis using
the voom [29] /limma [30, 31] R package. Transcripts
that were expressed at > = 1 count per million mapped
reads in > = 10 subjects were analyzed. Analyses com-
pared current and former smokers controlling for age,
gender, race, pack-years of smoking history, monocyte
percentage, lymphocyte percentage, eosinophil percent-
age, neutrophil percentage, library construction batch,
and significant SVs (n = 27). Differentially expressed
genes were defined with as those with an empirical
Bayes corrected p-value <0.05.
To assess if differentially expressed genes were associ-

ated with acute smoking, we performed differential gene
expression in limma [30, 31] comparing current smokers
who had smoked within the past 2 h to current smokers
who had not (controlling for age, gender, race, pack-
years of smoking history, cell count percentages, library
construction batch, and significant SVs [n = 14]).
Follow-up sensitivity analysis additionally controlled for
the average number of cigarettes smoked per day to test
if differential expression results could be explained by
smoking intensity. Genes were considered significant if
their Bonferroni corrected p-value was <0.05 (corrected
for the number of differentially expressed genes).

Gene ontology (GO) enrichment analyses
To identify gene sets over or under-represented in differ-
entially expressed genes, we performed GO gene ontol-
ogy enrichment analyses using PANTHER (accessed
through: http://www.geneontology.org) [32–34]. Analysis
input included all significantly differentially expressed
genes, and queries included gene sets in the “biological
processes” ontology (database version released 2017–01-
26). Significant gene sets were defined as those with a
Bonferroni corrected p value <0.05.

Differential exon usage analyses
We tested for DEU between current and former smokers
using the topSplice function within the limma R package
[30, 31]. Adjusted p-values less than 0.05 in topSplice
were confirmed using the DEXseq R package (alternate
version, accessed through github/areyesq89/DEXSeqAlt)
[35]. In contrast with the original version, this alternate
version uses the statmod GLM fitter and skips the step
of sharing information across exons when calculating
dispersion estimates, which is not needed for analysis of
large sample sizes. Both analyses were performed using
exon level counts generated by Rsubreads. TopSplice
uses a moderated T-statistic to test for differences be-
tween each exon and all other exons for the same gene,
while DEXseq tests a full GLM with an exon x condition
interaction term (~sample + exon + exon:smoking +
exon:covariates) versus a reduced GLM without an exon

x condition interaction term (~sample + exon + exon:-
covariates) via a likelihood ratio test. Therefore, both
approaches explicitly test for DEU between current and
former smokers while accounting for differences in
overall gene expression. Exons with a topSplice adjusted
p-value <0.05 and a DEXseq p-value <0.05 were defined
as DEU.

Results
Demographics
A total of 229 current and 286 former smokers were in-
cluded in our analysis. All subjects had a substantial
smoking history (mean pack-years smoked = 45) with
current smokers more likely to be younger and African
American. As expected, smoking was associated with
changes in peripheral blood cell counts with current
smokers having significantly lower neutrophil and
monocyte percentages and a higher lymphocyte percent-
age (Table 1).

Differential gene expression in response to cigarette
smoke
We observed 27,885 expressed genes, including 14,866
protein coding genes, 3277 processed pseudogenes and
2204 lncRNAs (Additional file 1: Figure S1). At an ad-
justed p-value <0.05, we identified a total of 171 differ-
entially expressed genes between current and former
smokers (Additional file 2: Table S1), the majority of
which (79.5%) had higher expression in smokers (Fig-
ure 1). Effect sizes of differentially expressed genes
ranged from −0.83 to 1.78, with 5 of 171 having a log2
fold change greater than 1.0 (SEMA6B, AHRR, GPR15,
CTTNBP2, and LINC00599). Significant results were
enriched for genes previously identified by a large micro-
array expression study of current versus never smokers [6]
(50 of 171 genes overlap, p-value hypergeometric test of up-
regulated genes <0.001, p-value hypergeometric test of
downregulated genes <0.001), with the direction of effect be-
ing consistent in all 50 overlapping genes (Additional file 3:
Table S2). The top 2 differentially expressed genes, GPR15
and LRRN3, have been previously reported in both expres-
sion [6, 7] and methylation studies of smoking [36–40].
Included in the differentially expressed genes were 7

lncRNAs that have not been previously associated to smok-
ing (LINC00599, LINC01362, LINC00824, LINC01624,
RP11-563D10.1, RP11-98G13.1, and AC004791.2). Interest-
ingly, 6 of the 7 have higher expression in current smokers
as compared to former smokers, suggesting an up-
regulation of lncRNAs in response to cigarette smoking
(Table 2, Additional file 4: Figure S2). The gene with the
largest effect size, LINC00599, showed minimal expression
in former smokers (mean normalized count = 0.1) but had
a marked increase in current smokers (mean normalized
count = 0.9), with 91% of observations in the top quintile of
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expression being current smokers (Additional file 5:
Figure S3). To test if significant lncRNA findings were
represented in previous microarray studies, we cross-
referenced our 7 significant findings with the maps from the
Illumina Human HT12 versions 3 and 4 microarrays. Probes
mapping to LINC00824 and RP11-98G13.1 were present on
the Illumina Human HT12 version 3 array, but none of the
7 significant findings were present on version 4.

To assess if time since smoking cessation modified our
results, we performed differential expression analysis of
this quantitative outcome in former smokers with this
measurement available (n = 270). Mean time since
smoking cessation in former smokers was 17.3 years
(sd = 10.86). There was one significantly differentially
expressed gene associated with this outcome (GPR15,
adjusted p-value = 2.9 × 10−8).

Gene ontology (GO) enrichment analysis
GO functional enrichment analyses identified 41 bio-
logical pathways significantly over-represented and no
pathways under-represented in the 171 differentially
expressed genes at a Bonferroni corrected p-value <0.05
(Additional file 6: Table S3). The most significant GO gene
sets included “immune system process” (GO:0002376, ad-
justed p value = 1.96 × 10−7), “defense response”
(GO:0006952, adjusted p value = 6.26 × 10−7), and
“response to external stimulus” (GO:0009605), ad-
justed p value = 6.60 × 10−5).

Transcriptomic response to acute smoking
To assess if the 171 differentially expressed genes were
associated with acute smoking, we performed gene-
based limma analysis comparing smokers who had
smoked at least 1 cigarette within the past 2 h (n = 93)
to those who had not (n = 136). Five genes were signifi-
cantly differentially expressed (Bonferroni corrected for

Table 1 Summary of analyzed COPDGene subjects by former
(n = 286) and current (n = 229) smoking status. Values represent
mean (SD)

Former Smokers
(n = 286)

Current Smokers
(n = 229)

P-value

Race (% NHW) 86% 57% <0.01

Gender (% female) 45% 49% 0.4

Age 69 (8.1) 61 (7.6) <0.01

Pack-Years
Smoked

44 (23) 46 (21) 0.5

FEV1 percent predicted 73 (29) 79 (24) 0.02

COPD cases 41% 48% <0.01

Neutrophil percentage 61 (11) 58 (11) <0.01

Lymphocyte percentage 28 (11) 31 (9.9) <0.01

Eosinophil percentage 2.6 (2.1) 2.7 (3.0) 0.9

Monocyte percentage 8.5(2.5) 7.6(2.2) <0.01

Basophil percentage 0.59(0.55) 0.59(0.65) 0.9

Fig. 1 Mean-Average(MA)-plot of log2 average expression versus log2 fold change between current and former smokers. Log fold change
values greater than zero indicate genes with higher expression in current smokers (n = 136 genes), Log fold change values less than
zero indicate genes with higher expression in former smokers (n = 35 genes). Blue dots indicate genes that are significantly differentially
expressed (adjusted p value <0.05)
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171 tests), and 29 of 171 had a nominal p-value <0.05
(Additional file 7: Table S4). When considering all
expressed transcripts, none were significantly differen-
tially expressed with acute smoking at an adjusted
p-value <0.05.
Overall, there was a significant correlation between

the fold changes calculated in the current smoking
and acute smoking analyses (Pearson = 0.70, p-value
<0.001, Figure 2), however some genes had an oppos-
ite direction of effect between the 2 analyses (e.g.
SIGLEC1, log2 fold change current smoking = 0.51,
log2 fold change acute smoking = − 0.34). Sensitivity
analysis controlling for smoking intensity (measured

as the average number of cigarettes smoked per day)
yielded similar results (Additional file 7: Table S4).
This suggests that some of the 171 smoking genes
demonstrate an acute response to smoking exposure
above and beyond the baseline effect of chronic
smoking, whereas others do not. GO enrichment on
the 29 nominally significant genes revealed the top annota-
tion as “chemotaxis” (Bonferroni adjusted p value = 0.08),
suggesting that there may be an effect of acute smoke
exposure on cell signaling and migration in chronic
smokers.

Differential exon usage
We used complementary methods (limma’s topSplice
and DEXseq) to test for differential exon usage (DEU)
between current and former smokers. A total of 119,217
exons had expression levels suitable for DEU analysis.
Exon-level p-values showed no evidence of systematic
inflation (Additional file 8: Figure S4).
In total, 9 exons in 8 genes showed significant DEU

(Table 3, Additional files 9, 10, 11, 12, 13, 14, 15:
Figures S5-S11). Although all genes with DEU had
multiple isoforms (range 4–17), 8 of 9 significant exons
were annotated to only one isoform, suggesting that the
identified DEU exons tag isoform differences between
current and former smokers (Fig. 3). Significant exons
were most likely to be the last exon of a transcript (5/9) or
the first exon of a transcript (3/9) and one significant
DEU exon (in MANIA1) was located in the middle of its
associated transcript.
Of the 171 DE genes, only 2 showed significant DEU.

Even after relaxing the significance level of the DEU ana-
lysis to p < 0.05, only 18 of 171 DE genes showed nom-
inally significant DEU. Conversely, only 3 of the 9 exons
identified in the DEU analysis showed nominal signifi-
cance in the gene-based analysis (Table 3). This suggests
some of the transcriptomic changes that occur in re-
sponse to smoking are independent of differential gene
expression and occur at the level of RNA processing.
Gene and exon level results can be viewed interactively
at https://cdnm.shinyapps.io/Current_smoking_Limma/.

Table 2 Differentially expressed long non-coding RNAs (lncRNA) between current and former smokers (adjusted p-value <0.05). Of
the 7 differentially expressed lncRNAs, 6 have higher expression in current smokers as compared to former smokers

Ensembl Gene ID Gene Symbol(s) Chr Log Fold
Change

Average
Expression

Moderated
T Statistic

P Value Adjusted P Value

ENSG00000253230 LINC00599,RNCR3 8 1.777 −2.655 11.439 5.87E-27 5.46E-23

ENSG00000227240 RP11-563D10.1 1 0.426 −0.222 4.912 1.24E-06 7.52E-04

ENSG00000230817 LINC01362 1 0.553 −0.903 4.319 1.91E-05 6.99E-03

ENSG00000237011 RP11-98G13.1 1 0.399 −0.408 4.099 4.88E-05 1.49E-02

ENSG00000267453 AC004791.2 19 0.685 −1.743 4.021 6.72E-05 1.94E-02

ENSG00000254275 LINC00824, LINC01263 8 0.407 1.028 4.013 6.96E-05 1.98E-02

ENSG00000227508 LINC01624,TCONS_00011425 6 −0.225 1.356 −3.948 9.07E-05 2.22E-02

Fig. 2 Comparison of effect sizes between differential expression analyses
of: 1) current versus former smoking (defined as smoking cigarettes within
the past month) on the x-axis and 2) acute smoking (defined as smoking
cigarettes within the past 2 h) on the y-axis. Each point represents a
differentially expressed gene in the current smoking analysis (n = 171). Blue
dots represent 6 genes significantly differentially expressed between those
who have smoked within the past 2 h and those who have not
(Bonferroni corrected for 171 genes). The red line is a fitted via lowess
smoothing. The labeled gene (SIGLEC1) shows an opposite direction of
effect between the 2 analyses (logFC current smoking = 0.51, logFC
acute smoking = −0.36)

Parker et al. BMC Medical Genomics  (2017) 10:58 Page 5 of 10

https://cdnm.shinyapps.io/Current_smoking_Limma


Discussion
By analyzing RNA-seq data from peripheral blood samples
of 515 COPDGene study subjects, we identified 171 differ-
entially expressed transcripts between current and former
smokers, including 7 novel lncRNAs. Secondary analysis of

2-h smoking in current smokers showed that the majority
of these 171 genes demonstrate a consistent, ongoing re-
sponse to smoking while a subset of these genes fluctuate
in response to acute exposure. Additionally, DEU analysis
identified 9 differentially used exons between current and

Table 3 Differential exon usage (DEU) between current and former smokers. Significant DEU is defined as an adjusted p-value <0.05
from limma exon-based T statistic and DEXseq p-value <0.05.Gene-based P value is unadjusted from limma differential expression
analysis

Ensembl Exon ID Gene
Symbol

Limma Adjusted P value DEXseq P value Gene-based P value Transcripts Containing
Exon

Exon Number in
Transcript

ENSE00001810132 EPS15 4.00E-02 2.00E-02 8.16E-01 ENST00000478657 first

ENSE00002071373 GALNT7 2.22E-03 1.66E-06 1.30E-01 ENST00000502407 first

ENSE00001444573 SASH1a 1.80E-09 2.39E-03 4.22E-21 ENST00000367467 last

ENSE00001400828 AREL1 1.27E-02 1.18E-03 9.98E-01 ENST00000356357 last

ENSE00001444981 UTRN 5.72E-16 8.82E-02 1.75E-01 ENST00000367545 last

ENSE00001635177 MAN1A2 4.00E-03 3.25E-02 9.48E-03 ENST00000356554 second

ENSE00001231507 LRRN3a 3.23E-10 4.69E-04 4.19E-36 ENST00000308478 first

ENSE00001175333 ERAP1 7.87E-12 1.27E-03 4.27E-01 ENST00000296754 first

ENSE00001641703 ERAP1 1.19E-06 3.63E-03 4.27E-01 ENST00000443439 first
aDifferentially expressed gene

Fig. 3 Exon usage in the GALNT7 gene by smoking status. The top plot shows exon usage for each analyzed exon by smoking status
(red = former, blue = current). One exon showed significant differential usage between current and former smokers (ENSE00002071373). The
bottom table maps tested exons to known isoforms (1 = exon present in that transcript, 0 = exon not present in that transcript)
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former smokers, suggesting smoking-induced changes in
isoform expression.
Included in the 171 differentially expressed transcripts

are 7 lncRNAs. LncRNAs are an abundant class of RNA
defined by their length (> 200 base pairs) and the fact that
they do not code for a protein [41]. Their function is
largely uncharacterized, but they are thought to broadly
regulate transcription through multiple mechanisms in-
cluding [42, 43]: 1) chromatin remodeling (lncRNAs can
affect the recruitment of polycomb repressive complexes
that modify histones to cause gene silencing) [44, 45]; 2)
transcriptional co-factors (e.g. the most abundant gene in
our data [MALAT1] is a lncRNA that acts as a cofactor to
increase or decrease expression of proximal genes) [46,
47]; and 3) competition for endogenous RNAs (i.e.
lncRNAs can act as a sponge for microRNAs thereby inhi-
biting their effect) [48, 49]. For example, LINC00599 (the
most significant differentially expressed lncRNA between
current and former smokers) is hypothesized to regulate
transcription by competing for shared microRNAs. Previ-
ous research has associated this transcript with
atherosclerosis-related vascular dysfunction [50]. Authors
identified 3 microRNA binding sites on LINC00599 (hsa-
miR-4306, hsa-miR-185-5P, hsa-miR-4644), proposing that
increased expression of LINC00599 causes a decreased
concentration of these microRNAs with corresponding al-
terations in the abundance of their mRNA targets. To test
this, we looked for enrichment of our differentially
expressed genes in these predicted targets (n = 467 in the
StarBase database [51] and n = 373 in the TargetScan
database [52]). However, we did not find significant over-
lap (hypergeometric p-value for enrichment in Star-
Base = 0.15, hypergeometric p-value for enrichment in
TargetScan = 0.29.)
We found evidence for differential exon usage in 9

exons from 8 genes. Interestingly, 8 of these 9 were
unique to one transcript, suggesting these results
may tag isoform differences between current and
former smokers. Even in the case of ERAP1 (the
only gene with more than one differentially used
exon), the 2 identified exons were unique to a single
transcript (Additional file 11: Figure S7). Of note, 5
genes with significant DEU showed no evidence of
differential expression in the gene-based analysis
(unadjusted p-value >0.05). This suggests that some
transcriptomic changes happen only at the level of
RNA processing and do not affect mean gene ex-
pression levels. These findings highlight the potential
utility of differential exon usage to identify potential
isoform-specific effects, particularly with the chal-
lenges in accurately inferring isoform abundance
from short-read RNA-seq data.
In 8 of the 9 instances of DEU, the involved exon was ei-

ther the first or last exon in a transcript. There are a number

of potential explanations for this finding. First and last exons
tend to be larger than other exons, so it is possible that these
results reflect increased statistical power relative to shorter
exons. Alternatively, first and last exons play key roles in the
initiation and termination of transcription. A recent analysis
of GTEx data identified alternative transcription start and
stop sites as the driving factor in differential exon usage
across tissues [53]. Activating histone modifications
(H3K4me3 and H3K9ac) map to the first exon-intron
boundary and are known determinants of transcription
quantity, transcription start site, and gene activity [54]. Last
exons play an important role in transcription termination,
and differential exon usage in the last exon may indicate 3′
UTR shortening or early transcription termination. In
addition, mammalian transcription elongation is highly regu-
lated and related to splicing [55]. Since our total RNA isola-
tion methods include nuclear and partially processed RNAs,
the concentration of DEU in first and last exons in our data
may reflect smoking-related, gene-specific alterations in tran-
scription initiation, elongation, or termination.
This study has a number of strengths: to our know-

ledge, this is the first large-scale RNA-seq analysis of
cigarette smoking, and it is the first study to describe
differential exon usage between current and former
smokers. RNA-seq allows for the unbiased identification
of novel differentially expressed transcripts, and this
study identified novel associations with smoking and
seven lncRNAs. Additionally, although cigarette smoking
was associated with changes in total peripheral cell
counts, all subjects had measured blood cell counts
(CBCs) at the time of RNA sequencing. This allowed for
direct adjustment of cell-specific effects, mitigating
against the possibility that results are due to cell type
proportion confounding. We also used surrogate variable
analysis to adjust for unmeasured confounders, includ-
ing unmeasured cell type subpopulations.
Our study also has a number of limitations. We

measured transcript expression in whole blood sam-
ples, thus our findings are most relevant to smoking-
related alterations in circulating immune cells. While
immune function is linked to a broad range of dis-
eases, there are many other tissue-specific transcrip-
tomic effects of smoking that are not captured in this
study. Whole blood is a mixture of cell types, and
while we were able to adjust for measured cell counts
our differential expression results cannot pinpoint
cell-type specific expression differences and residual
confounding by unmeasured cell subpopulations is
possible. It is possible that some of the differentially
expressed genes or differentially used exons from this
analysis may reflect alterations in unmeasured cell
types. Future work in isolated cell populations will be
needed to relate these observations to the specific cell
types in which these transcriptomic changes occur,
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providing important validation and functional elucida-
tion of these observations. Secondly, our outcomes of
interest (current smoking and 2 h smoking) were
based on self-report using a validated questionnaire
[56] without biochemical confirmation, and may not
completely capture the toxic effects of tobacco.
Additionally, our samples were sequenced to an aver-
age depth of 20 million reads. While this depth pro-
vides good resolution for highly expressed transcripts,
deeper sequencing would likely reveal differences in
lower expressed features, including exons and iso-
forms. Finally, we focused on differential exon usage
instead of isoform level analysis, because quantifica-
tion of isoform abundance from short read data is
still a significant challenge. Isoform inference algo-
rithms including RSEM [57], kallisto [58], and salmon
[59] have made significant improvements in isoform
quantification, but performance is not yet at a level
where differential isoform expression can be reliably
detected [60].

Conclusions
We used RNA-seq in a large study of current and
former smokers to identify transcripts that are altered by
smoking (via differential expression or differential exon
usage). Our results suggest that there is an overall up-
regulation of genes expressed in response to smoking,
including an up-regulation of lncRNAs. These analyses
provide the first exon-level observations of transcrip-
tomic alterations induced by cigarette smoking in blood.
Additional analysis in pure cell types isolated from
current and former smokers is needed to understand the
consequences of these changes on transcriptional
networks and downstream processes. The gene and
exon-level effects observed in this study refine our un-
derstanding of the molecular mechanisms underlying
the response to cigarette smoking.
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Additional file 2: Table S1. Genes differentially expressed (adjusted
p-value <0.05) between current and former smokers (n = 171). Analysis
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Additional file 4: Figure S2. Quantile-quantile (QQ) plots for
differential gene expression analysis between current and former smokers
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Additional file 5: Figure S3. Normalized counts in current versus
former smokers for lncRNAs that are significantly differentially expressed:
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Additional file 6: Table S3. Significant gene ontology terms over-
represented in genes differentially expressed between current and former
smokers. P-values are Bonferroni corrected for multiple comparisons.
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Additional file 7: Table S4. Differentially expressed genes in current
versus former smokers (adjusted p-value <0.05) that are nominally
significant (p < 0.05) in differential expression analysis of current smokers
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(n = 136). A total of 34 genes (20.5%) showed nominal significance in the
acute smoking analysis. Secondary analysis adjusted for smoking intensity
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p-values are statistically significant after Bonferroni correction for 171 tests
(XLSX 13 kb)

Additional file 8: Figure S4. Quantile-quantile (QQ) plot for differential
exon usage between current and former smokers using the topSplice
exon-based T-statistic. (PNG 16 kb)

Additional file 9: Figure S5. Exon-level expression of EPS15. The top
plot shows mean normalized counts by smoking status on the log scale
for each analyzed exon. One exon showed significant differential usage
(ENSE00001810132). The bottom table maps tested exons to known
transcripts (1 = exon present in that transcript, 0 = exon not present in
that transcript). (PNG 92 kb)

Additional file 10: Figure S6. Exon-level expression of SASH1. The top
plot shows mean normalized counts by smoking status on the log scale
for each analyzed exon. One exon showed significant differential usage
(ENSE00001444573). The bottom table maps tested exons to known
transcripts (1 = exon present in that transcript, 0 = exon not present in
that transcript). (PNG 64 kb)

Additional file 11: Figure S7. Exon-level expression of AREL1. The top
plot shows mean normalized counts by smoking status on the log scale
for each analyzed exon. One exon showed significant differential usage
(ENSE00001400828). The bottom table maps tested exons to known
transcripts (1 = exon present in that transcript, 0 = exon not present in
that transcript). (PNG 102 kb)

Additional file 12: Figure S8. Exon-level expression of last 11 exons of
UTRN. The top plot shows mean normalized counts on the log scale for
each exon passing filtering by smoking status. There was one exon that
showed significant differential usage between current and former
smokers (ENSE00001444981). The bottom table maps tested exons to
known transcripts (1 = exon present in that transcript, 0 = exon not
present in that transcript). (PNG 141 kb)

Additional file 13: Figure S9. Exon-level expression of MAN1A2. The
top plot shows mean normalized counts by smoking status on the log
scale for each analyzed exon. One exon that showed significant differential
usage (ENSE00001635177). The bottom table maps tested exons to known
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Additional file 14: Figure S10. Exon-level expression of LRRN3. The top
plot shows mean normalized counts by smoking status on the log scale
for each analyzed exon. One exon showed significant differential usage
between current and former smokers (ENSE00001231507). The bottom
table maps tested exons to known transcripts (1 = exon present in that
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Additional file 15: Figure S11. Exon-level expression of ERAP1. The top
plot shows mean normalized counts by smoking status on the log scale
for each analyzed exon. Two exons showed significant differential usage
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ENSE00001641703). The bottom table maps tested exons to known
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