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Abstract 

Over the past few decades, RNA sequencing has significantly progressed, becoming a paramount approach for tran-
scriptome profiling. The revolution from bulk RNA sequencing to single-molecular, single-cell and spatial transcrip-
tome approaches has enabled increasingly accurate, individual cell resolution incorporated with spatial information. 
Cancer, a major malignant and heterogeneous lethal disease, remains an enormous challenge in medical research 
and clinical treatment. As a vital tool, RNA sequencing has been utilized in many aspects of cancer research and 
therapy, including biomarker discovery and characterization of cancer heterogeneity and evolution, drug resistance, 
cancer immune microenvironment and immunotherapy, cancer neoantigens and so on. In this review, the latest 
studies on RNA sequencing technology and their applications in cancer are summarized, and future challenges and 
opportunities for RNA sequencing technology in cancer applications are discussed.
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Background
Cancer remains one of the major malignant diseases that 

endangers human life and health and comprises complex 

biological systems that require accurate and comprehen-

sive analysis. Since the first appearance of high-through-

put sequencing in 2005 [1], it has become possible to 

understand life activities at the molecular level and to 

conduct detailed research to elucidate the genome and 

transcriptome. As an essential part of high-throughput 

sequencing, RNA sequencing (RNA-seq), especially 

single-cell RNA sequencing (scRNA-seq), provides bio-

logical information on a single tumor cell, analyzes the 

determinants of intratumor expression heterogeneity 

and identifies the molecular basis of formation of many 

oncological diseases [2, 3]. �us, RNA sequencing offers 

invaluable insights for cancer research and treatment. 

With the advent of the era of precision medicine, RNA 

sequencing will be widely used for research on many dif-

ferent types of cancer. �is review summarizes the his-

tory of the development of RNA sequencing and focuses 

on the latest studies of RNA sequencing technology in 

cancer applications, especially single-cell RNA sequenc-

ing and spatial transcriptome sequencing. In addition, 

we provide a general introduction to the current bioin-

formatics analysis tools used for RNA sequencing and 

discuss future challenges and opportunities for RNA 

sequencing technology in cancer applications.

The development of RNA sequencing technologies
It was not until 1953 when Watson and Crick proposed 

the double-helix structure did people truly realize at 

the molecular level that the essence of life is the result 

of gene interactions [4]. �e continuous development 

of RNA sequencing has ushered transcriptome analysis 

into a new era, with higher efficiency and lower cost. �e 
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timeline of RNA sequencing technologies is shown in 

Fig. 1.

�e first-generation sequencing technology is also 

called Sanger sequencing. �e chain termination method 

was initiated by Sanger in 1977, followed by the chemi-

cal degradation method developed by Maxam and Gil-

bert [5, 6]. �e same year, Sanger determined the 5368 bp 

genome of phage φX174, which is the first DNA genome 

sequenced [7]. �e DNA microarray has aided signifi-

cant progress in many fields since it was first introduced. 

However, microarrays require prior knowledge of gene 

sequences and are unable to identify novel gene expres-

sion [8]. After the first high-throughput sequencing 

platform appeared in 2005 [1], multiple next-generation 

sequencing platforms followed (Table  1, Figs.  2, 3). �e 

accuracy and reproducibility among different platforms 

depended on several factors, including the inherent 

features of the platform and the corresponding analy-

sis pipelines [9, 10]. Pyrosequencing that was no longer 

supported after 2016, developed by 454 Life Sciences, 

used a “sequencing by synthesis” method [1, 11–13]. 

�e ion torrent sequencing platform is also based on 

the “sequencing by synthesis” method, which outper-

forms pyrosequencing with respect to sensitivity. SOLiD 

(Sequencing by Oligonucleotide Ligation and Detection) 

exhibits high accuracy, as each base is sequenced twice, 

but the read length is short [11–13]. DNBS (DNA nanob-

all sequencing) enables large collection of DNA nanoballs 

for simultaneous sequencing. Illumina-based sequencing 

technology represents a “reversible terminator sequenc-

ing” method. High-throughput sequencing has the 

advantage of fast speed, low sequencing cost and high 

accuracy, otherwise known as next-generation sequenc-

ing (NGS). Compared to microarray, it can detect 

unknown gene expression sequences but is time intensive 

[14].

In addition to NGS, there is third-generation sequenc-

ing, which allows for long-read sequencing of individual 

RNA molecules [15]. Single-molecule RNA sequencing 

enables the generation of full-length cDNA transcripts 

without clonal amplification or transcript assembly. 

�us, third-generation sequencing is free from the short-

comings generated by PCR amplification and read map-

ping. It can greatly reduce the false positive rate of splice 

sites and capture the diversity of transcript isoforms 

[15]. Single-molecule sequencing platforms comprise 

Pacific Biosciences (PacBio) single-molecule real-time 

(SMRT) sequencing [16], Helicos single-molecule fluo-

rescent sequencing [17] and Oxford Nanopore Technol-

ogies (ONT) nanopore sequencing [18]. Furthermore, 

Fig. 1 The development timeline of RNA sequencing technologies
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Table 1 Comparison of di�erent RNA sequencing platforms

Platform Company Read 
length(bases)

Run time Volume per run Cost Template 
preparation

Sequencing 
chemistry

The first-generation sequencing

Sanger Life sciences 800 bp 2 h 1 read $2400 per million 
bases

Bacterial cloning Dideoxynucleo-
sides terminator

The next-generation sequencing

Roche 454 
pyrosequencing

454 Life sciences 700 bp  < 24 h 0.7 Gb $10 per million 
bases

Emulsion PCR Sequencing 
by synthesis, 
pyrosequencing

Illumina HiSeq Illumina 100 bp 3–10 days 120–1500 Gb $0.02—$0.07 per 
million bases

Bridge PCR Reversible termi-
nator sequenc-
ing

Illumina MiSeq Illumina 100 bp 1–2 days 0.3–15 Gb $0.13 per million 
bases

Bridge PCR Reversible termi-
nator sequenc-
ing

SOLiD Applied biosys-
tems instru-
ments (ABI)

50–75 bp 7–14 days 30 Gb $0.13 per million 
bases

Emulsion PCR Sequencing by 
ligation

DNA nanoball 
sequencing

Complete genom-
ics

440–500 bp 9 days 20–60 Gb $4400/genome Rolling circle 
replication

Hybridization and 
ligation

Ion torrent 454 Life sciences 200–500 bp 4–5 h 660 Mb; 11 Mb $300 to $750 per 
run

Emulsion PCR Sequencing by 
synthesis

The third-generation sequencing

SMRT Pacific biosciences  > 900 bp 1-2 h 0.5–1 Gb $2 per million 
bases

No need Sequencing by 
synthesis

Helicos sequenc-
ing

Helicos bio-
sciences

25–60 bp 8 days 21–35 Gb $0.01 per million 
bases

No need Hybridization and 
synthesis

Nanopore 
sequencing

Oxford nanopore 
technologies

Up to 98 kb 48/72 h Up to 30 Gb  < $1 per million 
bases

No need Nanopore

Fig. 2 RNA extraction and template preparation before RNA-sequencing. RNA was extracted from tissues, and after fragmentation, fragmented 

DNA molecules were converted into cDNA by reverse transcription then amplified by emulsion PCR or bridge PCR to prepare sequencing library
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RNA-seq recently evolved from bulk sequencing to sin-

gle-cell sequencing. Single-cell RNA sequencing was first 

published in 2009 to profile the transcriptome at single-

cell resolution [19]. Drop-Seq and InDrop were initially 

reported in 2015 by analyzing mouse retina cell and 

embryonic stem cell transcriptomes, identifying novel 

cell types. Sci-RNA-seq, single-cell combinatorial index-

ing RNA sequencing, was developed in 2017, and SPLiT-

seq (split-pool ligation-based transcriptome sequencing) 

was first reported in 2018. Both approaches use a com-

binatorial indexing strategy in which attached RNAs are 

labeled with barcodes that indicate their cellular origin 

[20, 21].

�ough single-cell data enable single-cell transcriptom-

ics, it may lose spatial information during single-cell iso-

lation. To solve this problem, spatial transcriptomics has 

emerged. Spatial transcriptomics employs unique posi-

tional barcodes to visualize RNA distributions in RNA 

sequencing of tissue sections and was first published in 

2016 [22]. Slide-seq, reported in 2019, uses DNA barcode 

beads with specific positional information [23]. Geo-

seq was introduced in 2017 and integrated scRNA-seq 

with laser capture microdissection (LCM), which can 

isolate individual cells [24]. In  situ sequencing refers to 

targeted sequencing of RNA fragments in morphologi-

cally preserved tissues or cells without RNA extraction, 

including in  situ cDNA synthesis by padlock probes or 

stably cross-linked cDNA amplicons in fluorescent in situ 

RNA sequencing (FISSEQ) and in  situ amplification by 

rolling-circle amplification (RCA) [25, 26]. Furthermore, 

various new technologies based on RNA-seq have been 

developed for specific applications. For example, a type 

of targeted RNA sequencing, CaptureSeq, employs bioti-

nylated oligonucleotide probes and results in the enrich-

ment of certain transcripts to identify gene fusion [27, 

28].

Computational analysis of RNA sequencing data
Computational analysis tools for RNA sequencing have 

dramatically increased during the past decade. �e 

choice of a particular tool should be based on the pur-

pose and accuracy of application [29–31]. A general RNA 

sequencing data analysis  process involves the quality 

control of raw data, read alignment and transcript assem-

bly, expression quantification and differential expression 

analysis (Fig. 4).

The first step of data analysis is to assess and clean 

the raw sequencing data, which is usually provided in 

the form of FASTQ files [32]. Quality control visually 

reflects the quality of the sequencing and purpose-

fully discards low-quality reads, eliminates poor-qual-

ity bases and trims adaptor sequences [31]. Common 

Fig. 3 Three kinds of sequencing methods. These methods contain sequencing by synthesis, sequencing by reversible terminator and sequencing 

by ligation. And their different mechanisms are shown in detail
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tools include FASTQ [33], NGSQC [34], RNA-SeQC 

[35], Trimmomatic [36], PRINSEQ [37] and Soapnuke 

[38].

The next step is to map the clean reads to either a 

genome or a transcriptome. There are some mapping 

tools available, including Tophat2 [39], HISAT2 [40], 

STAR [41], BWA [42] and Bowtie [43]. After align-

ment, another type of software, such as Cufflinks [44], 

StringTie [45], Trinity [46], SOAPdenovoTrans [47] 

and Trans-AByS [48] can be used to assemble tran-

scripts from short-reads. When the transcript model 

is established, its expression can be quantified at the 

gene, transcript and exon levels. Commonly used soft-

ware for gene-level quantification includes Feature-

Count [49] and HTSeq-count [50]. Transcript level 

quantitative software includes Cufflinks [44], eXpress 

[51] and RSEM [52]. DEXSeq is a software for exon 

level quantification [53]. In addition, there are some 

alignment-free quantification tools such as Kallisto 

[54], Sailfish [55] and Salmon [56], which have the 

advantage of marked computational resource saving. 

After normalizing, an expression matrix is generated, 

and statistical methods can be used to identify differ-

entially expressed genes. DESeq2 [57] and edgeR [58] 

are commonly used to perform this task.

Applications of RNA-sequencing in cancer research

Genomic data, such as RNA-seq, have become widely 

available due to the popularity of high-throughput 

sequencing technology [59]. As an important part of 

next-generation sequencing, RNA sequencing has made 

great contributions in various fields, especially cancer 

research, including studies on differential gene expres-

sion analysis and cancer biomarkers, cancer heteroge-

neity and evolution, cancer drug resistance, the cancer 

microenvironment and immunotherapy, neoantigens, 

etc. (Fig. 5).

Di�erential gene expression analysis and cancer 

biomarkers

Differential gene expression analysis is one of the most 

common applications of RNA sequencing [60]. Sam-

ples from different backgrounds (different species, tis-

sues and periods) can be used for RNA sequencing to 

identify differentially expressed genes, revealing their 

function and potential molecular mechanisms [61]. 

More importantly, differential gene expression analysis 

facilitates the discovery of potential cancer biomark-

ers [62]. Many studies have shown that gene fusions 

are closely related to oncogenesis and are appreciated 

as both ideal cancer biomarkers and therapeutic targets 

Fig. 4 Bioinformatics tools commonly used in RNA-seq data analysis. These tools are primarily used in the four main processes of RNA-seq data 

analysis, including quality control, read alignment and transcript assembly, expression quantification and differential expression analysis
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[63]. Gene fusions in clinical samples are primarily 

detected by RNA-CaptureSeq. Compared to whole 

transcriptome sequencing, RNA-CaptureSeq has sig-

nificantly higher sequencing depth [27, 64, 65]. It has 

been reported that the NUP98-PHF23 fusion gene is 

likely to be a novel therapeutic target in acute myeloid 

leukemia (AML) [66]. Recently, a variety of recurrent 

gene fusions, including ESR1-CCDC170, SEC16A-

NOTCH1, SEC22B-NOTCH2 and ESR1-YAP1, have 

been identified in breast cancer, indicating that recur-

rent gene fusion is one of the key drivers for cancer 

[67]. Several novel configurations of   BRAF, NTRK3 

and RET gene fusions have been identified in colorec-

tal cancer [68]. �ese fusions may promote the devel-

opment of malignancy and provide new targets for 

personalized treatment [68]. In addition, some special 

genomic factors have been discovered as biomarkers by 

RNA sequencing, including miRNA, lncRNA and cir-

cRNA, which are widely present in various types of can-

cer [69–71]. A recent example is circRNA_0001178 and 

circRNA_0000826, which are biomarkers of colorectal 

cancer metastasis to the liver [72]. By applying both 

RNA sequencing and small RNA sequencing, a study 

on pancreatic cancer identified differential expression 

of simple repetitive sequences (SSRs) and demonstrated 

that the frequency of SSR motifs changed dramatically, 

which is expected to become a tumor biomarker [73]. 

In addition to nucleic acid biomarkers, RNA-seq com-

bined with immunohistochemistry and western blot 

has also identified certain proteins as cancer biomark-

ers, such as nuclear COX2 (cyclooxygenase2) in com-

bination with HER2 (human epidermal growth factor 

receptor type 2), which may serve as potential biomark-

ers for the diagnosis and prognosis of colorectal cancer 

[74]. Similar examples identified using RNA-seq profil-

ing analysis include ISG15 (Interferon-stimulated gene 

15) in nasopharyngeal carcinoma [75] and DMGDH 

(dimethylglycine dehydrogenase) in hepatocellular car-

cinoma [76]. Data-mining analysis of  RNA sequenc-

ing data and other clinical data has identified that the 

isoforms of peroxiredoxins also can be expected the 

prognostic biomarkers for predicting overall survival 

and relapse-free survival in breast cancer [77]. Increas-

ing differentially expressed genes are being identified by 

RNA sequencing, and new potential cancer biomarkers 

are being continuously discovered (Table  2). However, 

Fig. 5 Applications of RNA-seq in differential expression analysis and cancer biomarkers, cancer heterogeneity and drug resistance, cancer 

immune microenvironment, immunotherapy and neoantigen. a Differential expression analysis by RNA sequencing can identify potential 

biomarkers, including fusion transcript, lncRNA, miRNA and circRNA. b The heterogeneity and drug resistance of cancer cells identified by RNA-seq. 

c Novel molecular signature, regulatory protein and unknown subtypes in cancer infiltrating immune cells and potential resistance effector in 

immunotherapy can be identified by RNA-seq; d Neoantigen profiling by RNA-seq and TCR modification targeted neoantigens



Page 7 of 16Hong et al. J Hematol Oncol          (2020) 13:166  

sufficient clinical practice is needed to confirm the 

diagnostic and predictive applications of these bio-

markers in cancer.

RNA-seq could detect early mutations as well as high 

molecular risk mutations, thus can discover novel cancer 

biomarkers and potential therapeutic targets, monitor-

ing of diseases and guiding targeted therapy during early 

treatment decisions. Tumor mutation burden (TMB) is 

considered as a potential biomarker for immune check-

point therapy and prognosis [78, 79]. RNA-seq can be 

used to explore the application value of TMB in diffuse 

glioma [78]. �rough the RNA-seq, MET exon 14 muta-

tion and isocitrate dehydrogenase  1 (IDH1) mutation 

were identified as new potential therapeutic targets in 

lung adenocarcinoma and chondrosarcoma  patients, 

respectively [80, 81]. Several studies have shown that 

RNA sequencing can effectively improve the detection 

rate on the basis of DNA sequencing, provide more com-

prehensive detection results and achieve a better curative 

effect for targeted therapy [82]. In addition, it has been 

proved that IDH mutation is a good prognostic marker 

for glioma by RNA-seq [83]. Targeted therapy is also con-

sidered to enhance or replace cytotoxic chemotherapy 

regimen in cancer including AML [84–86].

ScRNA-seq also has some new discoveries in diagno-

sis. For example, scRNA-seq data can be used to infer 

copy number variations (CNV) and to distinguish malig-

nant from non-malignant cells. �e infer CNV algo-

rithm, which was used in the study of glioblastoma, uses 

averaging relative expression levels over large genomic 

regions to infer chromosome copy number variation [87]. 

Similar examples include head and neck cancer [88] and 

human oligodendroglioma [89]. It is reported that RNA 

sequence of tumor-educated blood platelets (TEPs) can 

also become a blood-based cancer diagnosis method 

[90]. It should be noted that the lack of detailed func-

tional implications of the identified RNAs in platelets in 

the field of platelet RNA research is also an urgent prob-

lem to be solved [91].

Cancer heterogeneity and evolution

Heterogeneity has always existed during the transfor-

mation of normal cells to cancer cells. �e continuous 

accumulation of heterogeneity may reflect the evolu-

tion of cancer [109]. Early RNA sequencing detected all 

RNA transcripts in a given tissue or cell group, ignor-

ing differences in individual cells. Transcriptome profil-

ing of single-cell RNA sequencing solves this problem 

by providing single-cell resolution of the transcriptome 

[3]. In melanoma, single-cell RNA-seq was used to ana-

lyze 4645 tumor cells from 19 patients, including cancer 

cells, immune cells, mesenchymal cells and endothe-

lial cells. Transcriptomic data from different single cells 

revealed that heterogeneity of cells within the same can-

cer is associated with cell cycle, spatial background and 

drug resistance [110]. A recent single-cell RNA-seq study 

of 49 samples of metastatic lung cancer revealed changes 

in plasticity induced by non-small cell lung cancer 

Table 2 Representative potential biomarkers identi�ed by RNA-seq in cancer

Cancer type Biomarker name Biomarker type Up/Down Value References

Liver cancer tRNA-ValTAC-3/tRNA-GlyTCC-5/
tRNA-ValAAC-5/tRNA-GluCTC-5

tsRNA Up Diagnostic [92]

ACVR2B-AS1 LncRNA Up Prognostic/therapeutic target [93]

Lung cancer LINC01537 LncRNA Down Prognostic/therapeutic target [94]

circFARSA CircRNA Up Noninvasive biomarker [95]

LINC01123 LncRNA Up Prognostic/therapeutic target [96]

Gastric cancer CTD2510F5.4 LncRNA Up Diagnostic/prognostic [97]

MEF2C-AS1/FENDRR LncRNA Down Diagnostic/prognostic [98]

Prostate cancer PSLNR LncRNA Down Diagnostic/therapeutic target [99]

Colorectal cancer RAMS11 LncRNA Up Therapeutic target [100]

CRCAL-1/CRCAL-2 /CRCAL-3/ 
CRCAL-4

LncRNA Up Therapeutic target [101]

Colon cancer AFAP1-AS1 LncRNA Up Prognostic/ therapeutic target [102]

Head and neck squamous cell 
carcinoma

LINC00460 LncRNA Up Prognostic [103]

HCG22 LncRNA Down Prognostic [104]

HOXA11-AS/LINC00964/MALAT1 LncRNA Up Diagnostic [105]

Clear cell renal cell carcinomas SLINKY LncRNA Up Prognostic [106]

Leukemia LUCAT1 LncRNA Up Therapeutic target [107]

circ-HIPK2 CircRNA Down Diagnostic/prognostic [108]
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treatment, providing new directions for clinical treat-

ment [111]. Single-cell RNA sequencing also integrates a 

variety of information in a single cancer cell, deciphering 

the secrets of cancer heterogeneity and evolution [112]. 

Compared with scRNA-seq, another emerging tech-

nology spatial transcriptome sequencing incorporates 

information on the spatial location of cells. In prostate 

cancer, using spatial transcriptomics technology, the 

transcriptome of nearly 6750 tissue regions was analyzed, 

revealing the whole-tissue gene expression heterogene-

ity of the entire multifocal prostate cancer and accurately 

describing the range of cancer foci [113]. In a study of 

breast cancer tissues, the results of spatial transcriptome 

sequencing revealed that gene expression among differ-

ent regions was surprisingly highly heterogeneous [22]. 

In recent years, single-nucleus RNA sequencing (snRNA-

seq) has also received extensive attention due to its solv-

ing the problem that single-cell RNA sequencing cannot 

be applied to frozen specimens and cannot obtain all cell 

types in a given tissue [114, 115]. �e emerging technol-

ogy of RNA sequencing will contribute to research on 

cancer heterogeneity and evolution.

Cancer drug resistance

Drug resistance is a main reason leading to cancer treat-

ment failure. However, the molecular mechanisms 

underlying drug resistance are still poorly understood 

[116]. RNA sequencing became a vital tool for revealing 

the mechanisms of cancer drug resistance. In breast can-

cer, single-cell RNA sequencing identified a tumor-infil-

trating immunosuppressive immature myeloid cell that 

leads to drug resistance [117]. Another study identified 

a new COX7B gene related to platinum resistance and 

a surrogate marker CD63 in cancer cells by single-cell 

RNA-seq [118]. RNA sequencing has also demonstrated 

that cancer cells that wake up from a dormant state pro-

duce large amounts of BORIS (brother of the regulator 

of imprinted sites), which can regulate the expression 

of survival genes in drug-resistant neuroblastoma cells 

[119]. Identifying special molecules that mediate these 

processes could help us understand the occurrence of 

drug resistance. Single-cell transcriptomics can be used 

to study different modes of chemoresistance in tumor 

cells and has shown that pre-existing drug-resistant 

cells can be selected through higher phenotypic intra-

tumoral heterogeneity, while phenotypic homogeneous 

cells use other mechanisms to trans-differentiate under 

drug-selection [120]. In one study of pancreatic ductal 

adenocarcinoma, human pancreatic cancer (PANC-1) 

cells and gemcitabine-resistant PANC-1 cell lines were 

compared by RNA sequencing, and two circRNAs were 

identified as both novel biomarkers and potential thera-

peutic targets for gemcitabine resistant patients [121]. 

RNA-seq has also conducted in-depth research on the 

drug resistance of hematological malignancies. �rough 

RNA-seq, it has been found that non-coding RNAs and 

fusion genes play an important role in mediating the drug 

resistance of hematological malignancies [122]. A good 

example is to compare the circRNA expression profile 

of the drug-resistant acute myeloid leukemia cell with 

its parent cell, and determine the circRNAs involved in 

drug resistance [123]. Similarly, the novel MEF2D-BCL9 

fusion transcript identified by RNA-seq was found to 

increase HDAC9 (histone deacetylase 9) expression and 

to enhance the resistance to dexamethasone in acute 

lymphocytic leukemia (ALL) [124]. Leukemia stem cells 

(LSCs), a rare cell population assumed to be responsible 

for relapse, is crucial to improve the prognosis of patients 

[125, 126]. RNA-seq analysis showed that LSCs have a 

unique lncRNA signature with functional relevance and 

therapeutic potential, providing an explanation for chem-

otherapy resistance and disease recurrence [127].

The cancer microenvironment and immunotherapy

�e immune system plays a critical role in the can-

cer microenvironment, affecting several stages of can-

cer development, including tumorigenesis, progression 

and metastasis, through tumor-infiltrating lymphocytes 

(TILs) [128]. TILs and their interactions with malig-

nant cells and stromal cells make up the cancer immune 

microenvironment. Due to the heterogeneity of cancer, it 

is difficult to define the exact pro- or anti-cancer function 

of certain immune cells. Cancer heterogeneity also causes 

the varied clinical efficacy observed in patients treated 

with immunotherapies due to different responses of dif-

ferent subclones [129]. Transcriptomic profiling by RNA-

seq, in particular scRNA-seq, provides comprehensive 

information on cellular activity and interactions among 

cells in the tumor microenvironment (TME). ScRNA-seq 

enables genomic and molecular profiling of high quan-

tity and quality individual immune cells and assessment 

of cellular heterogeneity to depict the immune system 

spectrum in the cancer microenvironment [130–132]. 

ScRNA-seq data demonstrated that compared to nor-

mal tissues, cancer tissues exhibited significantly higher 

heterogeneity in the immune microenvironment, and a 

continuity in T cell activation resulting from polyclonal 

T cells and heterogeneous antigen-presenting cells has 

been identified [133].

ScRNA-seq of tumor-infiltrating T cells in meta-

static melanoma identified transcription factor 

NFATC1 (nuclear factor of activated T cells 1) as a 

potential molecular signature of T cell exhaustion pro-

grams and revealed the depletion of low-exhaustion 

T cells in expanded clones of T cells [110]. Combin-

ing scRNA-seq with assembled T cell receptor (TCR) 
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sequences, 11 T cell subsets, such as CD8 + T cells and 

 CD8 + FOXP3 + regulatory-like cells, and their genomic 

signatures, were identified in hepatocellular carcinoma 

(HCC), providing valuable insights for understanding 

the immune landscape of infiltrating T cells in HCC 

[134]. Cancer infiltrating T cells also play an anti-tumor 

role through impairment of an autophagy protein, LC3 

(microtubule-associated protein 1A/1B-light chain 3, 

often short for LC3)-associated phagocytosis (LAP), 

demonstrating the role of autophagy in oncogenesis 

and suppression revealed by scRNA-seq [135]. In addi-

tion to solid tumors, scRNA-seq of acute myeloid leu-

kemia patients detected diverse immunomodulatory 

genes that suppress T cell function [136]. By CSOmap, 

a computational tool for scRNA-seq, the CCL4-CCR8 

directed interaction between Tregs and Texs, as well as 

reduced proliferation of Texs, was characterized [137]. 

Notably, findings also revealed that tumor-infiltrating 

T cells exhibited more interactions among themselves 

than with T cells from peripheral blood and different 

interactions between tumors and T cells, indicating 

a varied response to immunotherapy and a potential 

trend for immune escape [137].

In the cancer immune microenvironment, neutro-

phils, in addition to T cells, are also key components 

of cancer progression and cancer drug resistance [138–

141]. �rough scRNA-seq of murine sarcomas and cer-

tain human cancers, neutrophils with CSF3R (colony 

stimulating factor 3 receptor) expression were found to 

be a part of type 1 antitumor immunity associated with 

unconventional  CD4−CD8−αβ T cells (UTCαβ) in anti-

cancer immunity, indicating better prognosis [142]. 

ScRNA-seq of metastatic breast cancer and CD45 cells 

from primary cancer identified neutrophils as pro- and 

anti-tumorigenic or metastatic, in which pro-tumor-

igenic and metastatic neutrophils are induced by IL11 

expressing cancer subclones, resulting in polyclonal 

metastasis [143]. �is observation also provides new 

insight into anti-cancer immunotherapy by targeting 

neutrophils [143]. With scRNA-seq of CD4 and CD8 

T cells, several crucial pathways with anti-cancer func-

tion were revealed [144].

�e balance between immune reaction and immune 

tolerance is the basis of immune homeostasis, which is 

also involved in anti-cancer immunity and oncogenesis. 

scRNA-seq of monocytes and dendritic cells (DCs) sep-

arated from a single lymph node melanoma metastasis 

revealed a conserved homeostatic module regulated by 

suppressor-of-cytokine-2 (SOCS2) protein and IFNγ 

[145]. SOCS2 serves an essential regulatory role in 

anti-tumor immunity and T cell priming through DCs. 

�is highly conserved homeostatic program establishes 

a connection between autoimmune prevention and 

immune surveillance in cancer [145].

Immunotherapies, especially immune checkpoint 

blockade (ICB), has opened a new chapter for anti-can-

cer therapy with remarkable responses from targeting 

programmed death 1 (PD1), programmed death-ligand 

1 (PD-L1) and cytotoxic T-lymphocyte-associated pro-

tein 4 (CTLA4) [146–148]. However, only a few patients 

benefit from ICB, and severe side effects were observed 

[149, 150]. Obviously, various unknown determinants are 

correlated with the outcome of immunotherapies in addi-

tion to well-known factors such as PD1/PD-L1/CTLA-4 

expression and mismatch repair deficiency [151–155]. 

�erefore, it is paramount to identify potential effectors 

for ICB efficacy. By analyzing RNA-seq data from mela-

noma patients who underwent anti-PD1 and anti-CTLA4 

treatment, a potential ICB resistance effector SERPINB9 

(a member of the serine protease inhibitor (serpin) fam-

ily) and the connection between cytotoxic T lymphocytes 

(CTL) infiltration level and ICB response were character-

ized [156]. A sub-population cells with immunotherapy 

persistence have been identified by scRNA-seq and were 

found to have stem cell-like states with the expression of 

stem cell antigen-1 (Sca-1) and Snai1 [157].

Another immunotherapy, myeloid-targeted immuno-

therapy, is based on the complexity of tumor-infiltrat-

ing myeloid cells, including DCs and tumor-associated 

macrophages (TAMs) revealed by scRNA-seq [158]. 

�rough scRNA-seq of immune cells from colorectal 

cancer patients,  C1QC + and  SPP1 + TAMs, two sub-

sets of TAMs, were identified, and the mechanism of 

myeloid-targeted immunotherapy, such as anti-CSF1R 

(colony stimulating factor 1 receptor) and CD40 agonist, 

was revealed [159]. Intracellular staining and sequenc-

ing (INs-seq), a novel technology integrating scRNA-seq 

and intracellular protein activity measurements, revealed 

novel  Arg1 + Trem2 + regulatory myeloid (Mreg) cells and 

demonstrated that depletion of Trem2 led to deduction 

of exhausted CD8 T cells with increased NK and cyto-

toxic T cells and cancer suppression by reducing accu-

mulation of intratumoral Mreg cells [160].

Cancer neoantigens

Neoantigens, human leukocyte antigen (HLA)-bound 

peptides derived from cancer-specific somatic mutations 

or gene fusions during tumor growth, are another cru-

cial regulator of the clinical response to immunotherapy 

[161]. Higher intratumor neoantigen heterogeneity and 

clonal neoantigen burden increases sensitivity to ICB 

and contributes to better clinical outcome in patients 

with melanoma and advanced non-small cell lung cancer 

[162]. �is kind of antigen is an optimal target for anti-

cancer immunotherapy, enhancing neoantigen-specific 
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T cell activity, and a vaccine targeting personal neoan-

tigens for melanoma patients has been developed [163, 

164]. Given all these promising features of personalized 

medicine targeting neoantigens in tumors, massive paral-

lel profiling of tumor neoantigen burden is necessary for 

improving clinical efficacy and a deeper understanding 

of the neoantigen landscape. An RNA-seq-based tran-

scriptomic approach is an efficient tool for neoantigen 

profiling in many studies. It was revealed that homology 

of neoantigen and somatic-mutation induced pathogens 

are important in response prediction in anti-CTLA4 

treated melanoma [165]. In addition to melanoma, other 

studies found reduced neoantigen load in triple-nega-

tive and HER2 breast cancers [166], diverse neoantigen 

abundance in non-small-cell lung cancer patients with 

different treatment strategies [167], a decreased ratio of 

neoantigen expression to predicted neoantigens in recur-

rent glioma due to immune selection pressure [168], a 

negative correlation between neoantigen abundance and 

clinical outcome in selected solid tumors [169] and dif-

ferent neoantigen landscapes in immune filtration and T 

cell dysfunction based on histology in salivary gland car-

cinoma (SGC) patients [170].

A neoantigen prediction program, Neopepsee, based 

on RNA-seq data and somatic mutation, can be utilized 

to detect potential neoantigens for personal vaccine 

development with reduced false-positive rate compared 

to binding affinity prediction [171]. ScanNeo is another 

prediction computational pipeline based on RNA-seq 

that aims to identify insertion and deletion derived neo-

antigens, which was validated in prostate cancer [172], 

and ASNEO, which identifies personal-specific alter-

native splicing derived neoantigens [173]. Several neo-

antigens have been identified to be related to cancer 

prognosis and might be potential targets of immuno-

therapies, such as the TP53 neoantigen for HCC patients 

[174]. For the anti-neoantigen immunotherapy in cancer, 

a new strategy involving neoantigen-specific TCRs modi-

fication has been proposed, and scRNA-seq has been 

applied to isolate neoantigen-specific TCRs for further 

clinical application [175].

Conclusions and perspectives
High-throughput RNA-seq technology has been a major 

tool to explore the transcriptome. �e rapid development 

of RNA-seq technology not only saves time and cost but 

also sheds light on many new research fields. However, 

there are still limitations of RNA-seq technology that 

need to be improved.

For short-read length RNA-seq technologies, bias and 

imperfections are primarily generated in sequencing 

library preparation and short read assembly. It is difficult 

for these methods to correctly identify multiple isoforms 

from a certain gene. To overcome the disadvantage of 

short read length, improved read coverage and sequenc-

ing depth is required. Long-read length RNA-seq tech-

nologies avoid shortcomings in template amplification, 

reduce the false positive rate in splice junction detection 

and enable the identification of unannotated longer tran-

scripts, overcoming the common limitations of short-

read sequencing [176, 177]. However, this method suffers 

from the drawback of reduced throughput, higher cost 

and higher sequencing error rate, especially insertion-

deletion errors. To reduce random errors, PacBio circular 

consensus-sequencing (CCS) was developed to increase 

sequencing depth by rereading molecules several times. 

However, it also reduces the identification rate of 

unique isoforms. In addition, the sensitivity of long-read 

sequencing for identification of differentially expressed 

genes is lower compared to short-read sequencing [178–

180]. �us, hybridization of long-read and short-read 

sequencing has been reported to yield a more compre-

hensive and accurate analysis [181].

Improvements in the throughput of RNA sequencing 

technology have resulted in billions of sequencing reads, 

bringing great challenges to the computational process, 

such as data storage, transmission, quality control and 

data analysis, including read mapping, transcript assem-

bly and read normalization. �erefore, it is important for 

bioinformatics to keep pace with the continuous devel-

opments of RNA-seq technologies. Notably, bias could 

be produced due to differences in read data handling, 

necessitating the improvement of current bioinformatics 

pipelines.

RNA-seq measures gene expression by the read counts, 

which always containing missing values, thus results in 

information loss of specific gene and negative impact on 

downstream analysis. To overcome this problem, missing 

data need to be imputed and analyzed by several meth-

ods, such as optimal clustering with missing values [182]. 

For scRNA-seq, the proportion of genes with zero or low 

expression varies across cells due to biological or techni-

cal bias. For example, batch effects can come from cells 

captured and sequenced in different conditions [183]. 

Imputation methods, such as SAVER, MAGIC and kNN-

smoothing, are recommended for scRNA-seq [184]. 

Another method named batch effects correction with 

unknown subtypes for scRNA-seq data (BUSseq) utilizes 

Bayesian hierarchical model and can also be used to cor-

rect batch effects and missing data [185].

Combination of data from multi-omics sequencing can 

undoubtedly expand the application of RNA-seq. For 

example, Assay for Transposase-Accessible Chromatin 

using sequencing (ATAC-seq) was developed by utilizing 

hyperactive Tn5 transposase to identify open chromatin 

region and transcriptional factor (TF) binding sites [186]. 
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�e integration of ATAC-seq and RNA-seq enables the 

reveal of TF-targeted genes and their transcripts [187, 

188]. Chromatin conformation capture analysis (3C) 

technology and its several derivatives including circular 

chromosome conformation capture (4C), carbon copy 

chromosome conformation capture (5C), ChIP-Loop, 

Hi-C and capture Hi-C were developed and improved to 

detect chromatin structure as well as unknown interact-

ing regions [189–191]. It has been reported that com-

bined analysis of RNA-seq and chromatin structure can 

detect structure variation-related differentially expressed 

genes [192–194].

Epitranscriptomics is a crucial part of gene expression, 

and methylation of adenosine at the N6 position (m6A) 

is the most abundant [195]. Traditional RNA-seq needs 

reverse transcription before sequencing and thus easily 

loses the information of transcriptome complexity. �is 

shortcoming can be overcome by directly sequencing 

native RNA molecules using methods such as nanopore 

sequencing. Transcript modifications could be inferred 

from the current signal as the modified RNA molecules 

passing nanopore cause a characteristic temporary cur-

rent blockade, which enables the detection of diverse 

modifications such as m6A or 5-methylcytosine (m5C) 

[196–198].

ScRNA-seq is a powerful technology to facilitate fur-

ther exploration in cancer research and also has been 

employed in the detection of cancer stem cell subpopu-

lation, metabolic switch in cancer-draining lymph nodes 

and therapy-induced adaption of cancer cells [111, 199, 

200]. Combined with cell sorting or ligand-receptor 

interaction, scRNA-seq was utilized in cellular inter-

action, cell spatial organization as well as molecular 

crosstalk characterization [137, 201, 202]. Coupling of 

parallel CRISPR (clustered regularly interspaced short 

palindromic repeats)-pooled screen, scRNA-seq ena-

bles the simultaneous analysis of genomic perturbation 

and transcriptional activity to detect heterogeneous cell 

type as well as crucial factors of complexity regulatory 

mechanism [203–205]. ScNT-seq, single-cell metaboli-

cally labeled new RNA tagging sequencing, brings RNA-

seq into time resolution by identifying RNAs transcribed 

at different stage [206]. Utilizing SNP-based demulti-

plexing of scRNA-seq data, MIX-Seq was developed to 

study cancer cell reaction to pharmacologic treatment 

[207]. Another technology, snRNA-seq, is invaluable for 

detecting cellular heterogeneity of cancer and has been 

employed to identification of a sub-population of adipo-

cytes regulating cancer genesis [208].

Taken together, RNA-seq has been applied in an 

impressively wide range of cancer research. All applica-

tions in cancer research rely on the boost of advanced 

RNA-seq technologies, especially the combination of 

scRNA-seq and spatial transcriptomics as well as data 

from multi-omics, which will bring RNA-seq technolo-

gies into single-cell resolution and tissue-level transcrip-

tomics, providing new insight into cancer diagnosis, 

treatment and prevention.
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