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Abstract

Intra-amniotic infection, the invasion of microbes into the 

amniotic cavity resulting in inflammation, is a clinical condi-

tion that can lead to adverse pregnancy outcomes for the 

mother and fetus as well as severe long-term neonatal mor-

bidities. Despite much research focused on the consequenc-

es of intra-amniotic infection, there remains little knowledge 

about the innate immune cells that respond to invading mi-

crobes. We performed RNA-seq of sorted amniotic fluid neu-

trophils and monocytes/macrophages from women with in-

tra-amniotic infection to determine the transcriptomic differ-

ences between these innate immune cells. Further, we sought 

to identify specific transcriptomic pathways that were signif-

icantly altered by the maternal or fetal origin of amniotic flu-

id neutrophils and monocytes/macrophages, the presence of 

a severe fetal inflammatory response, and pregnancy out-

come (i.e., preterm or term delivery). We show that significant 

transcriptomic differences exist between amniotic fluid neu-

trophils and monocytes/macrophages from women with in-

tra-amniotic infection, indicating the distinct roles these cells 

play. The transcriptome of amniotic fluid immune cells varies 

based on their maternal or fetal origin, and the significant 

transcriptomic differences between fetal and maternal 

monocytes/macrophages imply that those of fetal origin ex-

hibit impaired functions. Notably, transcriptomic changes in 

amniotic fluid monocytes/macrophages suggest that these 
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immune cells collaborate with neutrophils in the trafficking 

of fetal leukocytes throughout the umbilical cord (i.e., funisi-

tis). Finally, amniotic fluid neutrophils and monocytes/mac-

rophages from preterm deliveries display enhanced tran-

scriptional activity compared to those from term deliveries, 

highlighting the protective role of these cells during this vul-

nerable period. Collectively, these findings demonstrate the 

underlying complexity of local innate immune responses in 

women with intra-amniotic infection and provide new in-

sights into the functions of neutrophils and monocytes/mac-

rophages in the amniotic cavity. © 2020 The Author(s)

Published by S. Karger AG, Basel

Introduction

Intra-amniotic infection is a clinical condition result-
ing from the invasion of microbes into the amniotic cav-
ity [1–9], namely Ureaplasma urealyticum, Mycoplasma 
hominis, Streptococcus agalactiae, Gardnerella vaginalis, 
and Escherichia coli, among others [10–21]. Microbial in-
vasion leads to a local inflammatory response character-
ized by increased concentrations of cytokines [22–30], 
antimicrobial peptides [31–38], and lipids [39–52] in the 
amniotic fluid. In some cases, this local infection can re-
sult in maternal systemic inflammation (i.e., clinical cho-
rioamnionitis) [10, 53–59]. Consequently, intra-amniot-
ic infection is associated with maternal morbidity [57, 60, 
61] as well as neonatal morbidity and mortality [62–71]. 
Therefore, investigation focused on the immunobiology 
of intra-amniotic infection is highly relevant for mothers 
and children.

The cellular immune repertoire in the amniotic cavity 
of women with intra-amniotic infection is mainly com-
posed of innate immune cells (e.g., neutrophils and 
monocytes/macrophages) [72–81]. Yet, other less-abun-
dant immune cell subsets such as T cells, B cells, NK cells, 
and innate lymphoid cells are also present in the amni-
otic cavity of women with intra-amniotic infection [78, 
79]. Due to their abundance, we recently proposed that 
amniotic fluid neutrophils and monocytes/macrophages, 
which can originate from the fetus [82–85] and/or the 
mother [84–86], serve as the frontline of host innate im-
mune responses against microbes invading this compart-
ment [77, 78]. However, it is unclear whether their ma-
ternal or fetal origin determines the function of such in-
nate immune cells.

Neutrophils exert a variety of host defense functions to 
capture and destroy invading microbes [87–91]. In the 
amniotic cavity, such mechanisms include phagocytosis 

[92], the release of antimicrobial products [31–38, 93], 
and the formation of neutrophil extracellular traps 
(NETs) [94]. Conversely, the traditional view has been 
that amniotic fluid monocytes/macrophages primarily 
release pro-inflammatory cytokines [77, 80]; yet their 
functions have been overlooked as neutrophils represent 
the majority of innate immune cells in this compartment. 
Therefore, we hypothesized that apparent functional dis-
similarities exist between neutrophils and monocytes/
macrophages in the amniotic cavity, which are driven by 
their transcriptomic profiles.

Importantly, intra-amniotic infection can lead to a fe-
tal inflammatory response [95–102], which manifests as 
acute histopathological lesions of the umbilical cord and 
chorionic plate [103], conditions known as funisitis and 
chorionic vasculitis, respectively [103–105]. This fetal in-
flammatory response is characterized by elevated concen-
trations of inflammatory mediators in the umbilical cord 
blood [97, 98, 106–110]. However, whether the fetal in-
flammatory response could be associated with changes in 
the transcriptomes of neutrophils and monocytes/mac-
rophages present in the amniotic cavity during intra-am-
niotic infection has been unexplored.

The aim of this study was to conduct transcriptomic 
analysis of neutrophils and monocytes/macrophages 
from the amniotic cavity of women with intra-amniotic 
infection by using RNA-seq to characterize the molecular 
pathways and biological processes associated with differ-
ential expression between these innate immune cell types. 
Further, we assessed the effects on transcriptomic path-
ways based on changes in the fetal or maternal origin of 
amniotic fluid neutrophils and monocytes/macrophages, 
the presence of a severe fetal inflammatory response, and 
pregnancy outcome (preterm or term delivery).

Methods

Human Subjects and Clinical Specimens
Human amniotic fluid samples were obtained at the Perinatol-

ogy Research Branch, an intramural program of the Eunice Ken-
nedy Shriver National Institute of Child Health and Human Devel-
opment, National Institutes of Health, U.S. Department of Health 
and Human Services, Wayne State University (Detroit, MI, USA), 
and the Detroit Medical Center (Detroit, MI, USA). The collection 
and use of human materials for research purposes were approved 
by the Institutional Review Boards of the National Institute of 
Child Health and Human Development and Wayne State Univer-
sity. All participating women provided written informed consent 
prior to sample collection. The patient inclusion criteria were as 
follows: (1) amniotic fluid samples without blood contamination 
and (2) amniotic fluid samples with a large number of viable leu-
kocytes (>1 × 105 cells/mL) sufficient to perform fluorescence-ac-
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tivated cell sorting (FACS) of amniotic fluid neutrophils and 
monocytes/macrophages. Amniotic fluid leukocyte counts and vi-
ability were determined using an automatic cell counter (Cellom-
eter Auto 2000; Nexcelom Bioscience, Lawrence, MA, USA) and 
the ViaStain AOPI Staining Solution (Nexcelom Bioscience). The 
clinical and demographic characteristics of the patients are shown 
in Table 1.

Clinical Definitions
Gestational age was established based on the last menstrual pe-

riod and ultrasound. Term delivery was defined as birth ≥37 weeks 
of gestation, whereas preterm delivery was defined as birth <37 
weeks of gestation. The presence of viable bacteria in the amniotic 
cavity was evaluated by amniotic fluid culture as previously de-
scribed, which included culture for genital mycoplasmas [12, 13]. 
Intra-amniotic inflammation was defined as an amniotic fluid in-
terleukin (IL)-6 concentration ≥2.6 ng/mL [111, 112]. Intra-amni-
otic infection was defined as the presence of cultivable bacteria 
together with intra-amniotic inflammation [17, 18, 113, 114].

Amniotic Fluid Sample Collection
Amniotic fluid was retrieved by transabdominal amniocentesis 

to detect intra-amniotic infection. Amniotic fluid samples were 
transported to the clinical laboratory in a capped sterile syringe 
and FACS was performed immediately. Additionally, an aliquot of 
amniotic fluid was transported to the clinical laboratory for culture 
of aerobic/anaerobic bacteria and genital mycoplasmas. The clini-
cal and research tests also included the determination of an amni-
otic fluid white blood cell (WBC) count [72, 73], Gram stain ex-
amination [115], glucose concentration [116], and IL-6 concentra-
tion [111]. Bacterial live/dead staining was performed as 
previously described to immediately visualize the presence of mi-
crobes in amniotic fluid [94, 117].

Determination of Interleukin-6 in Amniotic Fluid
Interleukin-6 concentrations in amniotic fluid were evaluated 

using a sensitive and specific enzyme immunoassay from R&D 
Systems (Minneapolis, MN, USA) as previously established [111]. 
The IL-6 concentrations were determined by interpolation from 
the standard curves. The inter- and intra-assay coefficients of vari-
ation for IL-6 were 8.7 and 4.6%, respectively. The detection limit 
of the IL-6 assay was 0.09 pg/mL.

FACS of Amniotic Fluid Neutrophils and Monocytes/
Macrophages
To remove epithelial cells, each amniotic fluid sample was 

passed through a sterile 15-μm filter (Cat# 43-50015-03; pluri-
Select Life Science, Leipzig, Germany) and centrifuged at 200 g for 
5 min at room temperature. The resulting amniotic fluid pellet was 
washed with 1× PBS, resuspended at 1 × 106 cells in 100 μL of BD 
FACS stain buffer containing 20% human FcR blocking reagent, 
and incubated for 10 min at 4°C. Next, amniotic fluid cells were 
incubated with the following fluorochrome-conjugated anti-hu-
man antibodies (BD Biosciences, San Jose, CA, USA) for 30 min at 
4°C in the dark: CD14-APC-Cy7 (clone MϕP9, Cat# 557831; BD 
Biosciences) and CD15-FITC (clone W6D3, Cat# 562370; BD Bio-
sciences). After washing with 1× PBS, the cells were resuspended 
in pre-sort buffer (Cat# 563503; BD Biosciences) at a concentra-
tion of 5 × 106 cells/mL. Amniotic fluid neutrophils (CD15+CD14− 
cells) and monocytes/macrophages (CD14+CD15− cells) were pu- T
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(For legend see next page.)
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rified using a BD FACSAria cell sorter (BD Biosciences) and BD 
FACSDiva 6.0 software (BD Biosciences). The purified neutrophils 
and monocytes/macrophages were then resuspended in RLT buf-
fer (Qiagen, Germantown, MD, USA) and stored at −80°C until 
RNA isolation.

RNA Isolation
RNA was isolated from lysed amniotic fluid cells using the Qia-

gen Micro RNeasy kit (Qiagen), following the manufacturer’s in-
structions. The purity, concentration, and integrity of the RNA 
samples were assessed using the NanoDrop 1000 spectrophotom-
eter (Thermo Scientific, Wilmington, DE, USA) and the Bioana-
lyzer 2100 (Agilent Technologies, Wilmington, DE, USA). The 
low-input RNA-seq library was prepared by the Beijing Genomics 
Institute (BGI; Wuhan, China) using the Smart-Seq2 kit (Illumina, 
San Diego, CA, USA). Paired-end sequence reads (120 million total 
reads per sample) of 150-bp length were generated using the Nova-
Seq sequencer (Illumina), and raw data were provided by BGI.

RNA-seq Data Analysis
Transcript abundance from RNA-seq reads was quantified 

with Salmon [118] and used to test for differential expression with 
a negative binomial distribution model implemented in the DE-
Seq2 [119] package from Bioconductor [120]. Gene expression 
changes were assessed through 7 between-group comparisons:  
(1) total neutrophils – total monocytes/macrophages, (2) fetal – 
maternal neutrophils, (3) fetal – maternal monocytes/macro-
phages, (4) severe – mild fetal inflammatory response neutrophils, 
(5) severe – mild fetal inflammatory response monocytes/macro-
phages, (6) preterm – term neutrophils, and (7) preterm – term 
monocytes/macrophages. Genes with a minimum fold change of 
1.25-fold and an adjusted p value of <0.1 were considered differ-
entially expressed.

The differentially expressed genes (DEGs) for each between-
group comparison were used as input in iPathwayGuide (ADVAI-
TA Bioinformatics, Ann Arbor, MI, USA) [121–123] to determine 
the significantly impacted pathways. iPathwayGuide pathway an-
notations were derived from the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database, release 90.0+/05–29 [124, 125]. Sig-
nificantly perturbed pathways (false discovery rate adjusted p val-
ues <0.1) were presented hierarchically in a dendrogram based on 
the overlap in associated DEGs. Volcano plots were used to display 
the evidence of differential expression for each comparison. The 
top 10 most significantly enriched Gene Ontology (GO) biological 
processes in strictly upregulated or downregulated genes are also 
shown.

Further, to gain insight and to visualize gene dysregulation in 
the comparisons described above, we used the stringApp (version 
1.5.0) [126] in Cytoscape (version 3.7.2) [127] to test the overrep-
resentation of GO biological processes [128] in the upregulated and 
downregulated genes separately. A false discovery rate-adjusted  
p value <0.05 determined statistical significance. We constructed 
networks of high-confidence protein-protein interactions (STRING 
confidence score >0.7) and very high-confidence protein-protein 
interactions (STRING confidence score >0.9) for each set of DEGs. 
For each network, we retained the most inter-connected subnet-
work or subnetworks of proteins for visualization and highlighted 
biological processes enriched among these gene sets.

DNA Fingerprinting
The origin of amniotic fluid neutrophils and monocytes/mac-

rophages was determined using DNA fingerprinting, as previous-
ly reported [84, 85]. Briefly, genomic DNA was isolated from 
FACS-purified amniotic fluid neutrophils and monocytes/macro-
phages, and fetal or maternal genomic DNA was isolated from fro-
zen samples of either umbilical cord or maternal blood (buffy 
coat), respectively, as previously described [84, 85]. DNA samples 
(amniotic fluid neutrophils and monocytes/macrophages, umbili-
cal cord blood, and maternal blood) were sent for DNA finger-
printing to Genetica DNA Laboratories (https://www.celllineau-
thentication.com, Laboratory Corporation of America/LabCorp, 
Burlington, NC, USA) for analysis of the 13 core CODIS STR loci 
plus PENTA E, PENTA D, and the gender-determining locus, am-
elogenin. The origin of amniotic fluid neutrophils and monocytes/
macrophages was designated as either predominantly maternal or 
predominantly fetal.

Placental Histopathologic Examination and Umbilical Cord 
Imaging
Histopathologic examination of the placenta was performed by 

perinatal pathologists blinded to clinical diagnoses and obstetrical 
outcomes according to standardized Perinatology Research Branch 
protocols [104]. Acute inflammatory lesions of the placenta (ma-
ternal inflammatory response and fetal inflammatory response) 
were diagnosed according to established criteria, including staging 
and grading [104]. Fetal inflammatory responses were histologi-
cally evaluated by the presence and severity of acute lesions (i.e., 
neutrophil invasion) in the umbilical cord (funisitis) or chorionic 
plate (chorionic vasculitis) [103, 104]. Severity is reported as stages, 
where stage 1 indicates umbilical phlebitis and/or chorionic vascu-
litis (mild inflammation), stage 2 indicates umbilical arteritis (se-
vere inflammation), and stage 3 indicates necrotizing funisitis (total 
inflammation and necrosis in the umbilical cord) [104]. For visual-

Fig. 1. Transcriptomic differences between amniotic fluid neutro-
phils and monocytes/macrophages from women with intra-amni-
otic infection. a Experimental design showing the FACS of amni-
otic fluid neutrophils (n = 6) and monocytes/macrophages (n = 6) 
for RNA-seq. b Volcano plot showing the DEGs between amni-
otic fluid neutrophils and monocytes/macrophages. c Hierarchical 
dendrogram showing KEGG pathway impact analysis between 
amniotic fluid neutrophils and monocytes/macrophages. Pink  
circle indicates the most significantly affected pathway, and the 
lightest blue circles indicate the least significantly affected path-

ways. d Predicted activated and inhibited upstream regulators  
for DEGs in amniotic fluid neutrophils compared to monocytes/
macrophages. e, f GO analysis using genes significantly upregu-
lated (e) or genes significantly downregulated (f) in amniotic fluid 
neutrophils compared to monocytes/macrophages. The top 10 sig-
nificantly affected biological processes from each set of DEGs are 
shown. FC, fold change; FACS, fluorescence-activated cell sorting; 
DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, 
Kyoto Encyclopedia of Genes and Genomes.
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ization of umbilical cord inflammation, 5-μm-thick sections of for-
malin-fixed, paraffin-embedded umbilical cord specimens were cut 
and mounted on SuperFrostTM Plus microscope slides (Erie Scien-
tific LLC, Portsmouth, NH, USA). Following deparaffinization, the 

slides were rehydrated and stained with hematoxylin and eosin. Im-
ages of stained umbilical cord sections were taken using the Vectra 
Polaris Automated Quantitative Pathology Imaging System (Akoya 
Biosciences, Marlborough, MA, USA).

Fig. 2. Transcriptomic differences between amniotic fluid neutro-
phils and monocytes/macrophages of predominantly fetal or ma-
ternal origin. a Experimental design demonstrating the transcrip-
tomic comparison between amniotic fluid neutrophils or mono-
cytes/macrophages of predominantly fetal and maternal origin.  
b Table and pie charts representing the maternal (neutrophils, n = 
4; monocytes/macrophages, n = 3) or fetal (neutrophils, n = 2; 

monocytes/macrophages n = 3) origins of amniotic fluid neutro-
phils and monocytes/macrophages determined using DNA finger-
printing. c, d Volcano plots showing the differentially expressed 
genes among amniotic fluid neutrophils (c) and monocytes/mac-
rophages (d) of fetal origin compared to those of maternal origin. 
M, predominantly maternal origin; F, predominantly fetal origin; 
FC, fold change.
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Results

Transcriptomic Differences between Neutrophils and 
Monocytes/Macrophages in the Amniotic Cavity of 
Women with Intra-Amniotic Infection
First, to obtain a broad view of the transcriptomic dif-

ferences between amniotic fluid neutrophils and mono-
cytes/macrophages, we sorted CD15+CD14− cells and 
CD14+CD15− cells from women with intra-amniotic in-
fection (Table 1) and performed RNA-seq in these cells 
(Fig.  1a). We identified a total of 3,926 DEGs between 
amniotic fluid neutrophils and monocytes/macrophages, 
of which 2,248 genes were downregulated (blue dots) and 
1,678 were upregulated (red dots) as displayed in a vol-
cano plot (Fig. 1b). Next, the DEGs were used as input to 
determine significantly affected gene pathways obtained 
from the KEGG database (see Methods for details). Twen-
ty-nine significantly affected pathways were identified, 
which included multiple immune-related pathways such 
as “Staphylococcus aureus infection,” “phagosome,” “an-
tigen processing and presentation,” “cell adhesion mole-
cules,” and “cytokine-cytokine receptor interactions,” 
among others (Fig. 1c). We then analyzed the upstream 
regulators of the DEGs that were predicted as activated or 
inhibited in amniotic fluid neutrophils compared to 
monocytes/macrophages: several regulators were identi-
fied (Fig. 1d). Increased gene expression in amniotic fluid 
neutrophils compared to monocytes/macrophages was 
associated with biological processes such as “immune re-
sponse,” “leukocyte activation,” “neutrophil activation,” 
and “granulocyte activation” (Fig. 1e). Among downreg-
ulated genes in amniotic fluid neutrophils, enriched bio-
logical processes included “co-translational protein tar-
geting to membrane,” “SRP-dependent co-translational 
protein targeting to membrane,” “protein targeting to 
ER,” and “establishment of protein localization to endo-
plasmic reticulum” (Fig. 1f). These findings show that cell 
type-specific transcriptomic differences exist between 
amniotic fluid neutrophils and monocytes/macrophages 
in women with intra-amniotic infection, indicating that 
these innate immune cells display distinct host immune 
functions against microbes invading the amniotic cavity.

The Transcriptome of Amniotic Fluid Neutrophils 
and Monocytes/Macrophages Differs Based on Their 
Maternal or Fetal Origin
Previous reports have shown that innate immune cells 

of fetal or maternal origin, or occasionally a mixture of 
both, are found in the amniotic cavity during intra-amni-
otic infection [84, 85]. Thus, we performed RNA-seq to 

compare the transcriptomes of amniotic fluid neutrophils 
and monocytes/macrophages between those of primarily 
fetal origin and those of primarily maternal origin 
(Fig. 2a). The maternal or fetal origin of amniotic fluid 
neutrophils and monocytes/macrophages was previously 
determined using DNA fingerprinting [84, 85]. The sam-
ples included herein were designated as either predomi-
nantly of maternal or fetal origin. Sorted amniotic fluid 
neutrophils were of predominantly maternal origin in 
67% (4/6) of patients and were primarily derived from the 
fetus in 33% (2/6) of patients (Fig. 2b). Sorted amniotic 
fluid monocytes/macrophages were evenly split in origin, 
with 50% (3/6) being derived from the mother and 50% 
(3/6) from the fetus (Fig. 2b). One sample of predomi-
nantly maternal neutrophils also contained a fraction of 
fetal neutrophils, represented as "Mix" (grey area) in the 
pie chart shown in Figure 2b. A total of 119 genes were 
differentially expressed in predominantly fetal neutro-
phils compared to predominantly maternal neutrophils, 
of which 66 were downregulated and 53 were upregulat-
ed, as shown in a volcano plot (Fig. 2c). In contrast, the 
transcriptome of amniotic fluid monocytes/macrophages 
appeared to be more influenced by their origin, as 1,074 
genes were differentially expressed in predominantly fetal 
monocytes/macrophages compared to predominantly 
maternal monocytes/macrophages (Fig.  2d). Among 
these DEGs, 425 were downregulated and 649 were up-
regulated in predominantly fetal monocytes/macro-
phages compared to those of predominant maternal ori-
gin (Fig. 2d). Given the low number of DEGs determined 
in neutrophils of predominantly fetal or maternal origin, 
subsequent analyses revealed no enrichment of specific 
pathways or GO terms in these cells. Thus, we further ex-
plored the transcriptomic differences observed in the 
monocytes/macrophages.

KEGG pathway analysis revealed 8 pathways that were 
significantly perturbed in amniotic fluid monocytes/
macrophages of predominantly fetal or maternal origin: 
“S. aureus infection,” “systemic lupus erythematosus,” 
“pertussis,” “cholesterol metabolism,” “Chagas disease 
(American trypanosomiasis),” “bladder cancer,” “legio-
nellosis,” and “complement and coagulation cascades,” 
suggesting that the transcriptomic differences between 
these cells are primarily related to immune response to 
infection (Fig. 3a). Upstream regulator prediction analy-
sis in amniotic fluid monocytes/macrophages identified 
the aryl hydrocarbon receptor (AHR) as activated in pre-
dominantly fetal monocytes/macrophages compared to 
those of predominantly maternal origin (Fig. 3b). Strik-
ingly, multiple inflammatory mediators such as tumor 
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Fig. 3. Transcriptomic differences between amniotic fluid mono-
cytes/macrophages of predominantly fetal or maternal origin.  
a pORA and total pAcc showing KEGG pathway impact analysis 
between predominantly fetal (n = 3) and maternal (n = 3) amni-
otic fluid monocytes/macrophages. Significantly impacted path-
ways are shown in red. b Predicted activated and inhibited up-
stream regulators of DEGs in amniotic fluid monocytes/macro-
phages of predominantly fetal origin compared to those of 
predominantly maternal origin. c GO analysis using genes sig-
nificantly downregulated in amniotic fluid monocytes/macro-
phages of predominantly fetal origin compared to those of pre-
dominantly maternal origin. The top 10 significantly enriched 

biological processes are shown. d STRING analysis showing a 
subset of genes downregulated in amniotic fluid monocytes/mac-
rophages of predominantly fetal origin compared to those of pre-
dominantly maternal origin, represented as nodes in the network. 
The edges between nodes represent high-confidence protein-pro-
tein interactions for the corresponding genes. Red, “response to 
stimulus” network; blue, “developmental process” network; 
green, “cellular component organization” network; pORA, plot 
based on gene overrepresentation; pAcc, pathway accumulation; 
DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, 
Kyoto Encyclopedia of Genes and Genomes.

a b-log10(pORA)

-l
o

g
1

0
(p

A
c
c
)

Systemic lupus erythematosus

Staphylococcus aureus infection

Pertussis

Complement and 

coagulation cascades

Legionellosis
Bladder cancer

Chagas disease 

(American trypanosomiasis)

Cholesterol 

metabolism

Biological Pathways

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

LEP

GF1

L33

JB1

GF

SF1

JA2

IL6

RP

TNFTNF

CRP

IL6

DNAJA2

HSF1

EGF

DNAJB1

IL33

IGF1

LEP

Number of consistent DEGs

Upstream regulators predicted as inhibited in fetal monocytes/macrophages 

compared to maternal monocytes/macrophages

Monocytes/Macrophages

HR

0 5 10 15

AHR

Upstream regulators predicted as activated in fetal monocytes/macrophages 

compared to maternal monocytes/macrophages

c

GO:Biological Processes

Downregulated genes

Regulation of response to stimulus

Immune system process

Response to stimulus

Cell activation

Response to chemical

Secretion by cell

Response to external stimulus

Leukocyte activation

-log10(adjusted p value)

0 2 4 6 8

tion

ical

lus

lus

cell

tion

tion

tion

ess

lus

Secretion

Regulation of molecular function

Response to stimulus

Developmental process

Cellular component organization

d

STRING Analysis

Downregulated Genes



RNA-seq of Amniotic Fluid Innate 
Immune Cells in Intra-Amniotic Infection

71J Innate Immun 2021;13:63–82
DOI: 10.1159/000509718

Fig. 4. Transcriptomic differences between amniotic fluid neutro-
phils or monocytes/macrophages from cases of severe and mild 
fetal inflammatory response. a Experimental design demonstrat-
ing the transcriptomic comparison of amniotic fluid neutrophils 
or monocytes/macrophages between cases of mild (n = 2) and se-
vere (n = 4) fetal inflammatory response. b, c Representative im-
ages of umbilical cord hematoxylin and eosin (H&E) staining 
showing mild (b) and severe (c) fetal inflammatory response indi-

cated by leukocyte infiltration in the Wharton’s jelly localized near 
the umbilical artery (arrows). Magnification = ×10, scale bar = 100 
μm. d, e Volcano plots showing the differentially expressed genes 
among amniotic fluid neutrophils (d) and monocytes/macro-
phages (e) from cases of severe fetal inflammatory response com-
pared to those from cases of mild fetal inflammatory response. FC, 
fold change.
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Fig. 5. Transcriptomic differences between amniotic fluid mono-
cytes/macrophages from cases of severe and mild fetal inflamma-
tory response. a pORA and total pAcc showing KEGG pathway 
impact analysis between amniotic fluid monocytes/macrophages 
from cases of severe fetal inflammatory response (n = 4) compared 
to those from cases of mild fetal inflammatory response (n = 2). 
Significantly impacted pathways are shown in red. b Predicted ac-
tivated and inhibited upstream regulators of DEGs in amniotic 
fluid monocytes/macrophages from cases of severe fetal inflam-
matory response compared to those from cases of mild fetal in-
flammatory response. c GO analysis using genes significantly up-
regulated in amniotic fluid monocytes/macrophages from cases of 
severe fetal inflammatory response compared to those from cases 

of mild fetal inflammatory response. The top 10 significantly en-
riched biological processes are shown. d STRING analysis showing 
a subset of genes upregulated in amniotic fluid monocytes/macro-
phages from cases of severe fetal inflammatory response compared 
to those from cases of mild fetal inflammatory response, repre-
sented as nodes in the network. The edges between nodes represent 
high-confidence protein-protein interactions for the correspond-
ing genes. Red, “cytokine-mediated signaling pathway” network; 
blue, “regulation of cell population proliferation” network; and 
green, “extracellular matrix assembly” network; pORA, plot based 
on gene overrepresentation; pAcc, pathway accumulation; DEGs, 
differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes.
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necrosis factor (TNF), C-reactive protein (CRP), IL-6, 
and IL-33 were predicted as inhibited in predominantly 
fetal monocytes/macrophages compared to those of pre-
dominantly maternal origin, suggesting lower activation 
of transcriptomic pathways related to inflammation 
(Fig. 3b). GO analysis was performed using significantly 
upregulated or downregulated genes in predominantly 
fetal monocytes/macrophages compared to predomi-
nantly maternal monocytes/macrophages to determine 
enriched biological processes. Among the genes down-
regulated in predominantly fetal monocytes/macro-
phages compared to predominantly maternal mono-
cytes/macrophages, enriched GO terms included “regu-
lation of response to stimulus,” “immune system process,” 
“cell activation,” and “secretion,” as well as multiple terms 
related to response to external stimuli (Fig. 3c). Three of 
these biological processes are shown on the highly con-
nected network obtained with STRING software (Fig. 3d). 
STRING enrichment analysis identified “response to 
stimulus,” “developmental process,” and “cellular com-
ponent organization” as enriched in genes downregulat-
ed in monocytes/macrophages of predominantly fetal or-
igin compared to those of predominantly maternal origin 
(Fig. 3d). No biological processes were significantly en-
riched among genes upregulated in predominantly fetal 
monocytes/macrophages compared to predominantly 
maternal monocytes/macrophages.

Taken together, these findings indicate that the origin 
of immune cells in the amniotic cavity influences their 
transcriptome. Specifically, the significant transcriptom-
ic differences between fetal and maternal monocytes/
macrophages suggest that fetal monocytes/macrophages 
exhibit impaired functions.

Transcriptomic Changes in Amniotic Fluid 
Neutrophils and Monocytes/Macrophages Based on 
the Severity of the Fetal Inflammatory Response
Intra-amniotic infection is associated with a fetal in-

flammatory response [95–102], which manifests histo-
logically as lesions of the umbilical cord and chorionic 
plate [103, 104]. Thus, we next determined the differen-
tial gene expression in amniotic fluid neutrophils and 
monocytes/macrophages from cases of a severe (stage 2) 
fetal inflammatory response (n = 4) compared to those 
from cases of a mild (stage 1) fetal inflammatory response 
(n = 2) (Table 1; Fig. 4a). Representative hematoxylin and 
eosin staining illustrates the infiltration of granulocytes 
into the tissue surrounding the umbilical artery in the se-
vere fetal inflammatory response, in contrast with the mi-
nor infiltration of these cells observed in the mild fetal 

inflammatory response (Fig. 4b–c). Amniotic fluid neu-
trophils displayed differential expression of 119 genes be-
tween cases of severe or mild fetal inflammatory response, 
with 53 DEGs downregulated and 66 DEGs upregulated 
(Fig. 4d). Amniotic fluid monocytes/macrophages showed 
a total of 98 DEGs, with the majority (85 genes) being up-
regulated and only 13 downregulated (Fig. 4e). Despite the 
similar numbers of DEGs observed in amniotic fluid neu-
trophils and monocytes/macrophages from cases of se-
vere or mild fetal inflammatory response, subsequent 
pathway analysis of DEGs revealed significant enrichment 
of pathways and GO terms for monocytes/macrophages 
alone. Thus, we focused on the transcriptomic differences 
occurring in amniotic fluid monocytes/macrophages in 
the context of the fetal inflammatory response.

The severity of the fetal inflammatory response was as-
sociated with significant enrichment of 8 KEGG path-
ways in amniotic fluid monocytes/macrophages: “TNF 
signaling pathway,” “IL-17 signaling pathway,” “Salmo-
nella infection,” “chemokine signaling pathway,” “rheu-
matoid arthritis,” “cytokine-cytokine receptor interac-
tion,” “hematopoietic cell lineage,” and “retinol metabo-
lism” (Fig.  5a). These pathways suggest that the DEGs 
affected by the fetal inflammatory response are largely 
related to cytokine signaling and propagation of inflam-
mation. In line with this concept, upstream regulators 
predicted as activated in monocytes/macrophages from 
cases of severe fetal inflammatory response compared to 
a mild response included IL-6 and IL-1β, both of which 
are cytokines strongly implicated in the intra-amniotic 
inflammatory response associated with infection [25, 
111] (Fig. 5b). Indeed, IL-6 concentrations in the umbili-
cal cord blood are clinically utilized to diagnose fetal in-
flammatory response syndrome [106, 107, 109]. Up-
stream regulators predicted as inhibited in monocytes/
macrophages from cases of severe fetal inflammatory re-
sponse compared to mild response included the anti-in-
flammatory cytokine IL-10 as well as G protein signaling 
modulators 1, 2, and 3 and Purkinje cell protein 2, which 
are implicated in chemokine signaling [129–131] 
(Fig. 5b). The GO biological processes enriched among 
genes upregulated or downregulated in amniotic fluid 
monocytes/macrophages were then determined. Among 
upregulated genes, terms related to cytokine signaling 
such as “regulation of signaling receptor activity,” “cyto-
kine-mediated signaling pathway,” “regulation of re-
sponse to stimulus,” “response to external stimulus,” and 
“G protein-coupled receptor signaling pathway” were en-
riched in monocytes/macrophages from cases of severe 
fetal inflammatory response compared to those from cas-
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es of mild fetal inflammatory response (Fig. 5c). In line 
with the impacted GO terms, STRING analysis of genes 
upregulated in monocytes/macrophages from severe fetal 
inflammatory response showed protein-protein interac-
tion networks related to “cytokine-mediated signaling 
pathway,” “regulation of cell population proliferation,” 
and “extracellular matrix assembly,” terms that included 
multiple innate immune-related chemokines such as 
CXCL1, CXCL2, and CXCL3 (Fig. 5d). No enriched bio-
logical processes were found among genes significantly 
downregulated in monocytes/macrophages from cases of 
severe fetal inflammatory response compared to those 
from cases of mild fetal inflammatory response. Collec-
tively, these findings show that alterations in the tran-
scriptome of amniotic fluid neutrophils and monocytes/
macrophages are strongly associated with the severity of 
the fetal inflammatory response in the placenta. These 
data also imply that the trafficking of fetal neutrophils 
throughout the Wharton’s jelly (connective tissue of the 
human umbilical cord) is modulated by amniotic fluid 
monocytes/macrophages rather than exclusively by neu-
trophils, as initially thought [104].

The Transcriptome of Amniotic Fluid Neutrophils 
and Monocytes/Macrophages Based on Pregnancy 
Outcome (Preterm or Term Delivery)
Intra-amniotic infection, an established etiology of 

preterm labor and birth [11, 12, 132–135], is the leading 
cause of neonatal mortality and morbidity worldwide 
[136–138]. However, intra-amniotic infection also occurs 
in term pregnancies [139]. Thus, we finally compared the 
transcriptomes of amniotic fluid neutrophils and mono-
cytes/macrophages from women who subsequently deliv-
ered preterm (n = 4) or at term (n = 2) (Table 1; Fig. 6a). 
A total of 147 DEGs were identified in amniotic fluid neu-
trophils from preterm and term deliveries, with the ma-
jority (137 genes) being upregulated and only 10 being 

downregulated (Fig. 6b). Following a similar trend, am-
niotic fluid monocytes/macrophages from preterm and 
term deliveries displayed 294 DEGs, with 37 downregu-
lated and 257 upregulated (Fig. 6c). Despite the number 
of affected genes, only 1 KEGG pathway showed signifi-
cant enrichment in amniotic fluid neutrophils from pre-
term and term deliveries: “propanoate metabolism” 
(Fig.  6d). Similarly, amniotic fluid monocytes/macro-
phages with differential gene expression between preterm 
and term deliveries displayed 2 enriched pathways: “S. 
aureus infection” and “systemic lupus erythematosus,” 
suggesting that some of the identified DEGs were related 
to inflammatory responses (Fig. 6e). Notably, GO analy-
sis of genes upregulated in amniotic fluid neutrophils 
from preterm deliveries compared to term deliveries 
showed enrichment of multiple biological processes as-
sociated with mitochondrial translation (Fig. 6f), which 
were also highly represented in STRING analysis showing 
upregulated protein-protein interaction networks such as 
“mitochondrial gene expression” and “organonitrogen 
compound metabolic process” (Fig. 6g). No biological pro-
cesses were enriched among genes downregulated in am-
niotic fluid neutrophils from preterm deliveries compared 
to those from term deliveries; in addition, amniotic fluid 
monocytes/macrophages displayed no enriched biological 
processes among upregulated or downregulated genes for 
the current comparison. Together, these data show that the 
amniotic fluid neutrophils and monocytes/macrophages 
display increased transcriptional activity in preterm deliv-
eries compared to those from term deliveries.

Discussion

Intra-amniotic infection is a common clinical condi-
tion associated with adverse perinatal outcomes [12, 95, 
111, 140]. Much research has focused on the mechanisms 

Fig. 6. Transcriptomic differences between amniotic fluid neu-
trophils and monocytes/macrophages from preterm or term de-
liveries. a Experimental design demonstrating the transcriptom-
ic comparison of amniotic fluid neutrophils and monocytes/
macrophages between preterm (n = 4) and term (n = 2) deliveries. 
b, c Volcano plots showing the differentially expressed genes in 
amniotic fluid neutrophils (b) and monocytes/macrophages (c) 
between preterm and term deliveries. d, e pORA and total pAcc 
showing KEGG pathway impact analysis of amniotic fluid neu-
trophils (d) and monocytes/macrophages (e) between preterm 
and term deliveries. Significantly impacted pathways are shown 
in red. f GO analysis using genes significantly upregulated in am-
niotic fluid neutrophils from preterm deliveries compared to 

those from term deliveries. The top 10 enriched biological pro-
cesses are shown. g STRING analysis showing a subset of genes 
upregulated in amniotic fluid neutrophils from preterm deliver-
ies compared to those from term deliveries, represented as nodes 
in the network. The edges between nodes represent high-confi-
dence protein-protein interactions for the corresponding genes. 
Red, “Mitochondrial gene expression” network; blue, “organoni-
trogen compound metabolic process” network; green, “small 
molecule metabolic process” network; FC, fold change; NS, not 
significant; pORA, plot based on gene overrepresentation; pAcc, 
pathway accumulation; GO, Gene Ontology; KEGG, Kyoto En-
cyclopedia of Genes and Genomes.
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triggered by bacteria associated with this clinical condi-
tion; however, the host innate immune mechanisms in 
the intra-amniotic space have been less studied given the 
invasiveness of amniocentesis (the transabdominal sam-
pling of amniotic fluid). In the current study, we first 
showed that significant transcriptomic differences exist 
between amniotic fluid neutrophils and monocytes/mac-
rophages from women with intra-amniotic infection. The 
plausibility of such differences is supported by significant 
enrichment results in pathways, biological processes, and 
predicted upstream regulators between these two innate 
immune cell types. These findings support our initial hy-
pothesis that neutrophils and monocytes/macrophages 
serve distinct and important functions in the amniotic 
cavity of women with intra-amniotic infection.

Neutrophils are classically known for their capacity to 
phagocytose microbes to prevent the spread of infections, 
among other roles [88, 141]. We have shown that neutro-
phils in the amniotic cavity are fully functional in this re-
gard [92], as they can phagocytose a number of microbes 
commonly identified in the amniotic fluid of women with 
intra-amniotic infection such as U. urealyticum, S. aga-
lactiae, G. vaginalis, and E. coli [10, 12, 17, 18]. In line with 
this concept, KEGG pathways related to phagocytosis or 
its downstream processes such as “phagosome” and 
“NOD-like receptor signaling pathway” [142] were en-
riched in amniotic fluid neutrophils compared to mono-
cytes/macrophages.

Monocytes/macrophages in the amniotic cavity seem 
to primarily act through the release of pro-inflammatory 
cytokines that differ from those released by neutrophils 
[77, 80], suggesting that these two cellular subsets have 
distinct functions in the context of intra-amniotic infec-
tion. Accordingly, in the current study, the KEGG path-
way analysis showed that multiple terms related to cyto-
kine signaling were significantly enriched when compar-
ing amniotic fluid monocytes/macrophages and 
neutrophils. Further supporting this concept of amniotic 
fluid monocytes/macrophages as producers of cytokines/
chemokines, the majority of upstream regulators predict-
ed as more activated in monocytes/macrophages com-
pared to neutrophils were associated with ribosomal pro-
teins (e.g., RPL and RPS family proteins). In addition, GO 
terms enriched in amniotic fluid monocytes/macro-
phages were primarily related to ribosomes and protein 
translation. Collectively, these transcriptomic findings 
point to amniotic fluid monocytes/macrophages as being 
highly translationally active, which likely contributes to 
their release of cytokines/chemokines in the context of 
intra-amniotic infection.

We and others have shown that amniotic fluid innate 
immune cells (neutrophils and monocytes/macrophages) 
can originate from the fetus [82–85] and/or the mother 
[84–86]. However, until recently, whether fetal and ma-
ternal innate immune cells display different functionality 
in the amniotic cavity has been largely unexplored. In the 
current study, we found that the transcriptomes of pre-
dominantly fetal and maternal neutrophils did not drasti-
cally differ, suggesting that these innate immune cells ex-
hibit similar responses against invading microbes regard-
less of their origin. This finding contrasts with previous 
reports showing that umbilical cord blood neutrophils 
display decreased capacity to form NETs [94, 143]. The 
differences between fetal neutrophils from umbilical cord 
blood and those in the amniotic cavity could be explained 
by the existence of the neonatal NET-inhibitory factor in 
the umbilical cord blood plasma, which can prevent NET 
formation [144]. It is therefore tempting to suggest, once 
fetal neutrophils extravasate from the fetal vasculature 
into the amniotic cavity [145], that these cells are no lon-
ger functionally restricted and can perform similar roles 
to maternal neutrophils [146].

In contrast with amniotic fluid neutrophils, we ob-
served a significant number of DEGs between predomi-
nantly fetal and predominantly maternal amniotic fluid 
monocytes/macrophages, indicating differences in func-
tion between cells from these two origins. Previous stud-
ies reported that umbilical cord blood monocytes exhibit 
reduced expression of cytokines [147] and display im-
paired capacity for polarization [148]. Thus, it is possible 
that amniotic fluid monocytes originating from the um-
bilical cord/chorionic plate [85] may also display reduced 
capacity for polarization. In line with these observations, 
predominantly fetal monocytes/macrophages in the am-
niotic cavity showed downregulation of biological pro-
cesses, including “cell activation,” “immune system pro-
cesses,” and “response to stimuli,” despite the pro-inflam-
matory environment occurring in intra-amniotic 
infection.

In the current study, RNA-seq revealed that pathways 
related to inflammation and host immune response were 
differentially regulated in amniotic fluid monocytes/
macrophages from women with severe fetal inflamma-
tory response compared to those with mild fetal inflam-
matory response. Pathways related to cytokine signaling, 
a primary function of monocytes [149, 150], were signifi-
cantly enriched in amniotic fluid monocytes/macro-
phages from women with severe fetal inflammatory re-
sponse. These results are in line with previous clinical re-
ports showing that the intra-amniotic inflammatory 
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response induced by bacteria is associated with increased 
concentrations of pro-inflammatory cytokines in the fetal 
vasculature of the placenta [151, 152]. Indeed, neonates 
born to women with intra-amniotic infection can experi-
ence fetal inflammatory response syndrome in utero [95, 
97, 98]. This syndrome is characterized by systemic acti-
vation of the fetal innate immune system [106, 107, 109], 
which affects multiple organs and leads to long-term neo-
natal complications [107, 109].

A notable finding described herein is that the immune 
cells most affected by the severe fetal inflammatory re-
sponse of the placenta were amniotic fluid monocytes/
macrophages, which showed significant enrichment of 
terms related to cytokine/chemokine signaling, including 
chemokines that drive neutrophil migration [153, 154]. 
This is counterintuitive since acute inflammatory pro-
cesses of the placenta are mainly mediated by neutrophils 
[104]. Therefore, one would expect that the amniotic flu-
id neutrophils would display greater transcriptional ac-
tivity than the monocytes/macrophages in this compart-
ment. Yet, the results presented herein uphold the hy-
pothesis that monocytes/macrophages in the intra- 
amniotic space are central regulators of leukocyte infiltra-
tion in the placental tissues.

Our investigation also revealed that both amniotic fluid 
neutrophils and monocytes/macrophages display greater 
transcriptional activity in women who delivered preterm 
than in those who delivered at term. The most logical ex-
planation for this finding, in preterm gestation, is that 
there is a more hostile intra-amniotic environment than at 
term; however, both subsets of women displayed an in-
tense inflammatory response in the amniotic cavity as evi-
denced by elevated IL-6 concentrations and WBC/viable 
cell counts. Another possibility is that women who deliv-
ered preterm had a greater bacterial burden than those who 
delivered at term; however, in the current study, molecular 
microbiology was not performed. Yet, previous studies 
have established that the intensity of the intra-amniotic in-
flammatory response is mainly driven by the presence of 
genital mycoplasmas (Ureaplasma species and Mycoplas-
ma hominis) [155] and, in the current study, both term and 
preterm intra-amniotic infections were associated with 
these genital mycoplasmas. An alternative explanation is 
that women who delivered preterm have amniotic fluid in-
nate immune cells with more activate transcription than 
those who delivered at term since intra-amniotic inflam-
mation induces fetal lung maturity [156–159], reducing 
the incidence of respiratory distress syndrome in preterm 
neonates [160]. This concept supports the hypothesis that 
intra-amniotic infection/inflammation prepares the fetus 

for a premature delivery; therefore, preterm labor has sur-
vival value for the offspring [161].

In summary, we show that significant transcriptomic 
differences exist between amniotic fluid neutrophils and 
monocytes/macrophages from women with intra-amni-
otic infection that are indicative of the distinct roles these 
innate immune cells play. We also report that the tran-
scriptome of innate immune cells in the amniotic cavity 
depends on their fetal or maternal origin. Notably, we 
demonstrate that the transcriptomic changes in amniotic 
fluid monocytes/macrophages are associated with the se-
verity of the fetal inflammatory response, suggesting that 
not only amniotic fluid neutrophils but also monocytes/
macrophages are implicated in the trafficking of fetal leu-
kocytes throughout the umbilical cord (i.e., funisitis). 
Lastly, we show that amniotic fluid neutrophils and 
monocytes/macrophages from preterm deliveries display 
enhanced transcriptional activity compared to those from 
term deliveries, highlighting the protective role of these 
innate immune cells in this vulnerable period. Collective-
ly, these findings demonstrate the underlying complexity 
of local innate immune responses in women with intra-
amniotic infection and provide new insights into the 
functions of amniotic fluid neutrophils and monocytes/
macrophages in the amniotic cavity.
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