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The expression level of a gene is often used as a proxy for determining whether the protein or RNA

product is functional in a cell or tissue. Therefore, it is of fundamental importance to understand the

global distribution of gene expression levels, and to be able to interpret it mechanistically and

functionally. Here we use RNA sequencing (RNA-seq) of mouse Th2 cells, coupled with a range

of other techniques, to show that all genes can be separated, based on their expression abundance,

into two distinct groups: one group comprised of lowly expressed and putatively non-functional

mRNAs, and the other of highly expressed mRNAs with active chromatin marks at their promoters.

These observations are confirmed in many other microarray and RNA-seq data sets of metazoan

cell types.
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Introduction

Expression level is frequently used as a way of characterizing

gene function, by northern blotting, PCR, microarrays, and,

more recently, RNA-sequencing (Wang et al, 2009a; RNA-seq).

Therefore, it is a central issue in molecular biology to

know how many transcripts are expressed in a cell at what

levels. This question was studied very early in the history of

molecular biology using methods such as reassociation

kinetics (Hastie and Bishop, 1976), which indicated the

existence of distinct abundance classes, and recently, we

pointed out that separate peaks are visible in the abundance

distributions of a number of microarray data sets (Hebenstreit

et al, 2011). At the same time, microarrays or RNA-seq data

have been described as displaying broad, roughly lognormal

distributions of expression levels with no clear separation into

discrete classes (Hoyle et al, 2002; Lu and King, 2009;

Ramskold et al, 2009). There are several reasons for this:

many samples are heterogeneous in terms of cell type

(Hebenstreit and Teichmann, 2011) or are based on a previous

generation of less sensitive microarrays, many are from

unicellular organisms rather than animals, and finally, data

processing and plotting methods can obscure the presence of

distinct abundance classes. Here, we provide experimental and

computational support for two overlapping major mRNA

abundance classes. Our findings hold for metazoan data sets

including human, mouse and Drosophila sources.

Results and discussion

We initially based our analysis on murine Th2 cells (Zhu et al,

2010), as these cells can be obtained in large quantities ex vivo

and can be prepared as a pure and homogeneous cell

population. Furthermore, there is a well-characterized set of

genes whose proteins are known to be expressed and

functional in Th2 cells, as well as a set of genes known to be

not expressed in these cells (Supplementary Table S1 lists the

genes we used in our study, Supplementary Figure S1 shows

expression of two marker proteins in the cells).

We generated Th2 poly(A)þ RNA-seq data for two

biological replicates and calculated gene expression levels

using the standard measure of Reads Per Kilobase per

Million (RPKM;Mortazavi et al, 2008, Supplementary Table S2

gives the number of reads and mappings we obtained).
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The expression levels of the biological replicates are highly

correlated (r2¼0.94, Supplementary Figure S2). We then

calculated the mean RPKMs of the two samples for all genes

and log2 transformed these values.

Displaying the distribution of all gene expression levels as a

kernel density estimate (KDE) reveals an interesting structure:

the majority of genes follow a normal distribution, which is

centered at a value of B4 log2 RPKM (B16 RPKM), whereas

the remaining genes form a shoulder to the left of this main

distribution (Figure 1A, solid line). This was conserved under

different KDE bandwidths (Supplementary Figure S3, left

panel) or different histogram representations (Supplementary

Figure S3, right panel). As genes with zero reads cannot be

included on the log scale, we prepared an alternative version of

Figure 1A, where we assigned low RPKM values to these. This

helps to illustrate the fraction of zero-read genes (Supplemen-

tary Figure S4). As a comparison, we studied microarray data

for the same cell type from a recent publication (Wei et al,

2009). The correlation between the microarray and the RNA-

seq data was very good and highly statistically significant

(Pearson r2¼0.83, Spearman r¼0.84, Supplementary Figure

S5). Surprisingly, displaying the distribution of microarray

expression levels results in a clearly bimodal distribution

(Figure 1B). Again, the appearance of the distribution was

insensitive to the KDE bandwidth choice or histogram bin size

(Supplementary Figure S6). The bimodalitywas conservedwhen

alternative normalization and processing schemes were used,

independent of KDE bandwidths (Supplementary Figure S7).

Visual inspection of both microarray and RNA-seq data thus

reveals two overlapping main components of the distribution

of gene expression levels. Quantifying this by curve fitting

confirms a good fit to two distributions: the goodness-of-fit

(measured by Akaike Information criterion, AIC (Akaike,

1974), Bayesian Information Criterion, BIC (Schwarz, 1978) or

Likelihood ratio tests (Casella and Berger, 2001)) shows

strong increases for both microarray and RNA-seq data when

two-component models are fit by expectation-maximization

(compared to single- or more-component models; Supplemen-

tary Figure S8). We designate the two groups of genes as the

lowly expressed (LE) and highly expressed (HE) genes

(Figure 1C), because we will present evidence below that the

LE genes are expressed rather than simply being experimental

background. Our findings are not limited to Th2 cells and hold

for virtually all recently publishedmetazoan RNA-seq data sets

(e.g., Marioni et al, 2008; Mortazavi et al, 2008; Mudge et al,

2008; Wang et al, 2008; Supplementary Figure S9; Cloonan

et al, 2008; and Supplementary Figure S10A and B) and all micro-

array data sets (e.g., Cui et al, 2009; GNF Atlas 3 (Chintapalli

et al, 2007); FlyAtlas (Lattin et al, 2008); and Supplementary

Figure S11) we have studied. The existence of further minor

groups of genes cannot be excluded, but is not clear at this

point due to the diverse curve-fitting results for the different

data sets if higher-order (more than two components) models

are considered.

The difference between the microarray and RNA-seq

distributions is explained by the fact that the microarrays

yield a signal for all genes, part of which is due to cross-

hybridization of oligonucleotide probes if the gene is not

strongly expressed. RNA-seq on the other hand yields a

signal for a gene only if at least one sequencing read is found.

Figure 1 Distribution of gene expression levels. (A) Kernel density estimates of RPKM distributions of RNA-seq data within exons, introns and intergenic regions as
indicated. The fragments used to estimate intron and intergenic RPKM were based on randomizations using the same length distribution as the exonic parts of
genes. The 90% quantile of the intergenic distribution is indicated. (B) Kernel density estimate of expression level distribution of microarray data (Wei et al, 2009).
(C) Expectation-maximization-based curve fitting of RNA-seq data of A.
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The accuracy of RNA-seq is biased toward longer and more

highly expressed genes, e.g., 5% of all genes account for 50%

of all reads in our data as well as in other data sets (Mortazavi

et al, 2008; Oshlack and Wakefield, 2009; Bullard et al, 2010).

To explore how this accuracy bias affects the shape of the LE

distribution, we studied the RNA-seq detection limit. We first

plotted the number of genes with zero reads as a function of

the total number of reads (taking subsets of the total reads).

The number of genes without reads decreases slowly, with no

change in slope and hence no indication of reaching a plateau.

Even at a total of 25 million reads, B30% of all genes are

undetected (Figure 2A). We further estimated the numbers of

genes remaining undetected at each expression level by

assuming Poisson-distributed read numbers (Jiang and Wong,

2009) and by determining the expected frequency of zeroes.

This confirms the sensitivity drop at the lower end of the LE

peak (Figure 2B). Extrapolating the numbers of expressed

genes including the undetected ones reveals an emerging

LE peak (Figure 2B). Thus, the smaller portion of LE genes in

the RNA-seq data comparedwith themicroarray data is at least

partially due to the RNA-seq detection limit, although this only

becomes a problem for genes at less than approximately �3 to

�4 log2 RPKM. It should be noted that these low expression

levels correspond to an absence of transcripts in the majority

of cells, as we demonstrate further below.

To further confirm that the LE genes correspond to low

expression and not experimental noise, we performed real-

time PCRs. We tested amplification by exon-spanning primers

of a set of genes that are known to be expressed or not

expressed in Th2 cells, plus five random genes that we

detected between �3.7 and �5 log2 RPKM in the RNA-seq

experiment (Supplementary Table S1). We were able to

successfully PCR-amplify all genes with high specificity.

The expressed genes map to the HE peak, while almost all

Figure 2 Sensitivity of RNA-seq. (A) Detection of genes in dependency of the total read numbers on linear scale and log2 scale (inset). Random subsets of the total
reads for the two RNA-seq replicates were taken and the number of genes with zero reads were plotted versus the total read numbers used. The figure represents an
average of five independent subsets for each data point. (B) Prediction of genes remaining undetected due to Poisson statistics underlying RNA-seq. The theoretically
expected fraction of genes remaining undetected (red, y axis on the right side of the figure in red) was determined for each expression level. This was used to infer the
expressed genes including the undetected ones (blue) from the actual expression data (black, bins indicated by tick marks across top). In addition to the RPKM scale, the
reads per kilobase (RPK) scale (without normalization to the total number of mapped reads) is shown on top, which was used for the calculation of the (integer-) Poisson
statistic and which, in contrast to the RPKM scale, depends on the total number of sequencing reads. (C) RT–PCR for the genes are listed in Supplementary Table S1.
The RNA-seq expression levels of the genes are plotted versus the negative threshold cycles (Ct) of the PCRs. The plot is overlaid (with the same x axis scaling) upon the
kernel density estimate of the RNA-seq expression level distribution (black line) to show the positions of the genes in the total expression distribution. Genes either in the
LE peak of the RNA-seq distribution or which have been previously characterized as not expressed in Th2 cells are shown in orange. Genes known to be expressed are
shown in purple. Error bars indicate s.e.m. from three independent biological replicates. Please refer to Supplementary Tables S1 and S6 for details of genes and PCR
primers. (D) Correlation of RPKM within exons and introns based on the RNA-seq data from Figure 1A. Correlation and significance of correlation were calculated for
the whole distribution (gray) or for LE and HE genes separately. Division into LE and HE was performed along a line (white) perpendicular to a fitted trendline (gray),
centered at Exon RPKM¼1. The data points are shown as 2D kernel density estimate.

Two classes of gene expression levels

D Hebenstreit et al

& 2011 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2011 3



unexpressed genes map to the LE peak, if we align the PCR

results with the microarray/RNA-seq data (Figure 2C).

We also tested the extent to which genomic DNA can be

detected in our polyA-purified mRNA sample, as proposed by

Ramskold et al (2009) as a means of quantifying experimental

background. We randomly selected intergenic fragments with

the same length distribution as genes, 10 kb away from genes.

The resulting RPKM distribution contains a high number of

zero-RPKM fragments (79%), while the majority of non-zero

fragments peaks slightly left of the LE shoulder (Figure 1A).

The 90% quantile of this intergenic background distribution

is at �4.97 log2 RPKM, which means that we can be quite

confident (with probability 490%) that genes with an RPKM

value above this level are truly expressed rather than

representing experimental background noise (Figure 1A).

Further, the overlap between the intergenic and the normal-

ized LE fit is small (Supplementary Figure S12). We cannot

rule out that detection of intergenic DNA corresponds to

transcription as well, which would make the case for

transcription of LE genes even stronger.

Analysis of the strand-specific mRNA-sequencing data of

ES cells by Cloonan et al (2008) yields similar conclusions.

The poly(A)-purification protocol selects for reads that are

antisense to genes (the antisense reads correspond to mRNA).

In the distribution of ‘sense’ reads (corresponding to antisense

transcripts in genic regions), more than 50% of genic regions

have zero reads. This distribution is unimodal and shifted

by B2 log2 RPKM with respect to the LE distribution, and

overlaps almost perfectly with the distribution of reads in

intergenic regions (Supplementary Figure S10A).

We next determined the distribution of RPKM within

introns, again using fragments with the same length distribu-

tion as transcripts (please note that our intronic read densities

are not enriched at 50 or 30 ends of the intronic regions

(Supplementary Figure S13)). The resulting intronic distribu-

tion is significantly higher than the intergenic background

(two-sidedWilcoxon rank-sum test, Po2.2�10�16) and peaks

at roughly �1 log2 RPKM (Figure 1A). Introns thus have one-

to two orders ofmagnitude lower read density than exons. This

suggests that we are detecting incompletely processed

transcripts at a low but significant and uniform level across

the whole range of transcript abundances.

As introns are one- to two orders of magnitude longer than

exons, introns should be detectable with roughly the same

accuracy as exons, if the full-length set of introns of a gene is

used. If we plot the RPKM in exonic regions versus the RPKM

in intronic regions for each gene, there is significant correla-

tion (r2¼0.86, Po2.2�10�16) across the whole spectrum of

expression levels. Calculating the correlation for LE and HE

genes separately yields only slightly lower correlations among

LE genes compared with HE genes, and both correlations are

highly significant (Figure 2D). This provides evidence that

confirms that LE genes are transcribed rather than experi-

mental background: therewould not be such a high correlation

between introns and exons, particularly in the low-abundance

region, if their detection were due to noise.

We next studied gene expression using a single-cell

approach by performing single-molecule RNA-fluorescence

in situ hybridization (FISH; Raj et al, 2008) for five genes that

are expressed at different levels according to the literature and

our RNA-seq data. The distributions ofmRNAnumbers per cell

were very broad for expressed genes (e.g., Gata3), while low

mRNA numbers from ‘not-expressed’ genes (e.g., Il2) were

still detected (Figure 3A). All genes had Fano factors (s2/m)

larger than 4, indicating that they had extra-Poisson variation

(a Poisson randomvariablewould haves2/m¼1) and therefore

burst-like transcription (Raj and van Oudenaarden, 2009)

(Supplementary Table S3). Importantly, cells expressing

Tbx21 were not anticorrelated with cells expressing Gata3

(Figure 3B), meaning that we do not have a sub-population

of Th1 cells in our Th2 cell populations. This demonstrates

that LE expression is not due to a contaminating cell type,

as the same cells express groups of genes at HE and others

at LE levels.

It should be further noted that the LE/HE groups cannot

theoretically result from a mixture of different cell types.

Mixing of different cell types leads to gene expression levels

for each gene that are an average across cell types. Hence,

such distributions will become more unimodal, not less so

(following the central limit theorem).

As the RPKM as measured by RNA-seq should be propor-

tional to the mean mRNA numbers per cell, we can use the

RNA-FISH results to estimate how our RPKM values translate

into mRNA numbers. We find that one RPKM corresponds to

an average of roughly one transcript per cell in our Th2 data set

(Figure 3C). Please note that the value of one RPKM/one

transcript on average per cell serves as an estimate only as it is

based on a limited number of data points. See Supplementary

Figure S14 for log-transformed versions of Figure 3A–C.

To study the nature of the LE and HE groups in more detail,

we prepared Th2 ChIP-seq data for the activating H3K9/14

acetylation histone modification (Roh et al, 2005; Wang et al,

2009b) (H3K9/14ac) and one IgG control. We calculated the

histone-modification level at each gene by identifying a

globally enriched window around the transcription start sites

of genes, and using reads in this window as a measure of each

gene’s modification level, normalized by the total reads

(giving the normalized locus-specific chromatin state, NLCS,

as used in Hebenstreit et al (2011)). Thus, we were able to plot

histone-modification levels of each gene against expression

levels from the RNA-seq or microarray data using a heatmap

representation (Figure 3D, RNA-seq and Figure 3E, micro-

arrays). Supplementary Figure S15 is an alternative version of

this figure, where we randomly assigned low RPKM values to

the zero-read genes.

This strikingly confirms the two groups of gene expression

levels, as there is a very good agreement between LE genes and

absence of histone marks on one hand, and HE genes and

presence of H3K9/14ac marks on the other hand (Figure 3D–E).

This is seen for both the microarrays as well as the RNA-seq

data. This extends previous findings of the relationship

between H3K9/14ac and transcriptional activation by revealing

an on/off-type of correlation between this histone mark and

the LE/HE groups of genes. It should be noted that there is

a very weak correlation within the LE and HE groups. The

strongest correlation is within the RNA-seq HE group with a

correlation coefficient r2¼0.29 in log space and r2¼0.097 on

linear space.

As the LE group of genes is still expressed at low levels and

contains at least five genes that are characterized as not
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expressed and non-functional in Th2 cells, it seems likely that

the HE group of genes represents the active and functional

transcriptome of cells. This is supported by SILAC proteomics

data (Graumann et al, 2008), which is available for the

embryonic stem cell data we presented earlier (Supplementary

Figure S10) and which indicates protein expression of HE

genes only (Supplementary Figure S10C). The tight correlation

recently observed between RNA and protein levels in three

mammalian cell lines also supports this (Lundberg et al, 2010).

Gene ontology (GO) analysis of LE and HE genes in the

Th2 cells supports the notion that HE comprises the func-

tional transcriptome, as many T-cell-specific processes (e.g.,

GO:0050863, GO:0045582, GO:0042110) and housekeeping

processes are enriched (Supplementary Table S4). On the

other hand, manyGO terms referring to differentiation of other

cell types (e.g., ear development GO:0043583, neuron fate

commitment GO:0048663) are enriched among the LE set of

genes (Supplementary Table S5).

In conclusion, our data show that two large groups of genes

can be discriminated based on the distribution of expression

levels. RNA-FISH indicates that the boundary between the

groups is found at an expression level of roughly one transcript

per cell. In addition, H3K9/14ac marks are associated with the

promoters of HE genes only (Figure 3F). It thus seems likely

that the LE/HE groups reflect different transcription kinetics

depending on the chromatin state or vice versa. The LE group is

Figure 3 (A) Distribution of mRNA numbers among single cells. Histograms for Gata3 and Tbx21 (with an inset histogram starting from 1 instead of 0 to better illustrate
higher expressions) and a sample fluorescence microscopy image are shown. Tbx21 transcripts are marked with white arrows to ease identification. (B) Correlation
between Gata3 and Tbx21 expression. Correlation coefficient and significance are inset. (C) Plot of mean mRNA numbers per cell versus RNA-seq RPKM of five genes.
Error bars indicate s.e.m. from two RNA-seq biological replicates. (D, E) 2D kernel density estimates of gene expression level versus ChIP-seq signal for each gene for
RNA-seq (D) and microarray (E) data. Divisions between background and signal for the ChIP-seq component were determined by curve fitting with the software EpiChIP
(Hebenstreit et al, 2011) and are indicated. Divisions between LE and HE groups of genes are indicated. (F) Scheme summarizing the results.
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likely to correspond to ‘leaky’ expression, producing non-

functional transcripts. The majority of LE genes are expressed

at less than one copy per cell on average, and it would be

interesting to know whether such stochastic expression has

any function, e.g., in cell differentiation, or any deleterious

effects. Theremay be a trade-off between the cost of repressing

expression entirely and unwanted consequences of stochastic

expression.

Regulation of gene expression is mostly mediated by

transcription factor binding events at promoters and enhan-

cers (Heintzman et al, 2009). Often, differential regulation

induces only small changes in expression levels, probably

serving to fine-tune expression and shifting genes within the

HE group. Our data suggest that in addition to this, there is a

key decision about whether a gene becomes ‘switched on’ and

expressed, which coincides with a boost in both transcription

and H3K9/14ac histone modification.

Materials and methods

Th2 cell differentiation culture

Spleens of C57BL/6 mice aged from 7 weeks to 4 months were
removed and softly homogenized through a nylon mesh. The medium
used throughout the cell cultures was IMDM supplemented with 10%
FCS, 2 mM L-glutamine, penicillin, streptomycin and 50 mM b-mercap-
toethanol. Cells were washed twice and purified by a Ficoll density
gradient centrifugation. CD4þCD62Lþ cells were isolated by a two-
stepMACS purification using the CD4þCD62Lþ TCell Isolation Kit II
(Miltenyi Biotec). Cells were seeded into 24-well plates that had been
coated with a mix of anti-CD3 (1mg/ml, clone 145-2C11, eBioscience)
and anti-CD28 (5mg/ml, clone 37.51, eBioscience) antibodies over-
night, at a density of 250 000 cells/ml and a total volume of 2ml. The
following cytokines and antibodies, respectively, were added to the
Th2 culture: recombinant murine IL-4 (10 ng/ml, R&D Systems), and
neutralizing IFN-g (5 mg/ml, Sigma). Cells were cultured for 4–5 days
at 371C, 5% CO2. After this, cells were taken away from the activation
stimulus, diluted 1:2 in fresh medium containing the same cytokine
concentration as before. After 2–3 days of resting time, cells were
directly crosslinked in formaldehyde for preparing ChIP-seq samples.
For FACS stainings, cells were restimulated with phorbol dibutyrate
and ionomycin (both used at 500ng/ml, both from Sigma) for 4 h in
the presence of Monensin (2 mM, eBioscience) for the last 2 h after the
resting phase. For real-time PCRs, the cells were lysed in Trizol.

FACS staining

After restimulation, cells were washed in PBS and fixed in IC fixation
buffer from the Foxp3 staining kit (eBioscience). Staining for intra-
cellular transcription factor expression was carried out according to
the eBioscience protocol, using Permeabilization buffer (eBioscience)
and the following antibodies: anti-GATA3-Alexa647 (one test, TWAJ,
eBioscience), anti-Tbx21-PE (1/400, clone eBio4B10, eBioscience).
Stained cells were analyzed on a FACSCalibur (BD Biosciences) flow
cytometer using Cellquest Pro and FlowJo software.

Real-time PCR

RNA of B106 cells was isolated with Trizol (Invitrogen) according to
the manufacturer’s protocol. cDNAwas produced using Superscript III
reverse transcriptase (Invitrogen), following the protocol supplied by
the manufacturer. The cDNAwas subjected to real-time PCR, using the
SYBR green PCRmastermix (Applied Biosystems) and a 7900 HT Real-
Time PCR system (Applied Biosystems). The threshold cycles (Ct) were
determined. The primer sequences used are listed in Supplementary
Table S6 and were mostly obtained from ‘Primerbank’ (http://
pga.mgh.harvard.edu/primerbank/; Spandidos et al, 2010).

RNA-seq data generation

Poly-(A)þ RNAwas purified from B500 000 cells using the Oligotex
kit (Qiagen). The manufacturer’s protocol was slightly modified to
include additional final elution steps resulting in a larger volume. After
precipitation of RNA to concentrate it, first- and second-strand cDNA
synthesis was performed using the Just cDNA kit (Stratagene),
skipping the blunting step and directly proceeding to PCI extraction.
Quality of the cDNA was tested by real-time PCR for a housekeeping
gene. After this, the cDNAwas sonicated for a total of 45min using the
Diagenode Bioruptor at maximum power settings, cycling 30 s
sonications with 30 s breaks. After precipitation, the sample was
processed using the ChIP-seq sample prep kit (Illumina) with a slightly
modified protocol (PCR before gel extraction). Sequencing for 36
or 41 bp was carried out on an Illumina GAII genome analyzer.
The data were deposited at Gene Expression Omnibus (GEO,
http://www.ncbi.nlm.nih.gov/geo/), accession number GSE28666.

RNA-seq data processing

Reads were mapped to the mouse genome (mm9) with Bowtie
(Langmead et al, 2009) using the command options -m 1–best –strata–
solexa1.3-quals, and were assigned to exons of RefSeq genes using
custom perl scripts. We used the gene symbol as the primary identifier.
Supplementary Table S2 shows the numbers of mapped reads. We
further generated a library of splice junctions based on RefSeq genes,
mapped unmapped reads to these and added the numbers of hits to the
genes. The numbers of mapped reads per gene were corrected for
mapability based on the ‘CRG’ tracks of the UCSC genome browser.
RPKM were then calculated. In the case that multiple splice variants
existed, the most highly expressed one was selected as representative
for a gene’s expression level. For generating the RPKM distributions of
intergenic regions, we considered regions with a distance of at least
10 kb to any RefSeq or Ensembl gene. The distribution was based on
random fragments of the same length distribution as gene lengths.
Mapability was accounted for, and the randomization was performed
20 times. The same procedure was followed for determining the read
distribution within introns (of RefSeq genes). To test for a possible
RPKM bias in 50 or 30 ends of intronic regions, the introns of each gene
were aligned, and if the intronic region was at least 6 kb in total, RPKM
were separately determined for the most 50 2 kb, for the 2 kb in the
center and for the most 30 2 kb. The full-length of introns was used (for
the sake of higher sensitivity) for plotting RPKM of introns versus
exons (as in Figure 2D). A trend line was calculated based on a least
squares fit of the log2-transformed data. Division into LE and HE was
made along a line perpendicular to the trendline, crossing at Exon
RPKM¼1. Correlations and significances calculated were based on
Pearson’s product moment correlation coefficient.

We prepared alternative versions of Figures 1A and 3D, where we
assigned a random log2 RPKM value derived from a Normal
distribution with m¼�12 and s¼1 to each gene without sequencing
reads (Supplementary Figures S4 and S15).

Integration of the RNA-seq data with mircoarray- and histone-
modification data was based on gene symbols.

The RNA-seq data of Cloonan et al (2008) was downloaded from the
NCBI short-read archive (http://www.ncbi.nlm.nih.gov/sra/), acces-
sion number SRX003912. The reads were mapped to mm9 in
colorspace format using Bowtie with similar settings as above. The
mapped reads were separated into those sense and those antisense to
RefSeq genes and processed similarly as described above. Read
distributions in intergenic regions were determined as described
above for our data.

RNA-seq data from Mudge et al (2008) was downloaded from GEO,
accession number GSE12297. We used the processed data for
‘Cerebellar cortex 40 Control’ directly and performed no further
calculations, except log transformation and kernel density estimation.
The RNA-seq data for ‘skeletal muscle’ from Wang et al (2008) was
downloaded from GEO (accession number GSE12946). We used the
data that was mapped to the human genome (hg18), assigned it to
RefSeq genes, and processed it similarly as described above. We
further downloaded RNA-seq data from Marioni et al (2008) from the
Sequence Read Archive (SRA, http://www.ncbi.nlm.nih.gov/sra/).
The data for human liver tissue were used (accession numbers
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SRX000571 and SRX000604). The two files were concatenated,
mapped to the human genome (hg18) with Bowtie and processed
further as described above. Finally, RNA-seq data for mouse brain
(Mortazavi et al, 2008)was downloaded fromSRA (accession numbers
SRX000350 and SRX001866). As described above, the two files were
concatenated, mapped to the mouse genome (mm9) with Bowtie and
processed further.

Kernel density estimation

Gene expression distributions were displayed as KDEs in most cases.
These were calculated using the function ‘density()’ of the freely
available statistical software package ‘R’ (http://www.r-project.org/).
We used default settings of this function unless stated otherwise. This
means a Gaussian kernel and that the ‘bandwidth equals 0.9 times the
minimum of the standard deviation and the interquartile range divided
by 1.34 times the sample size to the negative one-fifth power
(corresponding to Silverman’s ‘rule of thumb’, Silverman (1986),
page 48, equation (3.31)), unless the quartiles coincidewhen a positive
result will be guaranteed’ (R manual). For 2D kernel density
estimations we used the function ‘kde2d()’ of the R library ‘MASS’
with the default bandwidth and a Gaussian kernel. This bandwidth is
calculated based on a variation of above formula for the 1D case, where
the factor 1.06 instead of 0.9 is used. Densities were estimated at 50
grid points in either direction and displayed as heatmaps.

RNA-seq data sensitivity analysis

The RNA-seq detection limit was explored by two different ap-
proaches. First, random subsets of different sizes were taken from the
total reads we generated. The number of genes that remained
undetected (zero reads) were plotted as a function of the subset size.
The subsetting was performed five times for each subset size and the
average number of zero-read genes was determined.

As a second approach, we determined the expected number of zero-
read genes depending on the expression level. To this end, we
calculated the expected number of reads for each gene in dependency
of the expression level (as reads per kilobase, RPK, instead of RPKM
which includes normalization by the total number of mapped reads)
and gene length (the length distribution of all genes was used). The
expected read number is generally assumed to be Poisson distributed
(Jiang and Wong, 2009) and can be used as an estimator of the single
parameter of a Poisson distribution, l, which is equal to mean and
variance of the distribution. Studying the probability density function
of a Poisson distribution for a certain l reveals the expected frequency
of zeros, which corresponds to genes of a certain length that remain
undetected at a certain RPK, despite being expressed. Assuming an
equal distribution of gene lengths at all expression levels, we could
thus sum up the proportion of zero-read genes for all gene lengths and
thus obtain the total expected portion of undetected genes for all RPK
levels. For instance, at RPK¼1 we would expect two sequencing reads
for a gene that is 2 kb long and one read for a 1 kb gene (giving the same
expression level). As the actual read numbers vary according to a
Poisson distribution, not all genes that are expressed at that level will
have exactly one or two reads, respectively, but some will have more
and some none at all. The Poisson distribution gives the expected
portion of zeros, which would be 37% for the 1 kb gene and 13.5% for
the 2 kb gene. Thus, if we detect 150 1-kb genes and 250 2-kb genes at
RPK¼1, we can estimate that a further 127 (¼150/(1�0.37)�150þ
250/(1�0.135)�250) genes of the same lengths are expressed at the
same level but remain undetected.

We further used above calculation to estimate how the distribution
of expression levels is affected by the sensitivity of RNA-seq. To this
end, we binned the actual expression distribution into bins of size 1 on
the log2 RPK scale and extrapolated the number of expressed genes by
adding the inferred number of undetected genes to each bin.

Microarray data

Microarray data (Th2) of Wei et al (2009) were downloaded fromGEO,
accession number GSE14308. Either normalized (by the authors)

microarray data were used (Figure 1B, Supplementary Figure S5, S6
and S8), inwhich case present (P) and absent (A) calls of the probesets
were ignored, or custom processing schemes were applied to the raw
data (Supplementary Figure S7 and S8). Themean of the two replicates
of the microarray data was calculated for each probeset and was log2-
transformed. These values were then linked to RefSeq genes based
on the Affymetrix MOE430 2.0 build 27 annotations. If more than
one probeset was mapping to a gene, the probeset with the highest
intensity was chosen as representative of the gene’s expression level.

We further downloaded microarray data for murine bone cells from
the GNFMouse GeneAtlas V3 (Lattin et al (2008); GEO, GSE10246) and
processed them as described above. Similarly, the processed micro-
array data for two replicates of human Cd133þ cells (Cui et al, 2009)
were downloaded from GEO, accession number GSE12646, and
processed (using Affymetrix build 28 annotations for the Affymetrix
U133A chip). Finally, we downloaded from GEO (accession number
GSE7763) microarray data for Drosophila eye tissue from the FlyAtlas
(Chintapalli et al, 2007). We mapped the probesets to genes
using Affymetrix probe annotations (build 28) for GeneChip Droso-
phila Genome 2.0 and processed the data the same way as the other
data sets.

Curve fitting

Curve fitting and/or clustering of the data into LE and HE sets by
expectation-maximization was performed on the log2-transformed
RNA-seq or microarray data using the R library ‘Mclust’. The log-
likelihood values output byMclust were used to calculate AIC (Akaike,
1974), BIC (Schwarz, 1978) and likelihood ratio statistics (Casella and
Berger, 2001). The latter were calculated for the model with n
components as the null model and the one with nþ 1 components as
the alternative model (0ono9). We approximated the test statistics
with w

2 distributions and calculated the P-values with R.

SILAC data

Processed SILAC data for murine embryonic stem cells was down-
loaded from the Supplementary Material of Graumann et al (2008).
Using UCSC table browser, we linked the protein expression data to the
RNA-seq data of Cloonan et al (2008) by referencing the RefSeq protein
ID provided by Graumann et al (2008) to the gene symbol, which we
used as gene identifier for the RNA-seq data. A protein was regarded as
expressed if it had a non-zero ‘MS intensity’ value.

GO analysis

Genes were clustered into LE and HE subsets by expectation-
maximization using the R library Mclust. Enrichment analysis of
‘process’ GO terms was performed with the Generic Gene Ontology
(GO) Term Finder (http://go.princeton.edu/cgi-bin/GOTermFinder;
Boyle et al, 2004) using the combined LE/HE set of genes as the custom
background. Bonferroni-adjusted P-values were used.

Single-molecule FISH

We performed single-molecule FISH on the Th2 cells and counted the
mRNAs in individual cells as described previously (Raj et al, 2008).
Briefly, harvested Th2 cells were fixed with 3.7% formaldehyde for
10min, washed twice with PBS, and permeabilized in 70% ethanol.
For hybridization, the samples were resuspended in 100 ml of
hybridization solution containing labeled DNA probes in 2� SSC,
1mg/ml BSA, 10mM VRC, 0.5mg/ml Escherichia coli tRNA and 0.1 g/
ml dextran sulfate, with 10–25% formamide, which varies for different
probes, and incubated overnight at 301C. The next day, the samples
werewashed twice by incubating in 1ml of wash solution consisting of
10–25% formamide and 2� SSC for 30min. The sequences of the
probes are available upon request.
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Image acquisition

The samples were resuspended in glucose oxidase anti-fade solution,
which contains 10mM Tris (pH 7.5), 2� SSC, 0.4% glucose, supple-
mented with glucose oxidase and catalase. Then 8ml of cell suspension
was sandwiched between two coverglasses, and mounted on glass slides
using a silicone gasket. Imageswere taken using aNikonTE2000 inverted
fluorescence microscope equipped with a � 100 oil-immersion objective
and a Princeton Instruments camera using MetaMorph software
(Molecular Devices, Downington, PA). Stacks of images were taken
automatically with 0.4 microns between the z-slices.

Image analysis

To segment the cells, a marker-guided watershed algorithm was used.
Briefly, cell boundaries were obtained by running an edge detection
algorithm on the bright-field image of the cells. To generate markers,
the centroid of the region enclosed by individual cell boundaries is
computed. A marker-guided watershed algorithmwas then run on the
distance transformation of the cell boundaries, using the markers
located within the cell boundaries (Supplementary Figure S16). The
resultant cell segmentation image was then manually curated for
occasional mis-segmentations.

To quantify the number of RNA molecules in each cell, a log filter
was run over each optical slice of an image stack to enhance signals.
A threshold was taken on the resultant image stack to pick up mRNA
spots. The locations of mRNA spots were then taken to be the regional
maximumpixel value of each connected region (Supplementary Figure
S17). The number of mRNA spots locatedwithin the cell boundaries of
an individual cell was thus quantified.

ChIP-seq data analysis

We used murine Th2 cell data for the H3K9/14ac histone modification
and an IgG control from Hebenstreit et al (2011) (available on GEO,
accession number GSE23092). The reads were mapped to the mouse
genome (mm9) using Bowtie as for the RNA-seq analysis. Further steps
of the analysis were performed using the software EpiChIP (http://
epichip.sourceforge.net/index.html; Hebenstreit et al, 2011). Briefly,
the mapped reads were assumed to be the ends of 200-bp-long
fragments following the XSET method (Pepke et al, 2009). Then
EpiChIP was used to identify an optimal sequence window with
respect to gene coordinates for analysis of the histone-modification
status at all (RefSeq) genes. The resulting window of�400 to þ 807 bp
at transcriptional start sites was used to quantify the ChIP-seq signal
for each gene (the area below the peaks within this window), which
was normalized by the total (genomewide) area to yield ‘NLCS’
(Hebenstreit et al, 2011). These values were log2 transformed and
displayed against the RNA-seq or microarray expression levels as
two-dimensional density estimations. The threshold separating back-
ground from signal was determined with the curve-fitting function
of EpiChIP. For the alternative version of Figure 3D (Supplementary
Figure S15), we assigned a random log2 RPKM value derived from
a normal distribution with m¼�3 and s¼1 to each gene without
ChIP-seq sequencing reads.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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