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IMPORTANCE In neoadjuvant trials, treatment of human epidermal growth factor receptor 2
(HER2)-positive breast cancers with dual HER2 blockade resulted in increased pathologic
complete response (pCR) rates compared with each targeted agent alone. Amplification
and/or overexpression of HER2 currently remains the only biomarker for therapeutic
decisions, but it is insufficient to explain the heterogeneous response to anti-HER2 agents.

OBJECTIVE To investigate the ability of clinically and biologically relevant genes and gene
signatures (GSs) measured by RNA sequencing to predict the efficacy of anti-HER2 agents.

DESIGN, SETTING, AND PARTICIPANTS The neoadjuvant NeoALTTO trial randomized 455
women with HER2-positive early-stage breast cancer to trastuzumab, lapatinib, or the
combination for 6 weeks followed by the addition of weekly paclitaxel for 12 weeks, followed
by 3 cycles of fluorouracil, epirubicin, and cyclophosphamide after surgery. The present
substudy, which was planned in the NeoALTTO main protocol, evaluated the association of
pretreatment gene expression levels defined using RNA sequencing with pCR and event-free
survival (EFS).

MAIN OUTCOMES AND MEASURES Gene expression–based biomarkers using RNA sequencing
were examined for their association with response to anti-HER2 therapy and long-term
outcome.

RESULTS Sequencing data were available for 254 (56%) of the NeoALTTO participants (mean
[SD] age of substudy participants, 48.8 [11.2] years). The expression of ERBB2/HER2 was the
most significant predictor of pCR, followed by HER2-enriched subtype, ESR1, treatment arm,
ER immunohistochemical analysis scores, Genomic Grade Index, immune, proliferation, and
AKT/mTOR GSs. Adjusting for clinicopathological variables and treatment arms, ERBB2/HER2,
HER2-enriched subtype, ESR1, and Genomic Grade Index remained significant. Immune GSs
were associated with higher pCR only in the combination arm (odds ratio, 2.1; 95% CI, 1.2-4.0;
interaction test P = .01), while the stroma GSs were significantly associated with higher pCR in
the single arms and with lower pCR in the combination arm (odds ratio, 0.46; 95% CI,
0.25-0.84; P = .009). None of the evaluated variables was associated with EFS after
correction for multiple testing, but this analysis was underpowered.

CONCLUSIONS AND RELEVANCE High levels of ERBB2/HER2 and low levels of ESR1 were
associated with pCR in all treatment arms. In the combination arm, high expression of
immune and stroma GSs were significantly associated with higher and lower pCR rates,
respectively, and should be further explored as candidate predictive markers.
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T he combination of trastuzumab with either lapatinib or
pertuzumab and chemotherapy has been shown to be
effective for the treatment of patients with human epi-

dermal growth factor receptor 2 (HER2)-positive breast can-
cer. Following the improvement in survival observed in pa-
tients with metastatic disease,1,2 the drug combination has been
investigated in early breast cancer.3-8 Whereas superior effi-
cacy compared with standard trastuzumab therapy has not
been shown yet in the adjuvant setting,7 in neoadjuvant trials
the dual blockade generally resulted in increased pathologic
complete response (pCR) rates compared with each targeted
agent alone.3,4

Despite their clinical activity, anti-HER2 treatments do not
exert the same effect on all patients with HER2-positive breast
cancer. To date, several candidate predictive biomarkers have
been explored, among which are activation of the PI3K
pathway,9-13 the presence of a truncated form of HER2 recep-
tor (p95HER2),14,15 HER2 serum levels,16 and tumor infiltrat-
ing lymphocytes (TILs).17 These studies have given inconsis-
tent results, and none of these biomarkers has demonstrated
clinical utility so far. For the time being, amplification and/or
overexpression of HER2 remains the only biomarker for thera-
peutic decision making,18 even though it has been shown in-
adequate to explain the heterogeneous response to anti-
HER2 agents.19

In this study, we took the unique opportunity to profile the
transcriptome of pretreatment frozen lesions obtained from
patients enrolled in the NeoALTTO trial,3,20 and attempted to
explore biomarkers associated with treatment response and
long-term outcome. For this purpose, we defined a series of
clinically relevant single genes and gene expression signa-
tures previously associated with either response or resis-
tance to trastuzumab treatment,21-26 and we correlated them
with pCR and survival information.

Methods
Patient Population
The NeoALTTO trial was a multicenter, randomized phase 3
trial in which 455 patients with HER2-positive early breast can-
cer were randomly assigned to receive lapatinib 1500 mg/d,
trastuzumab (4 mg/kg loading dose followed by 2 mg/kg), or
the combination of lapatinib 1000 mg/d and the same dose of
trastuzumab for 6 weeks followed by the addition of pacli-
taxel (80 mg/m2) for 12 weeks before surgery. Lapatinib doses
were reduced during the paclitaxel administration. After sur-
gery, all patients received 3 cycles of fluorouracil, epirubicin,
and cyclophosphamide and then continued the same anti-
HER2–targeted therapy as administered in the neoadjuvant set-
ting to complete a total duration of 1 year. Patients were re-
cruited between January 5, 2008, and May 27, 2010. Eligible
patients had to have a HER2-positive primary breast cancer
with a minimum tumor size of 2 cm and adequate cardiac func-
tion. The HER2 status was defined either in local accredited
laboratories or in a central laboratory while the estrogen re-
ceptor (ER) status was defined according to local guidelines (for
additional details refer to the eMethods in the Supplement).

The primary end point was pCR according to either the
National Surgical Adjuvant Breast and Bowel Project (NSABP)
criteria (absence of invasive tumor cells in the breast) or the
Food and Drug Administration criteria (absence of invasive tu-
mor cells in the breast and in the axillary lymph nodes). Event-
free survival (EFS) was the main secondary end point and was
defined as the time from randomization to first event. For
women who received surgery for breast cancer, events were
defined as breast cancer relapse after surgery, second pri-
mary malignant neoplasm, or death without recurrence. For
women who did not undergo surgery for breast cancer, events
were death during clinical follow-up or noncompletion of any
neoadjuvant investigational product because of disease pro-
gression. Additional details can be found in the original
publications.3,20 In this substudy, we used pCR rates as
defined by the NSABP criteria.27

The NeoALTTO trial was approved by the ethics commit-
tee and relevant health authorities of all the participating sites.
Written informed consent was obtained from all patients at
study entry, which also covered future biomarker research. This
substudy was part of the NeoALTTO main protocol.

Samples Collection and Processing
To participate in the trial, patients were asked to provide 2 cores
of snap frozen tissue of their primary tumor prior to the ini-
tiation of neoadjuvant therapy. At least 1 baseline biopsy was
obtained from 423 of the 455 patients enrolled in the trial. As
shown in Figure 1, RNA of enough quality and quantity was
obtained for 263 patients. From these RNA samples, strand-
specific complementary DNA libraries were constructed using
the NEB Next Ultra directional RNA library Preparation Kit for
Illumina paired-end sequencing on the HiSeq 2500 system
(Illumina) following the internal standard operating proce-
dures of GATC Biotech AG. Nine samples failed the library con-
struction step, while the remaining 254 were sequenced. Ad-
ditional details on the samples processing and sequencing can
be found in the eMethods in the Supplement.

RNA Sequencing Data Processing
Read pairs were trimmed using Trimmomatic.28 Alignment was
performed using STAR.29 The number of reads mapping to each

Key Points
Question Can we identify biomarkers associated with treatment
response in patients with human epidermal growth factor receptor
2 (HER2)-positive early breast cancer treated with neoadjuvant
anti-HER2 therapy in the NeoALTTO trial?

Findings This secondary analysis of the NeoALTTO trial used RNA
sequencing data obtained from pretreatment specimens. Across
treatment arms, pathological complete response rate was
associated with high expression of ERBB2/HER2 and low
expression of ESR1. In the combination arm, pathologic complete
response rate was associated with high expression of immune
gene signatures and low expression of stroma gene signatures.

Meaning These findings support the relevant role of immune and
stroma signals in determining the response to anti-HER2
treatments.
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gene was then assessed with the R statistical software30 with
the Rsamtools package.31 Fragments per kilobase of transcript
per million mapped reads (FPKM) were defined as the number
of fragments (1 or both members of a read pair) mapping a gene
per kilobase of transcript per million mapped reads, using the
most common gene isoform as the transcript. Gene expression
levels were corrected for library batch effects using ComBat.32

Besides the expression of the ERBB2/HER2, ESR1, and an-
drogen receptor (AR) genes, we evaluated the following gene
expression signatures: 3 immune signatures (Immune1,21

Immune2,22 Immune323); 2 proliferation signatures
(Genomic Grade Index [GGI],24 aurka22); an AKT/mammalian
target of rapamycin (mTOR) pathway signature25; and 2 stroma
signatures (Stroma126; Stroma222). The signature scores were
calculated as a weighted sum of the log-expressions of their
genes, with gene-specific weights equal to +1 or −1 depending
on the direction of their association with the phenotype in the
original publication.

The expression levels were made comparable to those of
HER2-positive samples from The Cancer Genome Atlas
(TCGA)33 by using the cross-studies normalization of the R
package genefu34 (R package version 2.3.0). A merged data set
was obtained by adding the renormalized NeoALTTO samples
to all TCGA samples. PAM50 subtypes were then determined
using genefu on the merged data sets.35

Statistical Analysis
The relationship between pCR, EFS, and the expression of
genes and gene signatures was assessed using logistic
regressions and Cox proportional hazard models adjusted
for age (as continuous variable), ER status (positive vs nega-
tive), tumor size (≥T3 vs T2), nodal status (N0 vs N1-N3),
histological grade (1-2 vs 3), and treatment arm. All statisti-
cal analyses were performed using R.30 All interaction and
multivariate tests were done using analysis of variance to
compare the models with and without the extra term. The
reported odds and/or hazard ratios come from the fit of the
complete model. Correction for multiple testing was done
using the qvalue package.36 P values (after multiple testing
correction if needed) less than .05 were considered signifi-
cant. The segmentation of ESR1 and ERBB2/HER2 expres-
sion in 2 groups was done using the C-Means algorithm on
each feature separately on the merged TCGA/NeoALTTO
data set.

Results
Sequenced Cohort Not Significantly Different
From the Whole Study Cohort
A total of 455 patients were enrolled in the NeoALTTO trial3;
for 254 of them (55.8%) RNA sequencing data were obtained
(Figure 1). Eighty-nine patients (35.0%) were enrolled in the
lapatinib arm, 79 (31.1%) in the trastuzumab arm, and 86
(33.9%) in the combination arm. No significant differences in
terms of patient characteristics were observed between the
substudy and whole NeoALTTO population (eTable 1 in the
Supplement).

Clustering of Breast Cancer Samples in Function
of Their ESR1 and ERBB2/HER2 Expression Levels
When the samples are plotted in 2 dimensions in function of
their mRNA expression levels of ESR1 and ERBB2/HER2
(Figure 2A), they appear to cluster in 3 groups: a high
ERBB2/HER2 and low ESR1 group (approximately 45% of the
samples), a high ERBB2/HER2 and high ESR1 group (approxi-
mately 35% of the samples), and a low ERBB2/HER2 group
(approximately 20% of the samples). As shown in Figure 2A,
most of the observed pCRs (red dots) cluster in the group of
patients with high ERBB2/HER2 and low ESR1 expression
levels. In fact, 59 (47%) of these patients had a pCR, while
only 24 of 76 (32%) of patients in the high ERBB2/HER2 with
high ESR1 group and 5 of 53 (9%) of those in the low ERBB2/
HER2 group achieved a pCR (P < .001 for the pCR difference
between the 3 groups; P = .04 between high ERBB2/HER2
with low ESR1 and high ERBB2/HER2 with high ESR1 with
Fisher exact test). When our samples were plotted together
with TCGA samples classified according to their PAM50 pro-
file, roughly 20% of HER2-enriched breast cancers show
lower ERBB2/HER2 expression levels, similar to what we
found in our cohort (Figure 2B).

Comparison Between Standard Testing
and RNA Sequencing Data
We also compared the mRNA levels of ERBB2/HER2 and
ESR1 with the HER2 and ER status defined by immunohisto-
chemical analysis (IHC) and/or fluorescence in situ hybrid-
ization (FISH) before study entrance. As shown in eFigure 1
in the Supplement, the expression levels of ERBB2/HER2
showed a weak correlation with the percentage of stained
cells at IHC (ρ = 0.25) and the FISH ratios (ρ = 0.34). Because
in the NeoALTTO study the HER2 status could be defined
either locally or centrally, we also compared the expression
levels of ERBB2/HER2 between the 2 groups. As shown in
eFigure 2 in the Supplement, the expression levels of

Figure 1. NeoALTTO Secondary Analysis Flow Diagram of Patients
and Samples

455 Patients randomized in the 
NeoALTTO trial

630 Baseline frozen samples 
obtained from 423 patients

411 Samples from 409 patients 
used for RNA extraction

275 Samples with good RNA 
integrity number underwent 
concentration measurement

263 Samples from 263 patients 
processed

254 Samples sequenced

219 Samples excluded for 
low cellularity (<30%)

136 Samples excluded for low 
RNA integrity number (<5)

12 Samples excluded for low 
RNA quantity (<1 mg)

9 Samples excluded because 
library preparation failed
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ERBB2/HER2 were significantly higher for samples evalu-
ated centrally compared with locally (P = .02), but both
groups contained cases with low ERBB2/HER2 expression
levels. When the expression levels of ESR1 were compared
between the ER-positive and ER-negative populations as
defined by local IHC, even though the expression levels in
the 2 groups were different, a proportion of cases were over-
lapping (eFigure 3 in the Supplement).

pCR Rates According to the PAM50 Classification
We next defined the subtype of our substudy population using
the PAM50 classifier. As presented in eTable 2 in the Supple-
ment, 110 (43%) of our population was classified as HER2 en-
riched. The remaining cases were classified as luminal A (23%),
luminal B (16%), basal-like (9%), or normal (8%). Fifty-seven
of the 88 (65%) pCRs observed in our substudy were achieved
by patients whose tumors were classified as HER2 enriched,
while the remainder were distributed among the other
4 subtypes (P < .001).

Clustering of Gene Signatures in a Few Groups
eFigure 4 in the Supplement shows the correlation between
the single genes and gene signatures that were analyzed in
this study. As expected, a high correlation was observed
between the 3 immune-related signatures (ρ = 0.84,
0.89, and 0.92), the 2 proliferation-related signatures
(ρ = 0.95), and the 2 stroma-related signatures (ρ = 0.88).
Moderate positive correlation was observed between the
AKT/mTOR signature and the 2 proliferation-related ones
(ρ = 0.49). A moderate, inverse correlation was found
between the stroma and the proliferation signatures
(ρ = −0.38 to −0.62).

Association of Single Genes, Gene Signatures, Treatment,
and Clinicopathologic Parameters With pCR
In a univariate model, the association between pCR and
single genes, gene signatures, treatment, and clinicopatho-
logic parameters was tested using logistic regression. In the
full study cohort (Figure 3A), the main drivers of pCR were
ERBB2/HER2 levels, HER2-enriched subtype based on
PAM50 classification, ESR1 mRNA levels, ER IHC scores, and
the treatment arm. The GGI, proliferation, AKT-mTOR, and 2
immune signatures were also significant at a false discovery
rate level of 5%. When each arm was considered separately,
immune signatures were associated with pCR only in the
combination arm, while the GGI remained significant only in
the lapatinib arm (eFigure 5 in the Supplement). One of the
stroma signatures was significantly associated with lower
pCR in the combination arm.

We then assessed the independence of the predictive
power of single genes and gene signatures adjusting for
clinicopathological parameters and treatment arms
(Figure 3B). ESR1, ERBB2/HER2, HER2-enriched subtype,
and the GGI were associated with pCR. Interestingly, the
level of expression of ESR1 remained significant after
accounting for the ER status determined using IHC; the
same was found for dichotomized ESR1 expression levels
(P = .01). Conversely, ER status measured by IHC was not
significant when controlling for ESR1 mRNA expression,
both as a continuous (P = .73) and a dichotomized variable
(P = .91). The HER2-enriched subtype and the ERBB2/HER2
gene expression levels were independently associated with
pCR, probably because the HER2-enriched subtype classifi-
cation takes into account the levels of expression of the
ESR1 gene and proliferation. ERBB2/HER2 expression levels
remain predictive even among the high ERBB2/HER2 group
as defined in Figure 2A (P = .02).

Figure 2. Distribution of NeoALTTO Samples and Comparison
With Samples From the Cancer Genome Atlas (TCGA)

NeoALTTO substudy population by pCR statusA

NeoALTTO substudy population with TCGA samplesB
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ERBB2/HER2 and ESR1 gene expression levels defined by RNA sequencing and
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When adding a treatment interaction term in the model,
we noticed no significant differences between the lapatinib
and trastuzumab arms (data not shown). We then per-
formed an interaction test considering the combination arm
vs the 2 single arms together (eFigure 6 in the Supplement).
We observed that the immune signatures were significantly
associated with higher pCR rates in the combination arm
only (odds ratio, 2.1; 95% CI, 1.2-4.0; interaction test
P = .01), while the stroma signatures were significantly
associated with higher pCR rates in the single arms and with
low pCR rates in the combination arm (odds ratio, 0.46; 95%
CI, 0.25-0.84; P = .009). These associations were not sig-
nificant when considering the combination vs the trastu-
zumab arm (eFigure 7 in the Supplement). As the effect

sizes remain similar, we attribute this loss of significance to
the smaller number of patients after the lapatinib arm was
removed.

Association of Single Genes, Gene Signatures, Treatment,
and Clinicopathologic Parameters With EFS
We then explored the association of single genes, gene sig-
natures, treatment, and clinicopathologic parameters with
EFS. In a univariate model, only nodal status and AR expres-
sion were associated with EFS but not after correction for
multi-testing (eFigure 8 in the Supplement). None of the
markers was associated with EFS using a test for interaction
with treatment (eFigure 9 in the Supplement). We acknowl-
edge that these analyses were underpowered.

Figure 3. Association of Single Genes, Gene Expression Signatures, Treatment, and Clinicopathologic Variables
With Pathologic Complete Response (pCR)
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Discussion

This study represents one of the largest analyses from a ran-
domized clinical trial that evaluated the expression of single
genes and gene signatures associated with pCR and outcome
in patients with HER2-positive breast cancer. Our results con-
firm that in the neoadjuvant setting, the expression levels of
both ERBB2/HER2 and ESR1 genes remain the most impor-
tant determinants of pCR as compared with standard tests in
this patient population. Lower pCR rates were found in the
tumors with low ERBB2/HER2 gene expression levels, al-
though we cannot exclude that some of those tumors might
be falsely HER2 positive. The predictive value of ERBB2/
HER2 expression levels emerged in other neoadjuvant trials
using either trastuzumab or its combination with lapatinib or
pertuzumab,8,37,38 independently of the technology used in-
cluding RNA sequencing. Additional evidence, however, is
needed before implementation of RNA sequencing in the
clinical setting.39

An inverse correlation between the expression levels of the
ESR1 gene and pCR was recently observed in the neoadjuvant
setting.8 The fact that in our study the level of expression of
ESR1 remained significant after accounting for the ER status
determined using IHC, and not the opposite, suggests that also
in this case ESR1 mRNA levels are more predictive than its pro-
tein levels; however, we cannot exclude that this finding is due
to the ER testing being performed only in local laboratories in
the NeoALTTO trial.

Using a univariate analysis, gene expression signatures rep-
resenting T-cell–driven immune response and proliferation
were significantly associated with pCR. Association between
immune signals and response to anti-HER2 treatment has been
recently observed in other neoadjuvant8,40 and adjuvant
trials.23 The consistent finding in both settings by indepen-
dent groups places the immune response at the forefront of
biomarkers worthy of being applied in clinical practice, as well
as for future drug development in the field of HER2-positive
breast cancer.17,41,42 In our study, we did not find a significant
correlation between immune signatures and EFS, contrary to
what was reported for TILs.17 We found a moderate correla-
tion between immune signatures and stromal TILs (ρ = 0.37-
0.42), which might explain this discrepancy. A plausible ex-
planation might be that TILs and immune signatures capture
different aspects of the host and/or tumor response against can-
cer. Similar discrepancies were reported by Perez et al23,43 in
the adjuvant setting.

Interestingly, in our study, the predictive value of the im-
mune signatures showed an interaction only with the combi-
nation arm. The mechanisms explaining the synergy be-

tween lapatinib and trastuzumab are not fully elucidated. One
of the proposed explanations is that the synergistic inhibi-
tory effect of HER2 signaling determined by the 2 drugs can
enhance apoptosis and results in a superior effect of the drug
combination compared with each single drug.44,45 Another sug-
gested mechanism is that when used in combination with
trastuzumab, lapatinib increases the trastuzumab-mediated
antibody-dependent cytotoxicity as it determines accumula-
tions of inactive HER2 receptors at the cell surface.46,47

The 2 stroma signatures that we evaluated showed in-
stead a peculiar behavior as they predicted higher pCR rates
in the single arms but lower pCR rates in the combination arm.
The signature developed by Farmer and colleagues,26 which
captures the activation state of the tumor stroma, predicted
poor response to anthracycline-based neoadjuvant chemo-
therapy in ER-negative patients and in HER2-positive
patients treated with chemotherapy only.48 High expression
of the PLAU signature was reported by Desmedt et al22 to be
associated with poor clinical outcome in patients with HER2-
positive, untreated breast cancer. To our knowledge, this is the
first time that the predictive value of these signatures has been
evaluated in a cohort of patients receiving anti-HER2 treat-
ment, and their opposite role in modulating the response to
single vs combined agents needs to be further explored.

In our study, none of the markers that we evaluated (in-
cluding those associated with pCR) were associated with EFS.
The NeoALTTO trial was not originally powered to evaluate the
difference between the treatment arms in terms of EFS, and
our findings could be weakened by the low statistical power.

Our study has various strengths. It is a preplanned analy-
sis of a randomized phase 3 trial in which the analysis was per-
formed on prospectively collected frozen tissue samples using
the latest technology to evaluate gene expression. This
strengthens the reliability of the obtained results. On the other
hand, only 60% of the collected samples were evaluable,
mostly due to low cellularity, which is always a challenge when
evaluating tumor biopsies rather than whole surgical speci-
mens. This, however, has not prevented us from finding valu-
able pCR-associated biomarkers.

Conclusions
The results of this study support the existence of significant
molecular heterogeneity among HER2-positive breast can-
cers and the influence of both estrogen signaling and tumor
microenvironment in the response to anti-HER2 therapies.
Future studies should take this knowledge into account and
aim to determine how these factors could be used to individu-
alize the treatment of patients with HER2-positive disease.
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