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Abstract

RNA abundance is a powerful indicator of the state of individual cells. Single-cell RNA 

sequencing can reveal RNA abundance with high quantitative accuracy, sensitivity and 

throughput1. However, this approach captures only a static snapshot at a point in time, posing a 

challenge for the analysis of time-resolved phenomena, such as embryogenesis or tissue 

regeneration. Here we show that RNA velocity—the time derivative of the gene expression state—

can be directly estimated by distinguishing unspliced and spliced mRNAs in common single-cell 

RNA sequencing protocols. RNA velocity is a high-dimensional vector that predicts the future 

state of individual cells on a timescale of hours. We validate its accuracy in the neural crest 

lineage, demonstrate its use on multiple published datasets and technical platforms, reveal the 

branching lineage tree of the developing mouse hippocampus, and examine the kinetics of 

transcription in human embryonic brain. We expect RNA velocity to greatly aid the analysis of 

developmental lineages and cellular dynamics, particularly in humans.

During development, differentiation occurs on a time scale of hours to days, which is 

comparable to the typical half-life of mRNA. The relative abundance of nascent (unspliced) 

and mature (spliced) mRNA can be exploited to estimate the rates of gene splicing and 

degradation, without the need for metabolic labelling, as previously shown in bulk2–4. We 

reasoned similar signals may be detectable in single-cell RNA-seq data, and could reveal the 

rate and direction of change of the entire transcriptome during dynamic processes.

All common single-cell RNA-seq protocols rely on oligo-dT primers to enrich for 

polyadenylated mRNA molecules. Nevertheless, examining single-cell RNA-seq datasets 

based on the SMART-seq2, STRT/C1, inDrop, and 10x Chromium protocols5–8, we found 

that 15-25% of reads contained unspliced intronic sequences (Fig. 1a), in agreement with 

previous observations in bulk4 (14.6%) and single-cell5 (~20%) RNA sequencing. Most 

such reads originated from secondary priming positions within the intronic regions 

(Extended Data Fig. 1). In 10x Genomics Chromium libraries, we also found abundant 

discordant priming from the more commonly occurring intronic polyT sequences (Extended 

Data Fig. 1), which may have been generated during PCR amplification by priming on the 

first-strand cDNA. The substantial number of intronic molecules and their correlation with 

the exonic counts suggest that these molecules represent unspliced precursor mRNAs. This 

was confirmed by metabolic labeling of newly transcribed RNA9 followed by RNA 

sequencing using oligo-dT-primed STRT10 (Extended Data Fig. 2); 83% of all genes 
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showed expression time courses consistent with simple first-order kinetics, as expected if 

unspliced reads represented nascent mRNA.

To quantify the time-dependent relationship between precursor and mature mRNA 

abundances, we assumed a simple model for transcriptional dynamics2, where the first time 

derivative of the spliced mRNA abundance (RNA velocity) is determined by the balance 

between production of spliced mRNA from unspliced mRNA, and the mRNA degradation 

(Fig. 1b, Supplementary Note 1). Under such a model, steady states are approached 

asymptotically when the rate of transcription α is constant, with the steady-state abundances 

of spliced (s) and unspliced (u) molecules determined by α, and constrained to a fixed-slope 

relationship where u = γs (Supplementary Note 2 Section 1). The equilibrium slope γ 
combines degradation and splicing rates, capturing gene-specific regulatory properties, the 

ratio of intronic and exonic lengths, and the number of internal priming sites. Examining a 

recently published compendium of mouse tissues11, steady-state behavior of most genes 

across a wide range of cell types was consistent with a single fixed slope γ (Extended Data 

Fig. 3a-c). However, 11% of genes showed distinct slopes in different subsets of tissues 

(Extended Data Fig. 3d-e), suggesting tissue-specific alternative splicing (Extended Data 

Fig. 3f) or degradation rates.

During a dynamic process, an increase in the transcription rate α results in a rapid increase 

of unspliced mRNA, followed by a subsequent increase of spliced mRNA (Fig. 1c and 

Supplementary Note 2 Section 1) until a new steady state is reached. Conversely, a drop in 

the rate of transcription first leads to a rapid drop in unspliced mRNA, followed by reduction 

of spliced mRNAs. During induction of gene expression, unspliced mRNAs are present in 

excess of the expectation based on the equilibrium rate γ, whereas the opposite is true 

during repression (Fig. 1d). The balance of unspliced and spliced mRNA abundance is, 

therefore, an indicator of the future state of mature mRNA abundance, and thus the future 

state of the cell.

To illustrate that such a simple model can be used to extrapolate the mature mRNA 

abundance into the future, we examined a timecourse of bulk RNA-seq measurements of the 

mouse liver circadian cycle12. Unspliced mRNA levels at each time point were consistently 

more similar to the spliced mRNA of the subsequent time (Fig. 1e), and many circadian-

associated genes showed the expected excess of unspliced mRNA relative to slope γ during 

up-regulation, and a corresponding deficit during down-regulation (Fig. 1f-g). Solving the 

proposed differential equations for each gene allowed us to extrapolate each measurement 

throughout the circadian cycle, accurately capturing the expected direction of progression of 

the circadian cycle (Fig. 1h).

Next, to demonstrate ability to predict transcriptional dynamics in single-cell measurements, 

we analyzed recently-published single-cell mRNA-seq data on mouse chromaffin cells13, 

obtained using SMART-seq25 (Fig. 2). During development, a substantial proportion of 

chromaffin cells, which are neuroendocrine cells of the adrenal medulla, arise from Schwann 

cell precursors, providing a convenient test case in which the direction of differentiation can 

be validated by lineage tracing. Phase portraits of many genes showed the expected 

deviations from the predicted steady-state relationship (Fig. 2b-c). RNA velocity estimates 
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of the individual cells accurately recapitulated the transcriptional dynamics within this 

dataset, including general movement of the differentiating cells towards chromaffin fate 

(Fig. 2d), as well as movement towards and away from the intermediate differentiation state. 

The velocity also captured cell cycle dynamics involved in the chromaffin differentiation, 

both in PCA projection and in a focused analysis of cell-cycle associated genes 

(Supplementary Note 2 Section 5).

Our velocity estimation procedure incorporates several features to accommodate the 

complexity of splicing biology (Supplementary Note 1). The estimation of the gene-specific 

equilibrium coefficient γ is performed using regression on the extreme expression quantiles, 

ensuring robust estimation even when most of the observed cells are outside of the steady 

state (Supplementary Note 2 Section 2). To accommodate genes observed far outside of their 

steady state, we also developed an alternative fit based on gene structure (Extended Data 

Fig. 4). A variety of techniques can be used to visualize the velocity estimates in low 

dimensions. The observed and extrapolated cell states can be jointly embedded in a common 

low-dimensional space (e.g. PCA in Fig. 2d). Alternatively, velocities can be projected onto 

existing low-dimensional embeddings such as t-SNE based on the similarity of the 

extrapolated state to other cells in the local neighborhood (Fig. 2h, see Supplementary Note 

1). In large datasets, it is easier to visualize the prevalent pattern of cell velocities with 

locally averaged vector fields (Fig. 2i). Since cells can have RNA velocities along multiple 

independent components simultaneously, such as differentiation, maturation and 

proliferation, care must be taken when interpreting low-dimensional representations, as cells 

that lack apparent velocity in one particular embedding can nevertheless have substantial 

velocity in some subspace that is not visualized.

Cell-specific RNA velocity estimates provide a natural basis for quantitative modeling of 

cell fates. Metabolic labelling showed that for most genes, changes in the spliced/unspliced 

ratio would be detectable after 10 - 100 minutes (Extended Data Fig. 2). The effective 

timescale of extrapolation, on the other hand, depends on the biological process being 

analyzed. Based on the pulse labeling of chromaffin progenitor cells by EdU 

(Supplementary Note 2 Section 6), we estimate that we were able to extrapolate 2.5 - 3.8 

hours into the future (Fig. 2f,g), which is also consistent with the ability to resolve cell-cycle 

events. Given the linear nature of the extrapolation, however, this predictive time-scale will 

depend on the shape of the gene expression trajectory (i.e. the curvature of the expression 

manifold). Cell fates can be predicted over longer time scales by tracing a sequence of small 

extrapolation steps on the observed expression manifold (Supplementary Note 2 Section 7).

To demonstrate the generality of our approach we analyzed data generated using additional 

single-cell RNA-seq protocols. We observed the transcriptional dynamics of neutrophil 

maturation in mouse bone marrow, and of light-induced neuronal activation in mouse cortex 

measured using the inDrop protocol (Extended Data Fig. 5), and of the intestinal epithelium 

(Extended Data Fig. 6), oligodendrocyte differentiation (Extended Data Fig. 7), and 

hippocampus development (see below), measured using 10x Genomics Chromium7. 

Estimates of RNA velocity were robust to variation of model parameters, gene and cell 

subsampling, with the most sensitive parameter being the size of the neighborhood used in 

visualization of velocity in pre-defined embeddings (Supplementary Note 2 Sections 10,11). 
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Most genes showed a positive correlation between velocity estimates and empirically 

observed expression derivatives (Extended Data Fig. 8), confirming that velocity vectors are 

informative. Failures in specific cases were due to several apparent causes, including genes 

observed exclusively far from equilibrium, uneven contribution of non-coding transcripts, 

and alternative splicing leading to multiple γ rates across the measured populations 

(Supplementary Note 2 Section 4).

We next applied RNA velocity to the branching lineage of the developing mouse 

hippocampus14. After removing vascular and immune cells, and GABAergic and Cajal-

Retzius neurons (which originate from outside the hippocampus), t-SNE embedding 

revealed a complex manifold with multiple branches (Fig. 3a). We used known markers to 

identify the tips of the branches as corresponding to astrocytes, oligodendrocyte precursors 

(OPCs), dentate gyrus granule neurons, and pyramidal neurons of the five fields of the 

hippocampus: the subiculum, CA1, CA2, CA3, and hilus (Extended Data Fig. 9). Phase 

portraits of individual genes showed specific induction and repression of gene expression 

along the manifold (Fig. 3b, Extended Data Fig. 10). For example, Pdgfra (a marker of 

OPCs) was induced in pre-OPCs and maintained in OPCs; it showed corresponding positive 

velocity in the pre-OPC state, but neutral in the OPCs. Similarly, Igfbpl1 was expressed 

specifically in neuroblasts, and showed positive velocity from radial glia to neuroblasts, but 

negative velocity going from neuroblasts to the two main neuronal branches.

RNA velocity showed a strong directional flow towards each of the main branches (Fig. 3c, 

Extended Data Fig. 10), originating in a small group of cells arranged in a band (Fig. 3c 

inset, dashed line). We identified these cells as radial glia based on the expression of markers 

including the Notch target Hes1 and the homeobox transcription factor Hopx (Extended 

Data Fig. 9). Indeed, fate mapping has previously shown radial glia to be the true origin of 

the lineage tree of the hippocampus15. Using a Markov random walk model on the velocity 

field, the terminal and root states could be automatically identified (Fig. 3c), demonstrating 

the power of RNA velocity to orient the lineage tree without prior knowledge about the 

developmental process. On one side, velocity pointed towards astrocytes (expressing Aqp4) 

without intervening cell division, or alternatively to a pre-OPC state, leading through a 

narrow passage to proliferating OPCs. We speculated that the narrow passage represented 

the moment of commitment to the oligodendrocyte lineage. At this microstate level, fate 

choice is likely a non-deterministic process involving the tilting of gene expression in favor 

of one or the other fate, followed by a lock-in of the final fate once transcription factor 

feedback loops are established16. Comparing the probability distribution of future states for 

a cell starting among the pre-OPCs, versus one starting in the narrow passage leading to 

OPCs, revealed a clear difference, where the latter cell was overwhelmingly likely to end up 

as a fully formed OPC, whereas the former was as likely to remain in the pre-OPC state 

(Fig. 3d).

Some cycling progenitor cells (Extended Data Figs. 9b) expressed neurogenic transcription 

factors (e.g. Neurod2, Neurod4, Eomes) and those cells showed velocity pointing toward the 

immature neuroblast state, leading towards the three main neuronal branches in the upper 

part of the manifold. Granule neurons of the dentate gyrus first split from the hippocampus 

proper, and a second split divided the hippocampal cells into subiculum/CA1 and CA2-4, 
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respectively (Extended Data Figs. 9, 10), in agreement with the major functional and 

anatomical subdivisions of the hippocampus. The detailed, single-cell view of a branching 

lineage allowed us to ask questions about fate choice. Examining two adjacent neuroblasts, 

just at the entrance to the branching point between CA and granule fates (Fig. 3e), we found 

that although their current states were neighbors (in gene expression space), their futures 

were already tilted towards different fates, distinguished by activation of Prox1 (Fig. 3c, 

insert). Consistent with these findings, it has been shown that Prox1 is required for the 

formation of granule neurons, and that when Prox1 is deleted, neuroblasts instead adopt a 

pyramidal neuron fate17.

To demonstrate that RNA velocity is detectable in the human embryo, we performed droplet-

based single-cell mRNA-seq of the developing human forebrain at ten weeks post-

conception, focusing on the glutamatergic neuronal lineage (Fig. 4a). We found a strong 

velocity pattern originating from a proliferating progenitor state (radial glia), and proceeding 

through a sequence of intermediate neuroblast stages to a more mature differentiated 

glutamatergic neuron expressing SL17A7 (the vesicular glutamate transporter used in 

forebrain excitatory neurons). We validated the expression of known and novel markers of 

cortical neuron development by multiplexed in situ hybridization (Fig. 4b-c), confirming the 

predicted expression of CLU and FBXO32 in the ventricular zone (radial glia; marked by 

SOX2), UNC5D in the intermediate zone (neuroblasts; marked by EOMES) and SEZ6 and 

RBFOX1 in the cortical plate (neurons; marked by SLC17A7, also known as VGLUT1). 

The layered expression of these genes in the tissue (Fig. 4c) corresponded closely to the 

pseudotemporal distribution of their expression in the single-cell RNA-seq data (Fig. 4b).

We used principal curve analysis to order the cells according to a differentiation pseudotime, 

and examined the temporal progression of transcription in human primary cells. We 

confirmed that unspliced mRNAs consistently preceded spliced mRNAs during both up- and 

down-regulation (Fig. 4d).We observed both fast and slow kinetics. For example, 

RNASEH2B showed fast kinetics, with little difference between unspliced and spliced 

RNAs. In contrast, genes such as DCX, ELAVL4 and STMN2 showed evidence of an initial 

burst of rapid transcription, followed by sustained transcription at a reduced level (as 

evidenced by the shape of the unspliced RNA curve, Fig. 4d), with spliced transcripts 

following a noticeably delayed trajectory. Such dynamic induction with overshooting has 

been proposed to help quickly induce genes whose degradation kinetics are slow2, but have 

not been possible to study in human embryos.

The fact that RNA velocity is grounded in real transcription kinetics promises to bring a 

more solid quantitative foundation to our understanding of the dynamics of cells in gene 

expression space during differentiation. We envision future manifold learning algorithms 

that simultaneously fit a manifold and the kinetics on that manifold, based on RNA velocity. 

RNA velocity has already enabled the detailed study of dynamic processes in whole 

organisms18, and will greatly facilitate lineage analysis particularly in the human embryo.
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Methods

Theoretical description of RNA velocity

Based on the model of transcription shown in Fig. 1, we developed a computational 

framework for robust inference of RNA velocity. A detailed description of the theory and 

computational methods is available as Supplementary Note 1.

Analysis pipeline, parameters and implementations details

We implemented the procedures above as two complete pipelines, one in R and one in 

Python, called velocyto.R and velocyto.py, respectively. These were used to generate all the 

analyses in the paper, with detailed settings as described in the following sections.

Annotation of spliced and unspliced reads

Read annotation for all protocols was performed using velocyto.py command-line tools. The 

velocyto.py annotation starts with bam file(s). For the 10x genomics platform datasets, the 

bam file was processed using default parameters of the cellranger software (10x Genomics). 

For the inDrop dataset, the reads were demultiplexed using dropEst pipeline19, using ‘-F -L 

eiEIBA’ options to produce an annotated bam file analogous to cellranger output. For 

SMART-seq2 data, demultiplexed cell-specific bam files were fed into velocyto.py directly. 

The genome annotations GRCm38.84 and GRCh37.82 from the cellranger pre-built 

packages were used to count molecules while separating them into three categories: 

“spliced”, “unspliced” or “ambiguous”.

The annotation process considered only reads that could be mapped uniquely. Reads with 

multiple mappings and reads mapped inside repeat-masked (based on the UCSC genome 

browser repeat masker output) regions were discarded. For UMI-based protocols, the 

counting was performed on the level of molecules, taking into account annotation (spliced, 

unspliced, etc.) of all reads associated with that molecule (supporting read sets) into 

consideration. The supporting read sets for each molecule were determined by a 

combination of cell barcode and UMI sequence. For inDrops datasets, where UMI barcode 

does not have sufficient complexity to uniquely identify a molecule in the dataset, the reads 

were grouped based on the cell barcode, UMI and the region of the genome where it mapped 

(chromosomes, binned in 10Mbase regions). For each molecule, all annotated transcripts 

that were compatible with the given set of read mappings were considered, and cases where 

the set of reads associated with a given molecule was not compatible with any annotated 

transcript model were discarded. Cases where a set of supporting read mappings was 

compatible with transcript models of two or more different genes were also discarded.

The following set of rules was applied to annotate a set of read supporting a given molecule 

as spliced, unspliced or ambiguous:

1. A molecule was annotated as spliced if all of the reads in the set supporting a 

given molecule map only to the exonic regions of the compatible transcripts.

2. A molecule was annotated as unspliced if all of the compatible transcript models 

had at least one read among the supporting set of reads for this molecule 
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mapping that i) spanned exon-intron boundary, or ii) mapped to the intron of that 

transcript.

Molecules for which some of the compatible transcript models had exonic-only mappings, 

while others included intronic mappings were annotated as ambiguous and not used in the 

downstream analyses.

Similar logic was applied in annotating and counting reads for the SMART-seq2 dataset, 

with the following notable differences: 1) as reads lacked UMI, each read was considered to 

be an independent molecule; 2) as the protocol does not distinguish strands, transcript 

annotations on both strands were considered when annotating each read.

Chromaffin datasets processing (Fig. 2)

Chromaffin E12.5 and E13.5 datasets were processed using velocyto.R pipeline. The γ 
coefficients and velocity estimates were calculated for genes meeting a number of filtering 

criteria: γ ≥ 0.1; Spearman rank correlation between s and u ≥ 0.1; average s counts for a 

gene ≥ 5 for at least one cell subpopulation (cluster); average u counts for a gene ≥ 1 for at 

least one cell subpopulation; for the datasets where spanning reads were annotated (E12.5, 

E13.5), average spanning read counts were required to be ≥ 0.5 in at least one 

subpopulation. For SMART-seq2 datasets, the abundance of reads spanning intron and exon 

boundaries is sufficiently high to enable estimation of the unspliced offset o. The offset was 

estimated using a linear regression.

Mouse hippocampus dataset analysis (Fig. 3)

A total of 18,213 cells were analyzed (postnatal day 0: 8,113 cells; postnatal day 5: 10,100 

cells). The embedding was computed on the correlation similarity matrix using pagoda2 

(https://github.com/hms-dbmi/pagoda2). Briefly, gene variance normalization was 

performed by fitting a generalized additive model of variance on expression magnitude, and 

rescaling the gene variance by matching the tail probabilities of log residuals from the F 

distribution to the chi squared distribution with the degrees of freedom corresponding to the 

total number of cells. Cell distances were determined as 1 − rij, where rij is Pearson linear 

correlation of the cell i and j scores on the first 100 principal components of the top 3000 

variable genes in the dataset. Clustering was performed using the Louvain community 

detection algorithm on the nearest neighbor cell graph (k=30, pagoda2 implementation). For 

the velocity analysis lowly expressed (spliced) genes were excluded (requiring 40 minimum 

expressed counts and detected over 30 cells) and the top 3000 high variable genes were 

selected on the basis of a non-parametric fit of coefficient of variation (CV) vs. mean (using 

support vector regression). Only 1706 genes that had unspliced molecule counts above a 

detection threshold (25 minimum expressed counts and detected over 20 cells) were kept for 

the analysis. To normalize for the cell size, the counts were divided by the total number of 

molecules in each cell, and multiplied by the mean number of molecules across all cells. 

Spliced and unspliced counts were normalized separately. To reduce dimensionality, PCA 

was performed and the top 19 variable components were kept on the basis of the explained 

variance ratio profile. Euclidean distance in this reduced PCA space was used to construct a 

k-nearest neighbor graph (k=500), using a greedy balanced k-NN algorithm that limits each 
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node to have no more than 4*k incoming edges. This graph was used to perfrom k-NN 

pooling. Velocity-based extrapolation was performed using Model I assumptions.

Human glutamatergic neurogenesis analysis (Fig. 4)

Pseudotime analysis was performed by fitting principal curve in the space of the top four 

principal components (using the R package princurve). The cell positions were projected 

onto the curve and the length of the arc between projections was used as pseudotime 

coordinates. The direction of the pseudotime was determined using the velocity field. 

Clusters were determined using Louvain community detection algorithm on the nearest 

neighbor graph in the same subspace. For the velocity analysis lowly expressed (spliced) 

genes were excluded (requiring 30 minimum expressed counts and detected over 20 cells). 

The top 2000 most variable genes were selected on the basis of a non-parametric fit of CV 

vs. mean (using support vector regression). A total of 987 genes that had unspliced 

molecules above a detection threshold (requiring 25 minimum expressed counts and detected 

over 20 cells; average spliced counts for a gene 0.06 in a subpopulation and average 

unspliced counts for a gene 0.007 in a subpopulation) were kept for the analysis. To 

normalize for the cell size, the counts were divided by the total number of molecules in each 

cell, and multiplied by the median number of molecules across all cells. For cell k-NN 

pooling, a k-nearest neighbor graph (k=550) was constructed based on Euclidean distance in 

the space of the top six principal components, as described above. The gamma coefficients 

were fit using the extreme quantile fit with diagonal quantiles, as described above.

For the visualizations in Figure 4b, the following maxprojection procedure was used to color 

the cells according to expression of the pre-defined gene set. First, the (cell-size normalized) 

expression of each gene included in the set was rescaled, dividing it by the 98th percentile 

magnitude. After rescaling, each cell was colored with the color corresponding to the gene 

that was expressed at highest level compared to other genes, and the saturation of the color 

was chosen to be proportional to the level of expression in the cell. The rescaled expression 

of the gene was required to exceed 0.45 in order for the cell to be colored.

Genes whose expression peaks at different stages of neurogenesis were selected using a 

heuristic gene enrichment score: 
μ

cluster
* f

cluster

μ
all

* f
all

 where μ indicates the average molecule 

count of a gene and f is the fraction of cells in which the gene is detected. Figure 4d shows a 

selection of top-enriched genes, spliced and unspliced molecules were brought to a 

comparable scale by multiplying spliced molecular counts by the estimated γ.

Analysis of Mouse Oligodendrocytes lineage (Extended Data Fig. 7)

We analyzed a dataset of oligodendrocyte differentiation from murine pons extracted from a 

recently published cellular atlas20. We restricted the analysis to the trajectory of 

differentiation from oligodendrocyte precursor cells (OPCs) to mature oligodendrocytes by 

selecting cells that were labeled in the atlas as OPCs, COPs. NFOLs or MFOLs, for a total 

of 6307 cells.
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As an initial step, for the Supp. Figure 7d-f, we performed a straightforward feature 

selection, first removing genes expressed lower than 15 spliced molecules, or lower than 8 

unspliced molecules, requiring a minimal average spliced expression of 0.075 and minimal 

unspliced expression of 0.03 in the highest expressing cluster. A CV-mean fit was used to 

select the 606 most variable genes.

As the simple procedure above retained significant sex-driven batch effect (shown in Supp. 

Figure 7e), we then used a different approach aimed at minimizing batch effects by focusing 

on the genes that were uniquely relevant to the observed oligeodendrocytes. Specifically, a 

list of genes enriched in the oligodendrocyte lineage when compared to all other cell types 

was used to analyze the dataset. For each cell cluster we used the top 190 genes as sorted by 

enrichment (differential upregulation) scores, calculated as described in 20. The resulting set 

of genes was subjected to further filtering where lowly detected genes where excluded, 

requiring at least 5 spliced and 3 unspliced mRNA molecules detected in the whole dataset, 

resulting in 606 genes. We then normalized the cell total molecule counts using the initial 

molecule count as normalization factor. For cell k-NN pooling we built a k-nearest neighbor 

graph (k=90) based on Euclidean distance in the top nine principal components. Data was 

clustered using Louvain community detection algorithm on the nearest neighbor graph and 

colored according a pseudotime computed by a principal curve. Finally, we calculated 

gammas, velocity and extrapolation as described above; transition probabilities were 

computed using n_sight=300 and log transform.

Analysis of visual cortex response to light simulation (Extended Data Fig. 5)

For the pre-processing of the inDrops light stimulated mouse visual cortex dataset21 we 

used the dropEst pipeline (https://github.com/hms-dbmi/dropEst). First the droptag 

command was run on each fastq file using 10 as the minimum quality parameter. Then, 

mapping was performed using the STAR aligner. Finally, the dropest command was run to 

perform UMI and cell barcode correction, and the following flags were passed "–m –V –b 

–L eiEIBA” to produce a cellranger-like bam file. velocyto.py “run_dropest” command 

was used to annotate and count molecules.

Cell annotations from the original publication were used to extract ExcL23_1 (the largest 

and most homogeneous cell population described as responsive to stimulus in the original 

publication). We excluded cells whose total spliced RNA abundance was below 15th 

percentile (as low quality cells) and above the 99.5th percentile (as possible doublets). The 

dataset was further balanced by equalizing the number of cells representing each stimulation 

condition (unstimulated, 1h stimulation, 4h stimulation), randomly down-sampling 

subpopulations to match the number of cells in the less abundant condition. Genes whose 

total spliced molecule count was less than 250, or the number of expression cells was less 

than 150 were removed. Similarly, we removed genes whose total unspliced molecule count 

was less than 18, or number of expression cells was less than 15. To focus our analysis on 

the stimulation process and to avoid capturing orthogonal variation we performed a model-

based feature selection. Briefly, we considered a negative binomial generalized linear model 

with predictors: size (as estimated by total number of molecules), the stimulation time 

(categorical and interaction with size) and no offset (i.e. correspondent to the R formula: 
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expression ~ size + size:stimulation - 1). We then performed likelihood ratio 

test comparing our model against the alternative model that does not take the stimulation 

predictor in account. Only statistically significant genes (p < 0.001 for spliced and p < 0.03 

for unspliced molecules) were considered for the downstream analysis. After this step we 

further eliminated the cells ranking in bottom 10% of total molecular counts over all of the 

selected genes. For the cell k-NN pooling, we built a k-nearest neighbor graph (k=70) based 

on the Euclidean distance. Importantly, in this case, we reasoned that it was not correct to 

average across different independent stimulation conditions (e.g. non-stimulated and 1h-

stimulation), therefore pooling was only allowed between cells of the same stimulation 

condition. Model 2 was used for velocity-based extrapolation, with t set to 15. For the 

transition probability calculation, the n_sight parameter was set to 200, and square root was 

used as a variance stabilizing transformation. Early and late response genes illustrated in 

Extended Data Figure 6 were extracted from the Supplementary Table 3 of the original 

publication, containing a list of significantly induced genes in different cell types21.

Analysis of gammas over different cell types using Tabula Muris (Extended Data Fig. 3)

The Tabula Muris dataset (including only the samples generated using droplet-based 10x 

Genomics Chromium protocol) was analyzed using velocyto.py, using the bam files and the 

valid barcodes list provided by the authors. All of the experiments were merged into a single 

dataset. The average of spliced and unspliced raw molecule counts over the different 

annotated cell types were calculated, and Pearson’s correlation coefficient was computed. To 

reduce bias associated with variation in cell coverage, we removed from the analysis the 

clusters with less than 120 cells as well as several outlier clusters that had more than 3000 

cells. Erythrocytes were also excluded, as they lack nuclei. To avoid inflating our 

correlations with trivial cases where a gene is expressed by just one or two cell types we 

applied the following filters: A gene was taken into consideration only if its expression 

levels met all of the following conditions: (1) at least 5 cell types with average of at least 

0.04 spliced molecules; (2) at least 4 cell types with average of at least 0.02 unspliced 

molecules; (3) the highest expressing cell type expressed the gene at an average of at least 

0.15 spliced molecules; (4) at least 2 other cell types express the gene at least 15% the level 

of the maximum expressing cell type. Furthermore, to avoid that inflation of correlation 

estimates by zeros, correlation of each gene was calculated considering only the cell types 

that expressed the gene at minimum 10-5 spliced and 5×10-6 unspliced levels. The estimates 

of gammas provided in Extended Data Fig. 3 were obtained as the slope of RANSAC 

regression without intercept. Double gammas were estimated using a mixture of generalized 

linear regression models fitted by expectation maximization, as implemented in the R 

package flexmix. The fraction of genes that are better explained by two or more values of 

gammas than by a single gamma was estimated by comparing the double gamma model fit 

with a single-gamma generalized linear model fit. Specifically, a log likelihood ratio test was 

used with the difference in degrees of freedom between the single- and double-gamma 

models taken to be the number of cell types + 1. Bonferroni correction was applied, and 

genes with p<0.05 were reported as being significantly better explained by two gammas.
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Analysis of the Intestinal epithelium (Extended Data Fig. 6)

velocyto.py, was run on the bam files and the valid barcode list provided by the authors. 

Cells with low levels of spliced (< 2000 molecules) and unspliced (< 300 molecules) were 

filtered out. Cell cycle genes, as defined by gene ontology annotation (using Goatools) were 

removed from the analysis. Genes with at least 30 spliced molecules and 20 unspliced 

molecules in the dataset were used in the downstream analysis. No clustering was 

performed, instead the cell type cell type annotation from the original publication was used. 

Feature selection was performed using these clusters. Specifically, the top 110 genes 

differentially upregulated in each cluster were selected. Genes whose minimum average 

expression in the highest expressing cluster was low were removed (unspliced <0.008, and 

spliced <0.08). Principal component analysis was performed on the cell-size-normalized 

data, and the first nine principal components were retained and used to calculate the t-SNE 

embedding (cytograph implementation, Euclidean distance). We calculated cell kNN 

pooling using the 70 nearest neighbors, as determined by the Euclidean distance in the same 

nine dimensional PCA space. Gammas were fitted, velocities computed using default 

parameters, and extrapolation carried on using Model II with t = 4. Transition probability 

was computed using n_sight of 30, using square root variance stabilizing transformation.

Human tissue and single-cell RNA sequencing (Fig. 4)

Human first trimester subcortical forebrain tissue was obtained from elective routine 

abortions (10 weeks postconception) with the written informed consent of the pregnant 

woman and in accordance with the ethical permit given by the Regional Ethics Vetting 

Board (Stockholm, Sweden). Human fetal forebrain tissue was collected and stored in 

hibernation media with addition of GlutaMAX and B-27 supplements according to the 

manufacture’s instructions (overnight, 4oC, Hibernate-A, Thermo-Fisher). The tissue was 

then cut into small cubic pieces of approximately 1-2mm length. Tissue was dissociated 

using a dissociation kit (Miltenyi, Neural Tissue Dissociation Kit (P)) according to 

manufacture’s instructions. In short, tissue was prepared in the kit buffer containing 

0.067mM beta-mercaptoethanol. After addition of enzyme mix 1 and 2, the tissue was 

mechanically dissociated using three increasingly smaller gauges of fire polished Pasteur 

pipettes, pipetted 20, 15 and 10 times up and down respectively. Ultimately, collected cells 

were stored on ice in PBS containing 1% BSA and immediately prepared for single cell 

library preparation. Single-cell RNA sequencing was performed using the 10X Genomics 

Chromium V2 kit, following the manufacturer’s protocol, and sequenced on an Illumina 

Hiseq 2500.
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Extended Data

Extended Data Figure 1. Most of the intronic reads arise due to internal priming from stable 
positions.
a-d. Examples of read density around intronic polyA and polyT sequences. The browser 

screenshots show density of reads from the 10x Chromium mouse hippocampus dataset (top 

track of each panel), mouse bone marrow inDrop dataset (second track from the top), and 

chromaffin differentiation assessed using SMART-seq2 (third track). The bottom two tracks 

show gene annotation, and positions of polyA or polyT sequences (of length at least 15bp 
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with one allowed mismatch). The polyA/polyT boxes are colored blue if the stretch is in a 

concordant orientation to the transcription of the underlying gene (i.e. would result in a 

polyA sequence in the nascent RNA molecule being transcribed), or red if they are oriented 

in the discordant position (i.e. would result in a polyT sequence in the RNA). The 3’-end 

based 10x Chromium and inDrop protocols show discrete peaks downstream of the polyA 

priming sites, with the 10x dataset also showing peaks upstream of the polyT sites. The 

SMART-seq2 protocol shows much more diffused peaks, expected from the full-length 

purification procedure used by the protocol. e-h. Average read density profiles around 

concordant and discordant internal priming sites. The plots show observed/expected intronic 

read density around (A)15 or (T)15 sequences (with 1 allowed mismatch) within the intronic 

regions. The x axis shows position relative to the motif position (in basepairs), in a genomic 

reference orientation. The bold lines show genome-wide average (trimmed of two extreme 

values among chromosomes for each position). The averages of individual chromosomes are 

shown semi-transparent lines. (e.) shows the profiles of mouse hippocampus 10x Chromium 

dataset (n=18,213), (f.) shows profile for human forebrain 10x data (n=1720), (g.) shows 

profile for the chromaffin differentiation data measured using SMART-seq2 (n=385), and 

(h.) shows profile for the mouse bone marrow data measured using inDrop (n=3018). The 

top left corner of each plot shows the number of all intronic reads (i.e. falling within the 

gene, but not touching an exon) that falls within the 250bp around internal priming sites 

(1500bp was used for the SMART-seq2 dataset). In 10x data, while concordant internal 

priming sites produce stronger signal, their frequency within the genome is lower than those 

of discordant sites, so that overall discordant sites account for slightly higher fraction of 

intronic signals. By contrast, the inDrop dataset appears to have very limited discordant 

priming.
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Extended Data Figure 2. Estimation of the characteristic time of RNA metabolism in human 
cells.
a. Design of the metabolic labeling experiment in human cells. HEK 293 cells were exposed 

to 4sU for 5, 15 or 30 min, the labeled fraction was isolated and analyzed. A no pull-down 

control was also analyzed, and represents the equilibrium state (indicated by ∞). b. 
Expected profiles of the abundance and fraction of labeled spliced and unspliced RNA 

molecules. c. The observed dynamic profiles of genes were clustered, yielding two groups: 

the majority (83.4%) were concordant with the expectation of increasing labeling; and a 
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smaller fraction (16.6%) of discordant genes. Bars indicate SEM. ngenes=998, Ntechnical=2 

Nbiological=2. d. Curves showing maximum likelihood fit to the data, based on the analytical 

solution for a step increase of the transcription rate. The fit yields values of β and γ, and of 

the characteristic time constant τ, defined as the time required to reach 1 – 1 /e ≈ 63.2 % of 

the asymptotic value. e. The distribution of τ values and f. The joint distribution of the fit β 
and γ parameters (n=832).

Extended Data Figure 3. Degradation rates are conserved over a wide range of terminally 
differentiated cell types.
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Conservation of the RNA degradation rate over a wide range of different cell types in the 

adult mouse (Tabula Muris dataset). a. The distribution over the genes of the correlation of 

spliced and unspliced molecule counts across all the cell types (ngenes=8,385). b. Legend 

enumerating the tissues and cell classes annotated by the Tabula Muris consortium (n=48). 

Functionally, developmentally or phenotypically related are colored with similar colors to 

aid the interpretation of the plots below. c. A representative selection of genes with high 

correlation (ρ > 0.9) and d. typical correlation (0.9 > ρ > 0.4). γ was estimated by robust 

linear regression (RANSAC) e. Plots show a selection of genes displaying two clearly 

distinct degradation rates (such genes with double γ amounted to 10.8% of the total). The 

values of the two different γ were estimated by regression mixture modeling. f,g. Two 

examples of genes where multiple gammas are explained by alternative splicing in different 

cell types.
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Extended Data Figure 4. Structure-based velocity estimation.
a,b. For genes that are observed only outside of the steady state, such as genes upregulated 

late in the chromaffin differentiation (a) or down-regulated early in the Schwann cell 

precursors (b), gene-relative γ fit will likely deviate from its steady-state value. c,d. To 

correct for such effects, a structure-based γ fit will first predict γ for every gene based on its 

structural parameters, and then use k most correlated genes in the dataset to adjust M-value 

(M = log2[uo/uss], where uss is the unspliced counts predicted from spliced counts under 

steady-state, and uo is the observed unspliced count) using robust mean, and re-estimate γ. 
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e. Scatter-plot comparing gene-relative and structure-based γ estimates, with colored circles 

highlighting γ adjustments for genes down-regulated early in SCPs (blue) and up-regulated 

late in chromaffin cells (green). The values are shown on a natural log scale. f-i. Cell 

expression velocity in the chromaffin E12.5 dataset, based on the structure-based γ 
estimates, shown on the first five PCs.

Extended Data Figure 5. RNA velocity analysis of inDrop datasets: visual stimulus response of 
cortical pyramidal neurons and neutrophil differentiation.
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a. Simplified illustration of a model of activation of pyramidal neurons of the visual cortex 

after exposure to a light stimulus. b. Velocity estimates projected onto a two-dimensional 

PCA embedding of the dataset (n=952) c. Average transition probability of unstimulated 

cells (top), cells stimulated for 1h (middle) and cell stimulated for 4h (bottom). The 

unstimulated cells mostly were stationary and only few cells show tendency of activating 

early response genes (likely as a result of the dissociation procedure). Cells stimulated for 1h 

were characterized by expressing immediate early genes and high velocity in late response 

genes, and they were therefore transitioning to a state more similar to the one observed 4h 

activation time point. After 4h of stimulations cells appeared to be reverting to a state 

comparable to the unstimulated sample (bottom). d,e. Above, phase portraits of early (d) and 

late (e) response genes. Below, Violin plots show expression distribution over the cell 

population at each time point (left half of the violin) and extrapolation in to the future using 

velocity (right half of the violin). In the plot, transitions of single cells are indicated by lines 

connecting the two halves of the violins and colored by the sign of the velocity of each gene. 

f. Grid visualization shows cell expression velocity estimates for the inDrop mouse bone 

marrow dataset on a t-SNE embedding (n=3018). g. Major cell populations are labeled based 

on manual annotation. The velocity flow in (a) captures neutrophil maturation, starting from 

the dividing cells on the right, all the way to Il1b activation on the left. Expression profiles 

for five marker genes are shown below. h. The plots illustrate gene-relative model fits for 

several example genes. For each gene, the first column shows spliced molecular counts in 

different cells. The second column shows unspliced molecular counts. Third column shows 

phase portrait of a gene (unspliced vs. spliced dependency) and the resulting γ fit (dashed 

red line), as determined using extreme quantile method. Each point corresponds to a cell, 

colored according to cluster labels shown in (g). The last column shows unspliced count 

signal residual based on the estimated γ fit, with positive residuals indicating expected 

upregulation, and negative residuals indicating expected downregulation of a gene.
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Extended Data Figure 6. Dynamics of maturation of enterocytes during intestinal homeostasis.
a. Velocity field projected on a 2D t-SNE embedding. The clusters are labeled and colored 

as in the original publication to facilitate comparison (n=2683). Velocity analysis revealed a 

transition related to the maturation of distal and proximal enterocytes. No consistent velocity 

was observed in the part of the manifold occupied by stem cells and transit amplifying (TA) 

cells, suggesting that stem cell dynamics is more difficult to capture either for its slower rate 

or a more stochastic nature. The small velocities of transit amplifying cells were likely 

driven by cell cycle process. b. A selection of the cell cycle genes that were removed in the 
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analysis are plotted on the t-SNE. Despite the removal of the genes annotated as cell cycle 

genes we still observed important segregation by cell cycle, illustrating the difficulty of 

disentangling cell cycle phase from the cell state. c. A selection of phase portraits that show 

genes underlying the observed velocity field. Markers of Endocrine, Goblet and Tuft cells 

displayed no detectable velocity. Velocity towards and from stem cell states was detectable 

for limited set of genes (like the stem cell marker Lgr5), however on the genome-wide level 

the exact dynamics of this process was likely confounded by the high correlation with cell 

cycle.
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Extended Data Figure 7. RNA velocity unveils the dynamics of differentiation and myelination of 
oligodendrocytes.
a. t-SNE projection shows the landscape of oligodendrocyte lineage differentiation and 

myelination process in the hindbrain (pons) of adolescent (P20) mice (n=6307). The velocity 

field reflects the dynamics of expression of both the initial differentiation wave and the 

following expression changes associated to the myelination process. The cell clusters are 

colored by pseudotime as in (c) to facilitate interpretation. b. Expression patterns of 

landmark genes of the differentiation process. Pdgfra is the canonical marker of 
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oligodendrocyte precursors (OPCs), Neu4 marks committed oligodendrocyte precursors 

(COPs), Tmem2 is enriched in newly formed oligodendrocyte (NFOLs) and the expression 

of Mog is upregulated at the beginning of the myelination process in myelin forming 

oligodendrocytes (MFOLs). c. A selection of phase portraits underlying the velocity field 

showed in (a). d. t-SNE projections and velocity vector field of the same dataset, but 

analyzed using a more naïve feature selection that has retained other axes of variation on top 

of the oligodendrocyte maturation (sex and day of dissection). Notice that despite separation 

of populations into Xist+ and Xist- tracks, the velocity field correctly captures progression 

from progenitors to newly formed oligodendrocytes in the two parallel tracks. e. Level of 

expression of Xist showing that most of the extra variation is driven by the sex of the animal. 

f. Cells colored by the day the experiment was performed in.
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Extended Data Figure 8. Agreement of velocity predictions with the observed expression 
derivatives.
a. Maturation progression of granule neurons in the mouse hippocampus dataset is 

approximated by pseudotime (estimated with a principal curve). b. For a pair of example 

genes (rows), the plots show unspliced and spliced gene expression profiles along the 

pseudotime (left panels), empirically-estimated smoothed pseudotime derivative of the 

observed gene expression and the estimated RNA velocity (middle panels), as well as the 

relationship between spliced and unspliced expression (right panel). The velocity estimates 
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for the two chosen genes are highly correlated with the empirically-observed derivative, 

indicating accurate velocity estimation. c. The majority (75%) of the genes that were 

differentially regulated along the pseudotime trajectory showed positive correlation with the 

empirical expression derivative. The distribution of such genes is split according to three 

classes of trajectory-associated genes as shown in d. By contrast, velocity estimates for 

genes that were not differentially expressed along the pseudotime trajectory did not show 

such correlation (grey). Incorporating information about co-regulated genes into velocity 

estimation using gene kNN clustering (see Supplementary Note 1) can significantly boost 

the accuracy of the velocity predictions (lower panel). d. Trajectory-associated genes were 

classified as early, transient and late, according to their peak expression time. x-axis: cells 

ordered by pseudotime, y-axis: genes ordered by their peak expression time. e. The genes 

that were well-correlated in terms of their spliced expression patterns with Ptprg, also 

showed high correlation of their velocity estimates with Ptprg. To assess the degree 

consistency of the velocities of co-regulated genes, we introduced a measure of velocity 

coordination for a given gene, as a difference between the mean correlations of the velocity 

estimates of the co-regulated genes and the velocity estimates of all genes. The two 

quantities being compared are shown for Ptprg with dotted vertical lines: grey – mean 

velocity correlation with all genes, red – mean velocity correlation with top co-regulated 

genes. Velocity coordination provides an unbiased measure of quality of velocity estimates. 

f. Velocities of co-regulated genes were correlated. Distribution of gene velocity 

coordination values is shown for genes that had co-regulated genes (i.e. the genes that had 

well-correlated gene neighbors in terms of their spliced expression pattern, green), as well as 

for the genes that did not have enough co-regulated genes (without neighbors, grey). g. Co-

regulated genes that had high velocity coordination tended to have high correlation with the 

empirical derivatives. Spearman correlation coefficient is shown. h-k. Velocity performance 

during maturation of pyramidal neurons (h). Genes differentially expressed during 

maturation had high correlation of velocity with empirical derivative (i), co-regulated genes 

tended to have correlated velocity estimates (j) and the degree of velocity coordination was 

associated with its correlation with empirical derivative (k). l-m. Velocity performance 

during chromaffin differentiation. p-s. Velocity performance during maturation of 

oligodendrocytes. Number of top co-regulated genes analyzed for velocity correlation: (g): 

200 genes, (k,o,s): 150 genes.
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Extended Data Figure 9. Branching developmental trajectories of developing hippocampus.
a. t-SNE embedding of the developmental dentate gyrus dataset. Cells are colored by cluster 

identities, with labels shown for the major cell types. b. Expression of radial glia (and 

astrocyte) marker Hes1, and cell cycle genes Top2a and Cdk1 shown on the t-SNE 

embedding. c. Marker genes of different regions of the hippocampus (in situ hybridization 

images from Allen Brain Atlas) show prominent expression signals at different extremities 

of the branching embedding. Scale bars, 0.5 mm.
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Extended Data Figure 10. Single cell velocity estimates for individual cells in the embryonic 
hippocampus dataset.
a. Arrows indicate the extrapolated state projected onto the t-SNE embedding of the 

manifold. b. Selected phase portraits and fits of the equilibrium slope (γ) for the developing 

cells in the embryonic hippocampus dataset. For each gene, the first column shows spliced-

unspliced phase portrait. The dashed line shows the γ fit. The second column illustrates the 

magnitude of the residuals (i.e. difference between observed and expected unspliced 

abundance, which closely tracks with velocity) for several genes involved in the 
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development of different neural lineages. The third column shows the observed expression 

profile for spliced molecules.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Balance between unspliced and spliced mRNAs is predictive of cellular state 
progression.
a. Spliced and unspliced counts are estimated by separately counting reads that incorporate 

intronic sequence. Multiple reads associated with a given molecule are grouped (* boxes) for 

UMI-based protocols. Pie charts show typical fractions of unspliced molecules.

b. Model of transcriptional dynamics, capturing transcription (α), splicing (β), and 

degradation (γ) rates involved in production of unspliced (u) and spliced (s) mRNA 

products.

c. Solution of the model in (b) as a function of time, showing unspliced and spliced mRNA 

dynamics in response to step changes in α.

d. Phase portrait showing the same solution (solid curves). Steady states for different values 

of transcription rates α fall on the diagonal given by slope γ (dashed line). Levels of 

unspliced mRNA above or below that proportion indicate increasing (red shading) or 

decreasing (blue shading) expression of a gene, respectively.

e. Abundance of spliced (s) and unspliced (u) mRNAs for circadian-associated genes in a 

24h time course of mouse liver12. The unspliced mRNAs are predictive of spliced mRNA at 

the next time point.

f,g. Phase portraits observed for a pair of circadian-driven genes: Fgf1 (f) and Cbs (g). The 

circadian time of each point is shown using a clock symbol (see bottom of Fig. 1e). The 

dashed diagonal line shows steady-state relationship, as predicted by γ fit.

h. Change in expression state at a future time t, as predicted by the model, is shown in the 

space of the first two principal components (PCs), recapitulating the progression along the 

circadian cycle. Each circle shows the observed expression state, with the arrow pointing at 

the position of the future state, extrapolated from velocity estimates.
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Figure 2. RNA velocity recapitulates dynamics of chromaffin cell differentiation.
a. PCA projection showing major subpopulations of Schwann cell precursors (SCPs) 

differentiating into chromaffin cells in E12.5 mouse (n=385 cells).

b,c. Expression pattern (left), unspliced/spliced phase portraits (center, cells colored 

according to a), and u residuals (right) are shown for the repressed Serpine2 (b) and induced 

Chga (c) genes. Read counts were pooled across k = 5 nearest cell neighbors.

d. The observed and the extrapolated future (arrows) states are shown on the first two PCs. 

RNA velocity was estimated without cell or gene pooling.
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e. SCP-to-chromaffin cell transition as evidenced by lineage tracing with SCP-specific 

PLP1-CreERT2 line. A cross-section through the developing adrenal medulla is shown. Note 

high proportion of TH+/YFP+ cells in the developing medulla and the absence of such 

double-positive cells in the sympathetic ganglion (N=3 replicates).

f. Extrapolation distance along the chromaffin differentiation trajectory is estimated for a 

single cell at pseudotime t0, based on the correlation (y axis) between the velocity v and cell 

expression difference. Red line shows optimal extrapolation time (t*) (see Supplementary 

Note 2 Section 6).

g. Distribution of optimal extrapolation times (t*- t0) for the chromaffin differentiation 

timecrouse. Red line marks the distribution mode (2.1 hours).

h. The velocities are visualized on the pre-defined t-SNE embedding from the original 

publication13. Velocity estimates based on nearest-cell pooling (k = 5) were used.

i. Same velocity field as (h) visualized using Gaussian smoothing on a regular grid.
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Figure 3. RNA velocity field describes fate decisions of major neural lineages in the 
hippocampus.
a. A t-SNE embedding of the developing mouse hippocampus cells (n=18,213 cells), 

showing major transient and mature subpopulations.

b. Phase portraits (left, colored as in a), unspliced residuals (middle), and spliced expression 

(right) are shown for two regulated genes. kNN cell pooling was used.

c. Velocity field projected onto the t-SNE embedding. Arrows show the local average 

velocity evaluated on a regular grid. Upper right insert: differentiation endpoints as high 

density regions on the manifold after forward Markov process with velocity-based transition 

probabilities; the root of the branching tree is identified simulating the process in the reverse 

direction. Lower right insert: Summary schematic of the RNA velocity field, and expression 

of the transcription factor Prox1.

d. Commitment to oligodendrocyte fate. Left, visualization of single-step transition 

probabilities from two starting cells (red) to neighbouring cells. Right, velocities of a 

sampled subset of cells shown on the t-SNE embedding in (c).

e. Fate decision of neuroblasts. Left, visualization of single-step transition probabilities from 

two starting cells (red) to neighbouring cells. Right, velocities of a sampled subset of cells 

shown on the t-SNE embedding in (c).
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Figure 4. Kinetics of transcription during human embryonic glutamatergic neurogenesis.
a. PCA projection of human glutamatergic neuron differentiation (n=1,720 cells) at post-

conception week 10, shown with velocity field. Colors indicate cell types and intermediate 

states. A corresponding principal curve is shown in bold.

b. Gene expression for known markers of radial glia (SOX2), neuroblasts (EOMES) and 

neurons (SLC17A7) and for novel markers are visualized on the PCA projection as in 

indicated genes in pseudocolor.
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c. Fluorescent in situ hybridization (RNAscope) for the same genes as in (b) on a cross-

section of human developing cortex, oriented with the ventricular zone towards the bottom 

and the cortical surface towards the top (N=1). Scale bars, 25 μm.

d. Pseudotime expression profiles for six example genes regulated in glutamatergic neuron 

maturation. Unspliced abundance was divided by γ to match the scale of spliced abundance.

La Manno et al. Page 36

Nature. Author manuscript; available in PMC 2019 February 08.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts


	Abstract
	Methods
	Theoretical description of RNA velocity
	Analysis pipeline, parameters and implementations details
	Annotation of spliced and unspliced reads
	Chromaffin datasets processing (Fig. 2)
	Mouse hippocampus dataset analysis (Fig. 3)
	Human glutamatergic neurogenesis analysis (Fig. 4)
	Analysis of Mouse Oligodendrocytes lineage (Extended Data Fig. 7)
	Analysis of visual cortex response to light simulation (Extended Data Fig. 5)
	Analysis of gammas over different cell types using Tabula Muris (Extended Data Fig. 3)
	Analysis of the Intestinal epithelium (Extended Data Fig. 6)
	Human tissue and single-cell RNA sequencing (Fig. 4)

	Extended Data
	Extended Data Figure 1
	Extended Data Figure 2
	Extended Data Figure 3
	Extended Data Figure 4
	Extended Data Figure 5
	Extended Data Figure 6
	Extended Data Figure 7
	Extended Data Figure 8
	Extended Data Figure 9
	Extended Data Figure 10
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4

