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Abstract

We perform a thorough analysis of RNA velocity methods, with a view towards understand-

ing the suitability of the various assumptions underlying popular implementations. In addi-

tion to providing a self-contained exposition of the underlying mathematics, we undertake

simulations and perform controlled experiments on biological datasets to assess workflow

sensitivity to parameter choices and underlying biology. Finally, we argue for a more rigor-

ous approach to RNA velocity, and present a framework for Markovian analysis that points

to directions for improvement and mitigation of current problems.

Author summary

Single-cell sequencing data are snapshots of biological processes, making it challenging to

infer dynamic relationships between cell types. RNA velocity attempts to bypass this chal-

lenge by treating the unspliced RNA content as a proxy for spliced RNA content in the

near future, and using this “extrapolation” to build directional relationships. However, the

method, as implemented in several software packages, is not yet reliable enough to be

actionable, in part due to the large number of arbitrary, user-set hyperparameters, as well

as fundamental incompatibilities between the biophysics of transcription in the living cell

and the models used throughout the velocity workflows. In this study, we review these

issues, and use existing results from the fields of stochastic modeling and fluorescence

transcriptomics to develop an alternative theoretical framework. We show that our frame-

work can facilitate the development and inference of physically consistent models for

sequencing data, as well as the unification of single-cell analyses to self-consistently treat

variation due to cell type dynamics and identities, the stochasticity inherent to single-mol-

ecule processes, and the uncertainty introduced by sequencing experiments.

Introduction

Background

The method of RNA velocity [1] aims to infer directed differentiation trajectories from snap-

shot single-cell transcriptomic data. Although we cannot observe the transcription rate, we can
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count molecules of spliced and unspliced mRNA. The unspliced mRNA content is a leading

indicator of spliced mRNA, meaning that it is a predictor of the spliced mRNA content in the

cell’s near future. This causal relationship can be usefully exploited to identify directions of dif-

ferentiation pathways without prior information about cell type relationships: “depletion” of

nascent RNA suggests the gene is downregulated, whereas “accumulation” suggests it is upre-

gulated. This qualitative premise has profound implications for the analysis of single-cell RNA

sequencing (scRNA-seq) data. The experimentally observed transcriptome is a snapshot of a

biological process. By carefully combining snapshot data with a causal model, it is for the first

time possible to reconstruct the dynamics and direction of this process without prior knowl-

edge or dedicated experiments.

The bioinformatics field has recognized this potential, widely adopting the method and

generating numerous variations on the theme. The roots of the theoretical approach date to

2011 [2], but the two most popular implementations for scRNA-seq were released in 2017–

2018: velocyto by La Manno et al. [1], which introduced the method, and scVelo by Bergen

et al. [3], which extended it to fit a more sophisticated dynamical model. Aside from these

packages, numerous auxiliary methods have been developed, including protaccel [4] for incor-

porating newly available protein data, MultiVelo [5] and Chromatin Velocity [6] for incorpo-

rating chromatin accessibility, VeTra [7], CellPath [8], Cytopath [9], CellRank [10], and Revelio
[11] for investigating coarse-grained global trends, scRegulosity [12] for identifying local

trends, Velo-Predictor [13] for incorporating machine learning, dyngen [14] and VeloSim [15]

for simulation, and VeloViz [16] and evo-velocity [17] for constructing velocity-inspired visual-

izations. This profusion of computational extensions has been accompanied by a much smaller

volume of analytical work, including discussions of potential extensions and pitfalls [18–21],

as well as theoretical studies based on optimal transport [22, 23] and stochastic differential

equations [24]. However, at their core, these auxiliary methods are built on top of the theory

and code base from velocyto or scVelo.

These two most popular software implementations emphasize usability and integration

with standard visualization methods. The typical user-facing workflows, with internal logic

abstracted away, are shown in Fig 1: a set of reads is converted to cell × gene matrices derived

from spliced and unspliced mRNA molecule measurements, the matrices are processed to gen-

erate phase plots describing a dynamical transcription process, and finally the transcriptional

dynamics are fit, extrapolated, and displayed in a low-dimensional embedding.

Despite the popularity of RNA velocity [13, 27] and increasingly sophisticated attempts to

combine it with more traditional methods for trajectory inference [8, 10], there has been little

comprehensive investigation of the modeling assumptions that underlie the seemingly simple

workflow, with the sole dedicated critique to date largely focusing on the embedding process

[28]. This is an impediment to applying, interpreting, and refining the methods, as problems

arise even in the simplest cases. Consider, for example, the result displayed in Fig 1, where the

outputs of the two most popular RNA velocity programs applied to human embryonic fore-

brain data generated by La Manno et al. [1] (“forebrain data”) are qualitatively different. The

inferred directions in the example should recapitulate a known differentiation trajectory from

radial glia to mature neurons. However, scVelo, which “generalizes” velocyto, fails to identify,

and even reverses the trajectory, suggesting totally different causal relationships between cell

types. This type of problematic result has been reported elsewhere (Figs 2–3 of [3], Fig 2 of

[21], Fig 4B of [5], Fig 5A of [9], Fig 5 of [10], and Fig 3 of [29]).

Motivated by such discrepancies, we wondered whether either velocyto or scVelo are reliable

for standard use in applications where ground truth may be unknown. An examination of

their theoretical foundations, and those of related methods, revealed that they are largely
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informal. Even the term “RNA velocity” is not precisely defined, and is used for the following

distinct concepts:

• A generic method to infer trajectories and their direction using relative unspliced and

spliced mRNA abundances by leveraging the causal relationship between the two RNA spe-

cies, which is the interpretation in [24].

• A set of tools implementing this method or parts of it, as in an “RNA velocity workflow

implemented in kallisto|bustools,” which is the interpretation in [30].

• A gene- and cell-specific quantity under a continuous model of transcription, as in “the

RNA velocity of a cell is ds
dt ¼ bu � gs”, which is the interpretation in [18, 27].

• A gene- and cell-specific quantity under a probabilistic model of transcription, as in “the

RNA velocity of a cell is
dE½St �
dt ¼ bu � gs”, which is the interpretation in [4].

• A gene-specific average quantity, as in “the total RNA velocity of a gene is ∑i(βui − γsi)”,

which is the interpretation in [12, 27].

• A cell-specific vector composed of gene-specific velocity components, as in “the vector RNA

velocity of a cell is βjuij − γjsij”, which is the interpretation in [7, 9, 27].

• The cell-specific linear or nonlinear embedding of a cell-specific vector in a low-dimensional

space, which is the interpretation in [9].

• A local property, such as curvature, of a theorized cell landscape computed either from an

embedding or a set of velocities, which is the interpretation in [22, 29].

These discrepancies and, more broadly, the limitations of current theory, stem from histori-

cal differences between sub-fields, which have calcified over the past twenty years of single-cell

biology. On the one hand, fluorescence transcriptomics methods, including single-molecule

fluorescence in situ hybridization and live-cell MS2 tagging, which target small, well-defined

systems with a narrow set of probes [31–33], have motivated the development of interpretable

stochastic models of biological variation [34, 35]. On the other hand, “sequence census” meth-

ods [36], such as scRNA-seq, provide genome-wide quantification of RNA, but the associated

Fig 1. A summary of the user-facing workflow of a typical RNA velocity workflow. Initial processing of sequencing reads produces spliced and

unspliced counts for every cell, across all genes. Inference procedures, implemented in velocyto and scVelo, fit a model of transcription, and predict cell-

level velocities. The final embedding of cells and smoothed velocities is displayed in the top two principal component dimensions. Visualizations

adapted from [25, 26]; dataset from [1]. The DNA and RNA illustrations are derived from the DNA Twemoji by Twitter, Inc., used under CC-BY 4.0.

https://doi.org/10.1371/journal.pcbi.1010492.g001
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challenges of exploratory, high-dimensional data analysis have not, for the most part, been

addressed with mechanistic models. Instead, descriptive summaries, such as graph representa-

tions and low-dimensional embeddings, are the methods of choice [37]. Nevertheless, descrip-

tive analyses, even if ad hoc, can still facilitate biological discovery: RNA velocity has been used

to produce plausible trajectories [38–46], and our simulations show that it can recapitulate key

information about differentiation trajectories in best-case scenarios (Fig A in S1 Text). These

results highlight the potential of RNA velocity, and motivated us to review its assumptions,

understand its current failure modes, and to solidify its foundations.

Towards this end, we found it helpful to contrast the sub-fields of fluorescent transcrip-

tomics and sequencing, which have analogous goals, albeit disparate origins that have led to

analytical methods with distinct philosophies and mathematical foundations. The sub-fields

have, at times, interacted. Fluorescence transcriptomics can now quantify thousands of genes

at a time, and this scale of data is now occasionally presented using visual summaries popular

for RNA sequencing data, such as principal component analysis (PCA) [47], Uniform Mani-

fold Approximation and Projection (UMAP) [48], and t-distributed stochastic neighbor

embedding (t-SNE) [49, 50]. Conversely, the commercial introduction of scRNA-seq protocols

with unique molecular identifiers (UMIs) has spurred the adoption of theoretical results from

fluorescence transcriptomics for sequence census analysis [51–55]. Sequencing studies fre-

quently use count distribution models that arise from stochastic processes, such as the negative

binomial distribution, albeit without explicit derivations or claims about the data-generating

mechanism [51, 56, 57]. These connections highlight the promise of mechanistic gene expres-

sion models: in principle, parameters can be fit to sequencing data to produce a physically

interpretable, genome-scale model of transcriptional regulation in living cells, and some steps

have been taken in this direction over the past decade [52–55, 58, 59].

RNA velocity methods are products of the sequence census paradigm: they draw heavily on

low-dimensional embeddings and graphs derived from the raw data. Their current limitations

stem from viewing biology through the lens of signal processing, where noise is something to

be eliminated or smoothed out. We posit that it is more appropriate to view the data through

the lens of quantitative fluorescence transcriptomics, in which noise is a biophysical phenome-

non in its own right. Through this lens, modeling that decomposes variation into single-mole-

cule (intrinsic) and cell-to-cell (extrinsic) [60] components, in addition to technical noise [61],

is key. Beyond this conceptual issue, we find that an assessment of the impact of hyper-param-

eterized, heuristic data pre-processing and visualization in current RNA velocity workflows is

useful for developing more reliable analyses.

Goals and findings

To fully describe what RNA velocity does, why it may fail, and how it can be improved,

requires work on several fronts:

In the section “Workflow and implementations,” we describe an idealized “standard” RNA

velocity workflow. We introduce the biophysical foundations presented in the original publica-

tion, outline the methodological choices implemented in the software packages, and enumer-

ate the tunable hyperparameters left to the user.

In the section “Logic and methodology,” we probe the logic of the assumptions made in the

workflow and describe potential failure points. This analysis revisits the outline through com-

plementary critical lenses, adapted to the mechanistic and phenomenological steps. To charac-

terize its biological coherence, we compare the concrete and implicit biophysical models to

those standard in the field of fluorescence transcriptomics, and discuss the implications of

assumptions that do not appear to be backed by a biophysical or mathematical argument.
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To characterize its stability, we test the quantitative effects of tuning hyperparameters and

using different software implementations on real datasets.

Our findings on RNA velocity have implications for other scRNA-seq analyses. On one

hand, the theory behind RNA velocity is not sufficiently robust. The models disagree with

known biophysics: they do not recapitulate bursty production [62], and place needlessly

restrictive constraints on regulatory trends. They are also internally inconsistent, as they do

not preserve cell identities: genes are fit independently, so the same cells’ placement along

putative trajectories differs between genes. Furthermore, the embedding processes are ad hoc
and heavily rely on error cancellation, apparently discarding much of the data in the process.

These problems are intrinsic, and derived methods inherit them.

Fortunately, better options, inspired by fluorescence transcriptomics models, are available.

In order to develop a meaningful foundation for RNA velocity, we formalize its stochastic

model and describe an inferential procedure that can be internally coherent and consistent

with transcriptional biophysics. Furthermore, by examining the assumptions underpinning

RNA velocity and reframing them in terms of stochastic dynamics, we find that the velocyto
and scVelo procedures naturally emerge as approximations to our solutions. Our approach,

presented in the section “Prospects and solutions,” provides an alternative to current trajectory

inference methods: instead of using physically uninterpretable adjacency metrics and fitting a

narrow set of topologies, it is relatively straightforward to solve many combinations of tran-

sient or stationary topologies and apply standard Bayesian methods to identify the best fit.

Conceptually, instead of “denoising” data, our approach proposes fitting the molecule distribu-

tions and preserving the uncertainty inherent in noisy biological and experimental processes.

Workflow and implementations

We begin with a conceptual overview of an idealized RNA velocity workflow, with a descrip-

tion of implementation-specific choices. We focus on datasets with cell barcodes and UMIs,

such as those generated by the 10x Genomics Chromium platform [63], as they provide the

most natural comparison to discrete stochastic models later in the discussion (“Occupation

measures provide a theoretical framework for scRNA-seq” under “Prospects and solutions”).

We summarize the workflow in Fig 2, giving particular attention to the parameter choices

required at each step. To clarify the information transfer in the process, we report the manipu-

lations performed and the variables defined in a single run of the processing workflow in Fig B

in S1 Text (as used to generate Fig 4 of [1]).

Pre-processing

RNA velocity analysis begins by processing raw sequencing data to distinguish spliced and

unspliced molecules. This is a genomic alignment problem. For example, reads aligning to

intronic references are assigned to unspliced molecules, whereas reads spanning exon-exon

splice junctions are assigned to spliced molecules. Data from reads associated with a single

UMI are combined to generate a label of “spliced,” “unspliced,” or “ambiguous” for each read.

“Ambiguous” reads are omitted from downstream analysis, so the assignments are effectively

binary.

Until recently, traditional alignment and UMI counting software, such as Cell Ranger from

10x Genomics, discarded intronic information [63]. The same was true of pseudoalignment

methods, as they identify transcript classes consisting of annotated, and presumably terminal,

isoforms [64]. The explicit quantification of transient intron-containing molecules appears to

have been introduced in the velocyto command-line interface [1]. Since then, existing work-

flows have added functionality for unspliced transcript quantification [27]. In particular,
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alignment can be performed via STARsolo [65] and dropEst [66], whereas pseudoalignment

can be performed via kallisto|bustools [30] or salmon [27]. Benchmarking has shown discrep-

ancies between the outputs of these workflows [27, 30], apparently due to differences in filter-

ing, thresholding, and counting ambiguous reads. However, there is currently little principled

reason to prefer one program’s results to another, as quantification rules largely follow velo-
cyto, and assume a two-species model is sufficient.

Count processing

The raw count data are processed to smooth out noise contributions that can skew the down-

stream analysis. This step is generally combined with the standard quality control techniques

for scRNA-seq [37]. First, cells with extremely low expression are filtered out. Then, a subset

of several thousand genes with the highest expression and variation are selected. The counts

are normalized by the number of cell UMIs to counteract technical and cell size effects. At this

Fig 2. An RNA velocity workflow, beginning with read processing and ending with two-dimensional projection, and the parameters that must be

specified by the user.

https://doi.org/10.1371/journal.pcbi.1010492.g002

PLOS COMPUTATIONAL BIOLOGY RNA velocity unraveled

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010492 September 12, 2022 6 / 55

https://doi.org/10.1371/journal.pcbi.1010492.g002
https://doi.org/10.1371/journal.pcbi.1010492


point, the PCA projection is computed from log-transformed spliced RNA counts. Finally, the

normalized counts are smoothed out by nearest-neighbor pooling. To accomplish this, the

algorithm computes the k nearest cell neighbors in a PCA space for each cell, then replaces the

abundance with the neighbors’ average. This step is crucial, as it produces the cyclic or near-

cyclic “phase portraits” used in the inference procedure.

The implementation specifics vary even between the two most popular packages, the

Python versions of velocyto and scVelo. For example, there appears to be no consensus on the

appropriate k or neighborhood definition for imputation. The original publication reports k
between 5 and 550, calculated using Euclidean distance in 5–19 top PC dimensions [1]. By

default, scVelo uses k = 30 in the top 30 PC dimensions [3].

Inference

The normalized and smoothed count matrices are fit to a biophysical model of transcription.

The model structure for a single gene is outlined in Fig 3a. α(t) is a transcription rate, which

has pulse-like behavior over the course of the trajectory. The constant parameters are β, the

splicing rate, and γ, the degradation rate. Driving by α(t) induces continuous trajectories μu(t)
and μs(t), which informally represent instantaneous averages, μ, of the unspliced, u, and

spliced, s, species, governed by the following ordinary differential equations (ODEs):

dmuðtÞ
dt

¼ aðtÞ � bmuðtÞ;

dmsðtÞ
dt

¼ bmuðtÞ � gmsðtÞ:

ð1Þ

The qualitative behaviors of these functions are shown in Fig 3b. By fitting smoothed count

data for a single gene, now interpreted as samples from a dynamical phase portrait governed

by Eq 1 (Fig 3c), it is possible to estimate the ratio γ/β. Finally, with this ratio in hand, the

Fig 3. a. The continuous model of transcription, splicing, and degradation used for RNA velocity analysis. b. Plots of α(t), μu(t), and μs(t) over time t
and the corresponding governing equations for the system. Dashed lines indicate time of switching event. c. Outline of the common phase portrait

representation, with both steady state and dynamical models denoted. Adapted from [1]. The DNA and RNA illustrations are derived from the DNA

Twemoji by Twitter, Inc., used under CC-BY 4.0.

https://doi.org/10.1371/journal.pcbi.1010492.g003
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velocity vi may be computed for each cell i:

vi≔
Dsi
Dt
¼ ðbui � gsiÞ / ui �

g

b
si; ð2Þ

where si and ui are cell-specific counts, Δt is an arbitrary small time increment, and Δsi is the

change in spliced counts achieved over that increment.

The popular packages differ on the appropriate way to fit the rate parameters. The velocyto
procedure presupposes that the system reaches equilibria at the low- and high-expression

states of α(t), and approximates them by the extreme quantiles of the phase plots. By comput-

ing the slope of a linear fit to these quantiles, it obtains the parameter γ/β (Fig 3c). On the

other hand, scVelo relaxes the assumption of equilibrium and implements a “dynamical”

model, which fits the solution of Eq 1 to the entire phase portrait to obtain γ and β separately.

This methodological difference corresponds to conceptual differences in the interpretation of

imputed data. In velocyto, imputation appears to be an ad hoc procedure for filtering technical

effects, in line with the usual usage [67, 68]. On the other hand, in scVelo, the imputed data are

called “moments” and treated as identical to the instantaneous averages μu(t) and μs(t) of the

process. In addition, scVelo offers a “stochastic” model, which posits pooled second moments

are equivalent to the instantaneous second moments (e.g., the sum of s2 over neighbors is

equal to s2
s ðtÞ þ m

2
s ðtÞ).

The genes are analyzed independently, generating a velocity vij for each cell i and gene j. As

the velocyto procedure cannot separately fit βj and γj, its velocities have different units for dif-

ferent genes. On the other hand, the scVelo procedure does separately fit the rate parameters,

albeit by assigning a latent time tij to each cell, distinct for each gene’s fit.

Embedding

Low-dimensional representations are generated using one of the conventional algorithms,

such as PCA, t-SNE, or UMAP. These algorithms can be conceptualized as functions that map

from a high-dimensional vector si to a low-dimensional vector E(si). The original publication

offers two methods to convert cell’s velocity vector vi to a low-dimensional representation [1].

If the embedding is deterministic (e.g., E is PCA on log-transformed counts), one can

define a source point E(si), compute a destination point E(si + viΔt) = E(si + Δsi), and take the

difference of these two low-dimensional vectors to obtain a local vector displacement:

Vi ¼ DEðsiÞ ¼ Eðsi þ DsiÞ � EðsiÞ: ð3Þ

This displacement is then interpreted as a scalar multiple of the cell-specific embedded

velocity.

If the embedding is non-deterministic, one can apply an ad hoc nonlinear procedure. This

procedure essentially computes an expected embedded vector by weighting the directions to k
embedding neighbors; neighbors that align with Δsi are considered likely destinations for cell

state transitions in the near future:

Vi ¼
Xk

q¼1

ðEðsqÞ � EðsiÞÞwðsq � si;DsiÞ; ð4Þ

where w is a composition of the softmax operator (with a tunable kernel width parameter)

with a measure of concordance between the arguments. Once an average direction is com-

puted, it undergoes a set of corrections, e.g., to remove bias toward high-density regions in the
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embedded space. Finally, the cell-specific embedded vectors are aggregated to find the average

direction over a region of the low-dimensional projection.

The packages almost exclusively use the nonlinear embedding procedure. There is no con-

sensus on the appropriate choice of embedding, number of neighbors, or measure of concor-

dance. PCA, t-SNE, and UMAP have been used to generate low-dimensional visualizations [1,

3]. The original publication uses k between 5 and 300 and applies square-root or logarithmic

transformations prior to computing the Pearson correlation between the velocity and neighbor

directions [1]. In contrast, scVelo uses a recursive neighbor search by averaging over neighbors

and neighbors of neighbors (with k = 30), and implements several variants of cosine similarity

[3]. An optional step adjusts the embedded velocities by subtracting a randomized control; this

correction is usually omitted in demonstrations of velocyto and implemented but apparently

undocumented in scVelo.

As demonstrated in Fig 2, the linear PCA embedding is the simplest dimensionality reduc-

tion technique; it consists of a projection and requires fewer parameter choices than other

methods. However, it is only consistently used in Revelio [11]. The velocyto package does not

appear to have a native implementation of this procedure, although it is briefly demonstrated

in the original article (Fig 2d and SN2 Figs 8–9 of [1]). On the other hand, scVelo does imple-

ment the PCA velocity projection, but disclaims the results of using it as unrepresentative of

the high-dimensional dynamics.

Logic and methodology

To understand the implications of the choices implemented in various RNA velocity work-

flows, we examined the procedures from a biophysics perspective, with a view towards under-

standing the mechanistic and statistical meaning of methods implemented. In this section, we

broadly discuss potential challenges, problematic assumptions, and contradictory results. In

the following section, we draw on lessons learned and propose a modeling approach of our

own.

Pre-processing

As outlined in “Pre-processing” under “Workflow and implementations,” several workflows

are available for converting raw reads to molecule counts. These workflows largely follow the

logic set out in the original implementation [1]; however, as pointed out by Soneson et al. [27],

they produce different outputs from the same data. We reproduced their analysis on a broader

selection of datasets (as reported in “Data availability”) in Fig C in S1 Text, according to the

procedure outlined under “Pre-processing concordance.” The performance was broadly con-

sistent with the previous benchmarking and the description under “Pre-processing” in the pre-

vious section: the methods agreed on the definition of “spliced” molecules, but different rules

for the assignment of “unspliced” molecules led to discrepancies in counts. These discrepan-

cies were particularly pronounced when comparing datasets one gene at a time, likely due to

noise in tens of thousands of low-expressed genes (ρ by cell in Fig C in S1 Text; cf. lower trian-

gle of Fig S10 in [27]).

However, a simple comparison between the software outputs obscures a far more funda-

mental challenge: the binary classification of transcripts as either spliced or unspliced is neces-

sarily incomplete. The average human transcript has 4–7 introns [69], and a combinatorial

number of potential transient and terminal isoforms. The vast majority of genes are alterna-

tively spliced [70–72].

We can consider the hypothetical example of a nascent transcript with the structure

E1I1E2I2E3, where Ii are introns and Ei are exons, as shown in Fig 4. If we place all UMIs with
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intronic reads into the “unspliced” category, we conflate the parent and intermediate tran-

scripts. On the other hand, if we place all UMIs with splice junctions into the “spliced” cate-

gory, we conflate the intermediate and terminal transcripts. Adding more complexity, some

isoforms may retain introns through alternative splicing mechanisms; for example, the inter-

mediate transcripts may be exported, translated, and degraded alongside the terminal.

The binary model is not large enough to include the diversity of possible splicing dynamics,

but approximately holds under fairly restrictive conditions: the predominance of a single ter-

minal isoform, as well as the existence of a single rate-limiting step in the splicing process. Pre-

vious work reports that minor isoforms are non-negligible [70, 72], differential isoform

expression is physiologically significant [72–74], and intron retention in particular is impli-

cated in regulation and pathology [75–78]. Splicing rate data are more challenging to obtain,

but targeted experiments [79], genome-wide imaging [80], and our preliminary mechanistic

investigations [81] suggest that selection and removal of individual introns is stochastic, but

the overall splicing process has rather complex kinetics, not reducible to a single step.

RNA velocity biophysics

We will first inspect the complexity obscured by the simple schema given in Fig 3a. The veloc-

ity manuscripts use several distinct models for the transcription rate α(t). Furthermore, the

amounts of molecular species U and S (previously denoted informally by u and s) have incom-

patible interpretations. The following models make fundamentally different claims about the

data-generating process and imply fundamentally different inference procedures.

1. α(t) is piecewise constant over a finite time horizon; u and s are discrete (SN2 pp. 2–3, Fig

1a-b of [1]).

2. α(t) is continuous and periodic; u and s are discrete (SN2 pp. 2–3, Fig 1e of [1]).

3. α, β, and γ all smoothly vary over a finite time horizon according to an undisclosed func-

tion, with α exhibiting pulse behavior; u and s are discrete (SN2 Fig 5 of [1]).

4. α, β, and γ all smoothly vary over a finite time horizon according to an arbitrary function; u
and s are continuous (Fig 3 of [21]).

5. α(t) is piecewise constant over a finite time horizon; u and s are continuous (Fig 1 of [1],

Methods of [3]).

6. α(t) is piecewise constant over a finite time horizon; u and s are continuous-valued but may

contain discontinuities (Methods of [3]).

Fig 4. A two-intron mRNA species may not have well-defined “unspliced” and “spliced” forms.

https://doi.org/10.1371/journal.pcbi.1010492.g004
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7. α is constant; u and s are continuous (Fig 1b and SN1 pp. 1–2 of [1]). This formulation

yields the reaction rate equation, and cannot produce the bimodal phase plots of interest.

8. α is constant; u and s are discrete (SN1 pp. 2–3 of [1]). This is the stochastic extension [82]

of the previous model, and cannot produce the bimodal phase plots of interest, as explicitly

shown on page 3 of SN1 in [1].

These discrepancies make a comprehensive analysis challenging. Models 7–8 do not con-

tain differentiation dynamics. Certain models are contrived; models 3–4 propose transcription

rate variation without motivating the specific form, and model 6 introduces nonphysical dis-

continuities. Model 2 alludes to limit cycles in stochastic systems under periodic driving, an

intriguing phenomenon in its own right [83, 84], but not otherwise explored in the scVelo and

velocyto publications. For the rest of this report, we focus on the discrete formulation (model

1) and its continuous analog (model 5).

For the discrete formulation, the RNA velocity v should be interpreted as the time deriva-

tive of the expectation of a random variable St that tracks the number of spliced RNA, condi-

tional on the current state (Section A in S1 Text):

v ¼ @tE½StjS0 ¼ s;U0 ¼ u�jt¼0 ¼ bu � gs: ð5Þ

For the continuous formulation, it should be interpreted as the time derivative of the deter-

ministic variable st that tracks the amount of spliced RNA, initialized at the current state:

v ¼ @tstjt¼0 ½such that s0 ¼ s; u0 ¼ u�

¼ bu � gs:
ð6Þ

These formulations happen to be mathematically identical, which creates ambiguity. Never-

theless, both are legitimate, if narrow, statements about the near future of a process initialized

at a state with u unspliced and s spliced molecules. The questions that arise immediately before,

and immediately after, the velocity computation procedure, are (1) what generative model

should be fit to obtain β and γ and (2) even with a v, how much use can one make of it?

Model definition

Continuous, deterministic models are fundamentally inappropriate in the low-copy number

regime, which is predominant across the transcriptome [85–87]. Although continuous equations

such as Eq 1 can represent the evolution of moments, they are insufficient for inference, as fitting

average mRNA abundance amounts to invoking the central limit theorem for a very small,

strictly positive quantity [88–92]. A comprehensive understanding of the stochastic noise model

is necessary prior to making such approximations. Therefore, simulation methods that use a

continuous model are immediately suspect [15]. We describe implementation-specific concerns

in the subsections “Count processing” and “Inference” under “Logic and methodology.”

The motivation behind a pulse model of transcriptional regulation is obscure. Although

dynamic processes certainly have transiently expressed genes [93–95, 95, 96], it is far from clear

that this model applies across the transcriptome, to thousands of potentially irrelevant genes.

Indeed, it is not even coherent with genes showcased in the original report (Fig 4d and Extended

Data Fig 8b of [1]): only ELAVL4 appears to show a symmetric pulse of expression. Finally, even

when this model does apply, the assumption of constant splicing and degradation rates across

the entire lineage is a potentially severe source of error, with no simple way to diagnose it [21].

Most problematic is that even the discrete model is incoherent with known mammalian

transcriptional dynamics. If we suppose induction and repression periods are relatively long,
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as for a stationary, terminal, or unregulated cell population, we arrive at genome-wide consti-

tutive transcription, in which the rate of RNA production is constant. This contradicts numer-

ous sources that suggest transcriptional activity varies with time even in stationary cells [62,

90, 97–103], and is effectively described by a telegraph model that stochastically switches

between active and inactive states [104, 105].

Thus, we must impose basic consistency criteria. Using the models outlined under “RNA

velocity biophysics” requires the assumption that stationary, homogeneous cell populations

are Gaussian or Poisson-distributed. This assumption contradicts at least thirty years of evi-

dence for widespread bursty transcription [98, 105]. We have obtained the answer to question

(1) in the previous subsection: the model must be coherent with known biophysics, and pro-

vide a robust way to identify cases when its assumptions fail.

Count processing

Some standard properties of constitutive systems appear to at least qualitatively motivate gene

filtering. Only genes with spliced–unspliced Pearson correlation above 0.05 are used for fitting

parameters (as on p. 4 of SN2 in [1]); if the correlation is below this threshold, the gene is

removed from procedure and presumed stationary. This is valid for the constitutive model,

but inappropriate for broader model classes: for example, bursty transcription yields strictly

positive correlations, making this statistic ineffective for identifying dynamics [81, 106].

Normalization relative to the cell’s molecular count is a standard feature of sequencing

workflows [37, 107, 108], but reduces interpretability. Normalization converts absolute dis-

crete count data to a proportion of the total cellular counts, ostensibly to account for the com-

positional nature of read-data data [109]. Several recent studies strongly discourage

normalization of UMI-based counts [110, 111], although this perspective is not universal [112,

113]. It is clear that continuous-valued normalized data are incompatible with discrete mecha-

nistic models. Moreover, the suitability of continuous models (such as Eq 1) is never explicitly

justified, but merely assumed. Since normalization nonlinearly transforms the molecule distri-

butions [68, 111] and introduces a coupling even between independent genes, the precise

interpretation of single-gene ODE models is unclear.

Nearest-neighbor averaging is used to smooth the data after normalization. Though it

effaces much of the stochastic noise to give an “averaged” trajectory, it introduces distortions

of unknown magnitude. As discussed in the subsection “Inference” under “Workflow and

implementations,” the imputation step does not have a consistent interpretation. The original

report [1] defines it as “kNN pooling” in the manuscript and “imputation” in the documenta-

tion (and Fig 17 of SN2), placing the emphasis on denoising. On the other hand, scVelo inter-

prets the local average as an estimate of the expectations μu(t), μs(t). Neither approach appears

to be justified by previous studies or benchmarking on ground truth, and both are circular as

the neighborhood is computed based on the observed counts. A probabilistic analysis in Sec-

tion B in S1 Text formalizes more deep-seated issues with using model-agnostic point estimates

to “correct” data. Although these claims may hold and simply require more theoretical work to

prove, our simulations in “Count processing” under “Prospects and solutions” strongly suggest

they are invalid even in the best-case scenario: the phase portraits are smoothed out, but fail to

capture the underlying dynamics in a way coherent with those claims.

To illustrate these problems, we performed a simple test of self-consistency, illustrated in

Fig 5. We reprocessed the forebrain dataset (Fig 4 of [1]) using the velocyto workflow, varying

k, and investigated its effect on the appearance of the phase plots and the inferred parameters.

As the neighborhood size was increased, the phase plot was distorted, with no apparent “opti-

mal” choice of k.
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Inference

Broadly speaking, velocyto-like moment estimates for γ/β are legitimate if the system has time to

equilibrate (as outlined under “The ‘deterministic’ velocyto model as a special case”). However,

moment-based estimation underperforms maximum likelihood estimation in general. The two

approaches are in concordance under the highly restrictive assumptions of error normality and

homoscedasticity. These assumptions are routinely violated in the low-copy number regime [88].

Regression on top and bottom quantiles inherits all of the issues of regression on the entire

dataset, but compounds them by discarding a large fraction of data. Extremal quantile regression

is otherwise a well-developed method [114–117], but it is generally applied to processes with

nontrivial tail effects. For the quantile computation the filtering criterion is ad hoc, and not ame-

nable to theoretical investigation. The order statistics of discrete distributions are notoriously

challenging to compute [118–120], and even the simplest Poisson case exhibits complex trends

[121]. In other words, the extrema themselves may be affected by noise, introducing more

uncertainty into inference. Although the original article does perform some validation (SN2,

Sec. 3 of [1]), it focuses on cell-specific velocities rather than parameter values, and only provides

relative performance metrics rather than actual comparisons to simulated ground truth.

Even without testing the inference procedures against simulations, we can characterize

their performance in terms of internal controls. As we demonstrate in Fig 5, the inferred γ/β
values were unstable under varying k: the velocyto parameter inference procedure was highly

sensitive to a user-defined neighborhood hyperparameter. On the other hand, using a simple

ratio of the means (as in the first column and the k = 0 case in the fifth column of Fig 5) pro-

duced biases [1].

Fig 5. Distortions in data and instabilities in the inferred γ/β values introduced by the imputation procedure on the forebrain data from [1].

Column 1: Raw data (points: spliced and unspliced counts with added jitter; color: cell type, as in Fig 1; line: best fit line u = γs/β + q, estimated from

the entire dataset). Columns 2–4: Normalized and imputed data under various values of k (points: spliced and unspliced counts; color: cell type, as

in Fig 1; line: best linear fit u = γs/β + q, estimated from extreme quantiles). Column 5: Inferred values of γ/β (red, left axis) and inferred fraction of

upregulated cells, defined as ∑iui − (γsi/β + q)>0 (blue, right axis).

https://doi.org/10.1371/journal.pcbi.1010492.g005
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Interestingly, the fraction of cells predicted to be upregulated is qualitatively more stable,

suggesting that the inference step is best understood as an ad hoc binary classifier, rather than

a quantitative descriptor of system state. Given the stability of this classifier, as well as our pre-

liminary discussion of similar results in the context of validating protaccel [4], we used this

binary classifier as a benchmark in the subsections named “Embedding” under “Logic and

methodology” and “Prospects and solutions.”

Regression of the piecewise deterministic “dynamical” model in scVelo asserts the imputed

counts have normal noise with equal residuals for spliced and unspliced species, once again

implausible in the low-copy number regime. More fundamentally, it fails to preserve gene-

gene coherence. If a cell is predicted to lie at the beginning of a trajectory for one gene, this

estimate does not inform fitting for any other gene. The “dynamical” model appears to address

this discrepancy in a post hoc fashion. First, the algorithm identifies putative “root cells,” which

are themselves computed from the velocity embedding. Then, the disparate gene-specific

times are aggregated into one by computing a quantile near the median. This procedure pre-

supposes that the velocity graph is self-consistent and physically meaningful, and that the

point estimate of process time is sufficient, but does not mathematically prove these points or

test them by simulation.

Embedding

After inference and evaluation of Δs for every cell and gene, the array is converted to an embed-

ding-specific representation. In the single-cell sequencing field, low-dimensional projections are

more than a visualization method: they are ubiquitous tools for inference and discovery. Tran-

scriptomics workflows convert large data arrays to human-parsable visuals; these visuals are

then used to explore gene expression and validate cell type relationships, under the assumption

that they represent the underlying data well enough to draw conclusions. However, the embed-

ding procedures involve several distortive steps, which should be recognized and questioned.

For such visuals, the goal is to recapitulate local and global cell-cell relationships. However,

accurately representing desired properties such as pairwise relationships between many points

is inherently difficult, requiring dimensions several orders of magnitudes larger than two to

faithfully represent the data [122]. Thus distortion of cell-cell relationships is naturally induced

in two-dimensional embeddings, and grows as Oð
ffiffiffiffiffi
M
p
Þ for M cells [122, 123]. Both linear

(PCA) and nonlinear (t-SNE/UMAP) methods exhibit these distortions, and warp existing

cell-cell relationships or suggest new ones not present in the underlying data [122, 124]. Tun-

ing algorithm parameters can slightly improve some distortion metrics, though often at the

expense of others [125]. Essentially, nonlinear embeddings utilize sensitive hyperparameters

that can be tuned, but do not provide well-defined criteria for an “optimal” choice [124, 125].

Using visualizations for discovery thus risks confirmation bias.

The velocity algorithms present a particularly natural criterion for quantifying the embed-

ding distortion. The nonlinear embedding procedure generates weights for vectors defined

with reference to embedding neighbors. Therefore, we can reasonably investigate the effect of

the embedding on the neighborhood definitions. In other words, if the velocity arrows quan-

tify the probability of transitioning to a set of cells, what relationship does this set have to the

set of neighbors in the pre-embedded data?

This relationship is conventionally [124] quantified by the Jaccard distance, defined by the

following formula:

dJ ¼
jA [ Bj � jA \ Bj

jA [ Bj
; ð7Þ
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which reports the normalized overlap between the original sets of cell neighbors (A) and

embedded cell sets (B). This dissimilarity metric ranges from 0 to 1, where 1 (or 100%) denotes

completely non-overlapping sets. We applied standard steps of dimensionality reduction and

smoothing to the forebrain dataset (Fig 4 of [1]) and computed their effect on the neighbor-

hoods (taken to be k = 150 for consistency with the velocity embedding process). We report

the Jaccard distance distributions in Fig 6, and observe the gradual degradation of neighbor-

hoods. On average, moving from the ambient high-dimensional space to a two-dimensional

representation induced a dJ of 70–75%. Therefore, cell embedding substantially distorts pre-

cisely the local structure relevant to velocity embedding.

The two-dimensional arrows in Fig 1 combine three sources of error: the intrinsic informa-

tion loss of low-dimensional projections, the instabilities in upstream processing and infer-

ence, and any additional error incurred by the nonlinear procedure outlined in “Embedding”

under “Workflow and implementations.” The softmax kernel-based procedure exhibits an

inherent tension that merits closer inspection. On one hand, it is explicitly designed [1] to mit-

igate error incurred by cell- and gene-specific noise by performing several steps of pooling and

smoothing. On the other hand, it is technically questionable: if we assume differentiation pro-

cesses are largely governed by a small set of “marker genes,” pooling them with thousands of

non-marker genes amounts to hoping that variation in an orthogonal data-generating process

cancels out well enough to recapture latent dynamics. Certain processes may involve the mod-

ulation of large sets of genes, e.g., if expression overall increases over the transcriptome. How-

ever, the velocity workflows are intrinsically unable to identify such trends, as they use

normalized data. As we demonstrate later, a model with no latent dynamics at all (Fig F in S1

Text) can generate apparent signal in the embedded space, illustrating the dangers of relying

on error cancellation. When multiple data-generating processes are present, naïve aggregation

risks obscuring rather than revealing signal.

Aside from this high-level inconsistency, other problems emerge upon investigating the

embedding procedure closer, even prior to performing any numerical controls. The nonlinear

Fig 6. Normalization followed by two rounds of dimensionality reduction introduce distortions in the local neighborhoods. a.– d. Histograms of

Jaccard distances between intermediate embeddings. e. Empirical cumulative distribution functions of Jaccard distances between intermediate

embeddings, as well as the overall distortion (Ambient vs. PCA 2 and Ambient vs. tSNE 2). The palette used is derived from dutchmasters by

EdwinTh.

https://doi.org/10.1371/journal.pcbi.1010492.g006
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embedding approach introduced by La Manno et al. (Eq 4) is highly hyperparametrized, not

motivated by any previous theory, has no physical interpretation, and does not appear to have

been formally validated against linear or simulated ground truth. Just as with the cell embed-

ding, the procedure is dependent on an arbitrary number of nearest neighbors and velocity

transformation functions, with no clearly optimal choices. These hyperparameters can be

tuned to correct for such instabilities, potentially resulting in overfitting to a pre-determined

hypothesis. Since the procedure has no physical basis, potential false discoveries are challeng-

ing to diagnose. Furthermore, it reduces the limited biophysical interpretability of the result,

particularly because the relationship between cell state graphs and the underlying physical pro-

cess is obscure and subject to distortions (Section C in S1 Text). The velocity derivation is

model-informed and, as discussed under “The ‘deterministic’ velocyto model as a special case”

and “The ‘dynamical’ scVelo model as a special case” in the next section, can be informally

viewed as an approximation under several strong assumptions about the process biophysics.

The embedding, on the other hand, is ad hoc and can only degrade the information content.

A final theoretical point remains before we can begin quantitatively validating the embed-

dings: as suggested by Eq 2, and discussed under “Inference” in the previous section, the velo-
cyto gene-specific vj have different units. Therefore, the aggregation in Eq 4 is questionable.

The standard velocyto workflow assumes that the splicing rates are close enough to neglect dif-

ferences, which appears to contradict other results reported in the same paper (Extended Data

Fig 2f of [1]).

To bypass this limitation in a self-consistent way, we implemented a “Boolean” or binary

measure of velocity, as motivated by validation in the original manuscript (Sec. 3 in SN2 of

[1]), introduced in the context of validating protaccel [4], and implied by resampling β values

from a uniform distribution in an investigation of latent landscapes (p. 3 in Supplementary

Methods of [29]). Essentially, instead of computing transition probabilities based on the veloc-

ity values, we computed them based on signs, bypassing the unit inconsistency. The algorithm

used to produce this embedding is described under “Velocity embedding.”

The Boolean procedure offers a natural internal benchmark. If this approach largely reca-

pitulates findings from the standard methods, the embedding process serves as an information

bottleneck: the inference procedure performs as well as a binary classifier, and the complexities

of the dynamics are effaced by embedding. We used this approach as a trivial baseline and

compared it to the standard suite of variance-stabilizing transformations implemented in velo-
cyto. In addition, we tested the effects of neighborhood sizes, in the vein of the stability analysis

performed in the original manuscript (Sec. 11 in SN2 of [1]). In Fig D in S1 Text, we plot the

distributions of angle deviations between a linear baseline, obtained by projecting the extrapo-

lated cell state and computing E(si + Δsi) − E(si) using PCA, and the nonlinear velocity embed-

ding. This control has not previously been investigated in any detail, but seems key to the

claim that the nonlinear velocity embedding is meaningful: intuitively, we expect it to recapitu-

late the simplest baseline, at least on average. To avoid any confusion, we reiterate that the lin-

ear embedding is given by Eq 3, and not the identity nonlinear embedding implemented in

velocyto (i.e., %(x) = x in SN1, pp. 9–10 of [1]).

The angle deviations in arrow directions were all severely biased relative to the linear base-

line. The different normalization methods were distortive to approximately the same degree.

The performance of the Boolean embedding, which discards nearly all of the quantitative

information, was nearly identical to the built-in methods, which suggests that the choice of

normalization methods is a red herring: quantitative velocity magnitudes have little effect on

the embedding quality. This is consistent with previous investigations (cf. Fig S52 in [4]). On

the other hand, the neighborhood sizes did not appear to matter much, at least over the modest

range explored here (in contrast to Sec. 11 in SN2 of [1]). Therefore, the directions reported in
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embeddings were unrepresentative of the actual velocity magnitudes in high-dimensional

space, as well as severely distorted relative to the linear projection. These discrepancies are a

potential cause for concern. Observing the qualitative similarity of Figs 2d and 2h in the origi-

nal report [1], the reasonable performance of the linear extrapolation in t-SNE in its supple-

ment (SN2 Fig 9a of [1]), as well as the cell cycle dynamics explored with the linear embedding

in Revelio [11], a casual reading of the RNA velocity literature would suppose these embed-

dings to be largely interchangeable.

Finally, we visualized the aggregated velocity vectors in Fig 7 to assess the local and global

structures. This visualization served as both an internal and an external control. The internal

control demonstrated the local structure and the stability of the velocity-specific methods, i.e.,

the actual directions of the arrows on the grid. We compared the conventional nonlinear pro-

jection to the Boolean method, as well as the linear embedding. The external control con-

cerned the global structure, which can be analyzed in light of known physiological

relationships: radial glia differentiate through neuroblasts into neurons [1]. If this global rela-

tionship is not captured by the embedding, the inferred trajectories are a priori physically

uninterpretable, in a way that is particularly challenging to diagnose.

In the PCA embedding, the global structure was retained and the arrows were fairly robust,

even when the non-quantitative Boolean method was used. However, the various projection

options suggested drastically different relationships between the cell types, with PCA presenting

more continuous representations of cell relationships faithful to ground truth, and UMAP and t-
SNE presenting more local images, with distinct and discrete clusters of cells. Clearly, if the rela-

tionship between progenitor and descendant is lost, the velocity workflow cannot infer it. The t-
SNE and UMAP parameters can be adjusted by the user; however, adding a new set of tuning

steps and optimizations provides an opportunity for confirmation bias to overrule the data.

Summary

The standard RNA velocity framework presupposes that the evolution of every gene’s tran-

scriptional activity throughout a differentiation or cycling process can be described by a con-

tinuous model with a single upregulation event and a single downregulation event. It proceeds

to normalize and smooth the data until the rough edges of single-molecule noise are filed off,

and fitting the continuous model assuming Gaussian residuals.

In the process, the stochastic dynamics that predominate in the low-copy number regime,

and that characterize nearly all of mammalian transcription, are lost and cannot be recovered.

Although parameters can be fit, they are distorted to an unknown extent, due to a combination

of data transformation, suboptimal inference, and unit incompatibilities. The gene-specific

components of velocity are underspecified due to their direct dependence on the imputation

neighborhood and splicing timescale. In scVelo, parameters are estimated under a highly

restrictive model, yet applied to make broad claims about complex topologies. In velocyto, only

the sign of the velocity is physically interpretable. It can still be used to calculate low-dimen-

sional directions, and this binary velocity embedding is seemingly as good as any other, sug-

gesting that other methods fail to fully utilize valuable information. However, the embedding

process itself is not based on biophysics, and is not guaranteed to be stable or robust. Fortu-

nately, the natural match between stochastic models and UMI-aided molecule counting offers

hope for quantitative and interpretable RNA velocity.

Prospects and solutions

Is there no balm in Gilead? Given the foundational issues we have raised, how can the RNA

velocity framework be reformulated to provide meaningful, biophysically interpretable
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insights? We propose that discrete Markov modeling can directly and naturally address the

fundamental issues. In particular, transient and stationary physiological models can be defined

and solved via the chemical master equation (CME), which describes the time evolution of a

discrete stochastic process. Since the “noise” is the data of interest, in such an approach

smoothing is not required. Rather, technical and extrinsic noise sources can be treated as sto-

chastic processes in their own right, and explicit modeling of them can improve the

Fig 7. Performance of cell and velocity embeddings on the forebrain data. Top: PCA embedding with linear baseline and nonlinear aggregated

velocity directions. Bottom: UMAP and t-SNE embeddings with nonlinear velocity projections. The palette used is derived from dutchmasters by

EdwinTh.

https://doi.org/10.1371/journal.pcbi.1010492.g007
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understanding of batch and heterogeneity effects. Finally, within this framework, parameters

can be inferred using standard and well-developed statistical machinery.

Pre-processing

The diversity of potential intermediate and terminal transcripts suggests that simplistic splic-

ing models are inadequate for physiologically faithful descriptions of transcription dynamics.

What is needed is a treatment of the types of transcripts listed in “Pre-processing” under

“Logic and methodology” as distinct species. This approach immediately leads to several sig-

nificant challenges, relating to quantification, biophysics, and identifiability.

Transient, low-abundance intermediate transcripts are substantially less characterized than

coding isoforms. Some data are available from fluorescence transcriptomics with intron-tar-

geted probes [47], but such imaging is impractical on a genome-wide scale. Unfortunately, the

references and computational infrastructure necessary to identify intermediate transcripts do

not yet exist.

Even if intermediate isoforms could be perfectly quantified, single-cell RNA-seq data do

not generally contain enough information to identify the order of intron splicing. The problem

of splicing network inference has been examined; however, experimental approaches [126,

127] are challenging to scale, whereas computational approaches [128] do not generally have

enough information to resolve ambiguities.

Furthermore, even with complete annotations and a well-characterized splicing graph at

hand, large-scale short-read sequencing cannot fully resolve transcripts. This limitation gives

rise to a challenging inference problem. For example, if transcripts A≔ E1I1E2I2E3 and B≔
E1E2I2E3 are indistinguishable whenever only the 3’ end of each molecule is sequenced, it is

necessary to fit parameters through the random variable XA + XB, i.e., from aggregated data.

The functional form of this random variable’s distribution is not yet analytically tractable.

We have described a preliminary method that can partially bypass these problems [81].

Sequencing “long” reads, which at this time is possible with technologies such as Oxford Nano-

pore [72], or sequencing of “full-length” libraries produced with methods such as Smart-seq3

[129], enhances identifiability and facilitates the construction of new annotations based on

presence or absence of intron sequences. Finally, even though additional data are required to

specify entire splicing networks, sequencing data are sufficient to constrain parts of these net-

works; for example, if two transcripts differ by one intron, the longer one cannot possibly be

generated from the shorter.

Defining more species leads to inferential challenges in downstream analysis. Even if

sequencing data are available, their relationship to the biological counts is nontrivial: some

intermediate transcripts may not be observable using certain technologies because they do not

contain sequences necessary to initiate reverse priming, whereas others may be over-repre-

sented in the data because they contain many. In a preliminary investigation [130], which

adopts the binary categories of “spliced” and “unspliced” defined in the original RNA velocity

publication, we found that unspliced molecules originating from long genes are overrepre-

sented in short-read sequencing datasets. This suggests that multiple priming occurs at intro-

nic poly(A) sequences. To “regress out” this effect, a simple length-based proxy for the number

of poly(A) stretches can be used, but a more granular description would require a sequence-

based kinetic model for each intermediate transcript’s capture rate.

Occupation measures provide a theoretical framework for scRNA-seq

The data simulated in the exposition of RNA velocity [1] comes from a particular set of what

are called Markov chain occupation measures. As an illustration of what this means, we
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consider the simplest, univariate model of transcription, a classical birth-death process:

⌀� !a X � !b ⌀; ð8Þ

where α is a constant transcription rate and β is a constant efflux rate. Depending on the sys-

tem, β may have various biophysical interpretations, such as splicing, degradation, or export

from the nucleus [81, 106].

Formally, the exact solution to this system is given by the chemical master equation (CME),

an infinite series of coupled ordinary differential equations that describe the flux of probability

between microstates x, which specify the integer abundance of X , defined on N0:

dPðx; tÞ
dt

¼ a½Pðx � 1; tÞ � Pðx; tÞ� þ b½ðxþ 1ÞPðxþ 1; tÞ � xPðx; tÞ�: ð9Þ

This equation encodes a full characterization of the system: transcription is zeroth-order,

efflux is first-order, and the dynamics are memoryless, i.e., depend only on the state at t. We

define the quantity y, namely the solution to the underlying reaction rate equation that governs

the average of the X copy number distribution:

dy
dt
¼ a � by;

) yðtÞ ¼ y0e� bt þ
a

b
1 � e� bt
� �

;

ð10Þ

where y0 is the average at time t = 0. To simplify the analysis, we assume that the initial condi-

tion is Poisson-distributed. Per classical results [82], the distribution of counts P(x;t) is

described by a Poisson law for all t, and converges to Poisson(α/β) as t!1. Quantitatively,

the time-dependent distribution is given by P(x;t)*Poisson(y(t)):

Pðx; tÞ ¼
1

x!
yðtÞxe� yðtÞ: ð11Þ

However, this is not the correct model class for distributions observed in scRNA-seq data-

sets. To appreciate these subtleties, we delve into and interrogate assumptions that underpin

the use of such distributions.

The sequencing process does not “know” anything about the transcriptional dynamics and

their time t. This stands in contrast to transcriptomics performed in vitro, with a physically

meaningful experiment start time. For example, in many standard protocols, a stimulus is

applied to the cells at time t = 0, and populations of cells are chemically fixed and profiled at

subsequent time points, potentially up to a nominal equilibrium state [2, 34, 88, 131]. How-

ever, if there is no experimentally imposed timescale, and we adopt the standard assumption

that cell dynamics are mutually independent, the process time decouples from experiment

time. Although cells are sampled simultaneously, their process times t are draws from a ran-

dom variable that must be defined.

Formalizing this framework requires introducing the notion of occupation measures. Con-

sidering a single cell, we designate its process time t as a latent process time (Fig 8a), the mech-

anistic analogue to the phenomenological pseudotime. In brief, “pseudotime” conventionally

denotes a one-dimensional coordinate along a putative cell trajectory, which parametrizes a

principal curve in a space based on RNA counts [37] (Fig 8b and 8c). On the other hand, the

process time is a real time coordinate, which governs the “clock” of the stochastic process.

Broadly speaking, this is the physical quantity which the “latent time” discussed in the exposi-

tion of scVelo attempts to approximate. The difference between pseudotimes and process

PLOS COMPUTATIONAL BIOLOGY RNA velocity unraveled

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010492 September 12, 2022 20 / 55

https://doi.org/10.1371/journal.pcbi.1010492


Fig 8. Markov Chain process time versus expression pseudotime. a. Simulated gene expression for 2000 cells over 4 states (states A, B, C, and D) with

a bifurcation at C/D showing spliced counts of a single gene at the sampled process times. The abbreviation a.u. denotes arbitrary units. b. Ordering of

all cells by expression pseudotime coordinate, calculated as the Euclidean distance between each cell and the root cell (cell at time t = 0) and scaled to

between 0 and 1. c. The sampled cells colored by the calculated pseudotime value.

https://doi.org/10.1371/journal.pcbi.1010492.g008
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times is fundamental. The Markov chain process time is physically interpretable as the prog-

ress of a process that induces the observations in expression space. Conversely, the expression

pseudotime is purely phenomenological (Fig 8c), and we are unaware of any trajectory infer-

ence methods that explicitly parameterize the underlying stochastic model using the CME;

instead, all available implementations appear to use isotropic or continuous noise models [37,

108, 132–140]. As we emphasize in “Model definition” under “Logic and methodology,” these

models are inappropriate for low-abundance molecular species.

By construction, cell trajectories are observed at times t 2 R (Fig 8a). This requires intro-

ducing a sampling distribution f(t), which describes the probability of observing a cell at a par-

ticular underlying process time. Therefore, the probability of observing x molecules of X in

the constitutive case takes the following form:

PðxÞ ¼
Z

Pðx; tÞdf ðtÞ ¼ Ef ½Pðx; tÞ�; ð12Þ

i.e., the expectation of P(x;t) under the sampling law. P(x) is called the occupation measure of

the process, and reports the probability that a trajectory is observed to be in state x, a slight

generalization of the usual definition [141–143].

Next, we must encode the assumption that cell observations are desynchronized from the

sequencing process and each other. This assumption leads us to a choice consistent with the

previous reports [1, 21], namely df = T−1dt, where [0, T] is the process time interval observable

by the sequencing process. This constrains the probability of observing state x to be the actual

fraction of time the system spends in that state. Then, we take T!1, yielding

PðxÞ ¼ lim
T!1

1

T

Z T

0

Pðx; tÞdt ¼ lim
t!1

Pðx; tÞ; ð13Þ

which is a statement of the ergodic theorem [144]. Under mild conditions, this theorem guar-

antees that samples from unsynchronized trajectories converge to the same distribution as the

far more tractable ensembles of synchronized trajectories.

With this discussion, we have clarified that the application of stationary distributions

limt!1 P(x;t) to describe ostensibly unsynchronized cells naturally emerges from assumptions

about biophysics and the nature of the sampling process. However, these assumptions may be

violated; for example, RNA velocity describes molecules sampled from a transient process.

This distinction is key: limits such as limt!1 P(x;t) may not even exist, and we expect to cap-

ture only a portion of the trajectory. A rigorous probabilistic model must treat the occupation

measure directly, which remains valid without those assumptions. Formally, this amounts to

relaxing the assumption of desynchronization: the sequencing process is time-localized to a

particular interval of the underlying biological process.

To stay consistent, we continue using the sampling law df = T−1dt on [0, T], but infinite sup-

ports are valid so long as they decay rapidly enough to be integrable. As scRNA-seq data are

atemporal, this time coordinate is unitless and cannot be assigned a scale without prior infor-

mation, so T can be defined arbitrarily without loss of generality.

The occupation measure of the birth-death process takes the following form:

PðxÞ ¼
1

T

Z T

0

Pðx; tÞdt ¼
1

Tx!

Z T

0

yðtÞxe� yðtÞdt: ð14Þ

This integral can be solved exactly; however, this solution does not easily generalize to more

complex systems. Instead, we can consider the probability-generating function (PGF), which
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also takes a remarkably simple form:

Gðz; tÞ ≔E½zX� ¼
X1

x¼0

Pðx; tÞzx;

HðzÞ ¼ Ef ½Gðz; tÞ� ¼
X1

x¼0

Z

Pðx; tÞzxdf

¼
1

T

Z T

0

X1

x¼0

Pðx; tÞzxdt ¼
1

T

Z T

0

Gðz; tÞdt:

ð15Þ

By linearity, the generating function H(z) of the occupation measure is the expectation of

the generating function G(z;t) of the original process with respect to the sampling measure f.
From standard properties of the birth-death process, this yields:

yðtÞ ¼ ðy0 � a=bÞe� bt þ a=b≔ce� bt þ a=b;

Gðz; tÞ ¼ eðz� 1ÞyðtÞ≔euyðtÞ;

HðzÞ ¼ Ef ½Gðz; tÞ� ¼
1

T

Z T

0

euyðtÞdt

¼
1

T
eua=b

Z T

0

exp uce� bt
� �

dt

¼
eua=b

bT
EiðucÞ � Ei uce� bT

� �� �
;

ð16Þ

where Ei is the exponential integral [145]. This is the solution to the system of interest.

Although straightforward to evaluate, it does not appear to belong to any well-known paramet-

ric family.

Modular extensions to broader classes of biological phenomena

Extending this approach to more complicated biological models requires positing a hypothesis

about the dynamics of transcription and the mRNA life-cycle, formalizing it as a CME, then

solving that CME. This is the “forward” problem of statistical inference, which is typically

intractable. However, in the current subsection, we summarize the model components that

can be assembled to produce solvable systems, and outline potential challenges.

The canonical velocity model. To begin, we would like to fully recapitulate the model

introduced and simulated in the original publication [1]. This model has the following struc-

ture:

⌀� !a ðtÞ U � !b S� !g ⌀; ð17Þ

where α(t) is a piecewise constant transcription rate. The instantaneous distribution of this
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process over copy number states (xu, xs) is well-known [81, 82]:

x ¼ ðxu; xsÞ

Gðuu; us; tÞ ¼
X

x

Pðx; tÞðuu þ 1Þ
xuðus þ 1Þ

xs

U1ðuu; us; sÞ ¼
usb

b � g
e� gs þ uu �

usb

b � g

� �

e� bs

fðuu; us; tÞ≔lnGðuu; us; tÞ ¼
Z t

0

aðt � sÞU1ðuu; us; sÞds

¼ muðtÞuu þ msðtÞus

Pðx; tÞ ¼
muðtÞ

xu e� muðtÞ

xu!
msðtÞ

xs e� msðtÞ

xs!

PðxÞ ¼
1

T

Z T

0

Pðx; tÞdt

ð18Þ

where U1 is the characteristic of the unspliced mRNA solution, whereas μu(t) and μs(t) are the

instantaneous averages, which can be written down in closed form for arbitrary piecewise con-

stant α(t). The generating function derivation presupposes that the system starts at steady

state. By defining N genes whose RNA abundance evolves on [0, T], we can extend this univar-

iate distribution to a multivariate occupation measure in 2N dimensions. This occupation

measure is the putative source distribution for cells observed in experiment.

Eq 18 recapitulates the system proposed in the original publication [1], and we use it to set

up and solve transient biophysical systems throughout the rest of this report. Restricting analy-

sis in this way allows us to speculate about how such models could be fit, while keeping the

mathematics in closed form. However, the schema in Eq 17 omits important physiological

phenomena. Although these phenomena can be modeled, very few of them afford closed-form

solutions, and their range can be classified according to their complexity.

PGF-tractable models. The first class includes models that afford transient single-gene

solutions in terms of the generating function, and can be combined with the definition of an

occupation measure to produce a generative model for observed data. These models can be

solved using quadrature, and extend the dynamics in simple, Markovian ways, although strate-

gies for fitting them are not yet well-developed.

The solution in Eq 18 generalizes to an arbitrary number of species, merely by converting

the stoichiometry and rate matrix to the appropriate U1(u; s). The solution for a generic splic-

ing and degradation network, under constitutive transcription, stays Poisson, and makes up

one of the few closed-form cases [81, 82].

Transcriptional bursting at a gene locus can be represented by slightly modifying Eq 18:

fðu; tÞ ¼
Z t

0

aðt � sÞ½MðU1ðu; sÞ; t � sÞ � 1�ds; ð19Þ

where M is the generating function of the burst distribution, which governs the number of

unspliced mRNA molecules produced per transcriptional event. This distribution can be time-

dependent and reflect the transient modulation of bursting dynamics. As in Eq 18, we omit the

explicit representation of initial conditions, described in [81].

In principle, we need not assume α(t) in Eq 17 is piecewise constant. If α(t) is deterministic,

the solution can be obtained by quadrature. More sophisticated regulatory dynamics, such as

transcriptional rates governed by a continuous- or discrete-valued stochastic process [146,
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147], can be treated analogously. If the process is continuous-valued, e.g., representing the

concentration of a rapidly-binding regulator, it requires solving a single, potentially nonlinear

ODE. If it is Markovian and discrete-valued, e.g., representing transitions between distinct

promoter stats, it requires solving a set of coupled ODEs.

Gene-gene coexpression, or the synchronization of transcriptional events induced by a

common regulator, can be solved by setting M in Eq 19 to a multivariate generating function

whose arguments are the characteristics of unspliced mRNA species [81].

The model is broad enough to describe cell type distinctions and cell fate stochasticity sim-

ply by defining a discrete mixture model over transcription rate trajectories. For example, if a

cell can choose to enter cell fate A with probability wA or cell fate B with probability 1 − wA,

the overall generating function takes the following form:

Gðu; tÞ ¼ wAGAðu; tÞ þ ð1 � wAÞGBðu; tÞ

GðuÞ ¼ wAGAðuÞ þ ð1 � wAÞGBðuÞ;
ð20Þ

where each branch’s generating function is induced by distinct driving functions, αA(t) 6¼
αB(t). This formulation is equivalent to defining a finite mixture of branches, with a categorical

distribution of parameters as the mixing law. As previously discussed [81], it can be extended

to continuous mixtures, although such systems are not typically tractable.

Certain models of technical noise are modular with respect to the biological processes. Spe-

cifically, if we suppose that sequencing is a random process that is independent and identically

distributed for every molecule of a particular species i, with a distribution on N0, the PGF of

the observed UMIs is G evaluated at xi = Gt, i(xi), where Gt, i(xi) is the PGF of the sampling dis-

tribution for species indexed by i. We have previously considered this model for Bernoulli and

Poisson distributions, which presuppose that the cDNA library construction is sequestering

and non-sequestering, respectively [130, 148].

Finally, it is useful to consider the meaning behind the choice of f in Eq 12. Thus far, we

have assumed f is a uniform law on [0, T]. This choice is underpinned by a particular concep-

tual model of cell dynamics relative to the sequencing process. Formalizing such a conceptual

model requires introducing several fundamental principles from the field of chemical reaction

engineering and interpreting them through the lens of living systems. A reactor is a vessel that

contains a reacting system; in the current context, it is a living tissue which is isolated for

sequencing.

Three idealized extremes of reactor configurations exist: the plug flow reactor (PFR), the

continuous stirred tank reactor (CSTR), and the batch reactor (BR). The PFR has no internal

mixing: the reaction stream enters in the influx and exits from the efflux after a deterministic

amount of time. Therefore, the PFR has memory: if the total residence time is T and reactor

length is L, and the fluid element is localized at position Lt/T within the PFR, it will exit after a

delay of T − t. Conversely, the CSTR is fully mixed: the reaction stream enters the vessel and

combines with its existing contents. Therefore, the CSTR is memoryless or Markovian: if the

average residence time is T, a given fluid element within the reactor will exit after a delay dis-

tributed according to Exp(T−1), independent of time since its entrance [149]. The CSTR and

PFR can operate at steady state, whereas the BR accumulates reaction products: the BR is

charged at t = 0, and the reaction proceeds until a predetermined time T.

We can translate these basic configurations to the design of transcriptomics experiments,

treating individual cells as fluid elements, and assuming the variation in transcriptional

dynamics begins as the cells enter the reactor at t = 0. If the sampling process is independent

from a PFR in space or a BR in time, we obtain the uniform sampling measure df = T−1dt. If

the process samples from a CSTR, we obtain the exponential sampling measure
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df ¼ T � 1e� tT� 1dt. If the process samples from the efflux of a PFR or the product of a BR, we

obtain the Dirac sampling measure df = δ(T − t)dt. The first two scenarios appear to be more

appropriate for describing scRNA-seq experiments, which can sample across entire processes,

whereas the final scenario appears to correspond to fluorescence transcriptomics experiments,

which have a well-defined start time. Assuming there are no cyclostationary dynamics, all of

the reactor and sampling configurations converge to the ergodic limit as T!1.

This conceptual model is highly simplified, but serves to motivate the need for the sampling

measure formulation, as well as provide an intuition into the physical assumptions encoded by

the choice of df. To summarize, if we wish to describe a transient process observed by sequenc-

ing, we need to begin with one of two assumptions. On one hand, the transient gene program

may be triggered externally, but fully executed within the cell, allowing us to define “time-

desynchronized” sampling from a PFR, CSTR, or BR. On the other hand, it may be controlled

by external factors, allowing us to define “space-desynchronized” sampling from a PFR. How-

ever, considerable further theoretical and experimental work is necessary to understand when

such assumptions are justified.

Simulation-tractable models. The second class includes models which can be cast into a

Markovian form and simulated [150], or partially solved using matrix algorithms [151].

Although we may be able to write down a CME and its formal solution, numerical evaluation

typically requires considerable computational expense, and the appropriate inference strategies

are unclear.

We abstract away the mechanistic details of regulation. However, the variation in transcrip-

tional parameters should be understood as the outcome of a regulatory process that is tightly

controlled in time (to justify step changes in rates) and concentration (to justify deterministic

parameter values). It is possible to explicitly represent regulatory networks or feedback, in line

with dyngen [14] and standard systems biology studies [152]. Further, we assume all reactions

are zeroth- or first-order, although it is possible to model the kinetics of enzyme binding [153].

Unfortunately, such systems are intractable in the current context, due to high dimensionality,

mathematical challenges, lack of protein data, and complexity of regulatory networks on a

genome-wide scale.

We described a method to model sequencing as a random process, if the fairly restrictive

conditions of independence and identical distribution hold. The distributional assumption

can be relaxed for a particular gene and molecular species [130, 148]. It is also possible to write

down—but challenging to fit—a hierarchical model, such that each cell’s sequencing model

parameters are random. However, it does not yet appear feasible to solve and fit models which

impose coupling between cells and genes through the compositional nature of the sequencing

process [109]. At the same time, generating realizations from such models is trivial, and

amounts to sampling without replacement. Analogously, it is straightforward to set up a model

with “cell size” variation, such that each cell separately regulates its average transcription level

for the entire genome [154]. It is unclear how such models should be fit, although neural [155]

and perturbative [154] approaches have seen use.

We have restricted our discussion to regulatory modulation in terminally differentiated

cells. In a variety of contexts, cell division, which involves molecule partitioning and transcrip-

tional dosage compensation [93, 156], plays a significant role in differentiation, and it is inap-

propriate to omit its effects. Considerable literature exists on cell cycle models [93, 157, 158],

but they are fairly challenging to solve, and the appropriate way to integrate them with occupa-

tion measures is unclear at this time.

For mathematical simplicity, we have assumed mRNA molecules have no internal structure.

This model implies that transcription is binary, rather than stepwise: when a transcriptional
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event occurs, a new molecule springs into existence, fully formed. In actuality, mRNA mole-

cules are polymers, and their production often takes considerable time [159]; on an even finer

level of detail, transcriptional elongation is neither infinitely fast nor constant, and exhibits

pauses or “pile-ups,” which may themselves have a regulatory role [160]. Adding yet more

complexity, splicing may occur co-transcriptionally or post-transcriptionally [161], with deter-

ministic or stochastic intron removal order [80], making the categories of “spliced” and

“unspliced” molecules even less tenable. Certain models of elongation can be solved [61, 162]

and simulated [163], but rapidly become mathematically intractable. In sum, characterizing

the amount of information about granular in vivo processes which can be obtained from

potentially incomplete annotations and potentially ambiguous transcript equivalence class

data [164] is a considerable undertaking, but will be essential for scRNA-seq analysis in a lon-

ger perspective.

Currently intractable models. We omit several types of phenomena because they are

challenging to formalize using the standard CME framework. Thus far, we have assumed cells

are biologically independent under some measure, although weak coupling may take place due

to sequencing. However, cells interact with their neighbors in living tissues, leading to complex

and tightly controlled patterns of spatial expression. These interactions are particularly impor-

tant in biomedical research, and are typically simulated though agent-based modeling (ABM)

techniques [165]. However, even the simplest models of interaction, such as the Ising model in

solid-state physics, are challenging to treat and do not typically afford transient solutions

[166].

Finally, CME models typically treat the cell as spatially homogeneous, occasionally with

Markovian export from a spatially homogeneous nucleus [106]. This assumption simplifies the

construction of Markov chains, and amounts to assuming that the diffusion timescale is con-

siderably faster than the reaction timescale. However, as the intracellular medium is neither a

stirred tank nor a dilute gas, diffusion may act as a limiting step. Spatial heterogeneity within

the cell has been treated in recent whole-simulations, using classical mechanics [167] as well as

reaction-diffusion master equations on a lattice [168]. However, such systems are not amena-

ble to analysis and require pre-defining the cell geometry.

Count processing

Selecting and solving a model allows for a quantitative comparison of the predictions of the

inference process to a meaningful baseline. We use the model solved in Eq 18 with simple

impulse dynamics: α(t) is piecewise constant over a finite time horizon, with its dynamics

given by a single positive or negative pulse.

aðtÞ ¼ a1 if t 2 ð0; t1Þ;

a2 if t 2 ðt1; t2Þ;

a1 if t 2 ðt2;TÞ;

ð21Þ

and α1 6¼ α2. Different genes have different α, but synchronization is enforced: all genes switch

at identical times τ1, τ2. Physically, this description corresponds to a perturbation being

applied to, then removed from the cells, resulting in the modulation shown in Fig 9a. We sim-

ulated this model using the procedure outlined under “Transient constitutive model: Perturba-

tion and reversion.”

We investigated this class of phenomenological models for transcription variation as

opposed to fully mechanistic descriptions (e.g., dyngen [14]) for three reasons. First, they pro-

vide the best-case baseline scenario for the validation of RNA velocity, as the inference
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procedure is predicated on this model. For example, Eq 21 is the pulse stimulus model pro-

posed by La Manno et al. [1]. Second, they offer the analytical solutions discussed in “Occupa-

tion measures provide a theoretical framework for scRNA-seq,” whereas more complicated

schema do not. Finally, mechanistic models of regulation are underdetermined relative to

scRNA-seq data, as they rely on signal transfer through proteins. We anticipate that compre-

hensive future models will introduce further mechanistic details, as in the causal schema pro-

posed in Fig 4 of [21]. However, here we abstract away the specific details of how this

perturbation is effected, and focus on its effects on the observable transcriptome.

Predictably, the marginal distributions of the simulated data were bimodal, and matched

the analytical solutions for the occupation measure (Fig 9b). The count processing workflow

distorted the data in complex, nonlinear ways. Compared to the raw data, imputation did

lower dispersion (Fig 9c). However, we did not find support for treating the imputed data as

merely μu(t) and μs(t) with a Gaussian perturbation. For any particular gene, the relationship

between the two was nontrivial and exhibited biases. The sample gene demonstrated in the fig-

ure produced an approximately smooth trace that did not resemble the true process average.

At best, the imputed estimate appeared to be unbiased over the entire dataset, and tended to

fall within of factor of ten of the true mean (Fig 9di and 9dii). Interpreting the local observed

Fig 9. The RNA velocity count processing and inference workflow, applied to data generated by stochastic

simulation. a. Schematic of the impulse model of gene modulation. b. Demonstration of the concordance between

simulation and analytical solution for the occupation measure. i.: nascent mRNA counts; ii.: mature mRNA counts

(gray: simulation; blue: occupation measure). c. Smoothing and imputation introduce distortions into the data. i.: raw

data; ii.: data normalized to total counts; iii. imputed data (points: raw or processed observations; lines: ground truth

averages μs and μu; red: spliced; yellow: unspliced). d. Local averages obtained by imputation are not interpretable as

instantaneous averages. i.: mean unspliced; ii.: mean spliced; iii. variance unspliced; iv.: variance spliced (black points:

true moment vs. pooled moment; blue line: identity; blue region: factors of ten around identity). e. Smoothing and

imputation improve the inference on extrema. i.: moment-based inference from raw data; ii.: extremal inference from

normalized data; iii.: extremal inference from imputed data (black points: true vs. inferred values of γ/β; blue line:

identity; blue region: factors of ten around identity). The palette used is derived from dutchmasters by EdwinTh.

https://doi.org/10.1371/journal.pcbi.1010492.g009
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variance as the true process moment σ2 is even less appropriate: the relationship between local

and true variance exhibited unintuitive, nonlinear effects (Fig 9diii and 9div).

Normalization for the total number of UMI counts per cell is standard, and La Manno et al.

do use it in their validation of velocyto (p. 6 in SN2 of [1]). On the other hand, it could be

argued that such scaling is an ad hoc procedure intended to eliminate underlying variation in

UMI counts due to differences in which genes are expressed in cells, or technical noise. As

such, it may be inappropriate to apply it to simulated datasets that do not have these phenom-

ena. We repeated the analysis without scaling counts by total molecule counts per cell in Fig E

in S1 Text. This means that raw counts were pooled, using the k nearest neighbors obtained

from PCA, which was itself computed from the log-transformed raw, spliced counts. Qualita-

tively, the gene-specific imputed trajectories did not exhibit the severe biases of Fig 9. How-

ever, they still produced errors in the transient regimes of interest, and scale- and species-

dependent errors elsewhere, violating the assumptions of the scVelo “dynamical” inference

procedure (as outlined in “Inference” under “Logic and methodology”). Furthermore, the rela-

tionship between true moments and pooled moments was nearly identical in Fig 9d and Fig

Ed in S1 Text.

We can conclude that even the best-case scenario, with matching model assumptions and

no technical noise, does not justify using imputed data in place of the process average: the

imputation procedure is circular, and can give rise to biases (as in Section B in S1 Text).

Although these biases may cancel on average, this cannot be relied on for any particular gene.

Therefore, instead of smoothing, which is fundamentally unstable and challenging to validate,

we recommend explicitly constructing and solving error models (as in [130]). Such an

approach provides insights into the system biophysics and enables the quantification of uncer-

tainty through standard statistical methods.

Inference from occupation measure data

With the groundwork outlined immediately above, one can begin to tackle the problem of

inference from sequencing data. We start by carefully inspecting the models set up in the

velocity publications, enumerating their assumptions about the transcriptional processes, and

writing down their formal solutions without making any further approximations. The result-

ing “inverse” problem of identifying biological parameters from data is currently intractable.

We are unaware of any studies which treat this problem in full generality, so new inferential

strategies need to be developed. However, it is instructive to write down the exact forms, as

they clarify the origin of the complexity and may suggest satisfactory approximations.

First, we define the global structure of the transient system, which represents the parameters

shared between different genes. This global structure is encoded in the vector θG, which we

assume to be finite-dimensional. For example, if the differentiation process is linear and deter-

ministic, with no branching, with K distinct cell types, θG gives the times τk of the cell type

transitions (where τ0 ≔ 0 and τK≔ T, which we set to 1 with no loss of generality). On the

other hand, if it is non-deterministic, with diverging cell fates, θG can encode topologies and

fates’ probabilities (such as wA from Eq 20). Conversely, a unipotent differentiation trajectory

can be encoded by setting wA = 1, i.e., simpler topologies are degenerate cases of more complex

topologies. Finally, this vector may also encode non-biological phenomena, such as batch-spe-

cific technical noise parameters [130] and the specific form of the generalized occupation mea-

sure f.
In addition to θG, the system also involves vectors θj, j 2 {1, . . ., N}, where j ranges over the

genes. The θj are gene-specific parameter vectors that parameterize physiological processes,

such as transcriptional bursting, splicing, and degradation, as well as initial conditions. For

PLOS COMPUTATIONAL BIOLOGY RNA velocity unraveled

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010492 September 12, 2022 29 / 55

https://doi.org/10.1371/journal.pcbi.1010492


simplicity, we make two crucial assumptions, consistent with the previous velocity publica-

tions. First, we suppose the transcriptional parameters are piecewise constant throughout the

process, and all other parameters are strictly constant. Second, we suppose that different genes’

transcription and processing reactions are statistically independent. We define the full parame-

ter set as Θ≔ {θ1, . . ., θN, θG}. For completeness, we note that in previous publications the cell

type transition times are gene-specific parameters, i.e., τjk 2 θj, but since we assume that all

genes switch at identical times they are global parameters, i.e., τk 2 θG, in the model we pro-

pose here.

Finally, we formalize the data variables. The full dataset is given by the data matrix D, with

cell-specific arrays Di and gene-specific arrays Dj. Thus, Dij reports the spliced and unspliced

counts for gene j in cell i. Under this model and the assumption of gene independence, the fol-

lowing equation gives the likelihood of a particular cell’s observation:

LðY; DiÞ ¼ PðDi;YÞ ¼

Z

PðDi; t;YÞdf ðt;YÞ ¼
Z Y

j

PðDij; t; yj; yGÞdf ðt; yGÞ: ð22Þ

The assumption of cell independence suggest the following total likelihood:

LðY; DÞ ¼
Y

i

LiðY; DiÞ ¼
Y

i

Z Y

j

PðDij; t; yj; yGÞdf ðt; yGÞ: ð23Þ

To fully characterize this system under the foregoing model assumptions, we need to opti-

mize the likelihood with respect to the parameters. This is generally intractable; even evaluat-

ing Eq 23 can be non-trivial. However, we can make a series of simplifying approximations.

A combinatorial optimization approach to inference

Ultimately, we would like to understand the behavior of Eq 23 across the entire domain of

parameters, compute the maximum likelihood estimate (MLE) of Θ, and characterize its stabil-

ity by calculating its confidence region. However, this is not yet feasible. Therefore, we restrict

the discussion to writing down a formula for the MLE that can be treated using standard

algorithms.

Our strategy is to exploit the “latent” distribution of cell-specific process times, condition

on this distribution, and find an approximate MLE. Assuming that cells are observed uni-

formly across process time, i.e., df = dt, the latent time of each cell i is given by ti 2 (0, 1). These

times are almost surely distinct, and induce a cell ranking in order of increasing process time.

This ranking is unknown and has to be inferred from the data.

Assume, for the moment, that the ranking is known and given by σ, a permutation of the M
cell indices {1, 2, . . ., M − 1, M} corresponding to their process time order statistics. Given a

cell’s order statistic σi, we can use f to estimate its latent time ti, which is distributed according

to a rather complex multivariate Beta distribution [169]: even if each cell’s rank in the total

order is known, we have to account for the uncertainty in process time. However, we can

exploit the fact that this uncertainty decreases as the number of cells grows. The marginal

order statistics are distributed according to Beta(σi, M + 1 − σi), a random variable with law

fUðiÞ ðtÞ and the following variance:

V½UðiÞ� ¼
siðM þ 1 � siÞ

ðM þ 1Þ
2
ðM þ 2Þ

; ð24Þ

which tends to zero with the rate M−1. Therefore, we find that ti � E½UðiÞ� ¼
si

Mþ1
.
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Thus, if we have enough cells, and know their process time ordering, we can exploit the fact

that fUðiÞ ðtÞ converges to a Dirac delta functional:

LðY; Di; siÞ ¼

Z Y

j

PðDij; t; yj; yGÞfUðiÞ ðtÞdt �
Y

j

PðDij; ti; yj; yGÞ: ð25Þ

This amounts to using a plug-in point estimate to compute the likelihood of a cell’s data.

The same approach can be applied to each cell in turn:

LðY; D; sÞ �
Y

i

Y

j

PðDij; ti; yj; yGÞ ¼
Y

j

Y

i

PðDij; ti; yj; yGÞ: ð26Þ

However, optimizing this quantity, even when conditioning on σ, is impractical because it

requires simultaneously optimizing (potentially thousands of) gene-specific parameters along

with the (relatively few) global parameters. The interchange of product operations is helpful

because it allows us to write down a more tractable loss function for the MLE, which exploits

the conditional separability of θj:

Ŷjs ¼ argmax
yG

X

j

argmax
yj

X

i

lnPðDij; ti; yj; yGÞ: ð27Þ

Optimizing this quantity over σ guarantees to return the global MLE:

Ŷ ¼ argmax
s
argmax

yG

X

j

argmax
yj

X

i

lnPðDij; ti; yj; yGÞ: ð28Þ

The parameters θ1, . . ., θN, θG can be found by standard continuous optimization methods,

but estimating σ requires a combinatorial optimization, namely finding an optimal traversal

path between cells. In other words, even this approximate approach requires solving the prob-

lem of pseudotime inference, which produces a one-dimensional ordering of cells [170]. How-

ever, unlike standard pseudotime inference, which describes a set of purely phenomenological

relationships informed by proximity between cell expression states, the current theoretical

framework endows the solution with a concrete biological interpretation, which is informed

by a specific microscopic model of transcription.

The trajectory inference literature treats this class of problems by graph traversal algo-

rithms, generally by constructing a minimum spanning tree or an optimal traversal on the

clusters or individual cells [14, 139]. Under fairly severe modeling assumptions, which gener-

ally rely on error isotropy, the optimal traversal of cell states reduces to the traveling salesman

problem (TSP) via the Hamiltonian path problem with some minor differences [132, 171,

172]. The current approach is considerably more complicated, because the weights between

the “nodes”, i.e., the observed cells, cannot be generally written down in closed form, and

require optimization for every σ.

Nevertheless, the specific form of the required combinatorial optimization has several use-

ful implications for inference. It is possible to subsample or filter the data to obtain rough esti-

mates of the parameters by sampling a subset of genes. This facilitates the estimation of θG,

which can be reused for an entire dataset. If only a fraction of genes are systematically modu-

lated across a trajectory, technical noise parameters within θG can be estimated from the far

more easily tractable fits to the stationary genes. Furthermore, sampling a subset of cells

enables the construction of approximate σ and estimation of θj. The validity of such approxi-

mations can be assessed with relatively simple controls. For example, if a best-fit “trajectory”

over cells σ is as good as a random or inverted permutation, the transient model is likely over-

fit. Finally, existing trajectory inference methods can be exploited to obtain an ordering σ for
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the purpose of testing whether it can give results consistent with the stochastic model by calcu-

lating the optimal parameters in Eq 27, plugging them into the appropriate CME, and compar-

ing the process occupation measure to the true molecule distributions.

It is plausible that many standard trajectory inference methods can be represented as

approximations to the exact solution under particular assumptions about the form of biologi-

cal model and priors imposed on the trajectory structure. However, a complete discussion of

the trajectory inference field is beyond the scope of this paper. Instead, we restrict ourselves to

discussing how existing velocity methods, as well as certain clustering algorithms, can be rep-

resented as special cases of the exact solution in Eq 23.

Clustering as a special case

First, consider the ergodic case of f on [0, T] with T!1, and suppose there are K cell types at

equilibrium. These cell types are distinguished by gene-specific parameter vectors y
k
j , k = 1,

. . ., K. Assume only a single RNA species per gene exists, and all genes are independently

expressed in a single cell type, without yet imposing a specific biological model. This yields the

likelihood

LðY; DiÞ ¼

Z Y

j

PðDij; yjÞdf ¼
X

k

PðkÞ
Y

j

PðDij; y
k
j Þ; ð29Þ

where PðDij; yjÞ is the probability of observing the data Dij and P(k) 2 θG is the probability of

cell i being in cell type k. The process time t is no longer necessary, because all cell types are sta-

tionary: the likelihoods are evaluated at the ergodic limit t =1. Eq 29 amounts to saying that

the likelihood of a cell’s observation can be represented by using the law of total probability

and conditioning on the cell type:

PðDi;YÞ ¼
X

k

PðkÞPðDi; y
k
Þ ¼

X

k

PðkÞ
Y

j

PðDij; y
k
j Þ: ð30Þ

To optimize this likelihood, we need to specify PðDij; yjÞ, which is informed by the biophys-

ics of transcription and mathematical tractability. The log-normal distribution is particularly

common: if we treat log-counts lnD, the law of PðlnDj; yjÞ is Gaussian. The lognormal distri-

bution can emerge from several hypothesis: through a common, if ad hoc approximation to

the gamma distribution which emerges from the mesoscopic limit of the CME [147], from the

exact solution of a deterministic, macroscopic model with log-normally distributed transcrip-

tional rates [173], and by mere assertion that the negative binomial distribution is similar to

the lognormal distribution, without further discussion [172].

The lognormal approximation implies that each “cell type” is essentially a high-dimensional

normal distribution in logarithmic state space. This induces a set of gene- and cluster-specific

log-means mk
j , log-standard deviations skj , and a cluster assignment vector σ, such that σi 2 {1,

. . ., K}. The problem of characterizing cell types, i.e., fitting P(k), μk, and sk, and providing an

optimal point estimate of σ, under this model is equivalent to using the expectation-maximiza-

tion algorithm to fit a Gaussian mixture model to the logarithmic data [174]. However, some

caveats deserve mention. The model choice requires careful consideration. The log-normal

heuristic is incoherent with the standard velocity model, which tends to a normal distribution

with equal mean and variance in the continuous limit. Furthermore, although the Gaussian

mixture model formulation can be justified as an approximation of a particular class of models,

it is unlikely that this approximation holds generally.
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For completeness, we note that the standard alternative to Gaussian mixture model cluster-

ing is community detection based on a graph constructed by defining a neighborhood crite-

rion among cell vectors [37]. However, it has not yet been shown that such an approach can be

afforded any well-defined probabilistic meaning. The literature contains numerous assertions

that a meaningful Markovian transition probability matrix can be defined on observed cell

states [1, 9, 10, 24, 140]. However, the constructed Markov chains have not been demonstrated

to possess any particular relationship to an actual biological process (Section C in S1 Text).

The ‘deterministic’ velocyto model as a special case

Strictly speaking, we only need to solve Eq 23 if we want to exploit useful properties of likeli-

hood landscapes and estimators. However, if we are willing to forgo these advantages, we can

use a moment-based estimate.

The linearity of the occupation measure can be used to compute summary statistics. For

example, we can treat the RNA velocity model defined in Eq 1, with μu(t) and μs(t) giving the

instantaneous process averages. The following relations hold at each instant t and over the

entire trajectory:

dmsðtÞ
dt

¼ bmuðtÞ � gmsðtÞ;

Z
dmsðtÞ
dt

df ¼ b

Z

muðtÞdf � g
Z

msðtÞdf :

ð31Þ

Each species’ mean occupation measure μ can be related to the instantaneous mean μ(t):

m ¼
X1

x¼0

xPðxÞ ¼
X1

x¼0

x
Z

Pðx; tÞdf

¼
X1

x¼0

Z

xPðx; tÞdf ¼
Z  

X1

x¼0

xPðx; tÞ

!

df

¼

Z

mðtÞdf :

ð32Þ

This implies the following identity:

Z
dmsðtÞ
dt

df ¼ bmu � gms; ð33Þ

which holds regardless of the transcriptional dynamics encoded in α(t).
The identity formalizes the moment-based approximation to the biological parameters: if

the left-hand side (the net velocity of the process) is sufficiently close to zero, the right-hand

side gives an estimate for γ/β. Conversely, if this condition is violated, a naïve fit based on the

moments (equivalently, a least-squares fit with zero intercept) will be biased by transient con-

tributions, motivating the use of the extrema fitting procedure (as in Fig 2 in SN2 of [1]).

We can investigate the behavior of the net velocity in a simple model system. Suppose β = 1,

df = T−1dt, and α is piecewise constant. We define αk, with k 2 {1, . . ., K}, constant on each

interval Ik 2 [τk−1, τk]; the bounds are τ0 ≔ 0 and τK≔ T. We define the length of an interval
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as Δk = τk − τk−1. The following equations hold for every interval:

muðtÞ ¼ akð1 � e� tÞ þ u0e� t;

msðtÞ ¼
e� gt

gðg � 1Þ

�

akðg � 1Þegt � akge
ðg� 1Þt þ ak þ ðg � 1Þgs0 þ gu0ðe

ðg� 1Þt � 1Þ

�

;

Z

Ik

dmsðtÞ
dt

df ¼
s0

Dk
e� gDk � 1
� �

þ
1

Dkgðg � 1Þ
gðai½1 � e� Dk � þ u0½e

� Dk � e� gDk �Þ þ aiðe
� gDk � 1Þ

� �
:

ð34Þ

In each interval Ik, the integral approaches zero as Δk grows. This result has a qualitative

interpretation: as interval duration grows, the process settles into its ergodic equilibrium

attractor, and that attractor provides an effective estimator of γ. On the other hand, if the inter-

val is short-lived relative to mRNA lifetime, the integral is dominated by the initial condition,

and the system is largely out of equilibrium.

In practice, this means that the degradation rate is identifiable through moments only if the

lifetimes of the mRNA species are short relative to the interval lengths, i.e., the net velocity is

low enough. On the other hand, if the lifetimes are too short, the transient regimes are sparse

and steady states are approached rapidly, giving no information about dynamics (and reducing

the problem to the formulation in Eq 29). The quantile fit procedure is simply a heuristic

method to winnow the data for near-equilibrium populations under the informal prior that

these populations are present in the data. Unfortunately, this approach is subject to the usual

pitfall of moment-based methods: if the prior is wrong, there is no easy way to identify its

failure.

We have omitted the discussion of normalization and imputation, as they are not amenable

to analysis. However, their impact can be evaluated by generating data from the model and

processing it with the velocyto workflow. The intuition outlined above concords with our sim-

ulations: in Fig 9e, we fit the simple model introduced in “Count processing” under “Prospects

and solutions” using three different methods. In i., we use simple linear regression on the raw

data; in ii. and iii. we apply a quantile fit to normalized and imputed data respectively. In spite

of the distortions in the overall phase portrait (Fig 9c), the extrema are stable enough under

imputation to generate fairly reliable estimates of γ/β, up to roughly an order of magnitude,

whereas the ratio of averages is significantly less precise. This is consistent with the perfor-

mance reported in Fig 5 (as in the k = 0 case, which uses linear regression on the entire

dataset).

In light of the formalization, the fitting procedure is contingent rather than stable, necessi-

tating careful study of limitations. Using the average of the full occupation measure is contin-

gent on the net velocity being near zero (Δk sufficiently large for all k). Using the average of the

extrema is contingent on those extrema having equilibrated (Δk sufficiently large for k with

largest and smallest αk). Furthermore, it provides no information about the relative timescales

βj of different genes.

The “stochastic” model, which was introduced in scVelo, is practically identical, but exploits

additional information from the second moments of the extremal observations. This approach

inherits the same issues, such as the reliance on the existence of extrema, and omission of βj,
and introduces new ones, such as the assumption of identical error terms for first and second

moments and the inference of error covariance parameters. In principle, further investigation

may characterize whether these issues improve or worsen moment-based inference. However,
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we suggest that these details are marginal compared to the more fundamental limitations, as

well as the discrepancies observed in simulation (Fig 9diii and 9div).

The ‘dynamical’ scVelo model as a special case

The modeling approach we have presented can be used to contextualize part of the “dynam-

ical” algorithm proposed in scVelo. First, assume that cell type transition times τjk 2 θj, i.e., no

global parameters shared by multiple genes exist (θG = ⌀). This reduces Eq 23 to the following

form:

LðY; DÞ ¼
Y

i

Z Y

j

PðDij; t; yjÞdf ðtÞ: ð35Þ

Omitting the uncertainty represented in the integral by assigning a time ti to each cell we

obtain:

LðY; DÞ �
Y

i

Y

j

PðDij; ti; yjÞ: ð36Þ

Since time assignments ti are now deterministic, rather than probabilistic, likelihood land-

scapes become inaccessible. In principle, finding the maximum of Eq 36 can still provide a

point estimate of Θ, although this may not be practical: now, f has to be inferred empirically by

fitting ti. Applying the logarithm, we get

lnLðY; DÞ �
X

i

X

j

lnPðDij; ti; yjÞ ¼
X

j

X

i

lnPðDij; ti; yjÞ: ð37Þ

Using a Gaussian kernel centered on μu and μs, with standard deviation sj for both species,

as an approximation to the likelihood, we can interpret P as a probability density function:

PðDij; ti; yjÞ ¼
1

2ps2
j

exp �
1

2s2
j

ðDu
ij � muðti; yjÞÞ

2
þ ðDs

ij � msðti; yjÞÞ
2

h i
 !

: ð38Þ

The question of what this kernel means, i.e., what biophysical phenomena it models, is sub-

tler than it appears. On the one hand, there are certain regimes where stochastic spliced and

unspliced counts are approximately distributed about the true averages μu and μs according to

normal laws, such as in the high-concentration limit of certain jump processes explored by

Van Kampen [144]. However, this limit yields time-dependent and concentration-dependent

sj, incompatible with Eq 38 and the “stochastic” model described in the scVelo manuscript.

Instead, this form presupposes μu and μs are the true deterministic amounts of mRNA, cor-

rupted by Gaussian isotropic error without an explicitly named source. This model exemplifies

the signal processing paradigm, which attempts to identify an underlying “signal” by regress-

ing out incidental Gaussian “noise,” with various levels of biological justification [175–177].

For a particular gene, the log-likelihood of Eq 38 takes the following form:

lnPðDij; ti; yjÞ ¼ � ln 2ps2
j �

1

2s2
j

ðDu
ij � muðti; yjÞÞ

2
þ ðDs

ij � msðti; yjÞÞ
2

h i

¼ � ln 2ps2
j �

1

2s2
j

k Dij � mðti; yjÞ k
2;

ð39Þ

i.e., we can use a simple two-dimensional Euclidean norm to estimate the log-likelihood of the

observation. For M independent observations of gene j with identical parameters θj but distinct
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times ti, we find that

lnPðDj; yjÞ ¼
XM

i¼1

lnPðDij; ti; yjÞ

¼ � M ln 2ps2
j �

1

2s2
j

XM

i¼1

k Dij � mðti; yjÞ k
2:

ð40Þ

The optimum of this function is invariant under scaling, so we can work with the normal-

ized negative log-likelihood:

�
1

M
lnPðDj; yjÞ ¼ ‘ðyj; DjÞ ¼ ln 2ps2

j þ
1

2s2
j M

XM

i¼1

k Dij � mðti; yjÞ k
2: ð41Þ

This contradicts Equations 7–8 of [3], which use a univariate, rather than bivariate, Gauss-

ian error term. On the other hand, the actual implementation appears to use separate sj for the

two species, computed from the extremal points, and combine them in an ad hoc fashion.

In principle, solving Eq 37 with the likelihood indicated in 39, i.e., iteratively inferring ti
and θj, yields a coherent maximum likelihood estimate of the system parameters. However, the

method goes one step further, essentially taking Eq 37 and rewriting it in terms of the negative

log-likelihood:

�
1

M
lnLðY; DÞ ¼ ‘ðY; DÞ¼?

X

j

‘ðyj; DjÞ: ð42Þ

This approach posits that likelihood optimization over N genes be split into N independent

problems, which can be parallelized. However, it is incorrect, as the times ti are incoherent

between different genes j, and the results are uninterpretable. This issue has been tacitly

acknowledged, e.g., in a post hoc approach adopted to make times “agree” in scVelo [3] and a

similar proposal by Li et al. [24], although without any rigorous justification.

The actual implementation does not use the raw data Dij. Rather, it uses a normalized and

imputed version of the data. Again, the effect of these transformations is challenging to charac-

terize analytically. However, the simulations shown in Fig 9c and 9d and Fig E in S1 Text sug-

gest that there is no compelling reason to believe the imputed data reliably estimate the

underlying averages μu and μs for a stochastic system out of equilibrium. Furthermore, the

noise-corrupted deterministic model used in the likelihood computation is biologically

implausible.

Prospects for inferential procedures

In “Occupation measures provide a theoretical framework for scRNA-seq,” we have presented

a framework for the description of transient stochastic systems. This framework is versatile

enough to describe a range of problems in single-cell sequencing, from clustering to trajectory

inference. The methods presented in previous RNA velocity publications are best understood

as approximations to exact solutions under fairly strong, informal priors about the process bio-

physics. The velocyto algorithm uses a moment approximation, which assumes the system has

effectively equilibrated. The scVelo algorithm uses a Gaussian-perturbed ODE model, which

assumes the mRNA counts do not have any intrinsic noise, only isotropic measurement noise.

The latter yields considerably more information from the data, but imposes considerably

stronger assumptions, making the obtained information essentially uninterpretable.
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However, our formalization immediately presents options for likelihood-based parameter

estimation. We introduced an approximate method that does maintain cell identities and

motivated it using the properties of order statistics. This method is challenging because it

requires a fairly involved combinatorial optimization. However, it does lend itself to develop-

ing further approximations, and provides routes for falsifying hypotheses. We believe that

such biophysical models, amenable to approximation and testing, are crucial for the future

interpretation of dynamics predictions from sequencing data.

Embedding

To complement the internal controls discussed in “Embedding” under “Logic and methodol-

ogy,” we performed a set of comparisons with data simulated with no unknown sources of

noise. We embedded a simulation of the system introduced in “Count processing” under

“Prospects and solutions” and illustrated in Fig 9 into a two-dimensional principal component

space. The results are shown in Fig 10. Even the ground truth velocity arrows (Fig 10a) only

retained a small amount of information after the transition from 100 dimensions to two. This

experiment provides us with the answer to the second question in “RNA velocity biophysics”:

even if we have “true” velocity directions, they only contain a limited amount of highly local

information. As expected from the fair performance in Fig 9eiii, the inferred linear embedding

Fig 10. Performance of cell and velocity embeddings on simulated data, compared to ground truth velocity directions. a. Linear PCA embedding

of ground truth velocities. b. Linear PCA embedding of inferred velocities. c. Nonlinear PCA embedding of inferred velocities. d. Nonlinear, Boolean

PCA embedding of inferred velocities. e. Embedding of ground truth principal curve; trajectory directions displayed to guide the eye. f. Distribution of

cell-specific angle deviations relative to ground truth velocity directions.

https://doi.org/10.1371/journal.pcbi.1010492.g010
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(Fig 10b) was globally and locally (Fig 10f) faithful: the model precisely matches the assump-

tions of the parameter inference workflow. However, the estimates were rapidly distorted

upon applying the nonlinear embedding procedure (Fig 10c), rotating many cell-specific

directions and suggesting transitions from the green reverting population to the light blue per-

turbed population, whereas, the true trajectory is from light blue to green. The results of the

Boolean procedure were slightly more faithful to the linear projection (Fig 10f) but otherwise

qualitatively similar (Fig 10d). This is the method’s best-case performance.

Even in the PCA projection, the performance of the nonlinear velocity embedding leaves

much to be desired: the procedure is biophysically uninterpretable, discards the vast majority

of information, and risks failure when model assumptions are violated. For example, it can

generate false positive velocity fields when the ground truth is completely static (Fig F in S1

Text, as simulated using the procedure under “Steady-state bursty model”); even directly

inspecting the phase plots may be insufficient diagnose to this problem (e.g., compare Fig G in

S1 Text to Extended Data Figs 6c and 7c of [1] and Figs 2c and 3g of [3]).

The nonlinear, non-deterministic embeddings ubiquitous in the analysis of scRNA-seq

data degrade the performance further. In Fig 11, we embedded a system with three potential

terminal states, generated by the simulation procedure described in “Transient constitutive

model: Multipotent differentiation.” Cell projection into PCA appeared to conflate two of the

branches; the nonlinear embeddings effaced causal relationships altogether. As before, the

arrows were broadly coherent whether or not they included quantitative information. Finally,

as described under “Background,” the embedding procedure has previously demonstrated cat-

astrophic failure to capture known dynamics in biological datasets [5, 9, 10, 21, 29]. Therefore,

although embeddings are qualitatively appealing, they are unstable, challenging to validate,

and harbor intrinsic global- and local-scale pitfalls that arise even in simple scenarios.

Nevertheless, some human-interpretable visualization is desirable. In light of the frustrating

dearth of theory and interpretability for the commonly used embedding procedures, we note

that the stochastic formulation we have presented can be used to speculate about more rigor-

ous and stable embedding methods that would use rather than discard quantitative informa-

tion. Instead of individual cells, which inevitably exhibit noise, we suggest constructing and

emphasizing the underlying graph governing parameter values (as in, e.g., Fig 1F of [140]).

Alternatively, since the current low-dimensional embeddings are used to support claims about

presence of a priori human-interpretable features such as equilibrium cell types, limit cycles,

and transient differentiation trajectories, it may be better to fit a hierarchical model consisting

of those features and reporting the best-fit model. For example, if the goal is to cluster data,

then it makes sense to fit Eq 29. On the other hand, if the goal is an elucidation of tree-like dif-

ferentiation trajectories, it may be better to incrementally grow a trajectory mixture model

until its complexity outweighs its likelihood per a statistical information criterion. Formally,

this would correspond to optimizing the likelihood of samples from analogs of Eq 20. If a

method has succeeded in inferring the underlying topology and dynamics, a meaningful and

well-defined principal curve induced by the underlying mechanism, as shown in Fig 10e and

the PCA in Fig 11, could be plotted.

Results & discussion

Summary

The two main steps in RNA velocity, namely the model estimation and embedding, originate

from different approaches to data analysis that can be at odds with each other. The count pro-

cessing and inference steps, which comprise the model estimation procedure, serve to identify

parameters for a transcription model under some fairly strong assumptions, such as
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constitutive production and approximately Gaussian noise. This procedure can be treated as

an informal approximation of a method to solve a system implied by the simulation design in

the original publication. However, as we have seen, this system abstracts away many aspects of

the technical artifacts present in single-cell RNA sequencing, and the transcriptional dynamics

that drive the molecular biology of cells. The embedding processes used, which are entirely ad
hoc, discard nearly all of the quantitative information, and can occasionally fail. Particularly

Fig 11. Performance of cell and velocity embeddings on simulated data, compared to ground truth principal curve. Top: PCA embedding with

linear baseline and nonlinear aggregated velocity directions, as well as ground truth principal curve; trajectory directions displayed to guide the eye.

Bottom: UMAP and t-SNE embeddings with nonlinear velocity projections.

https://doi.org/10.1371/journal.pcbi.1010492.g011
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problematic is that the failures, when they occur, are difficult to identify. Moreover, failure may

result from many problems, including overlaps in the embedding and erroneous clustering.

Such problems may be mitigated or exacerbated by tuning hyperparameters. These challenges,

contradictions, and the assumptions inherent in the many choices that are made for each of the

steps, have not been previously characterized in full detail, and they add up to a mixed picture.

On the one hand, at least in some simulated cases, the RNA velocity method does work, and the

latent signal is strong enough to capture broad trends. On the other hand, catastrophic failure

can lurk at any step of the velocity workflow, and there are no theorems to alert users to failure

modes, or to diagnose or delimit the extent of failures. Instability and reliance on user-tuned

hyperparameters are not grounds for abandoning the method; the same problems crop up with

kernel density estimation, k-means clustering, histogram binning, time series smoothing, and

many other analysis tasks. However, the tendency to compensate for lack of theorems with

more ad hoc filters and more sophisticated modeling that requires optimization of neighbor-

hood sizes, normalization procedures, and thresholds only exacerbates the problems.

The mathematical foundations of stochastic biophysics have been studied for several

decades; they are well-understood, and amenable to generalizations and approximations. The

chemical master equation allows for the elucidation of technical noise [130], and the quantita-

tive exploration of transcriptional regulation [147] and splicing [81]. As discussed in the sec-

tion “Prospects and solutions,” the same modeling framework can be used to describe general

classes of differentiation processes. Rather than starting with heuristics and then seeking to

unravel their meaning, in this approach one begins by motivating, defining, and solving a gen-

eral system, and only subsequently deriving approximations and statistical summaries. These

can range from simple moment expressions to low-dimensional principal curves as illustrated

in Fig 11. Furthermore, with such an approach, one can leverage the machinery of Bayesian

inference to directly fit full distributions, with the advantages of interpretability and statistical

robustness. This highlights that the primary challenge in RNA velocity is not its extension via

additional heuristics, but rather the development of tractable inference procedures.

Proposals

We conclude with a summary of the main steps of an RNA velocity workflow, along with

some insights and proposals that emerged from our work:

Pre-processing. As demonstrated in “Pre-processing” under “Logic and methodology,”

the specific choice of processing software does produce discrepancies in results, although the

small, and largely arbitrary, variations in assignment rules do not provide compelling reasons

to select one method over another, pending the development of more detailed splicing net-

work definitions. There are, however, substantial processing time differences [27, 30] that can

affect reproducibility of results, leading us to prefer fast pseudoalignment methods.

Filtering. This step is necessary for tractability, since full spliced and unspliced matrices

can be challenging to analyze. While caution must be applied in selecting thresholding criteria,

we find no reason to deviate from the standards typically applied in RNA velocity analyses.

Model definition. RNA velocity methods have been inspired by stochastic models of tran-

scription. However there has not been a strong link between the models and the implemented

methods, which are based on loose analogies and heuristics. We believe that explicit construc-

tion and discussion of biophysical models is imperative when developing RNA velocity meth-

ods, so that results can be meaningful and interpretable. In particular, we caution against the

class of continuous and constitutive models implemented in velocity packages thus far; as dis-

cussed above, bursty models are tractable [81] and substantially more plausible according to

live-cell data.
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Normalization and imputation: The normalization and averaging of data to produce con-

tinuous curves is intended to remove cell size effects and to denoise the data. We found several

problems with this approach. Firstly, this assertion is not motivated by theory, and our theoret-

ical concerns in Section B in S1 Text suggest that model-agnostic “correction” is inappropriate.

Secondly, as discussed in “Count processing” under “Prospects and solutions” and illustrated

in Fig 9, the imputed data do not accurately recapitulate the supposed ground truth even in the

simplest case. Finally, imputation prevents the most natural interpretation of counts as discrete

random variables. Based on Kim et al. [110] and [130], we advise against normalization; it is

more meaningful and accurate to apply parameterized models of extrinsic noise and gene–

gene coupling. The interpretability afforded by discrete models outweighs the potential bene-

fits of ad hoc normalization. Furthermore, we strongly recommend against imputation more

generally: studies such as [68, 110, 178] have revealed distortions, and the approach possesses

fundamental instabilities (as in Fig 5).

Inference. From a probabilistic perspective, current inference procedures are problem-

atic. Instead of currently implemented procedures, it is more appropriate to build and solve

mechanistic, fully stochastic models that allow for fitting copy numbers. This can be computa-

tionally facilitated by a data selection process coherent with the “marker gene” paradigm: if a

gene does not need to be fit to a transient model, one should not try to fit one. Thus, we recom-

mend fitting ergodic distributions to genes that are not meaningfully modulated across the

dataset, ergodic mixture distributions to (fewer) genes that vary across disjoint cell types, and

occupation measures to (even fewer) genes that exhibit transient behaviors. Although joint

inference is relatively challenging, we believe that a formulation that can exploit existing com-

binatorial optimization frameworks may be a productive avenue for exploration.

Embedding. RNA velocity embedding procedures inherit problems accrued with the

steps discussed above. However, even in an idealized situation where an interpretable and

well-fit model is used, current embedding practices are counter-productive for interpreting

the data, as discussed with reference to controls in subsections named “Embedding” under

“Logic and methodology” and “Prospects and solutions.” Despite the implication of causal

relationships between cells encoded by cell–cell transition probabilities, embedding proce-

dures are currently ad hoc. Moreover, it has been shown that current methods distort local

neighborhoods and the global topology in an unpredictable manner [122, 124]. Directed

graphs over the cells are attractive, but do not have a coherent interpretation relative to the

underlying biophysics (Section C in S1 Text). Instead of such methods, we recommend

directly working with the latent process governing the transcriptional variation. Nevertheless,

two-dimensional visuals may be useful for summarizing the raw data; using simulations, we

demonstrate an interpretable method for embedding a true principal curve in deterministic

principal component space in “Embedding” under “Prospects and solutions.”

Methods and data

Pre-processing concordance

There is no well-defined “ground truth” for mRNA counts in arbitrary datasets. However, to

obtain a qualitative understanding of potential pitfalls, we performed controlled experiments

to analyze the discrepancies between outputs produced by popular software implementations.

The concordance analysis was heavily inspired by the benchmarking of Soneson et al. [27];

however, our goals and scope differ. First, we sought to analyze the reproducibility of the find-

ings across several datasets; the original analysis only treated a single dataset generated using

the 10x v2 chemistry. To this end, we analyzed ten datasets that used the 10x Genomics v2 and

v3 protocols. Second, we sought to focus on the processing workflows most relevant to casual

PLOS COMPUTATIONAL BIOLOGY RNA velocity unraveled

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010492 September 12, 2022 41 / 55

https://doi.org/10.1371/journal.pcbi.1010492


use. The original analysis examined thirteen quantification workflows, whereas we examined

three: velocyto, kallisto|bustools, and salmon. These were run with default settings. We have

made available all the scripts and loom files generated by the workflows (“Data availability”).

We obtained ten datasets generated with the 10x Genomics scRNA-seq platform (Table 1).

Two were released as part of a study by Desai et al. and used v2 chemistry [179]. Eight were

released by 10x Genomics and used v3 chemistry. The dataset metadata are outlined under

“Data availability.”

To implement the velocyto workflow, we ran CellRanger on the datasets using human and

mouse reference genomes, pre-built by 10x Genomics (GRCh38 and mm10 2020-A). We then

processed the aligned outputs using the run10x command provided in velocyto.

To implement the kallisto|bustools workflow, we ran the ref command on the pre-built

genomes to build references, using the standard --workflow lamanno option. We then

processed the raw data with the count command, passing in the generated reference and

using the --workflow lamanno option.

To implement the salmon alevin-fry workflow, we ran the alevin-fry velocity workflow doc-

umented at https://combine-lab.github.io/alevin-fry-tutorials/2021/alevin-fry-velocity/, from

the initial reference construction to the final anndata output. This output was converted

directly to loom files for the comparative analysis. We used the same pre-built 10x Genomics

reference genomes (GRCh38 and mm10 2020-A) as above.

Simulation

Transient constitutive model: Perturbation and reversion. To generate Fig 9, we simu-

lated data from the constitutive transcription model with the “cell type” structure ABA. In this

model all cells start out in state A at t = 0, switch to state B at t = τ1, and revert back to state A
at t = τ2. We generated 2000 cells and 100 genes. As shown in Fig 9a and formalized in Eq 21,

we defined three time periods corresponding to each cell type. The simulation time horizon

was set to T = 10, with synchronized transition times τ1 = 3 and τ2 = 7. The gene-specific tran-

scription rates α1 and α2 were generated from a lognormal distribution with log-mean 0 and

log-standard deviation 1. The gene-specific splicing rates β were generated from a lognormal

distribution with log-mean 1 and log-standard deviation 0.5. The gene-specific degradation

rates γ were generated from a lognormal distribution with log-mean 0.5 and log-standard devi-

ation 0.25, to reflect the intuition that splicing is somewhat faster than degradation. Sampling

times were generated from a continuous uniform random variable on the interval [0, T].

The solutions in Fig 9b were computed from an approximation to the generating function.

We did not account for the initial condition, which suffices because the transcription rate on

Table 1. The datasets used to compare performance of molecule quantification software.

Dataset ID Description Biology Source

desai_dmso Embryonic stem cells, control E14 mouse [179]

desai_idu Embryonic stem cells, with IdU disruption E14 mouse [179]

pbmc_1k_v3 Peripheral blood mononuclear cells Healthy human 10x Genomics

pbmc_10k_v3 Peripheral blood mononuclear cells Healthy human 10x Genomics

heart_1k_v3 Heart cells E18 mouse 10x Genomics

heart_10k_v3 Heart cells E18 mouse 10x Genomics

neuron_1k_v3 Brain cells E18 mouse 10x Genomics

neuron_10k_v3 Brain cells E18 mouse 10x Genomics

brain_5k_v3 Brain cells E18 mouse 10x Genomics

brain_nuc_5k_v3 Brain nuclei E18 mouse 10x Genomics

https://doi.org/10.1371/journal.pcbi.1010492.t001
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(0, τ1) is low. The true values of μu and μs were computed from the solutions to the governing

ordinary differential equation. The true values of s2
u and s2

s were set to μu and μs, respectively,

as the mean of a Poisson distribution is identical to its variance. To generate Fig 10, we simu-

lated data from the same model, with 2000 cells and 100 genes.

Transient constitutive model: Multipotent differentiation. To generate Fig 11, we simu-

lated data from the constitutive transcription model with the “cell type” structure AB(C/D/E).

In this model all cells start out in state A at t = 0, switch to state B at t = τ1, and then transition

to one of the terminal states C, D, or E at t = τ2. We generated 2000 cells for 100 genes. The

gene parameter and observation time distributions, as well as switching times, were identical

to those reported in “Transient constitutive model: Perturbation and reversion.” Each cell fate

was assigned randomly, with equal probabilities of 1/3. We used an identical procedure for Fig

A in S1 Text.

To generate Fig 8, and demonstrate qualitative differences between process time and

expression-based pseudotime, we followed the same simulation as described above for the

structure AB(C/D/E). Specifically we limited the multipotent differentiation to a bifurcation

(AB(C/D)) where cells start in state A at t = 0, switch to state B at t = τ1, and then transition to

one of the terminal states C or D at t = τ2. From the simulated, raw counts, we calculated the

ground truth (spliced) average μs and generated the plotted expression values for the 2000 cells

by adding Gaussian jitter/noise to these deterministic averages.

Steady-state bursty model. To generate Fig F and G in S1 Text, we generated synthetic

data assuming that RNA transcription is at an equilibrium, but has heterogeneity due to differ-

ent cell types. The bursty transcription model was implemented using the PGF schema out-

lined in its derivation [106]. We specified parameters for 100 genes, with cell-independent

burst sizes b and splicing rates β. Burst sizes b were generated from a lognormal distribution

with log-mean 0.3 and log-standard deviation 0.8, clipped to stay in the range [0.05, 25]. The

splicing rates β were set to 1 with no loss of generality. We simulated 10 cell types distinguished

by average burst frequencies α and degradation rates γ, with 300 cells per cell type.

Average gene-specific log-degradation rates hγi were generated from a normal distribution

with mean −0.3 and log-standard deviation 0.3, to reflect the intuition that splicing is some-

what faster than degradation [1]. Gene- and cell type-specific degradation rates γ were gener-

ated from a lognormal distribution with log-mean hγi and log-standard deviation 0.1, clipped

to stay in the range [0.08, 4], to reflect the intuition that extrinsic noise in degradation rates is

low relative to that in transcription rates.

Burst frequencies were generated from a lognormal distribution with log-mean −1 and log-

standard deviation 0.5, clipped to stay in the range [0.005, 1], to encode the intuition that tran-

scriptional activity is relatively rare. Analytical means μu, μs and standard deviations σu, σs
were computed for spliced and unspliced distributions. Histograms were generated up to μ
+ 5σ in each direction, clipped to be no lower than 10. To keep molecule counts realistically

low and the histograms tractable, we rejected and regenerated parameter sets that produced

(μu + 5σu) × (μs + 5σs)> 1.5 × 104. To generate observations, we sampled directly from the

histograms.

The phase plots displayed in Fig G in S1 Text were manually selected after sorting for simu-

lated genes with the highest ∑iΔsi and −∑iΔsi.

Filtering

In Figs 5–7, we analyzed the forebrain dataset. To pre-process it, we implemented a procedure

largely identical to that used to generate Fig 4a of the original publication [1]. We performed

several rounds of filtering:
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For the forebrain dataset, we used the following sequence of thresholds:

1. Discarding cells in the 0.5th percentile of total unspliced counts.

2. Discarding genes with fewer than 40 spliced counts, or expressed in fewer than 30 cells.

3. Selecting the top 2000 genes by coefficient of variation vs. mean, as implemented in the

velocyto function score_cv_vs_mean, with maximum expression average of 35 (based

on spliced counts).

In all other figures, we analyzed simulated data and omitted filtering, as all genes a priori
had the correct dynamics.

Normalization

After importing forebrain data, we normalized and log-transformed spliced and unspliced

counts using the default schema implemented in the velocyto function normalize:

sij  

1

M

X

i;j
sij

P
jsij

uij  

1

M

X

i;j
uij

P
juij

;

ð43Þ

i.e., the “cell sizes” or total counts of spliced and unspliced molecules were separately normal-

ized so each cell’s total was set to the mean over the dataset.

For the simulated data, we did not use normalization. This approach was inconsistent with

previous simulated benchmarks [1], but we had three reasons for omitting it. First, as dis-

cussed in “Count processing” under “Prospects and solutions,” normalization purports to

“regress out” systematic technical and biological effects. We did not include these phenomena

in the model. Second, the ground truth principal curves we constructed for the analyses in the

section “Prospects and solutions” (e.g., in Fig 10e) relied on evaluating the true gene-specific

μs(t) on a grid over [0, T], then log-transforming and projecting them to the two-dimensional

principal component space. This was straightforward to do when the PC space was computed

from raw counts, but more challenging otherwise. Finally, our omission made the velocity

embedding procedure coherent: with the PC projection based on raw counts, we used the

same underlying space to impute counts and extrapolate velocities.

Embedding construction

For the forebrain dataset, we used size- and log-normalized spliced counts to construct the

principal component projection. The UMAP and t-SNE embeddings were calculated from the

top 25 principal components (as illustrated in Fig 6). For the simulated data, we used the log-

normalized spliced counts to compute the same embeddings.

Imputation

Prior to fitting the models, data were smoothed by pooling across 50 nearest neighbors in the

25-dimensional principal component space defined in “Embedding construction,” as quanti-

fied by Euclidean distance. To implement this step, we used the default parameters of the velo-
cyto function knn_imputation. The choice of neighborhood space was arbitrary, and we

imposed it for consistency. The original report used an adaptive principal component space
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based on the fraction of explained variance, whereas scVelo uses a default of 30 principal com-

ponents. We observed no substantial difference in results between the adaptive and fixed

schema. For the forebrain dataset, we pooled the normalized counts. In case of the simulations,

we pooled the raw counts. In Fig 9 and Fig E in S1 Text, we deviated from this procedure to

investigate the impact and suitability of normalizing simulated data. The figures demonstrate

the respective effects of pooling the normalized and raw counts.

Inference and extrapolation

By default, the parameter γ/β was fit to the extrema of the imputed dataset: imputed unspliced

counts were regressed as a linear function of imputed spliced counts with an offset. The

extrema selection procedure used the defaults implemented in the velocyto function

fit_gammas.

In Fig 9e, we deviated from this procedure to investigate the suitability and stability of infer-

ence from pooled data. In Fig 9ei, we performed linear regression on the raw counts of the

entire dataset, whereas in Fig 9eii, we performed linear regression on the quantiles of the nor-

malized dataset. Finally, in the “Raw” or k = 0 cases illustrated in Fig 5, we performed linear

regression on the raw counts of the entire dataset to contrast with regression on the extrema.

The standard inference procedure produced two parameters per gene j: the slope, a putative

estimate of γ/β, and the intercept, which we denote as q. To compute the velocity of gene j in

cell i for the nonlinear velocity embedding, we used the following formula:

vij ¼ uij �
gj

bj
sij þ qj

 !

; ð44Þ

where u and s denote imputed quantities. To extrapolate the velocity and predict the spliced

abundance after a time interval Δt, we calculated Δsij = vijΔt. This time interval was set to 1, for

consistency with the velocyto implementation. The extrapolated value sij + Δsij does not appear

to be used in velocyto, as Δsij contains the directional information used in the nonlinear

embedding.

The schema described above is consistent with that of velocyto, but cannot be used to com-

pute linear velocity embeddings (as given in Eq 3). The initial condition (uij, sij) used for

extrapolation must be in the space used to build the PCA representation. Therefore, for linear

velocity embeddings, we used Eq 44 in the corresponding space: normalized counts for the

forebrain dataset and raw counts for simulated data.

However, if Δsij< 0, the naïve extrapolation sij + Δsij was not guaranteed to give a non-nega-

tive value that could be log- and PCA-transformed. In principle, we could have used an arbitrary

Δt, and clip any sij + Δsij< 0 to zero. However, this approach, though closer in spirit to velocyto,

would have risked extrapolating beyond the physical regime and could have introduced biases.

Instead, we chose an extrapolation time Δt� guaranteed to stay in the physical regime:

Dt� ¼ argmax
Dt

\

i;j

½sij þ vijDt > 0�

¼ mini;j

sij
jvijj

;

ð45Þ

where we filtered for vij< −10−6. Finally, we set Δsij to zero whenever sij< 10−6 and

vij< −10−6, to avoid extrapolation into the negative regime: this fairly rare case occurs due to

nonzero qj.
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Velocity embedding

For the nonlinear velocity embeddings, we used 150 embedding neighbors and the square-

root transformation by default. We deviated from this procedure in Fig D in S1 Text to investi-

gate the impact of transformation and neighborhood choices. We used the default hyperpara-

meter σ = 0.05 to calculate the softmax over directions to embedding neighbors (as described

on pp. 7–8 in SN1 of [1]). To implement the embeddings, we called the velocyto functions

estimate_transition_prob and calculate_embedding_shift, which auto-

matically correct for cell density. We did not use the neighborhood downsampling, randomi-

zation, or expression scaling options for the figures in this report; we observed no substantial

difference in results between these schema and our standard procedure. The “high-dimen-

sional space,” used to evaluate the displacements sq − si in Eq 4, was the matrix of imputed

spliced counts. The extrapolations Δsi were obtained from the procedure in “Inference and

extrapolation.”

For the linear velocity embeddings, we log- and PCA-transformed the matrix sij + vijΔt�,
with the timescale obtained by the procedure in Eq 45.

The “Boolean” schema for velocity embedding is qualitatively similar to the schema pro-

posed in the original publication; we previously proposed it to bypass the unit inconsistency

between different genes’ βj (and thus vectors vj) in the context of the protaccel package [4].

Instead of computing a correlation coefficient, we simply calculated the fraction of concordant

signs between the velocity and the displacements to neighbors. In the parlance of Eq 4:

rðsq � si;DsiÞ ¼
1

N

XN

j¼1

d signðsq;j � si;jÞ; signðDsi;jÞ
� �� �

wðsq � si;DsiÞ ¼
expðrðsq � si;DsiÞ=sÞ

Pk
q¼1

expðrðsq � si;DsiÞ=sÞ
;

ð46Þ

where δ is the Kronecker delta operating on inputs in {−1, 0, 1}.

We plotted cell-specific arrows for the linear baseline and aggregated the nonlinear velocity

arrows using a 20 × 20 grid. We used this convention to distinguish the embedding methods,

which are conceptually and quantitatively different, in plots that showed several velocity fields

at once (e.g., the PCA plot in Fig 7). The grid directions were computed using the velocyto
function calculate_grid_arrows, which applies a Gaussian kernel to average over the

cell-specific embedded velocities nearest the grid point. We used the default parameters for the

kernel, with 100 neighbors and a smoothing parameter of 0.5. We aggregated linear velocity

projections in Fig 10a and 10b. As the arrow scale did not appear to have a quantitative inter-

pretation, we set it manually to match the plot proportions.

Supporting information

S1 Text. Supplementary derivations and figures.

(PDF)
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41. Litviňuková M, Talavera-López C, Maatz H, Reichart D, Worth CL, Lindberg EL, et al. Cells of the adult

human heart. Nature. 2020; 588(7838):466–472. https://doi.org/10.1038/s41586-020-2797-4 PMID:

32971526

42. Han X, Zhou Z, Fei L, Sun H, Wang R, Chen Y, et al. Construction of a human cell landscape at single-

cell level. Nature. 2020; 581(7808):303–309. https://doi.org/10.1038/s41586-020-2157-4 PMID:

32214235

43. Yu L, Wei Y, Duan J, Schmitz DA, Sakurai M, Wang L, et al. Blastocyst-like structures generated from

human pluripotent stem cells. Nature. 2021; 591(7851):620–626. https://doi.org/10.1038/s41586-021-

03356-y PMID: 33731924

44. Bassez A, Vos H, Van Dyck L, Floris G, Arijs I, Desmedt C, et al. A single-cell map of intratumoral

changes during anti-PD1 treatment of patients with breast cancer. Nature Medicine. 2021; 27(5):820–

832. https://doi.org/10.1038/s41591-021-01323-8 PMID: 33958794

45. Jansky S, Sharma AK, Körber V, Quintero A, Toprak UH, Wecht EM, et al. Single-cell transcriptomic

analyses provide insights into the developmental origins of neuroblastoma. Nature Genetics. 2021; 53

(5):683–693. https://doi.org/10.1038/s41588-021-00806-1 PMID: 33767450

46. Couturier CP, Ayyadhury S, Le PU, Nadaf J, Monlong J, Riva G, et al. Single-cell RNA-seq reveals

that glioblastoma recapitulates a normal neurodevelopmental hierarchy. Nature Communications.

2020; 11(1):3406. https://doi.org/10.1038/s41467-020-17186-5 PMID: 32641768

47. Shah S, Takei Y, Zhou W, Lubeck E, Yun J, Eng CHL, et al. Dynamics and Spatial Genomics of the

Nascent Transcriptome by Intron seqFISH. Cell. 2018; 174(2):363–376.e16. https://doi.org/10.1016/j.

cell.2018.05.035 PMID: 29887381

48. Shah S, Lubeck E, Zhou W, Cai L. In Situ Transcription Profiling of Single Cells Reveals Spatial Orga-

nization of Cells in the Mouse Hippocampus. Neuron. 2016; 92(2):342–357. https://doi.org/10.1016/j.

neuron.2016.10.001 PMID: 27764670

49. Park J, Choi W, Tiesmeyer S, Long B, Borm LE, Garren E, et al. Cell segmentation-free inference of

cell types from in situ transcriptomics data. Nature Communications. 2021; 12(1):3545. https://doi.org/

10.1038/s41467-021-23807-4 PMID: 34112806

50. Samacoits A, Chouaib R, Safieddine A, Traboulsi AM, Ouyang W, Zimmer C, et al. A computational

framework to study sub-cellular RNA localization. Nature Communications. 2018; 9(1):4584. https://

doi.org/10.1038/s41467-018-06868-w PMID: 30389932

51. Kim JK, Kolodziejczyk AA, Ilicic T, Teichmann SA, Marioni JC. Characterizing noise structure in sin-

gle-cell RNA-seq distinguishes genuine from technical stochastic allelic expression. Nature Communi-

cations. 2015; 6(1):8687. https://doi.org/10.1038/ncomms9687 PMID: 26489834

52. Kim J, Marioni JC. Inferring the kinetics of stochastic gene expression from single-cell RNA-sequenc-

ing data. Genome Biology. 2013; 14:R7. https://doi.org/10.1186/gb-2013-14-1-r7 PMID: 23360624

53. Jiang R, Sun T, Song D, Li JJ. Statistics or biology: the zero-inflation controversy about scRNA-seq

data. Genome Biology. 2022; 23:31. https://doi.org/10.1186/s13059-022-02601-5 PMID: 35063006

54. Delmans M, Hemberg M. Discrete distributional differential expression (D3E)—a tool for gene expres-

sion analysis of single-cell RNA-seq data. BMC Bioinformatics. 2016; 17:110. https://doi.org/10.1186/

s12859-016-0944-6 PMID: 26927822

55. Ham L, Brackston RD, Stumpf MPH. Extrinsic Noise and Heavy-Tailed Laws in Gene Expression.

Physical Review Letters. 2020; 124(10):108101. https://doi.org/10.1103/PhysRevLett.124.108101

PMID: 32216388

56. Svensson V. Droplet scRNA-seq is not zero-inflated. Nature Biotechnology. 2020; 38(2):147–150.

https://doi.org/10.1038/s41587-019-0379-5 PMID: 31937974

57. Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. Deep generative modeling for single-cell transcrip-

tomics. Nature Methods. 2018; 15(12):1053–1058. https://doi.org/10.1038/s41592-018-0229-2 PMID:

30504886

PLOS COMPUTATIONAL BIOLOGY RNA velocity unraveled

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010492 September 12, 2022 49 / 55

https://doi.org/10.15252/msb.20188746
http://www.ncbi.nlm.nih.gov/pubmed/31217225
https://doi.org/10.1038/s41422-018-0099-2
http://www.ncbi.nlm.nih.gov/pubmed/30315278
https://doi.org/10.1126/science.aas9536
https://doi.org/10.1126/science.aas9536
http://www.ncbi.nlm.nih.gov/pubmed/31171666
https://doi.org/10.1161/CIRCRESAHA.119.315243
http://www.ncbi.nlm.nih.gov/pubmed/31221018
https://doi.org/10.1038/s41586-020-2797-4
http://www.ncbi.nlm.nih.gov/pubmed/32971526
https://doi.org/10.1038/s41586-020-2157-4
http://www.ncbi.nlm.nih.gov/pubmed/32214235
https://doi.org/10.1038/s41586-021-03356-y
https://doi.org/10.1038/s41586-021-03356-y
http://www.ncbi.nlm.nih.gov/pubmed/33731924
https://doi.org/10.1038/s41591-021-01323-8
http://www.ncbi.nlm.nih.gov/pubmed/33958794
https://doi.org/10.1038/s41588-021-00806-1
http://www.ncbi.nlm.nih.gov/pubmed/33767450
https://doi.org/10.1038/s41467-020-17186-5
http://www.ncbi.nlm.nih.gov/pubmed/32641768
https://doi.org/10.1016/j.cell.2018.05.035
https://doi.org/10.1016/j.cell.2018.05.035
http://www.ncbi.nlm.nih.gov/pubmed/29887381
https://doi.org/10.1016/j.neuron.2016.10.001
https://doi.org/10.1016/j.neuron.2016.10.001
http://www.ncbi.nlm.nih.gov/pubmed/27764670
https://doi.org/10.1038/s41467-021-23807-4
https://doi.org/10.1038/s41467-021-23807-4
http://www.ncbi.nlm.nih.gov/pubmed/34112806
https://doi.org/10.1038/s41467-018-06868-w
https://doi.org/10.1038/s41467-018-06868-w
http://www.ncbi.nlm.nih.gov/pubmed/30389932
https://doi.org/10.1038/ncomms9687
http://www.ncbi.nlm.nih.gov/pubmed/26489834
https://doi.org/10.1186/gb-2013-14-1-r7
http://www.ncbi.nlm.nih.gov/pubmed/23360624
https://doi.org/10.1186/s13059-022-02601-5
http://www.ncbi.nlm.nih.gov/pubmed/35063006
https://doi.org/10.1186/s12859-016-0944-6
https://doi.org/10.1186/s12859-016-0944-6
http://www.ncbi.nlm.nih.gov/pubmed/26927822
https://doi.org/10.1103/PhysRevLett.124.108101
http://www.ncbi.nlm.nih.gov/pubmed/32216388
https://doi.org/10.1038/s41587-019-0379-5
http://www.ncbi.nlm.nih.gov/pubmed/31937974
https://doi.org/10.1038/s41592-018-0229-2
http://www.ncbi.nlm.nih.gov/pubmed/30504886
https://doi.org/10.1371/journal.pcbi.1010492


58. Amrhein L, Harsha K, Fuchs C. A mechanistic model for the negative binomial distribution of single-

cell mRNA counts. bioRxiv: 657619; 2019.

59. Bonnaffoux A, Herbach U, Richard A, Guillemin A, Gonin-Giraud S, Gros PA, et al. WASABI: a

dynamic iterative framework for gene regulatory network inference. BMC bioinformatics. 2019; 20

(1):1–19. https://doi.org/10.1186/s12859-019-2798-1 PMID: 31046682

60. Swain PS, Elowitz MB, Siggia ED. Intrinsic and extrinsic contributions to stochasticity in gene expres-

sion. Proceedings of the National Academy of Sciences. 2002; 99(20):12795–12800. https://doi.org/

10.1073/pnas.162041399 PMID: 12237400

61. Xu H, Skinner SO, Sokac AM, Golding I. Stochastic Kinetics of Nascent RNA. Physical Review Letters.

2016; 117(12):128101. https://doi.org/10.1103/PhysRevLett.117.128101 PMID: 27667861

62. Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S. Stochastic mRNA Synthesis in Mammalian Cells.

PLoS Biology. 2006; 4(10):e309. https://doi.org/10.1371/journal.pbio.0040309 PMID: 17048983

63. Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel digital tran-

scriptional profiling of single cells. Nature Communications. 2017; 8(1):14049. https://doi.org/10.1038/

ncomms14049 PMID: 28091601

64. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nature

Biotechnology. 2016; 34(5):525–527. https://doi.org/10.1038/nbt.3519 PMID: 27043002

65. Du Y, Huang Q, Arisdakessian C, Garmire LX. Evaluation of STAR and Kallisto on Single Cell RNA-

Seq Data Alignment. G3: Genes, Genomes, Genetics. 2020; 10(5):1775–1783. https://doi.org/10.

1534/g3.120.401160 PMID: 32220951

66. Petukhov V, Guo J, Baryawno N, Severe N, Scadden DT, Samsonova MG, et al. dropEst: pipeline for

accurate estimation of molecular counts in droplet-based single-cell RNA-seq experiments. Genome

Biology. 2018; 19(1):78. https://doi.org/10.1186/s13059-018-1449-6 PMID: 29921301

67. Li WV, Li JJ. An accurate and robust imputation method scImpute for single-cell RNA-seq data. Nature

Communications. 2018; 9(1):997. https://doi.org/10.1038/s41467-018-03405-7 PMID: 29520097

68. Andrews T, Hemberg M. False signals induced by single-cell imputation. F1000Research. 2019;

7:1740. https://doi.org/10.12688/f1000research.16613.1

69. Lynch M, Conery JS. The Origins of Genome Complexity. Science. 2003; 302(5649):1401–1404.

https://doi.org/10.1126/science.1089370 PMID: 14631042

70. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al. Alternative isoform regulation in

human tissue transcriptomes. Nature. 2008; 456(7221):470–476. https://doi.org/10.1038/nature07509

PMID: 18978772

71. Conze T, Göransson J, Razzaghian HR, Ericsson O, Öberg D, Akusjärvi G, et al. Single molecule anal-
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134. Lönnberg T, Svensson V, James KR, Fernandez-Ruiz D, Sebina I, Montandon R, et al. Single-cell

RNA-seq and computational analysis using temporal mixture modeling resolves Th1/Tfh fate bifurca-

tion in malaria. Science Immunology. 2017; 2(9):eaal2192. https://doi.org/10.1126/sciimmunol.

aal2192 PMID: 28345074

135. Qiu X, Hill A, Packer J, Lin D, Ma YA, Trapnell C. Single-cell mRNA quantification and differential anal-

ysis with Census. Nature Methods. 2017; 14(3):309–315. https://doi.org/10.1038/nmeth.4150 PMID:

28114287

136. Campbell KR, Yau C. A descriptive marker gene approach to single-cell pseudotime inference. Bioin-

formatics. 2019; 35(1):28–35. https://doi.org/10.1093/bioinformatics/bty498 PMID: 29939207

137. Haghverdi L, Buettner F, Theis FJ. Diffusion maps for high-dimensional single-cell analysis of differen-

tiation data. Bioinformatics. 2015; 31(18):2989–2998. https://doi.org/10.1093/bioinformatics/btv325

PMID: 26002886

138. Weinreb C, Wolock S, Tusi BK, Socolovsky M, Klein AM. Fundamental limits on dynamic inference

from single-cell snapshots. Proceedings of the National Academy of Sciences. 2018; 115(10):E2467–

E2476. https://doi.org/10.1073/pnas.1714723115 PMID: 29463712

139. Deconinck L, Cannoodt R, Saelens W, Deplancke B, Saeys Y. Recent advances in trajectory inference

from single-cell omics data. Current Opinion in Systems Biology. 2021; 27:100344. https://doi.org/10.

1016/j.coisb.2021.05.005

140. Zhang J, Nie Q, Zhou T. Revealing Dynamic Mechanisms of Cell Fate Decisions From Single-Cell

Transcriptomic Data. Frontiers in Genetics. 2019; 10:1280. https://doi.org/10.3389/fgene.2019.01280

PMID: 31921315

141. Pitman JW. Occupation Measures for Markov Chains. Advances in Applied Probability. 1977; 9(1):69–

86. https://doi.org/10.2307/1425817

142. Yang Y, Nurbekyan L, Negrini E, Martin R, Pasha M. Optimal Transport for Parameter Identification of

Chaotic Dynamics via Invariant Measures. arXiv: 2104.15138; 2021.

143. Kuntz J, Thomas P, Stan GB, Barahona M. The Exit Time Finite State Projection Scheme: Bounding

Exit Distributions and Occupation Measures of Continuous-Time Markov Chains. SIAM Journal on Sci-

entific Computing. 2019; 41(2):A748–A769. https://doi.org/10.1137/18M1168261

144. Van Kampen NG. Stochastic Processes in Physics and Chemistry. 3rd ed. Elsevier; 2007.

145. Abramowitz M, Stegun I, editors. Handbook of Mathematical Functions with Formulas, Graphs, and

Mathematical Tables. 9th ed. United States National Bureau of Standards; 1970.

146. Vastola JJ. In search of a coherent theoretical framework for stochastic gene regulation. Vanderbilt;

2021.

147. Gorin G, Vastola JJ, Fang M, Pachter L. Interpretable and tractable models of transcriptional noise for

the rational design of single-molecule quantification experiments. bioRxiv: 2021.09.06.459173; 2021.

148. Gorin G, Pachter L. Monod: mechanistic analysis of single-cell RNA sequencing count data. bioRxiv:

2022.06.11.495771; 2022.

PLOS COMPUTATIONAL BIOLOGY RNA velocity unraveled

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010492 September 12, 2022 53 / 55

https://doi.org/10.1261/rna.1993510
http://www.ncbi.nlm.nih.gov/pubmed/20357345
https://doi.org/10.1093/bioinformatics/18.suppl_1.S181
https://doi.org/10.1093/bioinformatics/18.suppl_1.S181
http://www.ncbi.nlm.nih.gov/pubmed/12169546
https://doi.org/10.1038/s41587-020-0497-0
http://www.ncbi.nlm.nih.gov/pubmed/32518404
https://doi.org/10.1038/nbt.2859
http://www.ncbi.nlm.nih.gov/pubmed/24658644
https://doi.org/10.1186/s13059-019-1663-x
http://www.ncbi.nlm.nih.gov/pubmed/30890159
https://doi.org/10.1126/sciimmunol.aal2192
https://doi.org/10.1126/sciimmunol.aal2192
http://www.ncbi.nlm.nih.gov/pubmed/28345074
https://doi.org/10.1038/nmeth.4150
http://www.ncbi.nlm.nih.gov/pubmed/28114287
https://doi.org/10.1093/bioinformatics/bty498
http://www.ncbi.nlm.nih.gov/pubmed/29939207
https://doi.org/10.1093/bioinformatics/btv325
http://www.ncbi.nlm.nih.gov/pubmed/26002886
https://doi.org/10.1073/pnas.1714723115
http://www.ncbi.nlm.nih.gov/pubmed/29463712
https://doi.org/10.1016/j.coisb.2021.05.005
https://doi.org/10.1016/j.coisb.2021.05.005
https://doi.org/10.3389/fgene.2019.01280
http://www.ncbi.nlm.nih.gov/pubmed/31921315
https://doi.org/10.2307/1425817
https://doi.org/10.1137/18M1168261
https://doi.org/10.1371/journal.pcbi.1010492


149. Davis ME, Davis RJ. Fundamentals of chemical reaction engineering. International ed ed. McGraw-

Hill chemical engineering series. Boston: McGraw-Hill; 2003.

150. Gillespie DT. A general method for numerically simulating the stochastic time evolution of coupled

chemical reactions. Journal of Computational Physics. 1976; 22(4):403–434. https://doi.org/10.1016/

0021-9991(76)90041-3

151. Munsky B, Khammash M. The finite state projection algorithm for the solution of the chemical master

equation. The Journal of Chemical Physics. 2006; 124(4):044104. https://doi.org/10.1063/1.2145882

PMID: 16460146

152. Wilkinson DJ. Stochastic modelling for systems biology. Third edition ed. Chapman & Hall/CRC math-

ematical and computational biology. Boca Raton: CRC Press, Taylor & Francis Group; 2019.

153. Phillips R, Kondev J, Theriot J, Garcia HG. Physical biology of the cell. 2nd ed. New York, NY: Gar-

land Science; 2013.

154. Breda J, Zavolan M, van Nimwegen E. Bayesian inference of gene expression states from single-cell

RNA-seq data. Nature Biotechnology. 2021; 39(8):1008–1016. https://doi.org/10.1038/s41587-021-

00875-x PMID: 33927416

155. Gayoso A, Lopez R, Xing G, Boyeau P, Valiollah Pour Amiri V, Hong J, et al. A Python library for proba-

bilistic analysis of single-cell omics data. Nature Biotechnology. 2022. https://doi.org/10.1038/s41587-

021-01206-w PMID: 35132262

156. Jia C, Grima R. Accuracy and limitations of extrinsic noise models to describe gene expression in

growing cells. bioRxiv: 2022.06.15.496247; 2022.

157. Grima R, Schmidt DR, Newman TJ. Steady-state fluctuations of a genetic feedback loop: An exact

solution. The Journal of Chemical Physics. 2012; 137(3):035104. https://doi.org/10.1063/1.4736721

PMID: 22830733

158. Cao Z, Grima R. Analytical distributions for detailed models of stochastic gene expression in eukary-

otic cells. Proceedings of the National Academy of Sciences. 2020; 117(9):4682–4692. https://doi.org/

10.1073/pnas.1910888117 PMID: 32071224

159. Veloso A, Kirkconnell KS, Magnuson B, Biewen B, Paulsen MT, Wilson TE, et al. Rate of elongation by

RNA polymerase II is associated with specific gene features and epigenetic modifications. Genome

Research. 2014; 24(6):896–905. https://doi.org/10.1101/gr.171405.113 PMID: 24714810

160. Zhang X, Jin H, Yang Z, Lei J, 1 School of Mathematics and Systems Science, Beihang University,

Beijing 100191, 2 Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing

100084, et al. Effects of elongation delay in transcription dynamics. Mathematical Biosciences and

Engineering. 2014; 11(6):1431–1448. https://doi.org/10.3934/mbe.2014.11.1431 PMID: 25365608
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